WO2016163119A1 - Valve timing regulation device - Google Patents

Valve timing regulation device Download PDF

Info

Publication number
WO2016163119A1
WO2016163119A1 PCT/JP2016/001921 JP2016001921W WO2016163119A1 WO 2016163119 A1 WO2016163119 A1 WO 2016163119A1 JP 2016001921 W JP2016001921 W JP 2016001921W WO 2016163119 A1 WO2016163119 A1 WO 2016163119A1
Authority
WO
WIPO (PCT)
Prior art keywords
drain
shaft
oil passage
port
control port
Prior art date
Application number
PCT/JP2016/001921
Other languages
French (fr)
Japanese (ja)
Inventor
哲朗 満谷
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/564,874 priority Critical patent/US10260384B2/en
Priority to DE112016001644.1T priority patent/DE112016001644T5/en
Publication of WO2016163119A1 publication Critical patent/WO2016163119A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/46Component parts, details, or accessories, not provided for in preceding subgroups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/34433Location oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members

Definitions

  • the present disclosure relates to a valve timing adjustment device.
  • valve timing adjusting device that is provided in a power transmission path that transmits power from a drive shaft to a driven shaft of an internal combustion engine and adjusts valve timings of intake valves and exhaust valves that are opened and closed by the driven shaft.
  • the valve timing adjusting device includes a housing that rotates in conjunction with one of a drive shaft and a driven shaft, and a vane rotor that is fixed to the other end of the drive shaft and the driven shaft.
  • the oil passage switching valve is a spool type valve provided at the center of the vane rotor.
  • the oil passage switching valve has a sleeve having various ports and a spool that moves in the axial direction within the sleeve.
  • the sleeve is formed in a cylindrical shape so as to extend in the axial direction, and has a supply port, a first drain port, a first control port, a second control port, and a second drain port in order from the camshaft side.
  • the supply port communicates with the supply oil passage of the camshaft.
  • the first drain port communicates with a drain oil passage that penetrates the cam shaft in the radial direction.
  • the first control port communicates with the first hydraulic chamber.
  • the second control port communicates with the second hydraulic chamber.
  • the second drain port communicates with an external drain space located on the opposite side of the vane rotor from the cam shaft.
  • the spool has a connecting oil passage provided in the shaft center portion so as to connect the supply port to the first control port or the second control port according to the axial position.
  • the oil passage switching valve connects the second control port and the second drain port while connecting the supply port and the first control port when supplying hydraulic oil to the first hydraulic chamber. At this time, the hydraulic oil in the second hydraulic chamber is discharged from the second drain port to the drain space. On the other hand, when supplying hydraulic oil to the second hydraulic chamber, the oil passage switching valve connects the first control port and the first drain port while connecting the supply port and the second control port. The hydraulic oil in the first hydraulic chamber is discharged to the outside through a discharge hole that opens on the outer peripheral surface of the cam shaft.
  • an annular gap is formed between a portion of the housing through which the cam shaft is inserted and the cam shaft.
  • the hydraulic oil in the first hydraulic chamber is discharged to the outside through the annular gap from a discharge hole opened on the outer peripheral surface of the cam shaft.
  • An object of the present disclosure is to provide a valve timing adjusting device capable of shortening the shaft length of a shaft to which a vane rotor is fixed while providing a connecting oil passage in a shaft center portion of a spool of an oil passage switching valve. .
  • the valve timing adjusting device includes a housing, a vane rotor, a sleeve, and a spool.
  • the housing rotates in conjunction with the first shaft.
  • the housing is fitted to the end of the second shaft and is rotatably supported by the second shaft.
  • the vane rotor is fixed to the end of the second shaft, and has a vane that partitions the internal space of the housing into a first hydraulic chamber on one side in the circumferential direction and a second hydraulic chamber on the other side in the circumferential direction.
  • the vane rotor rotates relative to the housing according to the pressure of the hydraulic oil supplied to the first hydraulic chamber and the second hydraulic chamber.
  • the sleeve is provided in the center of the vane rotor.
  • the sleeve has a supply port, a drain port, a first control port, a second control port, and a first drain oil passage in order from the second shaft side.
  • the supply port communicates with the supply oil passage of the second shaft.
  • the drain port communicates with a drain space that is opposite to the second shaft with respect to the vane rotor.
  • the first control port communicates with the first hydraulic chamber.
  • the second control port communicates with the second hydraulic chamber.
  • the first drain oil passage communicates with the drain space.
  • the spool moves in the axial direction inside the sleeve. Further, the spool has a connection oil passage provided in the shaft center portion so as to connect the supply port to the first control port or the second control port according to the position in the axial direction.
  • the spool connects the second control port and the first drain oil passage while connecting the supply port and the first control port when supplying hydraulic oil to the first hydraulic chamber.
  • the spool connects the first control port and the drain port while connecting the supply port and the second control port when supplying hydraulic oil to the second hydraulic chamber.
  • the drain port is provided in the vane rotor or connected to the drain space via a second drain oil passage provided across the vane rotor and the second shaft.
  • the hydraulic oil in the second hydraulic chamber is discharged to the drain space via the second control port and the first drain oil passage located on the drain space side.
  • the hydraulic oil in the first hydraulic chamber is discharged to the drain space via the first control port, the drain port, and the second drain oil passage that are located on the second shaft side. That is, the hydraulic oil in either hydraulic chamber is discharged into the drain space on the opposite side of the second shaft with respect to the vane rotor. Therefore, there is no need to provide a discharge hole in the second shaft, and the shaft length of the second shaft can be shortened by the amount that there is no discharge hole.
  • the present disclosure it is possible to shorten the axial length of the second shaft, that is, the shaft to which the vane rotor is fixed, while providing the connecting oil passage in the shaft center portion of the spool of the oil passage switching valve.
  • FIG. 1 is a cross-sectional view illustrating a valve timing adjusting device according to a first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1, showing only the housing and the vane rotor;
  • FIG. 3 is an enlarged view of a portion III in FIG. 1, and shows the original position of the spool of the hydraulic switching valve,
  • FIG. 4 is a diagram showing a state where the spool has moved a predetermined distance from the state of FIG.
  • FIG. 5 is a diagram showing a state where the spool has moved a predetermined distance from the state of FIG.
  • FIG. 6 is a cross-sectional view illustrating a valve timing adjusting device according to a second embodiment of the present disclosure, and corresponds to FIG. 3 in the first embodiment.
  • FIG. 10 A valve timing adjusting device according to a first embodiment of the present disclosure is shown in FIG.
  • the valve timing adjusting device 10 adjusts the valve timing of an intake valve (not shown) that opens and closes the camshaft 12 by changing the rotational phase of the camshaft 12 with respect to the crankshaft 11 of the internal combustion engine.
  • the valve timing adjusting device 10 is provided in a power transmission path from the crankshaft 11 to the camshaft 12.
  • the crankshaft 11 corresponds to a drive shaft.
  • the cam shaft 12 corresponds to a driven shaft.
  • valve timing adjusting device 10 First, a basic configuration of the valve timing adjusting device 10 will be described with reference to FIGS. 1 and 2.
  • the valve timing adjusting device 10 includes a housing 13, a vane rotor 14, and an oil passage switching valve 15.
  • the housing 13 has a sprocket 16 and a case 17.
  • the sprocket 16 is fitted to the end of the cam shaft 12.
  • the camshaft 12 supports the sprocket 16 in a rotatable manner.
  • the chain 18 is wound around the sprocket 16 and the crankshaft 11.
  • the sprocket 16 rotates in conjunction with the crankshaft 11.
  • the case 17 has a bottomed cylindrical shape, and an open end is fixed to the sprocket 16 by a bolt 19 while being combined with the sprocket 16.
  • the case 17 forms a plurality of partition walls 20 protruding radially inward. In the center of the bottom of the case 17, an opening 21 that opens to a space outside the case 17 is formed.
  • the opening 21 is included in a drain space 22 on the opposite side of the vane rotor 14 from the camshaft 12.
  • the vane rotor 14 includes a boss 23, a plurality of vanes 24, and a plate washer 25.
  • the boss 23 has a cylindrical shape and is fixed to the end portion of the camshaft 12 by a sleeve bolt 26.
  • the vane 24 protrudes radially outward from the boss 23.
  • a space defined between the partition walls 20 of the case 17 is partitioned into a retard chamber 27 and an advance chamber 28 by a vane 24.
  • the retard chamber 27 corresponds to a first hydraulic chamber and is located on one side in the circumferential direction with respect to the vane 24.
  • the advance chamber 28 corresponds to a second hydraulic chamber and is located on the other side in the circumferential direction with respect to the vane 24.
  • the plate washer 25 has a separate member from the boss 23 and the vane 24, and is fastened to the camshaft 12 together with the boss 23 by a sleeve bolt 26.
  • the vane rotor 14 rotates relative to the housing 13 in the retard direction or the advance direction according to the hydraulic pressure in the retard chamber 27 and the advance chamber 28.
  • the oil passage switching valve 15 is provided at the center of the vane rotor 14 and includes a sleeve bolt 26 and a spool 29.
  • the sleeve bolt 26 is a half-screw type bolt, inserted into the vane rotor 14 from the drain space 22 side, and screwed into the camshaft 12.
  • the sleeve bolt 26 forms a sleeve 32 between the head portion 30 and the screw portion 31.
  • the sleeve 32 is formed in a cylindrical shape so as to extend in the axial direction at the center of the vane rotor 14.
  • the sleeve 32 passes through the boss 23 and is inserted into a bottomed hole 33 that opens at the end surface of the cam shaft 12.
  • the sleeve 32 has various ports penetrating in the radial direction.
  • the spool 29 moves in the axial direction in the bottomed cylindrical spool housing hole 34 of the sleeve 32.
  • a stopper plate 35 is fitted on the open end side of the spool accommodation hole 34.
  • the spool 29 is biased toward the stopper plate 35 by a spring 36.
  • the axial position of the spool 29 is determined by the balance between the urging force of the spring 36 and the pressing force of the linear solenoid 37 provided on the opposite side of the spool 29 with respect to the stopper plate 35.
  • the spool 29 selectively connects the ports of the sleeve 32 according to the axial position.
  • the oil passage switching valve 15 connects the oil pump 47 and the retard chamber 27, connects the advance chamber 28 and the drain space 22, and connects the oil pump 47 and the advance chamber 28. However, it operates in a second operation state in which the retard chamber 27 and the drain space 22 are connected and a holding state in which both the retard chamber and the advance chamber 28 are closed.
  • the first operating state the working oil is discharged from the advance chamber 28 while being supplied to the retard chamber 27.
  • the second operating state the hydraulic oil is discharged from the retarded angle chamber 27 while the hydraulic oil is supplied to the advanced angle chamber 28.
  • the holding state the hydraulic oil in the retard chamber 27 and the advance chamber 28 is held.
