WO2021084634A1 - Valve timing adjustment device - Google Patents

Valve timing adjustment device Download PDF

Info

Publication number
WO2021084634A1
WO2021084634A1 PCT/JP2019/042485 JP2019042485W WO2021084634A1 WO 2021084634 A1 WO2021084634 A1 WO 2021084634A1 JP 2019042485 W JP2019042485 W JP 2019042485W WO 2021084634 A1 WO2021084634 A1 WO 2021084634A1
Authority
WO
WIPO (PCT)
Prior art keywords
spool
camshaft
port
oil
drain
Prior art date
Application number
PCT/JP2019/042485
Other languages
French (fr)
Japanese (ja)
Inventor
琢也 國重
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/042485 priority Critical patent/WO2021084634A1/en
Publication of WO2021084634A1 publication Critical patent/WO2021084634A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive

Definitions

  • the present invention relates to a valve timing adjusting device.
  • variable valve timing adjusting device (hereinafter referred to as “valve timing adjusting device” or “VVT”) is a device that adjusts the opening / closing timing of the intake valve or the exhaust valve of the vehicle engine.
  • This VVT is a case that rotates synchronously with the crankshaft, a rotor whose rotation phase is adjusted with respect to the case by the inflow and outflow of oil to the hydraulic chamber partitioned in the case, and an oil control valve that fastens the camshaft and the rotor (hereinafter referred to as an oil control valve). It is equipped with a center bolt with a function (referred to as "OCV").
  • OCV oil control valve
  • a center bolt with an OCV function as described in Patent Document 1 has a discharge port for discharging oil in a hydraulic chamber and a drain for discharging oil to the outside by opening an axial end on the side opposite to the camshaft. Has a port.
  • the spool has a cylindrical drain hole extending in the axial direction and an opening in the drain hole that opens at the axial end on the side opposite to the camshaft and communicates with the drain port.
  • the drain port and the opening will be close to each other when the VFS pushes the spool, so that the drain oil will not flow directly from the drain port to the drain port, but from the drain port to the opening. It flows into the drain hole through the drain hole, and the discharged oil collides with the axial end portion inside the drain hole, causing dynamic pressure in the spool. In that case, when the spool is pushed in, the moving position of the spool shifts, and the accuracy of controlling oil inflow and outflow to and from the hydraulic chamber deteriorates.
  • the present invention has been made to solve the above problems, and an object of the present invention is to suppress the flow of discharged oil from the opening of the discharged oil into the spool when the spool is pushed.
  • the valve timing adjusting device includes a case that rotates synchronously with the crankshaft, a rotor that adjusts the rotation phase with respect to the case by injecting and discharging oil into and out of the hydraulic chamber partitioned in the case, a sleeve provided with a housing hole, and It has a bottomed tubular shape with the camshaft side open, has a spool that is coaxially accommodated in the accommodating hole, has a center bolt that fastens the camshaft and rotor, and the sleeve is on the opposite side of the camshaft.
  • It has a drain port where the axial end of the is opened to discharge oil to the outside, and a first port which opens to the inner peripheral surface of the accommodating hole and discharges oil from the hydraulic chamber.
  • the shape protrudes from the outer peripheral surface, and when the spool is not pushed toward the camshaft side, the first port and the drain port are blocked, and when the spool is pushed toward the camshaft side, the first port and the drain port are separated.
  • It has a wall portion which is an outer peripheral surface from the first land portion to the opening of the outer peripheral surface of the spool extending beyond the first port toward the drain port side.
  • the present invention in a state where the spool is pushed toward the camshaft side, there is a wall portion facing the first port and extending beyond the first port toward the drain port side, so that the spool is discharged from the first port.
  • the oil can flow to the drain port along the wall portion, and the flow from the opening to the inside of the spool can be suppressed.
  • FIG. 2A is before the spool is pushed in
  • FIG. 2B is after the spool is pushed in
  • FIG. 3A is a cross-sectional view showing a configuration example of a conventional center bolt with an OCV function
  • FIG. 3A is before the spool is pushed in
  • FIG. 3B is after the spool is pushed in
  • FIG. 4A is a cross-sectional view showing a configuration example of a center bolt with an OCV function according to a second embodiment
  • FIG. 4A is before the spool is pushed in
  • FIG. 4B is after the spool is pushed in.
  • It is an external perspective view which shows the spool.
  • It is an external perspective view which shows the modification of the spool.
  • It is an external perspective view which shows another modification of a spool.
  • FIG. 1 is a cross-sectional view showing a configuration example of VVT1 according to the first embodiment.
  • a plurality of hydraulic chambers (not shown) are formed inside the tubular case 2.
  • Each of the plurality of hydraulic chambers is divided into an advance angle hydraulic chamber and a retard oil pressure chamber by a rotor 3 housed in the case 2.
  • the cover 4 With the rotor 3 housed inside the case 2, the cover 4 is fixed to one opening of the case 2, and the plate 5 is fixed to the other opening of the case 2.
  • a through hole 3a through which the center bolt 10 with an OCV function penetrates is provided in the central portion of the rotor 3, and a screw hole 6a for fastening the center bolt 10 with an OCV function is provided at the end of the camshaft 6.
  • the rotor 3 has a supply oil passage 3e in which oil is supplied from an oil pump (not shown), a retard oil passage 3c communicating with the retard hydraulic chamber, and an advance oil passage communicating with the advance hydraulic chamber. 3d is provided.
  • a sprocket is formed on the outer peripheral surface of the case 2, and the driving force of the crankshaft of the engine is transmitted to the case 2 by a timing belt (not shown) attached to the sprocket, and the case 2 rotates synchronously with the crankshaft.
  • the rotor 3 is fixed to the camshaft 6 by the center bolt 10 with an OCV function and rotates synchronously with the camshaft 6. The rotation phase of the rotor 3 with respect to the case 2 is adjusted by the inflow and outflow of oil into the advance hydraulic chamber and the retard hydraulic chamber.
  • FIG. 2 is an enlarged view of the center bolt 10 with the OCV function of FIG. 1, FIG. 2A is before the spool 12 is pushed in, and FIG. 2B is after the spool 12 is pushed in.
  • the center bolt 10 with an OCV function includes a sleeve 11, a spool 12, a bush 13, and a spring 14.
  • a male screw corresponding to the screw hole 6a of the camshaft 6 is provided on the outer peripheral surface of the sleeve 11.
  • An accommodating hole 11a is provided inside the sleeve 11. The axial end of the accommodating hole 11a on the camshaft 6 side is closed, and the axial end of the accommodating hole 11a opposite to the camshaft 6 side is opened to drain oil to the outside. It is a port 11b. Further, the sleeve 11 is provided with a supply port 11e, a retard port 11c, and an advance port 11d opened on the inner peripheral surface of the accommodating hole 11a.
  • the supply port 11e communicates with the supply oil passage 3e of the rotor 3.
  • the retard angle port 11c communicates with the retard angle hydraulic chamber via the retard angle oil passage 3c of the rotor 3.
  • the advance port 11d communicates with the advance hydraulic chamber via the advance oil passage 3d of the rotor 3.
  • the retarded port 11c closest to the drain port 11b corresponds to the “first port”.
  • the spool 12 has a bottomed tubular shape with the camshaft 6 side open, and is coaxially accommodated in the accommodating hole 11a of the sleeve 11.
  • the spool 12 is pushed to the side opposite to the camshaft 6 side by a spring 14 installed at the axial end of the accommodating hole 11a on the camshaft 6 side, and is provided on the inner peripheral surface of the accommodating hole 11a.
  • the position is regulated by the contact of the first land portion 12a with the bush 13.
  • the spool 12 is pushed toward the camshaft 6 side against the load of the spring by a VFS (not shown) arranged at the axial end portion on the side opposite to the camshaft 6 side.
  • the outer peripheral surface of the spool 12 is provided with a first land portion 12a and a second land portion 12b having a shape protruding from the outer peripheral surface.
  • the first land portion 12a shuts off the retard angle port 11c and the drain port 11b when the spool 12 is not pushed toward the camshaft 6, and the retard angle port 11c and the supply port 11e. Communicate with.
  • the first land portion 12a communicates the retard angle port 11c and the drain port 11b, and communicates the retard angle port 11c and the supply port. It shuts off 11e.
  • FIG. 2A the first land portion 12a shuts off the retard angle port 11c and the drain port 11b when the spool 12 is not pushed toward the camshaft 6, and the retard angle port 11c and the supply port 11e. Communicate with.
  • the first land portion 12a communicates the retard angle port 11c and the drain port 11b, and communicates the retard angle port 11c and the supply port. It shuts off 11e.
  • FIG. 2A
  • the second land portion 12b communicates the retard angle port 11c and the supply port 11e with the advance angle port 11d and the drain hole 12c in a state where the spool 12 is not pushed toward the camshaft 6 side. And shut off the advance port 11d and the supply port 11e. Further, in the state where the spool 12 is pushed toward the camshaft 6 side as shown in FIG. 2B, the second land portion 12b communicates the advance angle port 11d and the supply port 11e with the advance angle port 11d and the drain hole. It shuts off 12c.
  • the spool 12 is provided with an opening 12d that opens at a position closer to the drain port 11b than the first land portion 12a and communicates with the drain port 11b.
  • the opening 12d has, for example, a circular shape.
  • the first land on the outer peripheral surface of the spool 12 faces the retard port 11c and extends beyond the retard port 11c to the drain port 11b side. It has a wall portion 12e which is an outer peripheral surface from the portion 12a to the opening 12d.
  • the VFS When adjusting the rotation phase of VVT1 in the retard direction, the VFS does not push the spool 12.
  • the oil supplied by the oil pump enters the supply port 11e from the supply oil passage 3e, flows through the retard angle oil passage 3c from the retard angle port 11c, and is introduced into the retard angle hydraulic chamber.
  • the oil in the advance hydraulic chamber exits from the advance oil passage 3d to the advance port 11d, flows through the accommodating hole 11a to the drain hole 12c, and flows to the opening 12d as shown by the arrow in FIG. 2A. It is discharged to the outside from the drain port 11b through the drain port 11b.