  • the valve timing adjusting device 10 configured as described above sets the oil passage switching valve 15 to the first operating state when the rotational phase of the cam shaft 12 is on the advance side of the target value. As a result, the vane rotor 14 rotates relative to the housing 13 in the retard direction, and the rotational phase of the cam shaft 12 changes toward the retard side.
  • valve timing adjusting device 10 sets the oil passage switching valve 15 in the second operating state.
  • the vane rotor 14 rotates relative to the housing 13 in the advance direction, and the rotational phase of the cam shaft 12 changes toward the advance side.
  • valve timing adjusting device 10 sets the oil passage switching valve 15 in the holding state. Thereby, the rotational phase of the cam shaft 12 is maintained.
  • the sleeve 32 has a supply port 40, a drain port 41, a first control port 42, a second control port 43, and a first drain oil passage 44 in order from the camshaft 12 side. is doing.
  • the supply port 40 communicates with the discharge port of the oil pump 47 via supply oil passages 45 and 46.
  • the drain port 41 communicates with the drain space 22 via the second drain oil passage 50.
  • the first control port 42 communicates with the retard chamber 27 via the retard oil passage 48 of the vane rotor 14.
  • the second control port 43 communicates with the advance chamber 28 via the advance oil passage 49 of the vane rotor 14.
  • the first drain oil passage 44 has an annular gap between the sleeve bolt 26 and the spool 29 and communicates with the drain space 22.
  • the camshaft 12 includes a supply oil passage 45 penetrating in the radial direction, an annular groove 51 provided at the opening end of the bottomed hole 33, and a notch 52 extending radially outward from the annular groove 51. .
  • the supply oil passage 45 is provided at a position away from the sprocket 16 in the axial direction, and is connected to an oil pump 47 via a supply oil passage 46 provided in, for example, a cylinder head.
  • the annular groove 51 and the notch 52 are provided on the vane rotor 14 side with respect to the supply oil passage 45 and at the same axial position as the sprocket 16 and open to the vane rotor 14 side.
  • the boss 23 has a through hole 53 penetrating in the axial direction.
  • the circumferential position of the through hole 53 is the same as the circumferential position of the notch 52. Further, at least a part of the through hole 53 overlaps the notch 52 in the radial direction. Thereby, the first end of the through hole 53 communicates with the notch 52.
  • the plate washer 25 has a notch 54 that extends radially inward.
  • the circumferential position of the notch 54 is the same as the circumferential position of the through hole 53. Further, the notch 54 is at least partially overlapped with the through hole 53 in the radial direction. Thereby, the notch 54 communicates with the second end of the through hole 53.
  • the second drain oil passage 50 has a front half portion having an annular groove 51 and a notch 52 formed in the cam shaft 12, and a rear half portion having a through hole 53 and a notch 54 formed in the vane rotor 14. Yes.
  • the second drain oil passage 50 is provided across the cam shaft 12 and the vane rotor 14.
  • the spool 29 has a bottomed cylindrical member 55 and a plug member 56.
  • the bottomed cylindrical member 55 forms a cylindrical part 57 provided coaxially with the sleeve 32 and a bottom part 58 located on the camshaft 12 side. As shown in FIG. 3, the bottomed cylindrical member 55 passes through the intermediate position shown in FIG. 4 from the position where the cylindrical portion 57 abuts against the stopper plate 35, and as shown in FIG. It can move in the axial direction to a position where it abuts the bottom surface.
  • the bottomed cylindrical member 55 forms a first partition part 59, a second partition part 60, a third partition part 61, and a fourth partition part 62 in order from the bottom part 58 side.
  • Each partition portion is an annular protrusion that protrudes radially outward from the cylindrical portion 57 or the bottom portion 58.
  • the threaded portion 31 of the sleeve bolt 26 has a through hole 63 extending in the axial direction.
  • the first partition part 59 partitions between the through hole 63 and the supply port 40 in the space defined by the bottom surface of the spool accommodation hole 34 and the bottomed cylindrical member 55.
  • the second partition 60 partitions the supply port 40 and the drain port 41 in the space defined by the sleeve 32 and the bottomed cylindrical member 55.
  • the third partition portion 61 partitions the space between the drain port 41 and the first control port 42 in the space defined by the sleeve 32 and the bottomed cylindrical member 55, or the first control port 42 and the second control port 42.
  • the port 43 is partitioned.
  • the fourth partition portion 62 partitions the space between the first control port 42 and the second control port 43 in the space defined by the sleeve 32 and the bottomed cylindrical member 55, or the second control port 43 and the second control port 43.
  • a partition with the 1 drain oil passage 44 is partitioned.
  • connection oil passage 64 provided in the shaft center portion so as to connect the supply port 40 to either the first control port 42 or the second control port 43 in accordance with the axial position.
  • the connection oil passage 64 includes an axial hole 65, an inlet hole 66 penetrating radially outward from the axial hole 65 between the first partition part 59 and the second partition part 60, and a third partition part 61. And an outlet hole 67 penetrating radially outward from the axial hole 65 between the first partition part 62 and the fourth partition part 62.
  • the inlet hole 66 communicates with the supply port 40 regardless of the axial position of the spool 29.
  • the outlet hole 67 communicates with the first control port 42 at the axial position of the spool 29 shown in FIG. 3, communicates with the second control port 43 at the axial position of the spool 29 shown in FIG.
  • the spool 29 does not communicate with either the first control port 42 or the second control port 43 at the axial position of the spool 29 shown.
  • the plug member 56 is press-fitted into the open end of the cylindrical portion 57 of the bottomed cylindrical member 55.
  • the plug member 56 and the bottomed cylindrical member 55 are provided integrally, and move together in the axial direction when pressed by the linear solenoid 37.
  • a check valve 73 having a valve body 71 and a spring 72 is provided in the axial hole 65 of the connecting oil passage 64.
  • the valve body 71 has a spherical shape and can be seated on and separated from a valve seat 74 formed on the inner wall of the axial hole 65.
  • the spring 72 urges the valve body 71 toward the valve seat 74.
  • the check valve 73 prevents the flow of hydraulic oil from the outlet hole 67 toward the inlet hole 66 in the connection oil passage 64.
  • the check valve 73 allows the flow of hydraulic oil from the inlet hole 66 toward the outlet hole 67 when the valve body 71 is separated from the valve seat 74 as shown by a two-dot chain line in FIGS.
  • the spool 29 is in the axial position when it is in contact with the stopper plate 35, and the axial position corresponding to the second operating state is the original position.
  • the supply port 40 can communicate with the second control port 43 via the connection oil passage 64, and the first control port 42 communicates with the drain port 41.
  • the check valve 73 is opened by the fluid pressure of the hydraulic oil, and the supply port 40 and the second control port 43 communicate with each other.
  • the hydraulic oil in the supply oil passage 45 is supplied to the advance chamber 28 via the supply port 40, the connection oil passage 64, the second control port 43, and the advance oil passage 49.
  • the hydraulic oil in the retard chamber 27 is discharged to the drain space 22 via the retard oil passage 48, the first control port 42, the drain port 41, and the second drain oil passage 50.
  • the supply port 40 can communicate with the first control port 42 via the connection oil passage 64, and the second control port 43
  • the first drain oil passage 44 communicates.
  • the check valve 73 is opened by the fluid pressure of the hydraulic oil, and the supply port 40 and the first control port 42 communicate with each other.
  • the hydraulic oil in the supply oil passage 45 is supplied to the retard chamber 27 via the supply port 40, the connection oil passage 64, the first control port 42 and the retard oil passage 48.
  • the hydraulic oil in the advance chamber 28 is discharged to the drain space 22 via the second control port 43 and the first drain oil passage 44.
  • the valve timing adjusting device 10 includes the housing 13, the vane rotor 14, the sleeve 32, and the spool 29.
  • the sprocket 16 of the housing 13 is fitted to the end of the cam shaft 12 and is rotatably supported by the cam shaft 12.
  • the sleeve 32 includes a supply port 40, a drain port 41, a first control port 42, a second control port 43, and a first drain oil passage 44 in order from the camshaft 12 side.
  • the spool 29 has a connection oil passage 64 provided in the shaft center portion so as to connect the supply port 40 to the first control port 42 or the second control port 43 in accordance with the axial position.
  • the drain port 41 is connected to the drain space 22 via a second drain oil passage 50 provided across the vane rotor 14 and the cam shaft 12.
  • the hydraulic oil in the advance chamber 28 flows through the drain space 22 via the second control port 43 and the first drain oil passage 44 located on the drain space 22 side. To be discharged. Further, the hydraulic oil in the retard chamber 27 is discharged to the drain space 22 via the first control port 42, the drain port 41, and the second drain oil passage 50 located on the camshaft 12 side. That is, the hydraulic oil in either hydraulic chamber is discharged to the drain space 22 on the opposite side of the vane rotor 14 from the camshaft 12. Therefore, it is not necessary to provide a discharge hole between the bearing portion 75 that supports the cam shaft 12 and the housing 13 in the cam shaft 12, and the shaft length of the cam shaft 12 can be shortened by the amount of no discharge hole.
  • the axial length of the camshaft 12 can be shortened while the connection oil passage 64 is provided in the shaft center portion of the spool 29 of the oil passage switching valve 15.
  • the sleeve of the oil passage switching valve has a supply port, a first drain port, a first control port, a second control port, and a second drain port in order from the camshaft side.
  • the hydraulic fluid that passes through the first drain port is discharged to the outside through a discharge hole that opens in the outer peripheral surface of the cam shaft.
  • the discharge hole is provided at a position in the axial direction away from a portion (cam shaft fitting portion) of the housing that is fitted to the cam shaft.
  • the second drain oil passage 50 includes a front half portion having an annular groove 51 and a notch 52 formed in the cam shaft 12, and a through hole 53 and a notch 54 formed in the vane rotor 14. And having a second half.
  • the vane rotor 14 need only be provided with the through hole 53 and the notch 54 penetrating in the axial direction. Therefore, the physique in the axial direction of the valve timing adjusting device 10 can be reduced.
  • the second drain oil passage 80 has an annular groove 82 formed in the vane rotor 81, a notch 83, a through hole 84, and a notch 54. .
  • the second drain oil passage may have an annular groove formed in the camshaft or the vane rotor and a through hole formed in the vane rotor. That is, the notch is not formed, and the annular groove and the through hole may directly communicate with each other.
  • the vane rotor may have a plurality of members.
  • the 2nd drain oil way may have a hole etc. which each member has.
  • a plate washer may not be provided.
  • a check valve may not be provided in the connection oil passage of the spool.
  • the first hydraulic chamber may be an advance chamber and the second hydraulic chamber may be a retard chamber.
  • the housing may have more than two members.
  • the external teeth around which the chain is wound may be provided anywhere on the housing. That is, the portion of the housing that fits into the camshaft may not be a sprocket.
  • the housing and the crankshaft may be connected by another transmission member such as a belt instead of the chain.
  • the vane rotor may be fixed to the end of the crankshaft, and the housing may rotate in conjunction with the camshaft.
  • the outlet hole of the connection oil passage may communicate with both the first control port and the second control port only slightly in the holding state.
  • valve timing adjusting device may adjust the valve timing of the exhaust valve of the internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