  • the opening 12d Since the opening 12d is sufficiently large, the oil that has entered the drain hole 12c exits the opening 12d without colliding with the axial end inside the drain hole 12c. Therefore, the dynamic pressure received by the axial end inside the drain hole 12c at the time of oil discharge is suppressed, the moving position of the spool 12 does not shift, and the control accuracy of oil inflow and outflow to the advance hydraulic chamber and the retard hydraulic chamber is improved. To do.
  • the VFS pushes in the spool 12.
  • the oil supplied by the oil pump enters the supply port 11e from the supply oil passage 3e, flows from the advance angle port 11d through the advance angle oil passage 3d, and is introduced into the advance angle hydraulic chamber.
  • the oil in the retard angle hydraulic chamber exits from the retard angle oil passage 3c to the retard angle port 11c and is led out to the drain port 11b along the wall portion 12e as shown by an arrow in FIG. 2B to the outside. It is discharged.
  • the wall portion 12e changes the direction in which the oil flows toward the drain port 11b, the oil in the retard angle port 11c is suppressed from flowing into the drain hole 12c from the opening 12d. Therefore, the dynamic pressure received by the axial end inside the drain hole 12c at the time of oil discharge is suppressed, the moving position of the spool 12 does not shift, and the control accuracy of oil inflow and outflow to the advance hydraulic chamber and the retard hydraulic chamber is improved. To do.
  • FIG. 3 is a cross-sectional view showing a configuration example of a conventional center bolt 10A with an OCV function.
  • FIG. 3A is before the spool 12 is pushed in
  • FIG. 3B is after the spool 12 is pushed in.
  • the difference between the conventional center bolt 10A with an OCV function and the center bolt 10 with an OCV function according to the first embodiment is the length of the wall portion 12e.
  • the wall portion 12f of the conventional center bolt 10A with an OCV function has a length facing the retard angle port 11c when the spool 12 is pushed in, and is the retard angle port 11c as in the wall portion 12e of the first embodiment. Does not extend beyond the drain port 11b side.
  • the oil in the advance hydraulic chamber exits the advance oil passage 3d to the advance port 11d and is accommodated as shown by the arrow in FIG. 3A. It flows through the hole 11a to the drain hole 12c, passes through the opening 12d, and is discharged to the outside from the drain port 11b. Since the opening 12d is sufficiently large, the oil that has entered the drain hole 12c exits the opening 12d without colliding with the axial end inside the drain hole 12c.
  • the oil in the retard angle hydraulic chamber exits from the retard angle oil passage 3c to the retard angle port 11c, and as shown by the arrow in FIG. 3B, the retard angle It flows into the drain hole 12c through the opening 12d near the port 11c.
  • the oil that has flowed into the drain hole 12c collides with the axial end portion inside the drain hole 12c, then exits from the opening 12d and is discharged to the outside from the drain port 11b. Since the wall portion 12f is shorter than the wall portion 12e, the direction in which the oil flowing out of the retard angle port 11c cannot be changed, and the oil flows from the retard angle port 11c to the opening 12d.
  • the axial end portion inside the drain hole 12c receives dynamic pressure, the moving position of the spool 12 shifts, and the control accuracy of oil inflow and outflow to the advance angle hydraulic chamber and the retard angle hydraulic chamber deteriorates.
  • the VVT 1 includes a case 2 that rotates synchronously with the crankshaft, a rotor 3 whose rotation phase with respect to the case 2 is adjusted by the inflow and outflow of oil to the hydraulic chamber partitioned in the case 2.
  • the camshaft 6 and the rotor 3 are fastened together with a sleeve 11 provided with the accommodating hole 11a and a spool 12 having a bottomed tubular shape with the camshaft 6 side open and accommodated coaxially in the accommodating hole 11a. It is provided with a center bolt 10 with an OCV function.
  • the sleeve 11 has a drain port 11b whose axial end on the side opposite to the camshaft 6 side is opened to discharge oil to the outside, and an opening on the inner peripheral surface of the accommodating hole 11a to allow oil to flow from the retarded hydraulic chamber. It has a retarded port 11c to be discharged.
  • the spool 12 has a shape protruding from the outer peripheral surface of the spool 12, and when the spool 12 is not pushed toward the camshaft 6, the retard port 11c and the drain port 11b are blocked and pushed toward the camshaft 6.
  • the spool 12 faces the retard port 11c in a state of being pushed toward the camshaft 6, and has a wall portion 12e extending beyond the retard port 11c to the drain port 11b side.
  • the retarded port 11c closest to the drain port 11b corresponds to the “first port”.
  • the positions of the retard oil passage 3c and the advance oil passage 3d of the rotor 3 may be opposite to each other. In that case, the positions of the retard port 11c and the advance port 11d of the sleeve 11 are also reversed. That is, in FIG. 2, the retard port 11c is arranged at the position farthest from the drain port 11b, and the advance port 11d is arranged at the position closest to the drain port 11b. Then, the advance port 11d closest to the drain port 11b becomes the "first port".
  • the first land portion 12a that switches the oil flow path also functions as a stopper portion that regulates the position of the spool 12 in the axial direction.
  • the first land portion 12a and the stopper portion are separate bodies.
  • FIG. 4 is a cross-sectional view showing a configuration example of the center bolt 10 with an OCV function according to the second embodiment, FIG. 4A is before the spool 12 is pushed in, and FIG. 4B is after the spool 12 is pushed in.
  • FIG. 5 is an external perspective view showing the spool 12 of FIG.
  • the same or corresponding parts as those in FIGS. 1 to 3 are designated by the same reference numerals, and the description thereof will be omitted.
  • the spool 12 has a plurality of column portions 12g extending in the axial direction provided at the axial end portion on the side opposite to the camshaft 6 side.
  • the spool 12 is provided with three pillars 12g, but the number of pillars 12g may be arbitrary.
  • the gap between the adjacent pillar portions 12g is an opening 12d1 that communicates the drain hole 12c and the drain port 11b.
  • Each of the pillar portions 12g is provided with a stopper portion 12h having a shape protruding from the outer peripheral surface.
  • the stopper portion 12h regulates the position of the spool 12 pushed by the spring 14 by abutting the bush 13 in a state where the spool 12 is not pushed toward the camshaft 6. Further, when the spool 12 moves in the axial direction, the stopper portion 12h functions as a sliding portion that moves while being in contact with the inner peripheral surface of the accommodating hole 11a.
  • the first land portion 12a and the second land portion 12b also function as sliding portions.
  • the surface of the stopper portion 12h on the camshaft 6 side is an inclined surface 12i in which the amount of protrusion in the radial direction increases from the camshaft 6 side toward the side opposite to the camshaft 6.
  • the sleeve 11 of the second embodiment has a bush 13 protruding from the inner peripheral surface of the accommodating hole 11a.
  • the spool 12 has a plurality of pillars 12g extending in the axial direction provided at the axial end on the side opposite to the camshaft 6 side, and the spool 12 has a shape protruding from the pillars 12g. It has a stopper portion 12h that comes into contact with the bush 13 in a state where it is not pushed to the side, and a gap between adjacent pillar portions 12g constitutes the opening portion 12d1.
  • first land portion 12a, the second land portion 12b, and the stopper portion 12h come into contact with the inner peripheral surface of the accommodating hole 11a, the first land portion 12a and the second land portion 12a and the second land portion as in the first embodiment.
  • the inclination of the spool 12 with respect to the axial direction is suppressed as compared with the case where the two points of 12b are in contact with each other. Therefore, the accuracy of controlling the oil inflow and outflow to and from the advance hydraulic chamber and the retard hydraulic chamber is improved.
  • the surface of the stopper portion 12h on the camshaft 6 side is an inclined surface 12i in which the amount of protrusion in the radial direction increases from the camshaft 6 side toward the side opposite to the camshaft 6. is there.
  • the surface of the stopper portion 12h on the camshaft 6 side is a surface perpendicular to the outer peripheral surface of the spool 12, the spool 12 comes out of the retard port 11c and the wall portion is in a state of being pushed toward the camshaft 6 side. Since the oil flowing along 12e hits this vertical surface, the oil flow is likely to be disturbed.
  • the surface of the stopper portion 12h on the camshaft 6 side is an inclined surface 12i
  • the oil that comes out of the retard angle port 11c and flows along the wall portion 12e can smoothly flow in the direction of the drain port 11b. ..
  • the dynamic pressure received by the inclined surface 12i is smaller than the dynamic pressure received by the vertical surface, the deviation of the moving position of the spool 12 is suppressed.
  • the inclined surface 12i is not limited to the shapes shown in FIGS. 4 and 5, and the oil that comes out of the retarded port 11c and flows along the wall portion 12e can smoothly flow in the direction of the drain port 11b. It may be in shape. A modified example of the inclined surface 12i is shown below.
  • FIG. 6 is an external perspective view showing a modified example of the spool 12.
  • the surface of the stopper portion 12h on the camshaft 6 side is an inclined surface 12i in which the amount of protrusion in the circumferential direction increases from the camshaft 6 side toward the side opposite to the camshaft 6.
  • the inclined surface 12i having this shape also allows the oil flowing out of the retarded port 11c and flowing along the wall portion 12e to smoothly flow in the direction of the drain port 11b when the spool 12 is pushed toward the camshaft 6. ..
  • FIG. 7 is an external perspective view showing another modified example of the spool 12.
  • the surface of the stopper portion 12h on the camshaft 6 side is a V-shaped inclined surface 12i whose width increases from the camshaft 6 side toward the side opposite to the camshaft 6.
  • the inclined surface 12i having this shape also allows the oil flowing out of the retarded port 11c and flowing along the wall portion 12e to smoothly flow in the direction of the drain port 11b when the spool 12 is pushed toward the camshaft 6. ..
  • the pillar portion 12g and the opening portion 12d1 of the second embodiment are provided at a position closer to the drain port 11b than the first land portion 12a of the spool 12 instead of the opening 12d. You may.
  • the present invention allows any combination of embodiments, modifications of any component of each embodiment, or omission of any component of each embodiment within the scope of the invention.
  • the VVT according to the present invention is suitable for use in a VVT that adjusts the opening / closing timing of the intake valve or the exhaust valve of an engine.