A valve timing regulation device is provided with a housing (13), a vane rotor (14), a sleeve (32), and a spool (29). An end of a camshaft (12) is fitted in the housing. The sleeve has, in sequence from the camshaft side, a supply port (40), a drain port (41), a first control port (42), a second control port (43), and a first drain oil passage (44). The spool (29) has a connection oil passage (64) provided in the axis section thereof so as to connect the supply port (40) to either the first control port (42) or the second control port (43) depending on the axial position of the spool (29). The drain port is connected to a drain space (22) via a second drain oil passage (50) provided in the vane rotor and in the camshaft. Operating oil in an ignition delay chamber (27) is discharged to the drain space via the second drain oil passage. Consequently, there is no need to provide a discharge hole in the camshaft, and the length of the cam shaft can be reduced accordingly.

Description

バルブタイミング調整装置Valve timing adjustment device 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年4月8日に出願された日本特許出願番号2015-79165号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2015-79165 filed on April 8, 2015, the contents of which are incorporated herein by reference.
 本開示は、バルブタイミング調整装置に関するものである。 The present disclosure relates to a valve timing adjustment device.
 内燃機関の駆動軸から従動軸まで動力を伝達する動力伝達経路に設けられ、従動軸により開閉駆動される吸気弁および排気弁のバルブタイミングを調整するバルブタイミング調整装置が知られている。バルブタイミング調整装置は、油圧式の場合、駆動軸および従動軸の一方と連動しての回転するハウジングと、駆動軸および従動軸の他方の端部に固定されるベーンロータとを備え、ハウジング内でベーンロータが区画形成する第1油圧室および第2油圧室の一方に作動油を供給することによって、ハウジングに対してベーンロータを進角方向または遅角方向へ相対回転させる。上記作動油の供給は油路切換弁が行う。 2. Description of the Related Art A valve timing adjusting device that is provided in a power transmission path that transmits power from a drive shaft to a driven shaft of an internal combustion engine and adjusts valve timings of intake valves and exhaust valves that are opened and closed by the driven shaft is known. In the case of a hydraulic type, the valve timing adjusting device includes a housing that rotates in conjunction with one of a drive shaft and a driven shaft, and a vane rotor that is fixed to the other end of the drive shaft and the driven shaft. By supplying hydraulic oil to one of the first hydraulic chamber and the second hydraulic chamber that are defined by the vane rotor, the vane rotor is rotated relative to the housing in the advance direction or the retard direction. The hydraulic oil is supplied by an oil passage switching valve.
 特許文献1に開示されたバルブタイミング調整装置では、油路切換弁は、ベーンロータの中心部に設けられるスプール式のバルブである。油路切換弁は、各種ポートを有するスリーブと、スリーブ内で軸方向へ移動するスプールとを有する。 In the valve timing adjusting device disclosed in Patent Document 1, the oil passage switching valve is a spool type valve provided at the center of the vane rotor. The oil passage switching valve has a sleeve having various ports and a spool that moves in the axial direction within the sleeve.
 スリーブは、軸方向へ延びるよう筒状に形成され、カム軸側から順に供給ポート、第1ドレンポート、第1制御ポート、第2制御ポート、第2ドレンポートを有する。供給ポートはカム軸の供給油路に連通している。第1ドレンポートは、カム軸を径方向へ貫通するドレン油路に連通している。第1制御ポートは第1油圧室に連通している。第2制御ポートは第2油圧室に連通している。第2ドレンポートは、ベーンロータに対してカム軸とは反対側に位置する外部のドレン空間に連通している。 The sleeve is formed in a cylindrical shape so as to extend in the axial direction, and has a supply port, a first drain port, a first control port, a second control port, and a second drain port in order from the camshaft side. The supply port communicates with the supply oil passage of the camshaft. The first drain port communicates with a drain oil passage that penetrates the cam shaft in the radial direction. The first control port communicates with the first hydraulic chamber. The second control port communicates with the second hydraulic chamber. The second drain port communicates with an external drain space located on the opposite side of the vane rotor from the cam shaft.
 スプールは、軸方向位置に応じて供給ポートを第1制御ポートまたは第2制御ポートに接続するよう軸心部に設けられている接続油路を有する。 The spool has a connecting oil passage provided in the shaft center portion so as to connect the supply port to the first control port or the second control port according to the axial position.
 油路切換弁は、第1油圧室に作動油を供給するとき、供給ポートと第1制御ポートとを接続しつつ第2制御ポートと第2ドレンポートとを接続する。このとき、第2油圧室の作動油は、第2ドレンポートからドレン空間に排出される。一方、油路切換弁は、第2油圧室に作動油を供給するとき、供給ポートと第2制御ポートとを接続しつつ第1制御ポートと第1ドレンポートとを接続する。第1油圧室の作動油は、カム軸の外周面に開く排出穴から外部へ排出される。 The oil passage switching valve connects the second control port and the second drain port while connecting the supply port and the first control port when supplying hydraulic oil to the first hydraulic chamber. At this time, the hydraulic oil in the second hydraulic chamber is discharged from the second drain port to the drain space. On the other hand, when supplying hydraulic oil to the second hydraulic chamber, the oil passage switching valve connects the first control port and the first drain port while connecting the supply port and the second control port. The hydraulic oil in the first hydraulic chamber is discharged to the outside through a discharge hole that opens on the outer peripheral surface of the cam shaft.
米国特許第8910602号明細書U.S. Pat. No. 8,910,602
 特許文献1に開示されたバルブタイミング調整装置では、ハウジングのうち、カム軸が挿通する部分は、カム軸との間に環状隙間を形成している。第1油圧室の作動油は、カム軸の外周面に開く排出穴から上記環状隙間を通じて外部へ排出される。 In the valve timing adjusting device disclosed in Patent Document 1, an annular gap is formed between a portion of the housing through which the cam shaft is inserted and the cam shaft. The hydraulic oil in the first hydraulic chamber is discharged to the outside through the annular gap from a discharge hole opened on the outer peripheral surface of the cam shaft.
 ところが、ハウジングがカム軸に嵌合するように設けられ、カム軸のハウジング嵌合部がハウジングを回転可能に支持する形態の場合、カム軸のハウジング嵌合部とハウジングとの間に環状隙間を設けることはできない。そのため、カム軸の排出穴とハウジング嵌合部とを軸方向へ離さなければならない。したがって、カム軸の軸長が排出穴の分だけ長くなるおそれがある。 However, in the case where the housing is provided so as to be fitted to the cam shaft and the housing fitting portion of the cam shaft rotatably supports the housing, an annular gap is provided between the housing fitting portion of the cam shaft and the housing. It cannot be provided. Therefore, the discharge hole of the cam shaft and the housing fitting portion must be separated in the axial direction. Therefore, there is a possibility that the shaft length of the cam shaft becomes longer by the amount corresponding to the discharge hole.
 本開示の目的は、油路切換弁のスプールの軸心部に接続油路を設けつつも、ベーンロータが固定される軸の軸長を短くすることができるバルブタイミング調整装置を提供することである。 An object of the present disclosure is to provide a valve timing adjusting device capable of shortening the shaft length of a shaft to which a vane rotor is fixed while providing a connecting oil passage in a shaft center portion of a spool of an oil passage switching valve. .
 本開示によるバルブタイミング調整装置は、ハウジングと、ベーンロータと、スリーブと、スプールとを備える。駆動軸および従動軸の一方を第1軸とし、他方を第2軸とすると、ハウジングは第1軸と連動して回転する。また、ハウジングは、第2軸の端部に嵌合し、第2軸により回転可能に支持される。 The valve timing adjusting device according to the present disclosure includes a housing, a vane rotor, a sleeve, and a spool. When one of the drive shaft and the driven shaft is a first shaft and the other is a second shaft, the housing rotates in conjunction with the first shaft. The housing is fitted to the end of the second shaft and is rotatably supported by the second shaft.
 ベーンロータは、第2軸の端部に固定され、ハウジングの内部空間を周方向の一方側の第1油圧室と周方向の他方側の第2油圧室とに仕切るベーンを有する。また、ベーンロータは、第1油圧室および第2油圧室に供給される作動油の圧力に応じてハウジングに対して相対回転する。 The vane rotor is fixed to the end of the second shaft, and has a vane that partitions the internal space of the housing into a first hydraulic chamber on one side in the circumferential direction and a second hydraulic chamber on the other side in the circumferential direction. The vane rotor rotates relative to the housing according to the pressure of the hydraulic oil supplied to the first hydraulic chamber and the second hydraulic chamber.
 スリーブは、ベーンロータの中心部に設けられる。また、スリーブは、第2軸側から順に供給ポート、ドレンポート、第1制御ポート、第2制御ポートおよび第1ドレン油路を有する。供給ポートは第2軸の供給油路に連通する。ドレンポートは、ベーンロータに対して第2軸とは反対側にあるドレン空間に連通する。第1制御ポートは第1油圧室に連通する。第2制御ポートは第2油圧室に連通する。第1ドレン油路はドレン空間に連通する。 The sleeve is provided in the center of the vane rotor. The sleeve has a supply port, a drain port, a first control port, a second control port, and a first drain oil passage in order from the second shaft side. The supply port communicates with the supply oil passage of the second shaft. The drain port communicates with a drain space that is opposite to the second shaft with respect to the vane rotor. The first control port communicates with the first hydraulic chamber. The second control port communicates with the second hydraulic chamber. The first drain oil passage communicates with the drain space.
 スプールは、スリーブの内側において軸方向へ移動する。また、スプールは、軸方向位置に応じて供給ポートを第1制御ポートまたは第2制御ポートに接続するよう軸心部に設けられている接続油路を有する。また、スプールは、第1油圧室に作動油を供給するとき供給ポートと第1制御ポートとを接続しつつ第2制御ポートと第1ドレン油路とを接続する。また、スプールは、第2油圧室に作動油を供給するとき供給ポートと第2制御ポートとを接続しつつ第1制御ポートとドレンポートとを接続する。 The spool moves in the axial direction inside the sleeve. Further, the spool has a connection oil passage provided in the shaft center portion so as to connect the supply port to the first control port or the second control port according to the position in the axial direction. The spool connects the second control port and the first drain oil passage while connecting the supply port and the first control port when supplying hydraulic oil to the first hydraulic chamber. The spool connects the first control port and the drain port while connecting the supply port and the second control port when supplying hydraulic oil to the second hydraulic chamber.
 ドレンポートは、ベーンロータに設けられるか或いはベーンロータおよび第2軸にまたがって設けられる第2ドレン油路を経由してドレン空間に接続される。 The drain port is provided in the vane rotor or connected to the drain space via a second drain oil passage provided across the vane rotor and the second shaft.
 以上のように構成されたバルブタイミング調整装置では、第2油圧室の作動油は、ドレン空間側に位置する第2制御ポートと第1ドレン油路とを経由してドレン空間に排出される。また、第1油圧室の作動油は、第2軸側に位置する第1制御ポートとドレンポートと第2ドレン油路とを経由してドレン空間に排出される。つまり、どちらの油圧室の作動油も、ベーンロータに対して第2軸とは反対側にあるドレン空間に排出される。そのため、排出穴を第2軸に設ける必要がなく、排出穴が無い分だけ第2軸の軸長を短くできる。 In the valve timing adjusting device configured as described above, the hydraulic oil in the second hydraulic chamber is discharged to the drain space via the second control port and the first drain oil passage located on the drain space side. The hydraulic oil in the first hydraulic chamber is discharged to the drain space via the first control port, the drain port, and the second drain oil passage that are located on the second shaft side. That is, the hydraulic oil in either hydraulic chamber is discharged into the drain space on the opposite side of the second shaft with respect to the vane rotor. Therefore, there is no need to provide a discharge hole in the second shaft, and the shaft length of the second shaft can be shortened by the amount that there is no discharge hole.