Abstract

A spool (12) of an OCV function-equipped center bolt (10) comprises: a first land portion (12a) which, in a state in which the spool (12) is not pushed into the cam shaft (6) side, isolates a retard port (11c) and a drain port (11b) from each other, and which, in a state in which the spool (12) is pushed into the cam shaft (6) side, provides communication between the retard port (11c) and the drain port (11b); an opening portion (12d) which opens at a position closer to the drain port (11b) than the first land portion (12a) and communicates with the drain port (11b); and a wall portion (12e) which, in a state in which the spool (12) is pushed into the cam shaft (6) side, faces the retard port (11c) and extends to the drain port (11b) side beyond the retard port (11c).

Description

バルブタイミング調整装置Valve timing adjuster
 この発明は、バルブタイミング調整装置に関するものである。 The present invention relates to a valve timing adjusting device.
 バリアブルバルブタイミング調整装置(以下、「バルブタイミング調整装置」又は「VVT」と称する)は、車両のエンジンの吸気バルブ又は排気バルブの開閉タイミングを調整する装置である。このVVTは、クランクシャフトと同期回転するケースと、ケース内に区画した油圧室に対するオイルの入出によりケースに対する回転位相が調整されるロータと、カムシャフトとロータとを締結するオイルコントロールバルブ(以下、「OCV」と称する)機能付きセンタボルトとを備える。VFS(Variable Force Solenoid)が、センタボルトの内部に設置されたスプールを押して軸方向に移動させることで、油圧室へオイルを供給する経路と油圧室からオイルを排出する経路とが切り替わる。 The variable valve timing adjusting device (hereinafter referred to as "valve timing adjusting device" or "VVT") is a device that adjusts the opening / closing timing of the intake valve or the exhaust valve of the vehicle engine. This VVT is a case that rotates synchronously with the crankshaft, a rotor whose rotation phase is adjusted with respect to the case by the inflow and outflow of oil to the hydraulic chamber partitioned in the case, and an oil control valve that fastens the camshaft and the rotor (hereinafter referred to as an oil control valve). It is equipped with a center bolt with a function (referred to as "OCV"). When the VFS (Variable Force Solenoid) pushes the spool installed inside the center bolt and moves it in the axial direction, the path for supplying oil to the hydraulic chamber and the path for discharging oil from the hydraulic chamber are switched.
 特許文献1に記載されているようなOCV機能付きセンタボルトは、油圧室のオイルを排出する排出ポートと、カムシャフトとは反対側の軸方向端部が開放されてオイルを外部へ排出するドレインポートとを有する。スプールは、軸方向にのびる円筒孔状のドレイン孔と、当該ドレイン孔においてカムシャフトとは反対側の軸方向端部に開口してドレインポートと連通する開口部とを有する。VFSがスプールを押し込んでいない状態では、油圧室からの排出オイルが、排出ポートからスプールのドレイン孔へ入り、開口部からドレインポートへ流れ、センタボルト外へ排出される(例えば、同文献の図3)。VFSがスプールを押し込んだ状態では、油圧室からの排出オイルが、排出ポートからドレインポートへ流れ、センタボルト外へ排出される(例えば、同文献の図4)。 A center bolt with an OCV function as described in Patent Document 1 has a discharge port for discharging oil in a hydraulic chamber and a drain for discharging oil to the outside by opening an axial end on the side opposite to the camshaft. Has a port. The spool has a cylindrical drain hole extending in the axial direction and an opening in the drain hole that opens at the axial end on the side opposite to the camshaft and communicates with the drain port. When the VFS does not push the spool, the oil discharged from the hydraulic chamber enters the drain hole of the spool from the discharge port, flows from the opening to the drain port, and is discharged to the outside of the center bolt (for example, the figure of the same document). 3). When the VFS pushes the spool, the oil discharged from the hydraulic chamber flows from the discharge port to the drain port and is discharged to the outside of the center bolt (for example, FIG. 4 of the same document).
特許第5637106号公報Japanese Patent No. 5637106
 特許文献1に記載されているような従来のOCV機能付きセンタボルトにおいて、VFSがスプールを押し込んでいない状態では、排出ポートからドレイン孔へ入った排出オイルが当該ドレイン孔内部の軸方向端部に衝突してスプールに動圧が生じ、その結果、スプールの移動位置にずれが生じて油圧室に対するオイル入出の制御精度が悪化するという懸念があった。そのため、スプールに大きな開口部を設けて、ドレイン孔内部の軸方向端部が受ける排出オイルの動圧の影響を小さくしていた。しかしながら、スプールの開口部が大きいと、VFSがスプールを押し込んだ状態において、排出ポートと開口部とが近くなるため、排出オイルが排出ポートからドレインポートへ直接流れるのではなく、排出ポートから開口部を通じてドレイン孔内部に流れ込んでしまい、排出オイルが当該ドレイン孔内部の軸方向端部に衝突してスプールに動圧が生じてしまう。その場合、スプールが押し込まれた状態において、スプールの移動位置にずれが生じて油圧室に対するオイル入出の制御精度が悪化してしまう。 In the conventional center bolt with OCV function as described in Patent Document 1, when the VFS does not push the spool, the discharged oil that has entered the drain hole from the discharge port reaches the axial end inside the drain hole. There was a concern that the spool would collide and dynamic pressure would be generated, resulting in a shift in the moving position of the spool and deterioration of the control accuracy of oil inflow and outflow to the hydraulic chamber. Therefore, a large opening is provided in the spool to reduce the influence of the dynamic pressure of the discharged oil on the axial end portion inside the drain hole. However, if the spool opening is large, the drain port and the opening will be close to each other when the VFS pushes the spool, so that the drain oil will not flow directly from the drain port to the drain port, but from the drain port to the opening. It flows into the drain hole through the drain hole, and the discharged oil collides with the axial end portion inside the drain hole, causing dynamic pressure in the spool. In that case, when the spool is pushed in, the moving position of the spool shifts, and the accuracy of controlling oil inflow and outflow to and from the hydraulic chamber deteriorates.
 この発明は、上記のような課題を解決するためになされたもので、スプールが押し込まれた状態において、排出オイルの開口部からスプール内部への流れ込みを抑制することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to suppress the flow of discharged oil from the opening of the discharged oil into the spool when the spool is pushed.
 この発明に係るバルブタイミング調整装置は、クランクシャフトと同期回転するケースと、ケース内に区画した油圧室に対するオイルの入出によりケースに対する回転位相が調整されるロータと、収容孔が設けられたスリーブ及びカムシャフト側が開口した有底筒形状であって収容孔内に同軸上に収容されるスプールを有し、カムシャフトとロータとを締結するセンタボルトとを備え、スリーブは、カムシャフトとは反対側の軸方向端部が開放されてオイルを外部へ排出するドレインポートと、収容孔の内周面に開口して油圧室からオイルが排出される第1ポートとを有し、スプールは、スプールの外周面から突出した形状であって、スプールがカムシャフト側へ押し込まれていない状態では第1ポートとドレインポートとを遮断し、カムシャフト側へ押し込まれた状態において第1ポートとドレインポートとを連通する第1ランド部と、第1ランド部よりもドレインポートに近い位置に開口してドレインポートに連通する開口部と、スプールがカムシャフト側へ押し込まれた状態では第1ポートに対面すると共に第1ポートを越えてドレインポート側へ延びた、スプールの外周面のうちの第1ランド部から開口部までの外周面である壁部とを有するものである。 The valve timing adjusting device according to the present invention includes a case that rotates synchronously with the crankshaft, a rotor that adjusts the rotation phase with respect to the case by injecting and discharging oil into and out of the hydraulic chamber partitioned in the case, a sleeve provided with a housing hole, and It has a bottomed tubular shape with the camshaft side open, has a spool that is coaxially accommodated in the accommodating hole, has a center bolt that fastens the camshaft and rotor, and the sleeve is on the opposite side of the camshaft. It has a drain port where the axial end of the is opened to discharge oil to the outside, and a first port which opens to the inner peripheral surface of the accommodating hole and discharges oil from the hydraulic chamber. The shape protrudes from the outer peripheral surface, and when the spool is not pushed toward the camshaft side, the first port and the drain port are blocked, and when the spool is pushed toward the camshaft side, the first port and the drain port are separated. The first land part that communicates, the opening that opens closer to the drain port than the first land part and communicates with the drain port, and when the spool is pushed toward the camshaft side, it faces the first port. It has a wall portion which is an outer peripheral surface from the first land portion to the opening of the outer peripheral surface of the spool extending beyond the first port toward the drain port side.
 この発明によれば、スプールがカムシャフト側へ押し込まれた状態において第1ポートに対面すると共に第1ポートを越えてドレインポート側へ延びた壁部が存在するため、第1ポートから排出されたオイルが壁部に沿ってドレインポートへ流れるようになり、開口部からスプール内部への流れ込みを抑制することができる。 According to the present invention, in a state where the spool is pushed toward the camshaft side, there is a wall portion facing the first port and extending beyond the first port toward the drain port side, so that the spool is discharged from the first port. The oil can flow to the drain port along the wall portion, and the flow from the opening to the inside of the spool can be suppressed.
実施の形態1に係るVVTの構成例を示す断面図である。It is sectional drawing which shows the structural example of the VVT which concerns on Embodiment 1. FIG. 図1のOCV機能付きセンタボルトの拡大図であり、図2Aはスプール押し込み前、図2Bはスプール押し込み後である。It is an enlarged view of the center bolt with an OCV function of FIG. 1, FIG. 2A is before the spool is pushed in, and FIG. 2B is after the spool is pushed in. 従来のOCV機能付きセンタボルトの構成例を示す断面図であり、図3Aはスプール押し込み前、図3Bはスプール押し込み後である。FIG. 3A is a cross-sectional view showing a configuration example of a conventional center bolt with an OCV function, FIG. 3A is before the spool is pushed in, and FIG. 3B is after the spool is pushed in. 実施の形態2に係るOCV機能付きセンタボルトの構成例を示す断面図であり、図4Aはスプール押し込み前、図4Bはスプール押し込み後である。FIG. 4A is a cross-sectional view showing a configuration example of a center bolt with an OCV function according to a second embodiment, FIG. 4A is before the spool is pushed in, and FIG. 4B is after the spool is pushed in. スプールを示す外観斜視図である。It is an external perspective view which shows the spool. スプールの変形例を示す外観斜視図である。It is an external perspective view which shows the modification of the spool. スプールの別の変形例を示す外観斜視図である。It is an external perspective view which shows another modification of a spool.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係るVVT1の構成例を示す断面図である。筒状のケース2の内部には、複数の油圧室(図示せず)が形成されている。複数の油圧室のそれぞれは、ケース2に収納されたロータ3により、進角油圧室と遅角油圧室とに区画される。ケース2の内部にロータ3が収納された状態で、ケース2の一方の開口部にカバー4が固定され、ケース2のもう一方の開口部にプレート5が固定される。ロータ3の中央部分には、OCV機能付きセンタボルト10が貫通する貫通孔3aが設けられており、カムシャフト6の端部には、OCV機能付きセンタボルト10が締結されるネジ穴6aが設けられている。また、ロータ3には、オイルポンプ(図示せず)からオイルが供給される供給油路3e、遅角油圧室に連通する遅角油路3c、及び進角油圧室に連通する進角油路3dが設けられている。
Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1.
FIG. 1 is a cross-sectional view showing a configuration example of VVT1 according to the first embodiment. A plurality of hydraulic chambers (not shown) are formed inside the tubular case 2. Each of the plurality of hydraulic chambers is divided into an advance angle hydraulic chamber and a retard oil pressure chamber by a rotor 3 housed in the case 2. With the rotor 3 housed inside the case 2, the cover 4 is fixed to one opening of the case 2, and the plate 5 is fixed to the other opening of the case 2. A through hole 3a through which the center bolt 10 with an OCV function penetrates is provided in the central portion of the rotor 3, and a screw hole 6a for fastening the center bolt 10 with an OCV function is provided at the end of the camshaft 6. Has been done. Further, the rotor 3 has a supply oil passage 3e in which oil is supplied from an oil pump (not shown), a retard oil passage 3c communicating with the retard hydraulic chamber, and an advance oil passage communicating with the advance hydraulic chamber. 3d is provided.
 ケース2の外周面にはスプロケットが形成されており、スプロケットに装着されるタイミングベルト(図示せず)により、エンジンのクランクシャフトの駆動力がケース2に伝達され、ケース2がクランクシャフトと同期回転する。一方、ロータ3は、OCV機能付きセンタボルト10によってカムシャフト6に固定され、カムシャフト6と同期回転する。進角油圧室及び遅角油圧室に対するオイルの入出により、ケース2に対するロータ3の回転位相が調整される。 A sprocket is formed on the outer peripheral surface of the case 2, and the driving force of the crankshaft of the engine is transmitted to the case 2 by a timing belt (not shown) attached to the sprocket, and the case 2 rotates synchronously with the crankshaft. To do. On the other hand, the rotor 3 is fixed to the camshaft 6 by the center bolt 10 with an OCV function and rotates synchronously with the camshaft 6. The rotation phase of the rotor 3 with respect to the case 2 is adjusted by the inflow and outflow of oil into the advance hydraulic chamber and the retard hydraulic chamber.
 図2は、図1のOCV機能付きセンタボルト10の拡大図であり、図2Aはスプール12押し込み前、図2Bはスプール12押し込み後である。OCV機能付きセンタボルト10は、スリーブ11、スプール12、ブッシュ13、及びスプリング14を備える。 FIG. 2 is an enlarged view of the center bolt 10 with the OCV function of FIG. 1, FIG. 2A is before the spool 12 is pushed in, and FIG. 2B is after the spool 12 is pushed in. The center bolt 10 with an OCV function includes a sleeve 11, a spool 12, a bush 13, and a spring 14.
 スリーブ11の外周面には、カムシャフト6のネジ穴6aに対応する雄ネジが設けられている。スリーブ11の内部には収容孔11aが設けられている。収容孔11aのカムシャフト6側の軸方向端部は、閉塞されており、収容孔11aのカムシャフト6側とは反対側の軸方向端部は、開放されて、オイルを外部へ排出するドレインポート11bになっている。また、スリーブ11には、収容孔11aの内周面に開口した供給ポート11e、遅角ポート11c、及び進角ポート11dが設けられている。供給ポート11eは、ロータ3の供給油路3eに連通する。遅角ポート11cは、ロータ3の遅角油路3cを介して遅角油圧室に連通する。進角ポート11dは、ロータ3の進角油路3dを介して進角油圧室に連通する。
 図2において、ドレインポート11bに最も近い遅角ポート11cは、「第1ポート」に相当する。
A male screw corresponding to the screw hole 6a of the camshaft 6 is provided on the outer peripheral surface of the sleeve 11. An accommodating hole 11a is provided inside the sleeve 11. The axial end of the accommodating hole 11a on the camshaft 6 side is closed, and the axial end of the accommodating hole 11a opposite to the camshaft 6 side is opened to drain oil to the outside. It is a port 11b. Further, the sleeve 11 is provided with a supply port 11e, a retard port 11c, and an advance port 11d opened on the inner peripheral surface of the accommodating hole 11a. The supply port 11e communicates with the supply oil passage 3e of the rotor 3. The retard angle port 11c communicates with the retard angle hydraulic chamber via the retard angle oil passage 3c of the rotor 3. The advance port 11d communicates with the advance hydraulic chamber via the advance oil passage 3d of the rotor 3.
In FIG. 2, the retarded port 11c closest to the drain port 11b corresponds to the “first port”.
 スプール12は、カムシャフト6側が開口した有底筒形状であって、スリーブ11の収容孔11a内に同軸上に収容される。スプール12は、収容孔11aのカムシャフト6側の軸方向端部に設置されたスプリング14によって、カムシャフト6側とは反対側へ押されており、収容孔11aの内周面に設けられたブッシュ13に第1ランド部12aが当接することにより、位置が規制されている。スプール12は、カムシャフト6側とは反対側の軸方向端部に配置されたVFS(図示せず)によって、スプリングの荷重に抗してカムシャフト6側へ押し込まれる。 The spool 12 has a bottomed tubular shape with the camshaft 6 side open, and is coaxially accommodated in the accommodating hole 11a of the sleeve 11. The spool 12 is pushed to the side opposite to the camshaft 6 side by a spring 14 installed at the axial end of the accommodating hole 11a on the camshaft 6 side, and is provided on the inner peripheral surface of the accommodating hole 11a. The position is regulated by the contact of the first land portion 12a with the bush 13. The spool 12 is pushed toward the camshaft 6 side against the load of the spring by a VFS (not shown) arranged at the axial end portion on the side opposite to the camshaft 6 side.
 スプール12の外周面には、外周面から突出した形状の第1ランド部12aと第2ランド部12bとが設けられている。第1ランド部12aは、図2Aに示されるようにスプール12がカムシャフト6側へ押し込まれていない状態では、遅角ポート11cとドレインポート11bとを遮断し、遅角ポート11cと供給ポート11eとを連通する。また、第1ランド部12aは、図2Bに示されるようにスプール12がカムシャフト6側へ押し込まれた状態では、遅角ポート11cとドレインポート11bとを連通し、遅角ポート11cと供給ポート11eとを遮断する。第2ランド部12bは、図2Aに示されるようにスプール12がカムシャフト6側へ押し込まれていない状態では、遅角ポート11cと供給ポート11eとを連通し、進角ポート11dとドレイン孔12cとを連通し、進角ポート11dと供給ポート11eとを遮断する。また、第2ランド部12bは、図2Bに示されるようにスプール12がカムシャフト6側へ押し込まれた状態では、進角ポート11dと供給ポート11eとを連通し、進角ポート11dとドレイン孔12cとを遮断する。 The outer peripheral surface of the spool 12 is provided with a first land portion 12a and a second land portion 12b having a shape protruding from the outer peripheral surface. As shown in FIG. 2A, the first land portion 12a shuts off the retard angle port 11c and the drain port 11b when the spool 12 is not pushed toward the camshaft 6, and the retard angle port 11c and the supply port 11e. Communicate with. Further, in the state where the spool 12 is pushed toward the camshaft 6 side as shown in FIG. 2B, the first land portion 12a communicates the retard angle port 11c and the drain port 11b, and communicates the retard angle port 11c and the supply port. It shuts off 11e. As shown in FIG. 2A, the second land portion 12b communicates the retard angle port 11c and the supply port 11e with the advance angle port 11d and the drain hole 12c in a state where the spool 12 is not pushed toward the camshaft 6 side. And shut off the advance port 11d and the supply port 11e. Further, in the state where the spool 12 is pushed toward the camshaft 6 side as shown in FIG. 2B, the second land portion 12b communicates the advance angle port 11d and the supply port 11e with the advance angle port 11d and the drain hole. It shuts off 12c.
 また、スプール12には、第1ランド部12aよりもドレインポート11bに近い位置に開口してドレインポート11bに連通する開口部12dが設けられている。開口部12dは、例えば円形状である。また、スプール12がカムシャフト6側へ押し込まれた状態で、遅角ポート11cに対面すると共に遅角ポート11cを越えてドレインポート11b側へ延びた、スプール12の外周面のうちの第1ランド部12aから開口部12dまでの外周面である壁部12eを有する。 Further, the spool 12 is provided with an opening 12d that opens at a position closer to the drain port 11b than the first land portion 12a and communicates with the drain port 11b. The opening 12d has, for example, a circular shape. Further, with the spool 12 pushed toward the camshaft 6, the first land on the outer peripheral surface of the spool 12 faces the retard port 11c and extends beyond the retard port 11c to the drain port 11b side. It has a wall portion 12e which is an outer peripheral surface from the portion 12a to the opening 12d.
 VVT1の回転位相を遅角方向へ調整する場合、VFSは、スプール12を押し込まない。このとき、図2Aに示されるように、オイルポンプの供給するオイルが、供給油路3eから供給ポート11eへ入り、遅角ポート11cから遅角油路3cを流れて遅角油圧室へ導入される。それと共に、進角油圧室のオイルが、進角油路3dから進角ポート11dへ出て、図2Aに矢印で示されるように、収容孔11aを通ってドレイン孔12cへ流れ、開口部12dを通ってドレインポート11bから外部へ排出される。開口部12dが十分に大きいため、ドレイン孔12cへ入ったオイルが、ドレイン孔12c内部の軸方向端部に衝突することなく、開口部12dから出る。そのため、オイル排出時にドレイン孔12c内部の軸方向端部が受ける動圧が抑制され、スプール12の移動位置にずれが生じず、進角油圧室及び遅角油圧室に対するオイル入出の制御精度が向上する。 When adjusting the rotation phase of VVT1 in the retard direction, the VFS does not push the spool 12. At this time, as shown in FIG. 2A, the oil supplied by the oil pump enters the supply port 11e from the supply oil passage 3e, flows through the retard angle oil passage 3c from the retard angle port 11c, and is introduced into the retard angle hydraulic chamber. To. At the same time, the oil in the advance hydraulic chamber exits from the advance oil passage 3d to the advance port 11d, flows through the accommodating hole 11a to the drain hole 12c, and flows to the opening 12d as shown by the arrow in FIG. 2A. It is discharged to the outside from the drain port 11b through the drain port 11b. Since the opening 12d is sufficiently large, the oil that has entered the drain hole 12c exits the opening 12d without colliding with the axial end inside the drain hole 12c. Therefore, the dynamic pressure received by the axial end inside the drain hole 12c at the time of oil discharge is suppressed, the moving position of the spool 12 does not shift, and the control accuracy of oil inflow and outflow to the advance hydraulic chamber and the retard hydraulic chamber is improved. To do.
 VVT1の回転位相を進角方向へ調整する場合、VFSは、スプール12を押し込む。このとき、図2Bに示されるように、オイルポンプの供給するオイルが、供給油路3eから供給ポート11eへ入り、進角ポート11dから進角油路3dを流れて進角油圧室へ導入される。それと共に、遅角油圧室のオイルが、遅角油路3cから遅角ポート11cへ出て、図2Bに矢印で示されるように、壁部12eに沿ってドレインポート11bへ導出され、外部へ排出される。壁部12eがオイルの流れる方向をドレインポート11bの方向へ変更するため、遅角ポート11cのオイルが開口部12dからドレイン孔12c内部へ流れ込むことが抑制される。そのため、オイル排出時にドレイン孔12c内部の軸方向端部が受ける動圧が抑制され、スプール12の移動位置にずれが生じず、進角油圧室及び遅角油圧室に対するオイル入出の制御精度が向上する。 When adjusting the rotation phase of VVT1 in the advance angle direction, the VFS pushes in the spool 12. At this time, as shown in FIG. 2B, the oil supplied by the oil pump enters the supply port 11e from the supply oil passage 3e, flows from the advance angle port 11d through the advance angle oil passage 3d, and is introduced into the advance angle hydraulic chamber. To. At the same time, the oil in the retard angle hydraulic chamber exits from the retard angle oil passage 3c to the retard angle port 11c and is led out to the drain port 11b along the wall portion 12e as shown by an arrow in FIG. 2B to the outside. It is discharged. Since the wall portion 12e changes the direction in which the oil flows toward the drain port 11b, the oil in the retard angle port 11c is suppressed from flowing into the drain hole 12c from the opening 12d. Therefore, the dynamic pressure received by the axial end inside the drain hole 12c at the time of oil discharge is suppressed, the moving position of the spool 12 does not shift, and the control accuracy of oil inflow and outflow to the advance hydraulic chamber and the retard hydraulic chamber is improved. To do.
 ここで、実施の形態1に係るVVT1により奏される効果を、図3を参照しながら説明する。
 図3は、従来のOCV機能付きセンタボルト10Aの構成例を示す断面図であり、図3Aはスプール12押し込み前、図3Bはスプール12押し込み後である。従来のOCV機能付きセンタボルト10Aと実施の形態1に係るOCV機能付きセンタボルト10との相違点は、壁部12eの長さである。従来のOCV機能付きセンタボルト10Aが有する壁部12fは、スプール12が押し込まれた状態において遅角ポート11cに対面する長さであり、実施の形態1の壁部12eのように遅角ポート11cを越えてドレインポート11b側へ延びていない。
Here, the effect produced by VVT1 according to the first embodiment will be described with reference to FIG.
FIG. 3 is a cross-sectional view showing a configuration example of a conventional center bolt 10A with an OCV function. FIG. 3A is before the spool 12 is pushed in, and FIG. 3B is after the spool 12 is pushed in. The difference between the conventional center bolt 10A with an OCV function and the center bolt 10 with an OCV function according to the first embodiment is the length of the wall portion 12e. The wall portion 12f of the conventional center bolt 10A with an OCV function has a length facing the retard angle port 11c when the spool 12 is pushed in, and is the retard angle port 11c as in the wall portion 12e of the first embodiment. Does not extend beyond the drain port 11b side.
 図3Aに示されるようにスプール12が押し込まれていない状態では、進角油圧室のオイルが、進角油路3dから進角ポート11dへ出て、図3Aに矢印で示されるように、収容孔11aを通ってドレイン孔12cへ流れ、開口部12dを通ってドレインポート11bから外部へ排出される。開口部12dが十分に大きいため、ドレイン孔12cへ入ったオイルが、ドレイン孔12c内部の軸方向端部に衝突することなく、開口部12dから出る。そのため、オイル排出時にドレイン孔12c内部の軸方向端部が受ける動圧が抑制され、スプール12の移動位置にずれが生じず、進角油圧室及び遅角油圧室に対するオイル入出の制御精度が向上する。 When the spool 12 is not pushed as shown in FIG. 3A, the oil in the advance hydraulic chamber exits the advance oil passage 3d to the advance port 11d and is accommodated as shown by the arrow in FIG. 3A. It flows through the hole 11a to the drain hole 12c, passes through the opening 12d, and is discharged to the outside from the drain port 11b. Since the opening 12d is sufficiently large, the oil that has entered the drain hole 12c exits the opening 12d without colliding with the axial end inside the drain hole 12c. Therefore, the dynamic pressure received by the axial end inside the drain hole 12c at the time of oil discharge is suppressed, the moving position of the spool 12 does not shift, and the control accuracy of oil inflow and outflow to the advance hydraulic chamber and the retard hydraulic chamber is improved. To do.
 図3Bに示されるようにスプール12が押し込まれた状態では、遅角油圧室のオイルが、遅角油路3cから遅角ポート11cへ出て、図3Bに矢印で示されるように、遅角ポート11cに近い開口部12dを通じてドレイン孔12c内部へ流れ込む。ドレイン孔12c内部へ流れ込んだオイルは、ドレイン孔12c内部の軸方向端部に衝突した後、開口部12dから出て、ドレインポート11bから外部へ排出される。壁部12fは、壁部12eに比べて短いため、遅角ポート11cから出たオイルの流れる方向を変更できず、遅角ポート11cから開口部12dへオイルが流れてしまう。そのため、オイル排出時にドレイン孔12c内部の軸方向端部が動圧を受け、スプール12の移動位置にずれが生じ、進角油圧室及び遅角油圧室に対するオイル入出の制御精度が悪化する。 When the spool 12 is pushed in as shown in FIG. 3B, the oil in the retard angle hydraulic chamber exits from the retard angle oil passage 3c to the retard angle port 11c, and as shown by the arrow in FIG. 3B, the retard angle It flows into the drain hole 12c through the opening 12d near the port 11c. The oil that has flowed into the drain hole 12c collides with the axial end portion inside the drain hole 12c, then exits from the opening 12d and is discharged to the outside from the drain port 11b. Since the wall portion 12f is shorter than the wall portion 12e, the direction in which the oil flowing out of the retard angle port 11c cannot be changed, and the oil flows from the retard angle port 11c to the opening 12d. Therefore, when the oil is discharged, the axial end portion inside the drain hole 12c receives dynamic pressure, the moving position of the spool 12 shifts, and the control accuracy of oil inflow and outflow to the advance angle hydraulic chamber and the retard angle hydraulic chamber deteriorates.
 以上のように、実施の形態1に係るVVT1は、クランクシャフトと同期回転するケース2と、ケース2内に区画した油圧室に対するオイルの入出によりケース2に対する回転位相が調整されるロータ3と、収容孔11aが設けられたスリーブ11及びカムシャフト6側が開口した有底筒形状であって収容孔11a内に同軸上に収容されるスプール12を有してカムシャフト6とロータ3とを締結するOCV機能付きセンタボルト10とを備える。スリーブ11は、カムシャフト6側とは反対側の軸方向端部が開放されてオイルを外部へ排出するドレインポート11bと、収容孔11aの内周面に開口して遅角油圧室からオイルが排出される遅角ポート11cとを有する。スプール12は、スプール12の外周面から突出した形状であって、スプール12がカムシャフト6側へ押し込まれていない状態では遅角ポート11cとドレインポート11bとを遮断し、カムシャフト6側へ押し込まれた状態では遅角ポート11cとドレインポート11bとを連通する第1ランド部12aと、第1ランド部12aよりもドレインポート11bに近い位置に開口してドレインポート11bに連通する開口部12dと、スプール12がカムシャフト6側へ押し込まれた状態において遅角ポート11cに対面すると共に遅角ポート11cを越えてドレインポート11b側へ延びた壁部12eとを有する。この構成により、スプール12がカムシャフト6側へ押し込まれた状態では、遅角ポート11cから排出されたオイルが壁部12eに沿ってドレインポート11bへ流れるようになるため、開口部12dからスプール12内部への流れ込みを抑制することができる。 As described above, the VVT 1 according to the first embodiment includes a case 2 that rotates synchronously with the crankshaft, a rotor 3 whose rotation phase with respect to the case 2 is adjusted by the inflow and outflow of oil to the hydraulic chamber partitioned in the case 2. The camshaft 6 and the rotor 3 are fastened together with a sleeve 11 provided with the accommodating hole 11a and a spool 12 having a bottomed tubular shape with the camshaft 6 side open and accommodated coaxially in the accommodating hole 11a. It is provided with a center bolt 10 with an OCV function. The sleeve 11 has a drain port 11b whose axial end on the side opposite to the camshaft 6 side is opened to discharge oil to the outside, and an opening on the inner peripheral surface of the accommodating hole 11a to allow oil to flow from the retarded hydraulic chamber. It has a retarded port 11c to be discharged. The spool 12 has a shape protruding from the outer peripheral surface of the spool 12, and when the spool 12 is not pushed toward the camshaft 6, the retard port 11c and the drain port 11b are blocked and pushed toward the camshaft 6. In this state, the first land portion 12a communicating the retarded port 11c and the drain port 11b, and the opening 12d opening at a position closer to the drain port 11b than the first land portion 12a and communicating with the drain port 11b. The spool 12 faces the retard port 11c in a state of being pushed toward the camshaft 6, and has a wall portion 12e extending beyond the retard port 11c to the drain port 11b side. With this configuration, when the spool 12 is pushed toward the camshaft 6, the oil discharged from the retarded port 11c flows to the drain port 11b along the wall portion 12e, so that the spool 12 is flown from the opening 12d. It is possible to suppress the inflow to the inside.
 図2においては、ドレインポート11bに最も近い遅角ポート11cが、「第1ポート」に相当する。
 なお、ロータ3の遅角油路3cと進角油路3dの位置は逆であってもよい。その場合、スリーブ11の遅角ポート11cと進角ポート11dの位置も逆になる。つまり、図2においてドレインポート11bから最も遠い位置に遅角ポート11cが配置され、ドレインポート11bに最も近い位置に進角ポート11dが配置される。そして、ドレインポート11bに最も近い進角ポート11dが「第1ポート」となる。
In FIG. 2, the retarded port 11c closest to the drain port 11b corresponds to the “first port”.
The positions of the retard oil passage 3c and the advance oil passage 3d of the rotor 3 may be opposite to each other. In that case, the positions of the retard port 11c and the advance port 11d of the sleeve 11 are also reversed. That is, in FIG. 2, the retard port 11c is arranged at the position farthest from the drain port 11b, and the advance port 11d is arranged at the position closest to the drain port 11b. Then, the advance port 11d closest to the drain port 11b becomes the "first port".
実施の形態2.
 実施の形態1では、オイルの流路を切り替える第1ランド部12aが、スプール12の軸方向における位置を規制するストッパ部としても機能する。これに対し、実施の形態2では、第1ランド部12aとストッパ部とが別体である。
Embodiment 2.
In the first embodiment, the first land portion 12a that switches the oil flow path also functions as a stopper portion that regulates the position of the spool 12 in the axial direction. On the other hand, in the second embodiment, the first land portion 12a and the stopper portion are separate bodies.