 したがって、本開示によれば、油路切換弁のスプールの軸心部に接続油路を設けつつも、第2軸すなわちベーンロータが固定される軸の軸長を短くすることができる。 Therefore, according to the present disclosure, it is possible to shorten the axial length of the second shaft, that is, the shaft to which the vane rotor is fixed, while providing the connecting oil passage in the shaft center portion of the spool of the oil passage switching valve.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の第1実施形態によるバルブタイミング調整装置を示す断面図であり、 図2は、図1のII-II線断面であって、ハウジングおよびベーンロータのみを示す図であり、 図3は、図1のIII部分を拡大して示す図であって、油圧切換弁のスプールの原位置を示す図であり、 図4は、図3の状態からスプールが所定距離だけ移動した状態を示す図であり、 図5は、図4の状態からスプールが所定距離だけ移動した状態を示す図であり、 図6は、本開示の第2実施形態によるバルブタイミング調整装置を示す断面図であって、第1実施形態における図3に対応する図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a cross-sectional view illustrating a valve timing adjusting device according to a first embodiment of the present disclosure. FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1, showing only the housing and the vane rotor; FIG. 3 is an enlarged view of a portion III in FIG. 1, and shows the original position of the spool of the hydraulic switching valve, FIG. 4 is a diagram showing a state where the spool has moved a predetermined distance from the state of FIG. FIG. 5 is a diagram showing a state where the spool has moved a predetermined distance from the state of FIG. FIG. 6 is a cross-sectional view illustrating a valve timing adjusting device according to a second embodiment of the present disclosure, and corresponds to FIG. 3 in the first embodiment.
 以下、本開示の複数の実施形態を図面に基づき説明する。実施形態同士で実質的に同一の構成には同一の符号を付して説明を省略する。 Hereinafter, a plurality of embodiments of the present disclosure will be described with reference to the drawings. In the embodiments, substantially the same components are denoted by the same reference numerals and description thereof is omitted.
 (第1実施形態)
 本開示の第1実施形態によるバルブタイミング調整装置を図1に示す。バルブタイミング調整装置10は、内燃機関のクランク軸11に対するカム軸12の回転位相を変化させることによって、カム軸12が開閉駆動する図示しない吸気弁のバルブタイミングを調整するものである。バルブタイミング調整装置10は、クランク軸11からカム軸12までの動力伝達経路に設けられている。クランク軸11は、駆動軸に相当する。カム軸12は、従動軸に相当する。
(First embodiment)
A valve timing adjusting device according to a first embodiment of the present disclosure is shown in FIG. The valve timing adjusting device 10 adjusts the valve timing of an intake valve (not shown) that opens and closes the camshaft 12 by changing the rotational phase of the camshaft 12 with respect to the crankshaft 11 of the internal combustion engine. The valve timing adjusting device 10 is provided in a power transmission path from the crankshaft 11 to the camshaft 12. The crankshaft 11 corresponds to a drive shaft. The cam shaft 12 corresponds to a driven shaft.
 先ず、バルブタイミング調整装置10の基本的な構成について図1および図2を参照して説明する。 First, a basic configuration of the valve timing adjusting device 10 will be described with reference to FIGS. 1 and 2.
 バルブタイミング調整装置10は、ハウジング13と、ベーンロータ14と、油路切換弁15とを備えている。 The valve timing adjusting device 10 includes a housing 13, a vane rotor 14, and an oil passage switching valve 15.
 ハウジング13は、スプロケット16およびケース17を有している。スプロケット16は、カム軸12の端部に嵌合している。カム軸12は、スプロケット16を回転可能に支持している。チェーン18は、スプロケット16とクランク軸11とに巻き掛けられている。スプロケット16は、クランク軸11と連動して回転する。ケース17は、有底筒状であり、開口端がスプロケット16に組み合わされつつボルト19によりスプロケット16に固定されている。ケース17は、径方向内側に突き出す複数の隔壁部20を形成している。ケース17の底部の中央には、ケース17外の空間に開口する開口部21が形成されている。開口部21は、ベーンロータ14に対してカム軸12とは反対側にあるドレン空間22に含まれる。 The housing 13 has a sprocket 16 and a case 17. The sprocket 16 is fitted to the end of the cam shaft 12. The camshaft 12 supports the sprocket 16 in a rotatable manner. The chain 18 is wound around the sprocket 16 and the crankshaft 11. The sprocket 16 rotates in conjunction with the crankshaft 11. The case 17 has a bottomed cylindrical shape, and an open end is fixed to the sprocket 16 by a bolt 19 while being combined with the sprocket 16. The case 17 forms a plurality of partition walls 20 protruding radially inward. In the center of the bottom of the case 17, an opening 21 that opens to a space outside the case 17 is formed. The opening 21 is included in a drain space 22 on the opposite side of the vane rotor 14 from the camshaft 12.
 ベーンロータ14は、ボス23、複数のベーン24およびプレートワッシャ25を有している。ボス23は、筒状であり、スリーブボルト26によってカム軸12の端部に固定されている。ベーン24は、ボス23から径方向外側に突き出している。ケース17の各隔壁部20間に区画されている空間は、ベーン24により遅角室27と進角室28とに仕切られている。遅角室27は、第1油圧室に相当し、ベーン24に対して周方向の一方に位置している。進角室28は、第2油圧室に相当し、ベーン24に対して周方向の他方に位置している。プレートワッシャ25は、ボス23およびベーン24とは別部材を有しており、スリーブボルト26によってボス23と共にカム軸12に締結されている。ベーンロータ14は、遅角室27および進角室28の油圧に応じて、ハウジング13に対して遅角方向または進角方向へ相対回転する。 The vane rotor 14 includes a boss 23, a plurality of vanes 24, and a plate washer 25. The boss 23 has a cylindrical shape and is fixed to the end portion of the camshaft 12 by a sleeve bolt 26. The vane 24 protrudes radially outward from the boss 23. A space defined between the partition walls 20 of the case 17 is partitioned into a retard chamber 27 and an advance chamber 28 by a vane 24. The retard chamber 27 corresponds to a first hydraulic chamber and is located on one side in the circumferential direction with respect to the vane 24. The advance chamber 28 corresponds to a second hydraulic chamber and is located on the other side in the circumferential direction with respect to the vane 24. The plate washer 25 has a separate member from the boss 23 and the vane 24, and is fastened to the camshaft 12 together with the boss 23 by a sleeve bolt 26. The vane rotor 14 rotates relative to the housing 13 in the retard direction or the advance direction according to the hydraulic pressure in the retard chamber 27 and the advance chamber 28.
 油路切換弁15は、ベーンロータ14の中央部に設けられており、スリーブボルト26およびスプール29を有する。 The oil passage switching valve 15 is provided at the center of the vane rotor 14 and includes a sleeve bolt 26 and a spool 29.
 スリーブボルト26は、半ねじタイプのボルトであり、ドレン空間22側からベーンロータ14に挿入され、カム軸12にねじ込まれている。スリーブボルト26は、頭部30とねじ部31との間にスリーブ32を形成している。スリーブ32は、ベーンロータ14の中心部において軸方向へ延びるよう筒状に形成されている。スリーブ32は、ボス23を貫通し、カム軸12の端面に開口する有底穴33に挿入されている。スリーブ32は、径方向へ貫通する各種ポートを有している。 The sleeve bolt 26 is a half-screw type bolt, inserted into the vane rotor 14 from the drain space 22 side, and screwed into the camshaft 12. The sleeve bolt 26 forms a sleeve 32 between the head portion 30 and the screw portion 31. The sleeve 32 is formed in a cylindrical shape so as to extend in the axial direction at the center of the vane rotor 14. The sleeve 32 passes through the boss 23 and is inserted into a bottomed hole 33 that opens at the end surface of the cam shaft 12. The sleeve 32 has various ports penetrating in the radial direction.
 スプール29は、スリーブ32が有する有底筒状のスプール収容穴34内で軸方向へ移動する。スプール収容穴34のうち開口端側には、ストッパプレート35が嵌め付けられている。スプール29は、スプリング36によりストッパプレート35側に付勢されている。スプール29の軸方向位置は、スプリング36による付勢力と、ストッパプレート35に対してスプール29とは反対側に設けられたリニアソレノイド37による押圧力とのバランスによって決まる。スプール29は、軸方向位置に応じてスリーブ32の各ポート同士を選択的に接続する。 The spool 29 moves in the axial direction in the bottomed cylindrical spool housing hole 34 of the sleeve 32. A stopper plate 35 is fitted on the open end side of the spool accommodation hole 34. The spool 29 is biased toward the stopper plate 35 by a spring 36. The axial position of the spool 29 is determined by the balance between the urging force of the spring 36 and the pressing force of the linear solenoid 37 provided on the opposite side of the spool 29 with respect to the stopper plate 35. The spool 29 selectively connects the ports of the sleeve 32 according to the axial position.
 油路切換弁15は、オイルポンプ47と遅角室27とを接続しつつ、進角室28とドレン空間22とを接続する第1作動状態と、オイルポンプ47と進角室28とを接続しつつ、遅角室27とドレン空間22とを接続する第2作動状態と、遅角室および進角室28を共に閉鎖する保持状態と、に作動する。第1作動状態では、遅角室27に作動油が供給されつつ進角室28から作動油が排出される。第2作動状態では、進角室28に作動油が供給されつつ遅角室27から作動油が排出される。保持状態では、遅角室27および進角室28の作動油が保持される。 The oil passage switching valve 15 connects the oil pump 47 and the retard chamber 27, connects the advance chamber 28 and the drain space 22, and connects the oil pump 47 and the advance chamber 28. However, it operates in a second operation state in which the retard chamber 27 and the drain space 22 are connected and a holding state in which both the retard chamber and the advance chamber 28 are closed. In the first operating state, the working oil is discharged from the advance chamber 28 while being supplied to the retard chamber 27. In the second operating state, the hydraulic oil is discharged from the retarded angle chamber 27 while the hydraulic oil is supplied to the advanced angle chamber 28. In the holding state, the hydraulic oil in the retard chamber 27 and the advance chamber 28 is held.
 以上のように構成されたバルブタイミング調整装置10は、カム軸12の回転位相が目標値よりも進角側である場合、油路切換弁15を第1作動状態とする。これにより、ベーンロータ14がハウジング13に対して遅角方向へ相対回転し、カム軸12の回転位相が遅角側へ変化する。 The valve timing adjusting device 10 configured as described above sets the oil passage switching valve 15 to the first operating state when the rotational phase of the cam shaft 12 is on the advance side of the target value. As a result, the vane rotor 14 rotates relative to the housing 13 in the retard direction, and the rotational phase of the cam shaft 12 changes toward the retard side.
 また、バルブタイミング調整装置10は、カム軸12の回転位相が目標値よりも遅角側である場合、油路切換弁15を第2作動状態とする。これにより、ベーンロータ14がハウジング13に対して進角方向へ相対回転し、カム軸12の回転位相が進角側へ変化する。 Further, when the rotational phase of the camshaft 12 is retarded from the target value, the valve timing adjusting device 10 sets the oil passage switching valve 15 in the second operating state. As a result, the vane rotor 14 rotates relative to the housing 13 in the advance direction, and the rotational phase of the cam shaft 12 changes toward the advance side.
 また、バルブタイミング調整装置10は、カム軸12の回転位相が目標値と一致する場合、油路切換弁15を保持状態とする。これにより、カム軸12の回転位相が保持される。 Further, when the rotational phase of the camshaft 12 matches the target value, the valve timing adjusting device 10 sets the oil passage switching valve 15 in the holding state. Thereby, the rotational phase of the cam shaft 12 is maintained.
 次に、バルブタイミング調整装置10の油路切換弁15および周辺油路の詳細な構成について図1~図5を参照して説明する。 Next, the detailed configuration of the oil passage switching valve 15 and the peripheral oil passage of the valve timing adjusting device 10 will be described with reference to FIGS.