 図4は、実施の形態2に係るOCV機能付きセンタボルト10の構成例を示す断面図であり、図4Aはスプール12押し込み前、図4Bはスプール12押し込み後である。図5は、図4のスプール12を示す外観斜視図である。図4及び図5において図1~図3と同一又は相当する部分は、同一の符号を付し説明を省略する。 FIG. 4 is a cross-sectional view showing a configuration example of the center bolt 10 with an OCV function according to the second embodiment, FIG. 4A is before the spool 12 is pushed in, and FIG. 4B is after the spool 12 is pushed in. FIG. 5 is an external perspective view showing the spool 12 of FIG. In FIGS. 4 and 5, the same or corresponding parts as those in FIGS. 1 to 3 are designated by the same reference numerals, and the description thereof will be omitted.
 スプール12は、カムシャフト6側とは反対側の軸方向端部に設けられた、軸方向に延びた複数の柱部12gを有する。図示例では、スプール12に3本の柱部12gが設けられているが、柱部12gの本数は任意でよい。隣り合う柱部12gの隙間は、ドレイン孔12cとドレインポート11bとを連通する開口部12d1となる。 The spool 12 has a plurality of column portions 12g extending in the axial direction provided at the axial end portion on the side opposite to the camshaft 6 side. In the illustrated example, the spool 12 is provided with three pillars 12g, but the number of pillars 12g may be arbitrary. The gap between the adjacent pillar portions 12g is an opening 12d1 that communicates the drain hole 12c and the drain port 11b.
 柱部12gのそれぞれには、外周面から突出した形状のストッパ部12hが設けられている。ストッパ部12hは、スプール12がカムシャフト6側へ押し込まれていない状態でブッシュ13に当接することにより、スプリング14に押されているスプール12の位置を規制する。また、スプール12が軸方向に移動する際、ストッパ部12hは収容孔11aの内周面に接しながら移動する摺動部として機能する。第1ランド部12a及び第2ランド部12bも摺動部として機能する。 Each of the pillar portions 12g is provided with a stopper portion 12h having a shape protruding from the outer peripheral surface. The stopper portion 12h regulates the position of the spool 12 pushed by the spring 14 by abutting the bush 13 in a state where the spool 12 is not pushed toward the camshaft 6. Further, when the spool 12 moves in the axial direction, the stopper portion 12h functions as a sliding portion that moves while being in contact with the inner peripheral surface of the accommodating hole 11a. The first land portion 12a and the second land portion 12b also function as sliding portions.
 また、ストッパ部12hのカムシャフト6側の面は、カムシャフト6側からカムシャフト6とは反対側へ向かうにつれて径方向への突出量が大きくなる傾斜面12iになっている。 Further, the surface of the stopper portion 12h on the camshaft 6 side is an inclined surface 12i in which the amount of protrusion in the radial direction increases from the camshaft 6 side toward the side opposite to the camshaft 6.
 以上のように、実施の形態2のスリーブ11は、収容孔11aの内周面から突出するブッシュ13を有する。スプール12は、カムシャフト6側とは反対側の軸方向端部に設けられた、軸方向に延びた複数の柱部12gと、柱部12gから突出した形状であってスプール12がカムシャフト6側へ押し込まれていない状態でブッシュ13に当接するストッパ部12hとを有し、隣り合う柱部12gの隙間が開口部12d1を構成する。第1ランド部12a、第2ランド部12b、及びストッパ部12hの3か所が収容孔11aの内周面に接触するため、実施の形態1のように第1ランド部12a及び第2ランド部12bの2か所が接触する場合に比べて、スプール12の軸方向に対する傾きが抑制される。したがって、進角油圧室及び遅角油圧室に対するオイル入出の制御精度が向上する。 As described above, the sleeve 11 of the second embodiment has a bush 13 protruding from the inner peripheral surface of the accommodating hole 11a. The spool 12 has a plurality of pillars 12g extending in the axial direction provided at the axial end on the side opposite to the camshaft 6 side, and the spool 12 has a shape protruding from the pillars 12g. It has a stopper portion 12h that comes into contact with the bush 13 in a state where it is not pushed to the side, and a gap between adjacent pillar portions 12g constitutes the opening portion 12d1. Since the first land portion 12a, the second land portion 12b, and the stopper portion 12h come into contact with the inner peripheral surface of the accommodating hole 11a, the first land portion 12a and the second land portion 12a and the second land portion as in the first embodiment. The inclination of the spool 12 with respect to the axial direction is suppressed as compared with the case where the two points of 12b are in contact with each other. Therefore, the accuracy of controlling the oil inflow and outflow to and from the advance hydraulic chamber and the retard hydraulic chamber is improved.
 また、実施の形態2によれば、ストッパ部12hのカムシャフト6側の面は、カムシャフト6側からカムシャフト6とは反対側へ向かうにつれて径方向への突出量が大きくなる傾斜面12iである。ストッパ部12hのカムシャフト6側の面が、スプール12の外周面に対して垂直な面である場合、スプール12がカムシャフト6側へ押し込まれた状態において、遅角ポート11cから出て壁部12eに沿って流れるオイルがこの垂直な面に当たるため、オイルの流れが乱れやすい。これに対し、ストッパ部12hのカムシャフト6側の面が傾斜面12iである場合、遅角ポート11cから出て壁部12eに沿って流れるオイルを円滑にドレインポート11bの方向へ流すことができる。また、垂直な面が受ける動圧に比べ、傾斜面12iが受ける動圧は小さくなるため、スプール12の移動位置のずれが抑制される。 Further, according to the second embodiment, the surface of the stopper portion 12h on the camshaft 6 side is an inclined surface 12i in which the amount of protrusion in the radial direction increases from the camshaft 6 side toward the side opposite to the camshaft 6. is there. When the surface of the stopper portion 12h on the camshaft 6 side is a surface perpendicular to the outer peripheral surface of the spool 12, the spool 12 comes out of the retard port 11c and the wall portion is in a state of being pushed toward the camshaft 6 side. Since the oil flowing along 12e hits this vertical surface, the oil flow is likely to be disturbed. On the other hand, when the surface of the stopper portion 12h on the camshaft 6 side is an inclined surface 12i, the oil that comes out of the retard angle port 11c and flows along the wall portion 12e can smoothly flow in the direction of the drain port 11b. .. Further, since the dynamic pressure received by the inclined surface 12i is smaller than the dynamic pressure received by the vertical surface, the deviation of the moving position of the spool 12 is suppressed.
 なお、傾斜面12iは、図4及び図5に示された形状に限定されず、遅角ポート11cから出て壁部12eに沿って流れるオイルを円滑にドレインポート11bの方向へ流すことのできる形状であればよい。以下に、傾斜面12iの変形例を示す。 The inclined surface 12i is not limited to the shapes shown in FIGS. 4 and 5, and the oil that comes out of the retarded port 11c and flows along the wall portion 12e can smoothly flow in the direction of the drain port 11b. It may be in shape. A modified example of the inclined surface 12i is shown below.
 図6は、スプール12の変形例を示す外観斜視図である。図6の変形例では、ストッパ部12hのカムシャフト6側の面は、カムシャフト6側からカムシャフト6とは反対側へ向かうにつれて周方向への突出量が大きくなる傾斜面12iである。この形状の傾斜面12iも、スプール12がカムシャフト6側へ押し込まれた状態において、遅角ポート11cから出て壁部12eに沿って流れるオイルを円滑にドレインポート11bの方向へ流すことができる。 FIG. 6 is an external perspective view showing a modified example of the spool 12. In the modified example of FIG. 6, the surface of the stopper portion 12h on the camshaft 6 side is an inclined surface 12i in which the amount of protrusion in the circumferential direction increases from the camshaft 6 side toward the side opposite to the camshaft 6. The inclined surface 12i having this shape also allows the oil flowing out of the retarded port 11c and flowing along the wall portion 12e to smoothly flow in the direction of the drain port 11b when the spool 12 is pushed toward the camshaft 6. ..
 図7は、スプール12の別の変形例を示す外観斜視図である。図7の変形例では、ストッパ部12hのカムシャフト6側の面は、カムシャフト6側からカムシャフト6とは反対側へ向かうにつれて幅が広くなるV字形状の傾斜面12iである。この形状の傾斜面12iも、スプール12がカムシャフト6側へ押し込まれた状態において、遅角ポート11cから出て壁部12eに沿って流れるオイルを円滑にドレインポート11bの方向へ流すことができる。 FIG. 7 is an external perspective view showing another modified example of the spool 12. In the modified example of FIG. 7, the surface of the stopper portion 12h on the camshaft 6 side is a V-shaped inclined surface 12i whose width increases from the camshaft 6 side toward the side opposite to the camshaft 6. The inclined surface 12i having this shape also allows the oil flowing out of the retarded port 11c and flowing along the wall portion 12e to smoothly flow in the direction of the drain port 11b when the spool 12 is pushed toward the camshaft 6. ..
 なお、実施の形態1において、スプール12の第1ランド部12aよりもドレインポート11bに近い位置に、開口部12dに代えて、実施の形態2の柱部12gと開口部12d1とが設けられていてもよい。 In the first embodiment, the pillar portion 12g and the opening portion 12d1 of the second embodiment are provided at a position closer to the drain port 11b than the first land portion 12a of the spool 12 instead of the opening 12d. You may.
 本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、又は各実施の形態の任意の構成要素の省略が可能である。 The present invention allows any combination of embodiments, modifications of any component of each embodiment, or omission of any component of each embodiment within the scope of the invention.
 この発明に係るVVTは、エンジンの吸気バルブ又は排気バルブの開閉タイミングを調整するVVTに用いるのに適している。 The VVT according to the present invention is suitable for use in a VVT that adjusts the opening / closing timing of the intake valve or the exhaust valve of an engine.
 1 VVT、2 ケース、3 ロータ、3a 貫通孔、3c 遅角油路、3d 進角油路、3e 供給油路、4 カバー、5 プレート、6 カムシャフト、6a ネジ穴、10,10A OCV機能付きセンタボルト、11 スリーブ、11a 収容孔、11b ドレインポート、11c 遅角ポート(第1ポート)、11d 進角ポート、11e 供給ポート、12 スプール、12a 第1ランド部、12b 第2ランド部、12c ドレイン孔、12d,12d1 開口部、12e,12f 壁部、12g 柱部、12h ストッパ部、12i 傾斜面、13 ブッシュ、14 スプリング。 1 VVT, 2 case, 3 rotor, 3a through hole, 3c retard angle oil passage, 3d advance angle oil passage, 3e supply oil passage, 4 cover, 5 plate, 6 camshaft, 6a screw hole, 10, 10A with OCV function Center bolt, 11 sleeve, 11a accommodating hole, 11b drain port, 11c retard angle port (1st port), 11d advance angle port, 11e supply port, 12 spool, 12a 1st land part, 12b 2nd land part, 12c drain Holes, 12d, 12d1 openings, 12e, 12f walls, 12g pillars, 12h stoppers, 12i inclined surfaces, 13 bushes, 14 springs.

Claims (5)

  1.  クランクシャフトと同期回転するケースと、
     前記ケース内に区画した油圧室に対するオイルの入出により前記ケースに対する回転位相が調整されるロータと、
     収容孔が設けられたスリーブ及びカムシャフト側が開口した有底筒形状であって前記収容孔内に同軸上に収容されるスプールを有し、前記カムシャフトと前記ロータとを締結するセンタボルトとを備え、
     前記スリーブは、
     前記カムシャフトとは反対側の軸方向端部が開放されてオイルを外部へ排出するドレインポートと、
     前記収容孔の内周面に開口して前記油圧室からオイルが排出される第1ポートとを有し、
     前記スプールは、
     前記スプールの外周面から突出した形状であって、前記スプールが前記カムシャフト側へ押し込まれていない状態では前記第1ポートと前記ドレインポートとを遮断し、前記カムシャフト側へ押し込まれた状態では前記第1ポートと前記ドレインポートとを連通する第1ランド部と、
     前記第1ランド部よりも前記ドレインポートに近い位置に開口して前記ドレインポートに連通する開口部と、
     前記スプールが前記カムシャフト側へ押し込まれた状態において前記第1ポートに対面すると共に前記第1ポートを越えて前記ドレインポート側へ延びた、前記スプールの外周面のうちの前記第1ランド部から前記開口部までの外周面である壁部とを有することを特徴とするバルブタイミング調整装置。
    A case that rotates synchronously with the crankshaft,
    A rotor whose rotational phase with respect to the case is adjusted by the inflow and outflow of oil into and out of the hydraulic chamber partitioned in the case.
    A sleeve provided with an accommodating hole and a bottomed tubular shape having an open camshaft side, having a spool coaxially accommodating in the accommodating hole, and a center bolt for fastening the camshaft and the rotor. Prepare,
    The sleeve
    A drain port that opens the axial end on the opposite side of the camshaft to drain oil to the outside.
    It has a first port that opens to the inner peripheral surface of the accommodating hole and discharges oil from the hydraulic chamber.
    The spool
    When the spool has a shape protruding from the outer peripheral surface and the spool is not pushed toward the camshaft side, the first port and the drain port are blocked, and when the spool is pushed toward the camshaft side. A first land portion that communicates the first port and the drain port,
    An opening that opens closer to the drain port than the first land portion and communicates with the drain port.
    From the first land portion of the outer peripheral surface of the spool, which faces the first port in a state where the spool is pushed toward the camshaft side and extends beyond the first port to the drain port side. A valve timing adjusting device having a wall portion that is an outer peripheral surface up to the opening.
  2.  前記スリーブは、前記収容孔の内周面から突出するブッシュを有し、
     前記スプールは、前記カムシャフトとは反対側の軸方向端部に設けられた、軸方向に延びた複数の柱部と、前記柱部から突出した形状であって前記スプールが前記カムシャフト側へ押し込まれていない状態で前記ブッシュに当接するストッパ部とを有し、隣り合う前記柱部の隙間が前記開口部を構成することを特徴とする請求項1記載のバルブタイミング調整装置。
    The sleeve has a bush protruding from the inner peripheral surface of the accommodating hole.
    The spool has a plurality of pillars extending in the axial direction provided at the axial end on the opposite side of the camshaft, and the spool has a shape protruding from the pillars so that the spool moves toward the camshaft. The valve timing adjusting device according to claim 1, further comprising a stopper portion that comes into contact with the bush in a non-pushed state, and a gap between adjacent pillar portions constitutes the opening.
  3.  前記ストッパ部の前記カムシャフト側の面は、前記カムシャフト側から前記カムシャフトとは反対側へ向かうにつれて径方向への突出量が大きくなる傾斜面であることを特徴とする請求項2記載のバルブタイミング調整装置。 The second aspect of claim 2, wherein the surface of the stopper portion on the camshaft side is an inclined surface in which the amount of protrusion in the radial direction increases from the camshaft side toward the side opposite to the camshaft. Valve timing adjuster.
  4.  前記ストッパ部の前記カムシャフト側の面は、前記カムシャフト側から前記カムシャフトとは反対側へ向かうにつれて周方向への突出量が大きくなる傾斜面であることを特徴とする請求項2記載のバルブタイミング調整装置。 The second aspect of claim 2, wherein the surface of the stopper portion on the camshaft side is an inclined surface in which the amount of protrusion in the circumferential direction increases from the camshaft side toward the side opposite to the camshaft. Valve timing adjuster.
  5.  前記ストッパ部の前記カムシャフト側の面は、前記カムシャフト側から前記カムシャフトとは反対側へ向かうにつれて幅が広くなるV字形状の傾斜面であることを特徴とする請求項2記載のバルブタイミング調整装置。 The valve according to claim 2, wherein the surface of the stopper portion on the camshaft side is a V-shaped inclined surface whose width increases from the camshaft side toward the side opposite to the camshaft. Timing adjuster.
PCT/JP2019/042485 2019-10-30 2019-10-30 Valve timing adjustment device WO2021084634A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042485 WO2021084634A1 (en) 2019-10-30 2019-10-30 Valve timing adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042485 WO2021084634A1 (en) 2019-10-30 2019-10-30 Valve timing adjustment device