 図1および図3に示すように、スリーブ32は、カム軸12側から順に供給ポート40、ドレンポート41、第1制御ポート42、第2制御ポート43、および、第1ドレン油路44を有している。供給ポート40は、供給油路45、46を経由してオイルポンプ47の吐出口に連通している。ドレンポート41は、第2ドレン油路50を経由してドレン空間22に連通している。第1制御ポート42は、ベーンロータ14の遅角油路48を経由して遅角室27に連通している。第2制御ポート43は、ベーンロータ14の進角油路49を経由して進角室28に連通している。第1ドレン油路44は、スリーブボルト26とスプール29との間の環状隙間を有しており、ドレン空間22に連通している。 As shown in FIGS. 1 and 3, the sleeve 32 has a supply port 40, a drain port 41, a first control port 42, a second control port 43, and a first drain oil passage 44 in order from the camshaft 12 side. is doing. The supply port 40 communicates with the discharge port of the oil pump 47 via supply oil passages 45 and 46. The drain port 41 communicates with the drain space 22 via the second drain oil passage 50. The first control port 42 communicates with the retard chamber 27 via the retard oil passage 48 of the vane rotor 14. The second control port 43 communicates with the advance chamber 28 via the advance oil passage 49 of the vane rotor 14. The first drain oil passage 44 has an annular gap between the sleeve bolt 26 and the spool 29 and communicates with the drain space 22.
 カム軸12は、径方向へ貫通する供給油路45と、有底穴33の開口端部に設けられている環状溝51と、環状溝51から径方向外側へ延びる切欠き52と、を有する。供給油路45は、スプロケット16に対して軸方向へ離れた位置に設けられており、例えばシリンダヘッド等に設けられた供給油路46を介してオイルポンプ47に接続されている。環状溝51および切欠き52は、供給油路45に対してベーンロータ14側であってスプロケット16と同じ軸方向位置に設けられており、ベーンロータ14側に開口している。 The camshaft 12 includes a supply oil passage 45 penetrating in the radial direction, an annular groove 51 provided at the opening end of the bottomed hole 33, and a notch 52 extending radially outward from the annular groove 51. . The supply oil passage 45 is provided at a position away from the sprocket 16 in the axial direction, and is connected to an oil pump 47 via a supply oil passage 46 provided in, for example, a cylinder head. The annular groove 51 and the notch 52 are provided on the vane rotor 14 side with respect to the supply oil passage 45 and at the same axial position as the sprocket 16 and open to the vane rotor 14 side.
 ボス23は、軸方向へ貫通する通孔53を有する。通孔53の周方向位置は、切欠き52の周方向位置と同じである。また、通孔53は、径方向において少なくとも一部が切欠き52と重なっている。これにより、通孔53の第1端は切欠き52と連通している。 The boss 23 has a through hole 53 penetrating in the axial direction. The circumferential position of the through hole 53 is the same as the circumferential position of the notch 52. Further, at least a part of the through hole 53 overlaps the notch 52 in the radial direction. Thereby, the first end of the through hole 53 communicates with the notch 52.
 プレートワッシャ25は、径方向内側へ延びる切欠き54を有する。切欠き54の周方向位置は、通孔53の周方向位置と同じである。また、切欠き54は、径方向において少なくとも一部が通孔53と重なっている。これにより、切欠き54は通孔53の第2端と連通している。 The plate washer 25 has a notch 54 that extends radially inward. The circumferential position of the notch 54 is the same as the circumferential position of the through hole 53. Further, the notch 54 is at least partially overlapped with the through hole 53 in the radial direction. Thereby, the notch 54 communicates with the second end of the through hole 53.
 第2ドレン油路50は、カム軸12に形成された環状溝51および切欠き52を有する前半部と、ベーンロータ14に形成された通孔53および切欠き54を有する後半部とを有している。本実施形態では、第2ドレン油路50は、カム軸12とベーンロータ14とにまたがって設けられている。 The second drain oil passage 50 has a front half portion having an annular groove 51 and a notch 52 formed in the cam shaft 12, and a rear half portion having a through hole 53 and a notch 54 formed in the vane rotor 14. Yes. In the present embodiment, the second drain oil passage 50 is provided across the cam shaft 12 and the vane rotor 14.
 スプール29は、有底筒状部材55および栓部材56を有している。 The spool 29 has a bottomed cylindrical member 55 and a plug member 56.
 有底筒状部材55は、スリーブ32と同軸上に設けられた筒部57と、カム軸12側に位置する底部58とを形成している。有底筒状部材55は、図3に示すように筒部57がストッパプレート35に当接する位置から、図4に示す中間位置を経て、図5に示すように底部58がスプール収容穴34の底面に当接する位置まで軸方向へ移動可能である。 The bottomed cylindrical member 55 forms a cylindrical part 57 provided coaxially with the sleeve 32 and a bottom part 58 located on the camshaft 12 side. As shown in FIG. 3, the bottomed cylindrical member 55 passes through the intermediate position shown in FIG. 4 from the position where the cylindrical portion 57 abuts against the stopper plate 35, and as shown in FIG. It can move in the axial direction to a position where it abuts the bottom surface.
 また、有底筒状部材55は、底部58側から順に第1仕切り部59、第2仕切り部60、第3仕切り部61および第4仕切り部62を形成している。各仕切り部は、筒部57または底部58から径方向外側に突き出す円環状の突起である。スリーブボルト26のねじ部31は、軸方向へ延びる通孔63を有している。第1仕切り部59は、スプール収容穴34の底面と有底筒状部材55とが区画する空間のうち、通孔63と供給ポート40との間を仕切っている。第2仕切り部60は、スリーブ32と有底筒状部材55とが区画する空間のうち、供給ポート40とドレンポート41との間を仕切っている。第3仕切り部61は、スリーブ32と有底筒状部材55とが区画する空間のうち、ドレンポート41と第1制御ポート42との間を仕切るか、或いは第1制御ポート42と第2制御ポート43との間を仕切る。第4仕切り部62は、スリーブ32と有底筒状部材55とが区画する空間のうち、第1制御ポート42と第2制御ポート43との間を仕切るか、或いは第2制御ポート43と第1ドレン油路44との間を仕切る。 Further, the bottomed cylindrical member 55 forms a first partition part 59, a second partition part 60, a third partition part 61, and a fourth partition part 62 in order from the bottom part 58 side. Each partition portion is an annular protrusion that protrudes radially outward from the cylindrical portion 57 or the bottom portion 58. The threaded portion 31 of the sleeve bolt 26 has a through hole 63 extending in the axial direction. The first partition part 59 partitions between the through hole 63 and the supply port 40 in the space defined by the bottom surface of the spool accommodation hole 34 and the bottomed cylindrical member 55. The second partition 60 partitions the supply port 40 and the drain port 41 in the space defined by the sleeve 32 and the bottomed cylindrical member 55. The third partition portion 61 partitions the space between the drain port 41 and the first control port 42 in the space defined by the sleeve 32 and the bottomed cylindrical member 55, or the first control port 42 and the second control port 42. The port 43 is partitioned. The fourth partition portion 62 partitions the space between the first control port 42 and the second control port 43 in the space defined by the sleeve 32 and the bottomed cylindrical member 55, or the second control port 43 and the second control port 43. A partition with the 1 drain oil passage 44 is partitioned.
 また、有底筒状部材55は、軸方向位置に応じて供給ポート40を第1制御ポート42および第2制御ポート43のどちらかに接続するよう軸心部に設けられた接続油路64を有している。接続油路64は、軸方向穴65と、第1仕切り部59と第2仕切り部60との間において軸方向穴65から径方向外側へ貫通している入口孔66と、第3仕切り部61と第4仕切り部62との間において軸方向穴65から径方向外側へ貫通している出口孔67と、を有している。入口孔66は、スプール29の軸方向位置にかかわらず供給ポート40に連通する。出口孔67は、図3に示すスプール29の軸方向位置において第1制御ポート42に連通し、図5に示すスプール29の軸方向位置において第2制御ポート43に連通し、また、図4に示すスプール29の軸方向位置において第1制御ポート42および第2制御ポート43のどちらかにも連通しない。 In addition, the bottomed cylindrical member 55 has a connection oil passage 64 provided in the shaft center portion so as to connect the supply port 40 to either the first control port 42 or the second control port 43 in accordance with the axial position. Have. The connection oil passage 64 includes an axial hole 65, an inlet hole 66 penetrating radially outward from the axial hole 65 between the first partition part 59 and the second partition part 60, and a third partition part 61. And an outlet hole 67 penetrating radially outward from the axial hole 65 between the first partition part 62 and the fourth partition part 62. The inlet hole 66 communicates with the supply port 40 regardless of the axial position of the spool 29. The outlet hole 67 communicates with the first control port 42 at the axial position of the spool 29 shown in FIG. 3, communicates with the second control port 43 at the axial position of the spool 29 shown in FIG. The spool 29 does not communicate with either the first control port 42 or the second control port 43 at the axial position of the spool 29 shown.
 図3に示すように、栓部材56は、有底筒状部材55の筒部57の開口端部内に圧入されている。栓部材56および有底筒状部材55は、一体に設けられており、リニアソレノイド37に押圧されるとき共に軸方向へ移動する。 As shown in FIG. 3, the plug member 56 is press-fitted into the open end of the cylindrical portion 57 of the bottomed cylindrical member 55. The plug member 56 and the bottomed cylindrical member 55 are provided integrally, and move together in the axial direction when pressed by the linear solenoid 37.
 接続油路64の軸方向穴65には、弁体71およびスプリング72を有するチェックバルブ73が設けられている。弁体71は、球体状であり、軸方向穴65の内壁に形成された弁座74に着座および離座可能である。スプリング72は、弁体71を弁座74に向けて付勢している。チェックバルブ73は、図3~図5に実線で示すように弁体71が弁座74に着座すると、接続油路64において出口孔67から入口孔66に向かう作動油の流れを阻止する。一方、チェックバルブ73は、図3~図5に二点鎖線で示すように弁体71が弁座74から離座すると、入口孔66から出口孔67に向かう作動油の流れを許容する。 A check valve 73 having a valve body 71 and a spring 72 is provided in the axial hole 65 of the connecting oil passage 64. The valve body 71 has a spherical shape and can be seated on and separated from a valve seat 74 formed on the inner wall of the axial hole 65. The spring 72 urges the valve body 71 toward the valve seat 74. When the valve body 71 is seated on the valve seat 74 as shown by a solid line in FIGS. 3 to 5, the check valve 73 prevents the flow of hydraulic oil from the outlet hole 67 toward the inlet hole 66 in the connection oil passage 64. On the other hand, the check valve 73 allows the flow of hydraulic oil from the inlet hole 66 toward the outlet hole 67 when the valve body 71 is separated from the valve seat 74 as shown by a two-dot chain line in FIGS.
 スプール29は、図3に示すようにストッパプレート35に当接しているときの軸方向位置であって、第2作動状態に対応する軸方向位置が原位置である。スプール29の軸方向位置が原位置であるとき、供給ポート40は接続油路64を経由して第2制御ポート43に連通可能となり、また、第1制御ポート42はドレンポート41に連通する。このとき、供給ポート40から接続油路64に作動油が供給されると、作動油の流動圧によりチェックバルブ73が開弁し、供給ポート40と第2制御ポート43とが連通する。これにより、供給油路45の作動油は、供給ポート40、接続油路64、第2制御ポート43および進角油路49を経由して進角室28に供給される。また、遅角室27の作動油は、遅角油路48、第1制御ポート42、ドレンポート41および第2ドレン油路50を経由してドレン空間22に排出される。 As shown in FIG. 3, the spool 29 is in the axial position when it is in contact with the stopper plate 35, and the axial position corresponding to the second operating state is the original position. When the axial position of the spool 29 is the original position, the supply port 40 can communicate with the second control port 43 via the connection oil passage 64, and the first control port 42 communicates with the drain port 41. At this time, when the hydraulic oil is supplied from the supply port 40 to the connection oil passage 64, the check valve 73 is opened by the fluid pressure of the hydraulic oil, and the supply port 40 and the second control port 43 communicate with each other. As a result, the hydraulic oil in the supply oil passage 45 is supplied to the advance chamber 28 via the supply port 40, the connection oil passage 64, the second control port 43, and the advance oil passage 49. The hydraulic oil in the retard chamber 27 is discharged to the drain space 22 via the retard oil passage 48, the first control port 42, the drain port 41, and the second drain oil passage 50.
 図3の状態から図4に示すようにスプール29が原位置から所定距離だけ移動すると、供給ポート40、ドレンポート41、第1制御ポート42および第2制御ポート43は、相互間の連通が遮断される。これにより、遅角室27および進角室28の作動油が保持される。 When the spool 29 moves from the original position by a predetermined distance from the state shown in FIG. 3, the supply port 40, the drain port 41, the first control port 42 and the second control port 43 are disconnected from each other. Is done. As a result, the hydraulic oil in the retard chamber 27 and the advance chamber 28 is retained.
 図4の状態から図5に示すようにスプール29が所定距離だけ移動すると、供給ポート40は接続油路64を経由して第1制御ポート42に連通可能となり、また、第2制御ポート43は第1ドレン油路44に連通する。このとき、供給ポート40から接続油路64に作動油が供給されると、作動油の流動圧によりチェックバルブ73が開弁し、供給ポート40と第1制御ポート42とが連通する。これにより、供給油路45の作動油は、供給ポート40、接続油路64、第1制御ポート42および遅角油路48を経由して遅角室27に供給される。また、進角室28の作動油は、第2制御ポート43および第1ドレン油路44を経由してドレン空間22に排出される。 When the spool 29 moves from the state of FIG. 4 by a predetermined distance as shown in FIG. 5, the supply port 40 can communicate with the first control port 42 via the connection oil passage 64, and the second control port 43 The first drain oil passage 44 communicates. At this time, when hydraulic oil is supplied from the supply port 40 to the connection oil passage 64, the check valve 73 is opened by the fluid pressure of the hydraulic oil, and the supply port 40 and the first control port 42 communicate with each other. As a result, the hydraulic oil in the supply oil passage 45 is supplied to the retard chamber 27 via the supply port 40, the connection oil passage 64, the first control port 42 and the retard oil passage 48. Further, the hydraulic oil in the advance chamber 28 is discharged to the drain space 22 via the second control port 43 and the first drain oil passage 44.
 以上説明したように、第1実施形態によるバルブタイミング調整装置10は、ハウジング13と、ベーンロータ14と、スリーブ32と、スプール29とを備える。ハウジング13のスプロケット16は、カム軸12の端部に嵌合し、カム軸12により回転可能に支持される。スリーブ32は、カム軸12側から順に供給ポート40、ドレンポート41、第1制御ポート42、第2制御ポート43および第1ドレン油路44を有する。スプール29は、軸方向位置に応じて供給ポート40を第1制御ポート42または第2制御ポート43に接続するよう軸心部に設けられている接続油路64を有する。ドレンポート41は、ベーンロータ14およびカム軸12にまたがって設けられた第2ドレン油路50を経由してドレン空間22に接続される。 As described above, the valve timing adjusting device 10 according to the first embodiment includes the housing 13, the vane rotor 14, the sleeve 32, and the spool 29. The sprocket 16 of the housing 13 is fitted to the end of the cam shaft 12 and is rotatably supported by the cam shaft 12. The sleeve 32 includes a supply port 40, a drain port 41, a first control port 42, a second control port 43, and a first drain oil passage 44 in order from the camshaft 12 side. The spool 29 has a connection oil passage 64 provided in the shaft center portion so as to connect the supply port 40 to the first control port 42 or the second control port 43 in accordance with the axial position. The drain port 41 is connected to the drain space 22 via a second drain oil passage 50 provided across the vane rotor 14 and the cam shaft 12.
 以上のように構成されたバルブタイミング調整装置10では、進角室28の作動油は、ドレン空間22側に位置する第2制御ポート43と第1ドレン油路44とを経由してドレン空間22に排出される。また、遅角室27の作動油は、カム軸12側に位置する第1制御ポート42とドレンポート41と第2ドレン油路50とを経由してドレン空間22に排出される。つまり、どちらの油圧室の作動油も、ベーンロータ14に対してカム軸12とは反対側にあるドレン空間22に排出される。そのため、カム軸12のうち、カム軸12を支持する軸受部分75とハウジング13との間に排出穴を設ける必要がなく、排出穴が無い分だけカム軸12の軸長を短くできる。 In the valve timing adjusting device 10 configured as described above, the hydraulic oil in the advance chamber 28 flows through the drain space 22 via the second control port 43 and the first drain oil passage 44 located on the drain space 22 side. To be discharged. Further, the hydraulic oil in the retard chamber 27 is discharged to the drain space 22 via the first control port 42, the drain port 41, and the second drain oil passage 50 located on the camshaft 12 side. That is, the hydraulic oil in either hydraulic chamber is discharged to the drain space 22 on the opposite side of the vane rotor 14 from the camshaft 12. Therefore, it is not necessary to provide a discharge hole between the bearing portion 75 that supports the cam shaft 12 and the housing 13 in the cam shaft 12, and the shaft length of the cam shaft 12 can be shortened by the amount of no discharge hole.
 したがって、第1実施形態によれば、油路切換弁15のスプール29の軸心部に接続油路64を設けつつも、カム軸12の軸長を短くすることができる。 Therefore, according to the first embodiment, the axial length of the camshaft 12 can be shortened while the connection oil passage 64 is provided in the shaft center portion of the spool 29 of the oil passage switching valve 15.
 ここで、比較形態について考える。比較形態では、油路切換弁のスリーブは、カム軸側から順に供給ポート、第1ドレンポート、第1制御ポート、第2制御ポート、第2ドレンポートを有する。第1ドレンポートを通過する作動油は、カム軸の外周面に開く排出穴から外部へ排出される。排出穴は、ハウジングのうちカム軸に嵌合する部分(カム軸嵌合部)に対して軸方向へ離れた位置に設けられる。このような比較形態では、機種によってカム軸嵌合部の長さが変わると、スリーブの第1ドレンポートとカム軸の排出穴との軸方向位置を一致させるために油路切換弁を個別に設計しなければならない。したがって、機種間の油路切換弁の共通化が困難であるおそれがある。 Here, let us consider the comparative form. In the comparative form, the sleeve of the oil passage switching valve has a supply port, a first drain port, a first control port, a second control port, and a second drain port in order from the camshaft side. The hydraulic fluid that passes through the first drain port is discharged to the outside through a discharge hole that opens in the outer peripheral surface of the cam shaft. The discharge hole is provided at a position in the axial direction away from a portion (cam shaft fitting portion) of the housing that is fitted to the cam shaft. In such a comparative form, when the length of the cam shaft fitting portion changes depending on the model, the oil path switching valve is individually set to match the axial position of the first drain port of the sleeve and the discharge hole of the cam shaft. Must design. Therefore, there is a possibility that it is difficult to share the oil path switching valve among the models.
 これに対して、第1実施形態では、カム軸12に排出穴を設ける必要がない。そのため、機種によってカム軸嵌合部の長さが変わっても、ドレンポートの軸方向位置を変える必要がない。したがって、機種間の油路切換弁の共通化が容易である。 On the other hand, in the first embodiment, it is not necessary to provide a discharge hole in the cam shaft 12. Therefore, even if the length of the cam shaft fitting portion changes depending on the model, it is not necessary to change the axial position of the drain port. Therefore, it is easy to share the oil path switching valve among the models.
 また、第1実施形態では、第2ドレン油路50は、カム軸12に形成された環状溝51および切欠き52を有する前半部と、ベーンロータ14に形成された通孔53および切欠き54を有する後半部とを有している。 In the first embodiment, the second drain oil passage 50 includes a front half portion having an annular groove 51 and a notch 52 formed in the cam shaft 12, and a through hole 53 and a notch 54 formed in the vane rotor 14. And having a second half.
 このように第2ドレン油路50を構成することによって、ベーンロータ14には、軸方向へ貫通する通孔53および切欠き54を設けるのみでよい。そのため、バルブタイミング調整装置10の軸方向の体格を小さくすることができる。 By configuring the second drain oil passage 50 in this way, the vane rotor 14 need only be provided with the through hole 53 and the notch 54 penetrating in the axial direction. Therefore, the physique in the axial direction of the valve timing adjusting device 10 can be reduced.
 (第2実施形態)
 本開示の第2実施形態では、図6に示すように、第2ドレン油路80は、ベーンロータ81に形成された環状溝82、切欠き83、通孔84および切欠き54を有している。
(Second Embodiment)
In the second embodiment of the present disclosure, as shown in FIG. 6, the second drain oil passage 80 has an annular groove 82 formed in the vane rotor 81, a notch 83, a through hole 84, and a notch 54. .
 このように第2ドレン油路80がベーンロータ81のみに設けられる第2実施形態であっても、第1実施形態と同様の効果を得ることができる。 Thus, even in the second embodiment in which the second drain oil passage 80 is provided only in the vane rotor 81, the same effect as that of the first embodiment can be obtained.
 また、第2実施形態では、カム軸85に第2ドレン油路80を設ける必要がない。そのため、カム軸85の製作コストを低減できる。 In the second embodiment, it is not necessary to provide the second drain oil passage 80 in the cam shaft 85. Therefore, the manufacturing cost of the cam shaft 85 can be reduced.
 (他の実施形態)
 本開示の他の実施形態では、第2ドレン油路は、カム軸またはベーンロータに形成される環状溝と、ベーンロータに形成される通孔とを有してもよい。つまり、切欠きが形成されず、環状溝と通孔とが直接連通してもよい。
(Other embodiments)
In another embodiment of the present disclosure, the second drain oil passage may have an annular groove formed in the camshaft or the vane rotor and a through hole formed in the vane rotor. That is, the notch is not formed, and the annular groove and the through hole may directly communicate with each other.
 本開示の他の実施形態では、ベーンロータは、複数の部材を有してもよい。その場合、第2ドレン油路は、各部材が有する穴等を有してもよい。 In other embodiments of the present disclosure, the vane rotor may have a plurality of members. In that case, the 2nd drain oil way may have a hole etc. which each member has.
 本開示の他の実施形態では、プレートワッシャが設けられなくてもよい。 In other embodiments of the present disclosure, a plate washer may not be provided.
 本開示の他の実施形態では、スプールの接続油路にはチェックバルブが設けられなくてもよい。 In other embodiments of the present disclosure, a check valve may not be provided in the connection oil passage of the spool.
 本開示の他の実施形態では、第1油圧室は進角室であり、第2油圧室は遅角室であってもよい。 In another embodiment of the present disclosure, the first hydraulic chamber may be an advance chamber and the second hydraulic chamber may be a retard chamber.
 本開示の他の実施形態では、ハウジングは3つ以上の部材を有してもよい。 In other embodiments of the present disclosure, the housing may have more than two members.
 本開示の他の実施形態では、チェーンが巻き掛けられる外歯は、ハウジングのどこに設けられてもよい。すなわち、ハウジングのうち、カム軸に嵌合する部分は、スプロケットでなくてもよい。 In other embodiments of the present disclosure, the external teeth around which the chain is wound may be provided anywhere on the housing. That is, the portion of the housing that fits into the camshaft may not be a sprocket.
 本開示の他の実施形態では、チェーンに代えて、例えばベルト等の他の伝達部材によってハウジングとクランク軸とが連結されてもよい。 In another embodiment of the present disclosure, the housing and the crankshaft may be connected by another transmission member such as a belt instead of the chain.
 本開示の他の実施形態では、ベーンロータがクランク軸の端部に固定され、ハウジングがカム軸に連動して回転してもよい。 In another embodiment of the present disclosure, the vane rotor may be fixed to the end of the crankshaft, and the housing may rotate in conjunction with the camshaft.
 本開示の他の実施形態では、接続油路の出口孔は、保持状態において第1制御ポートおよび第2制御ポートの両方にほんの僅かに連通していてもよい。 In other embodiments of the present disclosure, the outlet hole of the connection oil passage may communicate with both the first control port and the second control port only slightly in the holding state.
 本開示の他の実施形態では、バルブタイミング調整装置は、内燃機関の排気弁のバルブタイミングを調整するものであってもよい。 In another embodiment of the present disclosure, the valve timing adjusting device may adjust the valve timing of the exhaust valve of the internal combustion engine.
 本開示は、上述した実施形態に限定されるものではなく、開示の趣旨を逸脱しない範囲で種々の形態で実施可能である。 The present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the spirit of the disclosure.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (3)

  1.  内燃機関の駆動軸(11)から従動軸(12)まで動力を伝達する動力伝達経路に設けられ、前記従動軸により開閉駆動されるバルブのバルブタイミングを調整するバルブタイミング調整装置であって、
     前記駆動軸および前記従動軸の一方を第1軸とし、前記駆動軸および前記従動軸の他方を第2軸とすると、
     前記第1軸と連動して回転し、前記第2軸の端部に嵌合し、前記第2軸により回転可能に支持されるハウジング(13)と、
     前記第2軸の端部に固定され、前記ハウジングの内部空間を周方向の第1側の第1油圧室(27)と周方向の第2側の第2油圧室(28)とに仕切るベーン(24)を有し、前記第1油圧室および前記第2油圧室に供給される作動油の圧力に応じて前記ハウジングに対して相対回転するベーンロータ(14)と、
     前記ベーンロータの中心部に設けられ、前記第2軸側から順に、前記第2軸の供給油路(45)に連通する供給ポート(40)、前記ベーンロータに対して前記第2軸とは反対側にあるドレン空間(22)に連通するドレンポート(41)、前記第1油圧室に連通する第1制御ポート(42)、前記第2油圧室に連通する第2制御ポート(43)、および、前記ドレン空間に連通する第1ドレン油路(44)、を有するスリーブ(32)と、
     前記スリーブの内側において軸方向へ移動し、軸方向位置に応じて前記供給ポートを前記第1制御ポートまたは前記第2制御ポートに接続するよう軸心部に設けられている接続油路(64)を有し、前記第1油圧室に作動油を供給するとき前記供給ポートと前記第1制御ポートとを接続しつつ前記第2制御ポートと前記第1ドレン油路とを接続し、前記第2油圧室に作動油を供給するとき前記供給ポートと前記第2制御ポートとを接続しつつ前記第1制御ポートと前記ドレンポートとを接続するスプール(29)と、
     を備え、
     前記ドレンポートは、前記ベーンロータに設けられるか或いは前記ベーンロータおよび前記第2軸にまたがって設けられる第2ドレン油路(50、80)を経由して前記ドレン空間に接続されるバルブタイミング調整装置。
    A valve timing adjusting device that is provided in a power transmission path for transmitting power from a drive shaft (11) of an internal combustion engine to a driven shaft (12) and adjusts a valve timing of a valve that is driven to open and close by the driven shaft,
    When one of the drive shaft and the driven shaft is a first axis and the other of the drive shaft and the driven shaft is a second axis,
    A housing (13) that rotates in conjunction with the first shaft, engages with an end of the second shaft, and is rotatably supported by the second shaft;
    A vane fixed to the end of the second shaft and dividing the internal space of the housing into a first hydraulic chamber (27) on the first circumferential side and a second hydraulic chamber (28) on the second circumferential side. (24), a vane rotor (14) that rotates relative to the housing in accordance with the pressure of hydraulic oil supplied to the first hydraulic chamber and the second hydraulic chamber;
    A supply port (40) provided in the center of the vane rotor and communicating in turn from the second shaft side to the supply oil passage (45) of the second shaft, opposite the second shaft with respect to the vane rotor A drain port (41) communicating with the drain space (22) in the first control port (42) communicating with the first hydraulic chamber, a second control port (43) communicating with the second hydraulic chamber, and A sleeve (32) having a first drain oil passage (44) communicating with the drain space;
    A connecting oil passage (64) provided in an axial center portion so as to move in the axial direction inside the sleeve and connect the supply port to the first control port or the second control port according to the axial position And connecting the second control port and the first drain oil passage while connecting the supply port and the first control port when supplying hydraulic oil to the first hydraulic chamber, A spool (29) for connecting the first control port and the drain port while connecting the supply port and the second control port when supplying hydraulic oil to the hydraulic chamber;
    With
    The said drain port is a valve timing adjustment apparatus connected to the said drain space via the 2nd drain oil path (50, 80) provided in the said vane rotor or straddling the said vane rotor and the said 2nd axis | shaft.
  2.  前記第2ドレン油路(50)は、前記第2軸に設けられる前半部(51、52)と、前記ベーンロータに設けられる後半部(53、54)と、を有する請求項1に記載のバルブタイミング調整装置。 The valve according to claim 1, wherein the second drain oil passage (50) includes a front half (51, 52) provided on the second shaft and a rear half (53, 54) provided on the vane rotor. Timing adjustment device.
  3.  前記第2ドレン油路(80)は前記ベーンロータのみに設けられている請求項1に記載のバルブタイミング調整装置。

     
    The valve timing adjusting device according to claim 1, wherein the second drain oil passage (80) is provided only in the vane rotor.

PCT/JP2016/001921 2015-04-08 2016-04-06 Valve timing regulation device WO2016163119A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/564,874 US10260384B2 (en) 2015-04-08 2016-04-06 Valve timing regulation device
DE112016001644.1T DE112016001644T5 (en) 2015-04-08 2016-04-06 Valve timing control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-079165 2015-04-08
JP2015079165A JP6308163B2 (en) 2015-04-08 2015-04-08 Valve timing adjustment device

Publications (1)

Publication Number Publication Date
WO2016163119A1 true WO2016163119A1 (en) 2016-10-13

Family

ID=57072611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001921 WO2016163119A1 (en) 2015-04-08 2016-04-06 Valve timing regulation device

Country Status (4)

Country Link
US (1) US10260384B2 (en)
JP (1) JP6308163B2 (en)
DE (1) DE112016001644T5 (en)
WO (1) WO2016163119A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863290B2 (en) 2015-04-08 2018-01-09 Denso Corporation Valve timing adjusting device
WO2018135577A1 (en) * 2017-01-19 2018-07-26 株式会社デンソー Valve timing adjustment device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6790925B2 (en) * 2017-03-07 2020-11-25 株式会社デンソー Hydraulic oil control valve and valve timing adjustment device using this
CN109538323A (en) * 2019-01-21 2019-03-29 绵阳富临精工机械股份有限公司 A kind of camshaft phase converter system
JP2020193583A (en) * 2019-05-28 2020-12-03 日立オートモティブシステムズ株式会社 Valve timing control device of internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196245A (en) * 2010-03-19 2011-10-06 Denso Corp Valve timing adjusting device
JP2015059430A (en) * 2013-09-17 2015-03-30 株式会社デンソー Valve timing adjusting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005052481A1 (en) * 2005-11-03 2007-05-24 Schaeffler Kg Control valve for a device for the variable adjustment of the timing of gas exchange valves of an internal combustion engine
DE102011077586A1 (en) * 2011-06-16 2012-12-20 Schaeffler Technologies AG & Co. KG Phaser
DE102011084059B4 (en) 2011-10-05 2016-12-08 Schwäbische Hüttenwerke Automotive GmbH Control valve with integrated filter and camshaft phaser with the control valve
JP6390499B2 (en) 2015-04-08 2018-09-19 株式会社デンソー Valve timing adjustment device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196245A (en) * 2010-03-19 2011-10-06 Denso Corp Valve timing adjusting device
JP2015059430A (en) * 2013-09-17 2015-03-30 株式会社デンソー Valve timing adjusting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863290B2 (en) 2015-04-08 2018-01-09 Denso Corporation Valve timing adjusting device
WO2018135577A1 (en) * 2017-01-19 2018-07-26 株式会社デンソー Valve timing adjustment device
CN110192009A (en) * 2017-01-19 2019-08-30 株式会社电装 Valve timing adjustment device
CN110192009B (en) * 2017-01-19 2021-04-23 株式会社电装 Valve timing adjusting device

Also Published As

Publication number Publication date
JP6308163B2 (en) 2018-04-11
US20180112563A1 (en) 2018-04-26
DE112016001644T5 (en) 2017-12-28
US10260384B2 (en) 2019-04-16
JP2016200030A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP6683142B2 (en) Valve timing adjustment device
JP6015605B2 (en) Valve timing adjustment device
JP6373464B2 (en) Valve timing control device for internal combustion engine
WO2016163119A1 (en) Valve timing regulation device
JP5447543B2 (en) Valve timing adjusting device and its assembling method
JP6645448B2 (en) Valve timing adjustment device
JP6390499B2 (en) Valve timing adjustment device
JP5574189B2 (en) Valve timing adjustment device
JP7124775B2 (en) Hydraulic oil control valve and valve timing adjustment device
WO2021106890A1 (en) Valve timing adjustment device
JP5874615B2 (en) Valve timing adjustment device
WO2021106893A1 (en) Valve timing adjusting device
JP2017089477A (en) Valve opening/closing timing control device
WO2021106892A1 (en) Valve timing adjustment device
JP6046518B2 (en) Valve timing adjustment device
JP5811351B2 (en) Valve timing adjustment device
JP5742240B2 (en) Oil control valve
JP5152313B2 (en) Valve timing adjustment device
US11041412B2 (en) Valve timing controller
JP6369253B2 (en) Valve timing control device
JP6064873B2 (en) Valve timing adjustment device
JP2013245596A (en) Valve timing adjusting device
JP2015098850A (en) Valve timing adjustment device
JP6432413B2 (en) Valve timing adjustment device
US20210172346A1 (en) Valve opening and closing timing control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776291

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15564874

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016001644

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776291

Country of ref document: EP

Kind code of ref document: A1