Publications (1)

Publication Number Publication Date
WO2021084634A1 true WO2021084634A1 (en) 2021-05-06

Family

ID=75714941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042485 WO2021084634A1 (en) 2019-10-30 2019-10-30 Valve timing adjustment device

Country Status (1)

Country Link
WO (1) WO2021084634A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5637106B2 (en) * 2011-09-19 2014-12-10 株式会社デンソー Hydraulic valve timing adjustment device
EP3018307A1 (en) * 2014-11-04 2016-05-11 Delphi Technologies, Inc. Camshaft phaser
JP2018080623A (en) * 2016-11-16 2018-05-24 株式会社デンソー Spool valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5637106B2 (en) * 2011-09-19 2014-12-10 株式会社デンソー Hydraulic valve timing adjustment device
EP3018307A1 (en) * 2014-11-04 2016-05-11 Delphi Technologies, Inc. Camshaft phaser
JP2018080623A (en) * 2016-11-16 2018-05-24 株式会社デンソー Spool valve

Similar Documents

Publication Publication Date Title
JP5500350B2 (en) Valve timing control device
EP2693003B1 (en) Camshaft phase variable device
JP6015605B2 (en) Valve timing adjustment device
JP5447543B2 (en) Valve timing adjusting device and its assembling method
JP2018115617A (en) Valve timing adjustment device
JP6645448B2 (en) Valve timing adjustment device
JPH1150820A (en) Valve timing control device for internal combustion engine
JP2005002992A (en) Phase shifter
WO2015056617A1 (en) Valve open/close period control device
JP6390499B2 (en) Valve timing adjustment device
WO2016163119A1 (en) Valve timing regulation device
JP4291210B2 (en) Valve timing control device
JP5136852B2 (en) Valve timing control device
WO2021084634A1 (en) Valve timing adjustment device
JPH10141022A (en) Valve timing control device for internal combustion engine
JPH1113430A (en) Valve timing control device for internal combustion engine
JP5152313B2 (en) Valve timing adjustment device
JP5811351B2 (en) Valve timing adjustment device
JP5034869B2 (en) Variable valve timing device
JP5152312B2 (en) Valve timing adjustment device
JP5105187B2 (en) Valve timing control device
JPH09250310A (en) Valve timing changing device for internal combustion engine
JP2001098910A (en) Vane type valve timing control device for internal combustion engine
JPH10159519A (en) Valve timing controlling device for internal combustion engine
WO2014065132A1 (en) Oil control valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP