WO2021084603A1 - Resin composition for wavelength conversion, cured resin material for wavelength conversion, wavelength conversion member, backlight unit and image display device - Google Patents

Resin composition for wavelength conversion, cured resin material for wavelength conversion, wavelength conversion member, backlight unit and image display device Download PDF

Info

Publication number
WO2021084603A1
WO2021084603A1 PCT/JP2019/042308 JP2019042308W WO2021084603A1 WO 2021084603 A1 WO2021084603 A1 WO 2021084603A1 JP 2019042308 W JP2019042308 W JP 2019042308W WO 2021084603 A1 WO2021084603 A1 WO 2021084603A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
resin composition
compound
conversion member
thiol
Prior art date
Application number
PCT/JP2019/042308
Other languages
French (fr)
Japanese (ja)
Inventor
和仁 渡部
友洋 鮎ヶ瀬
大介 大槻
佳希 丸山
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2019/042308 priority Critical patent/WO2021084603A1/en
Publication of WO2021084603A1 publication Critical patent/WO2021084603A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • C08G75/045Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements

Definitions

  • the present disclosure relates to a wavelength conversion resin composition, a wavelength conversion resin cured product, a wavelength conversion member, a backlight unit, and an image display device.
  • the wavelength conversion member including the quantum dot phosphor is arranged in, for example, the backlight unit of the image display device.
  • a wavelength conversion member including a quantum dot phosphor that emits red light and a quantum dot phosphor that emits green light when the wavelength conversion member is irradiated with blue light as excitation light, the quantum dot phosphor emits light.
  • White light can be obtained from the red light and green light produced and the blue light transmitted through the wavelength conversion member.
  • Quantum dot phosphors are prone to deterioration due to the effects of water vapor or oxygen.
  • a cured product of a photocurable composition containing a quantum dot phosphor has insufficient moisture and heat resistance in a high temperature and high humidity environment, and the quantum dot phosphor tends to deteriorate and the emission intensity tends to decrease. It is in. Therefore, when an image display device using a wavelength conversion member containing a quantum dot phosphor is left in a high temperature and high humidity environment, or when the temperature of the image display device main body rises due to the use of the image display device, the quantum dots The brightness of the image display device may decrease as the phosphor deteriorates.
  • At least a part of the cured product containing the quantum dot phosphor may be covered with a coating material in the wavelength conversion member containing the quantum dot phosphor.
  • a coating material in the wavelength conversion member containing the quantum dot phosphor.
  • a barrier film having a barrier property against at least one of oxygen and water may be provided on one side or both sides of the cured product layer containing the quantum dot phosphor.
  • a covering material such as a barrier film is provided, it may not be possible to sufficiently suppress the decrease in emission intensity.
  • the present disclosure has been made in view of the above circumstances, and is a wavelength conversion resin composition capable of suppressing a decrease in emission intensity of a quantum dot phosphor, and a wavelength conversion resin composition using this wavelength conversion resin composition.
  • An object of the present invention is to provide a cured resin product, a wavelength conversion member, a backlight unit, and an image display device.
  • ⁇ 3> The resin composition for wavelength conversion according to ⁇ 1> or ⁇ 2>, wherein the compound having a carboxy group and a thiol group in one molecule contains two or less thiol groups.
  • ⁇ 4> The wavelength conversion according to any one of ⁇ 1> to ⁇ 3>, wherein at least one of the thiol groups contained in the compound having a carboxy group and a thiol group in one molecule is a primary thiol group.
  • Resin composition. ⁇ 5> The resin composition for wavelength conversion according to any one of ⁇ 1> to ⁇ 4>, wherein the compound having a carboxy group and a thiol group in one molecule has a molecular weight of 80 to 300.
  • ⁇ 6> The resin composition for wavelength conversion according to any one of ⁇ 1> to ⁇ 5>, wherein the compound having a carboxy group and a thiol group in one molecule is an aliphatic compound.
  • ⁇ 7> The resin composition for wavelength conversion according to any one of ⁇ 1> to ⁇ 6>, which contains a monofunctional (meth) acrylate compound.
  • ⁇ 8> The resin composition for wavelength conversion according to any one of ⁇ 1> to ⁇ 7>, which does not contain a liquid medium or has a liquid medium content of 0.5% by mass or less.
  • ⁇ 9> The resin composition for wavelength conversion according to any one of ⁇ 1> to ⁇ 8>, which contains a white pigment.
  • ⁇ 10> A cured resin composition for wavelength conversion, which is a cured product of the resin composition for wavelength conversion according to any one of ⁇ 1> to ⁇ 9>.
  • ⁇ 11> The cured resin for wavelength conversion according to ⁇ 10>, wherein the glass transition temperature measured by dynamic viscoelasticity measurement is 85 ° C. or higher.
  • ⁇ 12> A wavelength conversion member having the cured resin for wavelength conversion according to any one of ⁇ 10> and ⁇ 11>.
  • ⁇ 13> The wavelength conversion member according to ⁇ 12>, which has a coating material that covers at least a part of the cured resin for wavelength conversion.
  • ⁇ 14> The wavelength conversion member according to ⁇ 12> or ⁇ 13>, which is in the form of a film.
  • ⁇ 15> The wavelength conversion member according to any one of ⁇ 12> to ⁇ 14> for displaying an image.
  • An image display device including the backlight unit according to ⁇ 16>.
  • a wavelength conversion resin composition capable of suppressing a decrease in emission intensity of a quantum dot phosphor, a wavelength conversion resin cured product using this wavelength conversion resin composition, a wavelength conversion member, and a bag.
  • a light unit and an image display device can be provided.
  • the term "process” includes not only a process independent of other processes but also the process if the purpose of the process is achieved even if the process cannot be clearly distinguished from the other process. ..
  • the numerical range indicated by using "-" in the present disclosure includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. ..
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • each component may contain a plurality of applicable substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified.
  • the particles corresponding to each component may include a plurality of types of particles.
  • the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term "layer” or “membrane” is used only in a part of the region in addition to the case where the layer or the membrane is formed in the entire region when the region in which the layer or the membrane is present is observed. The case where it is formed is also included.
  • the term “laminated” refers to stacking layers, and two or more layers may be bonded or the two or more layers may be removable.
  • “(meth) acryloyl group” means at least one of an acryloyl group and a methacryloyl group
  • “(meth) acrylate” means at least one of acrylate and methacrylate
  • “(meth) allyl” means allyl.
  • the resin composition for wavelength conversion of the present disclosure includes a polyfunctional (meth) acrylate compound having an alicyclic structure, a polyfunctional thiol compound, and a compound having a carboxy group and a thiol group in one molecule (hereinafter, "specific carboxylic acid"). It may be referred to as a "compound"), a photopolymerization initiator and a quantum dot phosphor.
  • the wavelength conversion resin composition of the present disclosure may further contain other components, if necessary. By having the above-mentioned structure, the wavelength conversion resin composition of the present disclosure can suppress a decrease in the emission intensity of the quantum dot phosphor.
  • the wavelength conversion resin composition of the present disclosure contains a polyfunctional (meth) acrylate compound having an alicyclic structure.
  • the polyfunctional (meth) acrylate compound having an alicyclic structure is a polyfunctional (meth) acrylate compound having an alicyclic structure in the skeleton and having two or more (meth) acryloyl groups in one molecule.
  • Specific examples include tricyclodecanedimethanol di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, 1,3-adamantan dimethanol di (meth) acrylate, and hydrogenated bisphenol A (poly) ethoxydi (meth) acrylate.
  • the alicyclic structure contained in the polyfunctional (meth) acrylate compound having an alicyclic structure contains a tricyclodecane skeleton.
  • the polyfunctional (meth) acrylate compound having a tricyclodecane skeleton in the alicyclic structure is preferably tricyclodecanedimethanol di (meth) acrylate.
  • the content of the polyfunctional (meth) acrylate compound having an alicyclic structure in the resin composition for wavelength conversion shall be, for example, 40% by mass to 90% by mass with respect to the total amount of the resin composition for wavelength conversion. Is more preferable, 40% by mass to 80% by mass is more preferable, and 40% by mass to 70% by mass is further preferable.
  • the content of the polyfunctional (meth) acrylate compound having an alicyclic structure is in the above range, the moisture and heat resistance of the cured product tends to be further improved.
  • the wavelength conversion resin composition may contain a polyfunctional (meth) acrylate compound having one kind of alicyclic structure alone, or a polyfunctional (meth) acrylate having two or more kinds of alicyclic structures. It may contain a combination of compounds.
  • the wavelength conversion resin composition contains a polyfunctional thiol compound having two or more thiol groups in one molecule.
  • an enthiol reaction proceeds between the polyfunctional (meth) acrylate compound and the polyfunctional thiol compound when the wavelength conversion resin composition is cured.
  • the moisture and heat resistance of the cured product tends to be further improved.
  • the wavelength conversion resin composition contains a polyfunctional thiol compound, the optical properties of the cured product tend to be further improved.
  • the composition containing the (meth) allyl compound and the polyfunctional thiol compound is often inferior in storage stability, although the resin composition for wavelength conversion of the present disclosure contains the polyfunctional thiol compound. Excellent storage stability. It is presumed that this is because the wavelength conversion resin composition contains a polyfunctional (meth) acrylate compound.
  • polyfunctional thiol compound examples include ethylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate), 1,2-.
  • the polyfunctional thiol compound may be in the state of a thioether oligomer that has been previously reacted with the polyfunctional (meth) acrylate compound.
  • the thioether oligomer can be obtained by addition polymerization of a polyfunctional thiol compound and a polyfunctional (meth) acrylate compound in the presence of a polymerization initiator.
  • the ratio of the equivalent number of thiol groups of the polyfunctional thiol compound to the equivalent number of (meth) acryloyl groups of the polyfunctional (meth) acrylate compound as a raw material (the equivalent number of thiol groups / (meth). )
  • the equivalent number of acryloyl groups is, for example, preferably 3.0 to 3.3, more preferably 3.0 to 3.2, and further preferably 3.05 to 3.15. preferable.
  • the weight average molecular weight of the thioether oligomer is, for example, preferably 3000 to 10000, more preferably 3000 to 8000, and even more preferably 4000 to 6000.
  • the weight average molecular weight of the thioether oligomer is obtained by converting the molecular weight distribution measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
  • the thiol equivalent of the thioether oligomer is, for example, preferably 200 g / eq to 400 g / eq, more preferably 250 g / eq to 350 g / eq, and even more preferably 250 g / eq to 270 g / eq.
  • the wavelength conversion resin composition may contain a monofunctional thiol compound having one thiol group in one molecule.
  • the monofunctional thiol compound examples include hexanethiol, 1-heptanethiol, 1-octanethiol, 1-nonanthiol, 1-decanethiol, methyl mercaptopropionate, methoxybutyl mercaptopropionate, octyl mercaptopropionate, and mercapto. Examples thereof include tridecyl propionate, 2-ethylhexyl-3-mercaptopropionate, and n-octyl-3-mercaptopropionate.
  • the content of the thiol compound (total of the polyfunctional thiol compound and the monofunctional thiol compound used as needed) in the wavelength conversion resin composition is, for example, 5% by mass with respect to the total amount of the wavelength conversion resin composition. It is preferably% to 50% by mass, more preferably 5% by mass to 40% by mass, further preferably 10% by mass to 30% by mass, and further preferably 15% by mass to 30% by mass. Especially preferable. In this case, due to the enthiol reaction with the polyfunctional (meth) acrylate compound, the cured product tends to form a more dense crosslinked structure, and the moisture and heat resistance tends to be further improved.
  • the mass-based ratio of the polyfunctional thiol compound to the total of the polyfunctional thiol compound and the monofunctional thiol compound used as needed is preferably 60% by mass to 100% by mass, preferably 70% by mass to 100% by mass. Is more preferable, and 80% by mass to 100% by mass is further preferable.
  • the mass-based content ratio (total of polyfunctional (meth) acrylate compound / thiol compound) to the total of the polyfunctional (meth) acrylate compound, the polyfunctional thiol compound, and the monofunctional thiol compound used as needed is 0. It is preferably 5 to 10, more preferably 0.5 to 8.0, and even more preferably 0.5 to 6.0.
  • the wavelength conversion resin composition contains a specific carboxylic acid compound.
  • the specific carboxylic acid compound is not particularly limited as long as it is a compound having a carboxy group and a thiol group in one molecule.
  • the thiol compound polyfunctional thiol compound or monofunctional thiol compound
  • the compound is regarded as a specific carboxylic acid compound rather than a thiol compound.
  • the specific carboxylic acid compound may be an aromatic compound or an aliphatic compound such as a chain-type aliphatic compound or an alicyclic compound, and is preferably an aliphatic compound.
  • the number of carboxy groups contained in the specific carboxylic acid compound is preferably two or less, and more preferably one.
  • the number of thiol groups contained in the specific carboxylic acid compound is preferably two or less, and more preferably one.
  • At least one of the thiol groups contained in the specific carboxylic acid compound is preferably a primary thiol group, and the specific carboxylic acid compound contains one thiol group and the thiol group is a primary thiol group (that is, the specific carboxylic acid.
  • the compound is more preferably a first thiol compound).
  • the primary thiol group means a thiol group bonded to a primary carbon.
  • the primary thiol compound refers to a thiol compound having a primary thiol group.
  • the molecular weight of the specific carboxylic acid compound is preferably 80 to 300, more preferably 90 to 250, and even more preferably 100 to 200.
  • Specific examples of the specific carboxylic acid compound include thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, 2-mercaptobenzoic acid, 3-mercaptobenzoic acid, 4-mercaptobenzoic acid, 4-mercaptobenzoic acid, Examples thereof include 3-mercaptobutanoic acid, 2-mercaptoisobutyric acid, 3-mercaptoisobutyric acid, 2-mercaptobenzoic acid, 4-mercaptophenylacetic acid, and thioapple acid. Among these, 3-mercaptopropionic acid is preferable.
  • the content of the specific carboxylic acid compound in the wavelength conversion resin composition is preferably, for example, 0.5% by mass to 40% by mass, and is preferably 1% by mass to 40% by mass, based on the total amount of the wavelength conversion resin composition. It is more preferably 30% by mass, further preferably 2% by mass to 20% by mass.
  • the content of the specific carboxylic acid compound is 0.5% by mass or more, the brightness maintenance rate of the wavelength conversion member tends to be improved.
  • the content of the specific carboxylic acid compound is 40% by mass or less, the strength of the cured product of the wavelength conversion resin composition tends to be maintained.
  • the wavelength conversion resin composition contains a photopolymerization initiator.
  • the photopolymerization initiator is not particularly limited, and specific examples thereof include compounds that generate radicals when irradiated with active energy rays such as ultraviolet rays.
  • the photopolymerization initiator include benzophenone, N, N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1, 4,4'-bis (dimethylamino) benzophenone (also referred to as "Michler ketone”), 4,4'-bis (Diethylamino) benzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 1-hydroxycyclohexylphenylketone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4- (4-) Aromatic ketone compounds such as (2-hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1-propane-1-one,
  • At least one selected from the group consisting of an acylphosphine oxide compound, an aromatic ketone compound, and an oxime ester compound is preferable from the viewpoint of curability, and from the acylphosphine oxide compound and the aromatic ketone compound. At least one selected from the above group is more preferable, and an acylphosphine oxide compound is further preferable.
  • the content of the photopolymerization initiator in the wavelength conversion resin composition is preferably, for example, 0.1% by mass to 5% by mass, and 0.1% by mass, based on the total amount of the wavelength conversion resin composition. It is more preferably% to 3% by mass, and further preferably 0.5% by mass to 1.5% by mass.
  • the content of the photopolymerization initiator is 0.1% by mass or more, the sensitivity of the wavelength conversion resin composition tends to be sufficient, and the content of the photopolymerization initiator is 5% by mass or less. As a result, the influence of the cured product of the wavelength conversion resin composition on the hue and the decrease in storage stability tend to be suppressed.
  • the wavelength conversion resin composition contains a quantum dot phosphor.
  • the quantum dot phosphor is not particularly limited, and examples thereof include particles containing at least one selected from the group consisting of a group II-VI compound, a group III-V compound, a group IV-VI compound, and a group IV compound. From the viewpoint of luminous efficiency, the quantum dot phosphor preferably contains a compound containing at least one of Cd and In.
  • II-VI group compounds include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSte, ZnSeS, ZnSeTe, ZnSte, HgSeS, ZnS.
  • Group III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, COLP, GaNAs, PLACSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb.
  • IV-VI group compounds include SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSte, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbSe .
  • Specific examples of the Group IV compound include Si, Ge, SiC, SiGe and the like.
  • the quantum dot phosphor preferably has a core-shell structure.
  • core-shell structure By making the band gap of the compound constituting the shell wider than the band gap of the compound constituting the core, it is possible to further improve the quantum efficiency of the quantum dot phosphor.
  • core / shell examples include CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, and CdTe / ZnS.
  • the quantum dot phosphor may have a so-called core multi-shell structure in which the shell has a multi-layer structure.
  • the quantum efficiency of the quantum dot phosphor can be further improved. Is possible.
  • the wavelength conversion resin composition may contain one type of quantum dot phosphor alone, or may contain two or more types of quantum dot phosphors in combination.
  • Examples of a mode in which two or more types of quantum dot phosphors are contained in combination include a mode in which two or more types of quantum dot phosphors having different components but the same average particle size are contained, and a mode in which components having different average particle sizes are contained. Examples thereof include an embodiment containing two or more types of quantum dot phosphors, and an embodiment containing two or more types of quantum dot phosphors having different components and average particle diameters.
  • the emission center wavelength of the quantum dot phosphor can be changed by changing at least one of the components of the quantum dot phosphor and the average particle size.
  • the wavelength conversion resin composition includes a quantum dot phosphor G having an emission center wavelength in the green wavelength range of 520 nm to 560 nm and a quantum dot phosphor R having an emission center wavelength in the red wavelength range of 600 nm to 680 nm. And may be contained.
  • the quantum dot phosphor G and the quantum dots are irradiated. Green light and red light are emitted from the phosphor R, respectively.
  • white light can be obtained by the green light and red light emitted from the quantum dot phosphor G and the quantum dot phosphor R and the blue light transmitted through the cured product.
  • the quantum dot phosphor may be used in the state of a quantum dot phosphor dispersion liquid dispersed in a dispersion medium.
  • the dispersion medium for dispersing the quantum dot phosphor include various solvents and monofunctional (meth) acrylate compounds.
  • the solvent that can be used as the dispersion medium include water, acetone, ethyl acetate, toluene, n-hexane and the like.
  • the monofunctional (meth) acrylate compound that can be used as a dispersion medium is not particularly limited as long as it is a liquid at room temperature (25 ° C.), and isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and the like are used. Can be mentioned.
  • the dispersion medium is preferably a monofunctional (meth) acrylate compound from the viewpoint of eliminating the step of volatilizing the dispersion medium when curing the wavelength conversion resin composition, and has an alicyclic structure.
  • the content ratio based on the mass of the monofunctional (meth) acrylate compound and the polyfunctional (meth) acrylate compound is preferably 0.01 to 0.30, more preferably 0.02 to 0.20, and even more preferably 0.05 to 0.20.
  • the mass-based ratio of the quantum dot phosphor to the quantum dot phosphor dispersion liquid is preferably 1% by mass to 20% by mass, and more preferably 1% by mass to 10% by mass.
  • the content of the quantum dot phosphor dispersion liquid in the wavelength conversion resin composition is wavelength conversion when the mass-based ratio of the quantum dot phosphor to the quantum dot phosphor dispersion liquid is 1% by mass to 20% by mass. For example, it is preferably 1% by mass to 10% by mass, more preferably 4% by mass to 10% by mass, and 4% by mass to 7% by mass with respect to the total amount of the resin composition for use. More preferred.
  • the content of the quantum dot phosphor in the wavelength conversion resin composition is preferably, for example, 0.01% by mass to 1.0% by mass, based on the total amount of the wavelength conversion resin composition. It is more preferably 0.05% by mass to 0.5% by mass, and further preferably 0.1% by mass to 0.5% by mass.
  • the content of the quantum dot phosphor is 0.01% by mass or more, sufficient emission intensity tends to be obtained when the cured product is irradiated with excitation light, and the content of the quantum dot phosphor is 1.0. When it is mass% or less, the aggregation of the quantum dot phosphor tends to be suppressed.
  • the wavelength conversion resin composition preferably does not contain a liquid medium or has a liquid medium content of 0.5% by mass or less.
  • the liquid medium means a medium in a liquid state at room temperature (25 ° C.).
  • liquid medium examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, and the like.
  • Ketone solvents such as dipropyl ketone, diisobutyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentandione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl Ether, tetrahydrofuran, methyl tetrahydrofuran, dioxane, dimethyl dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, Diethylene glycol methyl-n-propyl ether, diethylene glycol methyl-n-butyl ether
  • Solvents methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, n-pentanol, isopentanol, 2-methylbutanol, sec-pentanol, t-pentanol , 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, n-octanol, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, n-decanol , Se-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, cyclohexanol, methylcyclohexanol,
  • Diethylene glycol mono-n-hexyl ether Diethylene glycol mono-n-hexyl ether, triethylene glycol monoethyl ether, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, etc.
  • Glycol monoether solvent such as terpene solvent such as terpinene, terpineol, milsen, aloosimene, limonene, dipentene, pinene, carboxylic, ossimen, ferlandrene; straight silicone oil such as dimethyl silicone oil, methylphenyl silicone oil, methylhydrogen silicone oil; Amino-modified silicone oil, epoxy-modified silicone oil, cal Boxy-modified silicone oil, carbinol-modified silicone oil, mercapto-modified silicone oil, heterologous functional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, hydrophilic special-modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acid Modified silicone oils such as modified silicone oils and fluorine-modified silicone oils; butanoic acid, pentanoic acid, hexanoic acid, heptanic acid, octanoic acid,
  • the wavelength conversion resin composition may further contain a white pigment.
  • the white pigment include titanium oxide, barium sulfate, zinc oxide, calcium carbonate and the like. Among these, titanium oxide is preferable from the viewpoint of light scattering efficiency.
  • the wavelength conversion resin composition contains titanium oxide as a white pigment, the titanium oxide may be rutile-type titanium oxide or anatase-type titanium oxide, and is preferably rutile-type titanium oxide.
  • the average particle size of the white pigment is preferably 0.1 ⁇ m to 1 ⁇ m, more preferably 0.2 ⁇ m to 0.8 ⁇ m, and even more preferably 0.2 ⁇ m to 0.5 ⁇ m.
  • the average particle size of the white pigment can be measured as follows.
  • the white pigment extracted from the wavelength conversion resin composition is dispersed in purified water containing a surfactant to obtain a dispersion liquid.
  • a laser diffraction type particle size distribution measuring device for example, Shimadzu Corporation, SALD-3000J
  • the median diameter (D50) is defined as the average particle size of the white pigment.
  • Examples of the method of extracting the white pigment from the wavelength conversion resin composition include a method of diluting the wavelength conversion resin composition with a liquid medium and precipitating the white pigment by centrifugation or the like to distribute the white pigment.
  • the average particle size of the white pigment contained in the cured resin for wavelength conversion is the equivalent circle diameter (geometric mean of major axis and minor axis) for 50 particles by observing the particles using a scanning electron microscope. It can be calculated and calculated as the arithmetic mean value.
  • the white particles When the wavelength conversion resin composition contains a white pigment, the white particles have an organic substance layer containing an organic substance on at least a part of the surface from the viewpoint of suppressing aggregation of the white pigment in the wavelength conversion resin composition. It is preferable to have.
  • the organic substances contained in the organic substance layer include organic silane, organosiloxane, fluorosilane, organic phosphonate, organic phosphoric acid compound, organic phosphinate, organic sulfonic acid compound, carboxylic acid, carboxylic acid ester, carboxylic acid derivative, amide, and hydrocarbon.
  • the organic substance contained in the organic substance layer preferably contains a polyol, an organic silane, or the like, and more preferably contains at least one of the polyol or the organic silane.
  • organic silanes include octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tridecyltriethoxysilane, tetradecyltriethoxysilane, pentadecyltriethoxysilane, and hexadecyltriethoxysilane.
  • Examples thereof include silane, heptadecyltriethoxysilane, and octadecyltriethoxysilane.
  • organosiloxane examples include polydimethylsiloxane (PDMS) terminated with a trimethylsilyl functional group, polymethylhydrosiloxane (PMHS), polysiloxane induced by functionalization of PMHS with an olefin (by hydrosilylation), and the like. Be done.
  • organic phosphonates include n-octylphosphonic acid and its ester, n-decylphosphonic acid and its ester, 2-ethylhexylphosphonic acid and its ester, and camphyl phosphonic acid and its ester.
  • organic phosphoric acid compound examples include organic acidic phosphate, organic pyrophosphate, organic polyphosphate, organic metaphosphate, salts thereof and the like.
  • organic phosphinate examples include n-hexylphosphinic acid and its ester, n-octylphosphinic acid and its ester, di-n-hexylphosphinic acid and its ester, and di-n-octylphosphinic acid and its ester. Can be mentioned.
  • organic sulfonic acid compound examples include alkyl sulfonic acids such as hexyl sulfonic acid, octyl sulfonic acid, and 2-ethylhexyl sulfonic acid, these alkyl sulfonic acids, metal ions such as sodium, calcium, magnesium, aluminum, and titanium, and ammonium. Examples thereof include salts with ions and organic ammonium ions such as triethanolamine.
  • carboxylic acid include maleic acid, malonic acid, fumaric acid, benzoic acid, phthalic acid, stearic acid, oleic acid, linoleic acid and the like.
  • carboxylic acid ester examples include the above carboxylic acid, ethylene glycol, propylene glycol, trimethylolpropane, diethanolamine, triethanolamine, glycerol, hexanetriol, erythritol, mannitol, sorbitol, pentaerythritol, bisphenol A, hydroquinone, and flo.
  • Specific examples of the amide include stearic acid amide, oleic acid amide, and erucic acid amide.
  • the polyolefin and its copolymer include a copolymer of polyethylene, polypropylene, ethylene and one or more compounds selected from propylene, butylene, vinyl acetate, acrylate, acrylamide and the like.
  • Specific examples of the polyol include glycerol, trimethylolethane, trimethylolpropane and the like.
  • Specific examples of the alkanolamine include diethanolamine and triethanolamine.
  • the organic dispersant include high molecular weight organic dispersants having functional groups such as citric acid, polyacrylic acid, polymethacrylic acid, anionic, cationic, bipolar and nonionic.
  • the white pigment may have an oxide layer containing a metal oxide or the like on at least a part of the surface thereof.
  • the metal oxide contained in the oxide layer include silicon dioxide, aluminum oxide, zirconia, phosphoria, and boria.
  • the oxide layer may be one layer or two or more layers.
  • the white pigment has two oxide layers, it preferably contains a first oxide layer containing silicon dioxide and a second oxide layer containing aluminum oxide.
  • the white pigment has an oxide layer, the dispersibility of the white pigment in the cured resin for wavelength conversion including the alicyclic structure and the sulfide structure tends to be improved.
  • the white pigment may have an organic substance layer and an oxide layer.
  • the oxide layer and the organic substance layer are provided on the surface of the white pigment in the order of the oxide layer and the organic substance layer.
  • the white pigment has an organic material layer and two oxide layers, the first oxide layer containing silicon dioxide, the second oxide layer containing aluminum oxide and the organic material layer are placed on the surface of the white pigment. It is preferable that the monooxide layer, the second oxide layer, and the organic substance layer are provided in this order.
  • the content of the white pigment in the wavelength conversion resin composition is, for example, 0.1% by mass to 5% by mass with respect to the total amount of the wavelength conversion resin composition. It is preferably mass%, more preferably 0.5% by mass to 4% by mass, and even more preferably 1% by mass to 3% by mass.
  • the wavelength conversion resin composition may further contain other components such as a polymerization inhibitor, a silane coupling agent, a surfactant, an adhesion imparting agent, and an antioxidant.
  • the wavelength conversion resin composition may contain one type alone or a combination of two or more types for each of the other components. Further, the wavelength conversion resin composition may contain a (meth) allyl compound, if necessary.
  • the wavelength conversion resin composition contains a polyfunctional (meth) acrylate compound having an alicyclic structure, a polyfunctional thiol compound, a specific carboxylic acid compound, a photopolymerization initiator and a quantum dot phosphor, and other components as necessary. It can be prepared by mixing by a conventional method.
  • the quantum dot phosphors are preferably mixed in a state of being dispersed in a liquid medium.
  • the wavelength conversion resin composition can be suitably used for film formation. Further, the wavelength conversion resin composition can be suitably used for forming a wavelength conversion member.
  • the wavelength conversion resin cured product of the present disclosure is a cured product of the wavelength conversion resin composition of the present disclosure. Since the wavelength conversion resin composition of the present disclosure contains a polyfunctional (meth) acrylate compound having an alicyclic structure, a polyfunctional thiol compound, etc., the cured resin composition for wavelength change of the present disclosure has an alicyclic structure. Includes sulfide structures. It is presumed that the cured resin for wavelength conversion of the present disclosure including an alicyclic structure and a sulfide structure is excellent in moisture and heat resistance.
  • the alicyclic structure contained in the cured resin for wavelength change is not particularly limited.
  • Specific examples of the alicyclic structure include a tricyclodecane skeleton, a cyclohexane skeleton, a 1,3-adamantane skeleton, a hydrogenated bisphenol A skeleton, a hydrogenated bisphenol F skeleton, a hydrogenated bisphenol S skeleton, and an isobornyl skeleton.
  • a tricyclodecane skeleton or an isobornyl skeleton is preferable, and a tricyclodecane skeleton is more preferable.
  • the alicyclic structure contained in the cured resin for wavelength change may be one type alone or at least two types, and preferably at least two types.
  • the alicyclic structure combinations include a combination of a tricyclodecane skeleton and an isobornyl skeleton, a combination of a hydrogenated bisphenol A skeleton and an isobornyl skeleton, and the like. Can be mentioned. Among these, a combination of a tricyclodecane skeleton and an isobornyl skeleton is preferable.
  • the ratio (V1 / V2) is preferably 0.005 or less, more preferably 0.004 or less, and even more preferably 0.002 or less.
  • the small ratio (V1 / V2) in the cured resin for wavelength change suggests that there are few thiol groups that do not contribute to the polymerization reaction. If the number of thiol groups that do not contribute to the polymerization reaction is small, the glass transition temperature of the cured resin for wavelength change tends to increase.
  • the peak area (V1) attributable to SH expansion and contraction vibration and the peak area (V2) attributable to CH expansion and contraction vibration in the cured resin for wavelength change are as follows using a Fourier transform infrared spectrophotometer. The value measured by the method. Using an FT-IR Spectrometer (Perkin Elmer), the surface of the cured resin for wavelength change to be measured is analyzed by ATR (Attenuated Total Reflection). The background measurement is performed with air, and the FT-IR measurement is performed under the condition that the number of integrations is 16 times.
  • the cured resin for wavelength change may include a white pigment. Details of the white pigment included in the cured resin composition for wavelength change are as described in the section of the resin composition for wavelength conversion described above.
  • the cured resin for wavelength change has a loss tangent (tan ⁇ ) of 0.4 to 1 measured under the conditions of a frequency of 10 Hz and a temperature of 25 ° C. by dynamic viscoelasticity measurement. It is preferably 5, more preferably 0.4 to 1.2, and even more preferably 0.4 to 0.6.
  • the loss tangent (tan ⁇ ) of the cured resin for wavelength change can be measured using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
  • the cured resin for wavelength change preferably has a glass transition temperature (Tg) of 85 ° C. or higher, preferably 85 ° C. to 160 ° C., from the viewpoint of further improving the adhesion to the coating material, heat resistance, and moist heat resistance.
  • the temperature is more preferably 90 ° C to 120 ° C.
  • the glass transition temperature (Tg) of the cured resin for wavelength change can be measured under the condition of a frequency of 10 Hz using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
  • the cured resin for wavelength change has a storage elastic modulus of 1 ⁇ 10 7 Pa measured under the conditions of a frequency of 10 Hz and a temperature of 25 ° C. from the viewpoint of further improving the adhesion to the coating material, heat resistance, and moist heat resistance.
  • is preferably 1 ⁇ 10 10 Pa, 5 ⁇ more preferably 10 7 Pa ⁇ 1 ⁇ 10 10 Pa, further preferably 5 ⁇ 10 7 Pa ⁇ 5 ⁇ 10 9 Pa.
  • the storage elastic modulus of the cured resin for wavelength change can be measured using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
  • the curing conditions of the wavelength conversion resin composition for obtaining the wavelength change resin cured product will be described later.
  • the wavelength conversion member of the present disclosure has a cured resin for wavelength conversion of the present disclosure.
  • the wavelength conversion member of the present disclosure may include other components such as a covering material described later, if necessary.
  • the wavelength conversion member of the present disclosure is suitably used for displaying an image.
  • the shape of the wavelength conversion member is not particularly limited, and examples thereof include a film shape and a lens shape.
  • the wavelength conversion member is preferably in the form of a film.
  • the average thickness of the wavelength conversion member is, for example, preferably 50 ⁇ m to 200 ⁇ m, more preferably 50 ⁇ m to 150 ⁇ m, and even more preferably 80 ⁇ m to 120 ⁇ m.
  • the average thickness of the wavelength conversion member is 50 ⁇ m or more, the wavelength conversion efficiency tends to be further improved, and when the average thickness is 200 ⁇ m or less, the backlight is applied to the backlight unit described later. There is a tendency for the unit to be thinner.
  • the average thickness of the film-shaped wavelength conversion member is obtained as, for example, an arithmetic mean value of the thicknesses of any three points measured using a micrometer.
  • the average thickness of the film-shaped wavelength conversion member means the average thickness of the film-shaped wavelength conversion member itself when the wavelength conversion member does not have a coating material, and when the wavelength conversion member has a coating material. Refers to the average thickness of the wavelength conversion member (that is, the cured product layer) excluding the coating material.
  • the wavelength conversion member may be one obtained by curing one kind of wavelength conversion resin composition, or may be one obtained by curing two or more kinds of wavelength conversion resin compositions.
  • the wavelength conversion member when the wavelength conversion member is in the form of a film, the wavelength conversion member includes a layer of a first wavelength conversion resin cured product obtained by curing a wavelength conversion resin composition containing a first quantum dot phosphor and a first layer of the wavelength conversion resin cured product.
  • a layer of a cured resin composition for wavelength conversion obtained by curing a resin composition for wavelength conversion containing a second quantum dot phosphor having different emission characteristics from the quantum dot phosphor of 1 is laminated. You may.
  • the wavelength conversion member can be obtained by forming a coating film, a molded product, or the like of a wavelength conversion resin composition, performing a drying treatment as necessary, and then irradiating with active energy rays such as ultraviolet rays.
  • the wavelength and irradiation amount of the active energy rays can be appropriately set according to the composition of the wavelength conversion resin composition. In one aspect, it is irradiated with ultraviolet rays having a wavelength of 280 nm ⁇ 400 nm at an irradiation amount of 100mJ / cm 2 ⁇ 5000mJ / cm 2.
  • Examples of the ultraviolet source include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and the like.
  • the wavelength conversion member of the present disclosure may have a coating material that covers at least a part of the cured resin for wavelength conversion.
  • a coating material that covers at least a part of the cured resin for wavelength conversion.
  • the cured resin for wavelength conversion is in the form of a film
  • one or both sides of the cured resin for wavelength conversion in the form of a film may be coated with a film-like covering material.
  • the coating material preferably has a barrier property against at least one of oxygen and water, and more preferably has a barrier property against both oxygen and water, from the viewpoint of further suppressing a decrease in the emission intensity of the quantum dot phosphor.
  • the coating material having a barrier property against at least one of oxygen and water is not particularly limited, and known coating materials such as a barrier film having an inorganic layer and a barrier film having an organic substance layer can be used.
  • a barrier film having an inorganic layer is used as a coating material, the quantum dot phosphor near the pinhole existing in the inorganic layer may be deactivated and black spots may be generated on the wavelength conversion member.
  • the wavelength conversion member has the cured resin for wavelength change of the present disclosure, there is a tendency that the occurrence of black spot defects can be suppressed.
  • the average thickness of the covering material is, for example, preferably 10 ⁇ m to 150 ⁇ m, more preferably 30 ⁇ m to 140 ⁇ m, and even more preferably 50 ⁇ m to 135 ⁇ m.
  • the average thickness is 10 ⁇ m or more, the functions such as barrier property tend to be sufficient, and when the average thickness is 150 ⁇ m or less, the decrease in light transmittance tends to be suppressed.
  • the average thickness of the film-shaped covering material is obtained in the same manner as in the film-shaped wavelength conversion member.
  • Oxygen permeability of the dressing is preferably 0.5mL / (m 2 ⁇ 24h ⁇ atm) or less, more preferably 0.3mL / (m 2 ⁇ 24h ⁇ atm) or less, 0 and more preferably .1mL / (m 2 ⁇ 24h ⁇ atm) or less.
  • the oxygen permeability of the coating material can be measured using an oxygen permeability measuring device (for example, MOCON, OX-TRAN) under the conditions of a temperature of 23 ° C. and a relative humidity of 65%.
  • the water vapor permeability of the dressing for example, 5 ⁇ 10 -2 g / is preferably (m 2 ⁇ 24h ⁇ Pa) or less, 1 ⁇ 10 -2 g / ( m 2 ⁇ 24h ⁇ Pa) or less more preferably, even more preferably 5 ⁇ 10 -3 g / (m 2 ⁇ 24h ⁇ Pa) or less.
  • the water vapor permeability of the coating material can be measured using a water vapor permeability measuring device (for example, MOCON, AQUATRAN) under the conditions of a temperature of 40 ° C. and a relative humidity of 90%.
  • the wavelength conversion member of the present disclosure preferably has a total light transmittance of 55% or more, more preferably 60% or more, and more preferably 65% or more. More preferred.
  • the total light transmittance of the wavelength conversion member can be measured according to the measurement method of JIS K 7361-1: 1997.
  • the wavelength conversion member of the present disclosure preferably has a haze of 95% or more, more preferably 97% or more, and further preferably 99% or more, from the viewpoint of further improving the light utilization efficiency.
  • the haze of the wavelength conversion member can be measured according to the measurement method of JIS K 7136: 2000.
  • FIG. 1 shows an example of the schematic configuration of the wavelength conversion member.
  • the wavelength conversion member of the present disclosure is not limited to the configuration shown in FIG.
  • the sizes of the layer of the cured resin for wavelength conversion and the coating material in FIG. 1 are conceptual, and the relative relationship between the sizes is not limited to this.
  • the same member may be designated by the same reference numeral, and duplicate description may be omitted.
  • the wavelength conversion member 10 shown in FIG. 1 has a cured product layer 11 which is a film-shaped cured resin for wavelength conversion, and film-shaped coating materials 12A and 12B provided on both sides of the cured product layer 11.
  • the types and average thicknesses of the covering material 12A and the covering material 12B may be the same or different.
  • the wavelength conversion member having the configuration shown in FIG. 1 can be manufactured by, for example, the following known manufacturing method.
  • a wavelength conversion resin composition is applied to the surface of a film-like coating material (hereinafter, also referred to as "first coating material") that is continuously conveyed to form a coating film.
  • first coating material a film-like coating material
  • the method for applying the wavelength conversion resin composition is not particularly limited, and examples thereof include a die coating method, a curtain coating method, an extrusion coating method, a rod coating method, and a roll coating method.
  • a film-like coating material (hereinafter, also referred to as “second coating material”) that is continuously conveyed is attached onto the coating film of the wavelength conversion resin composition.
  • the coating film is cured and a cured product layer is formed by irradiating the active energy rays from the side of the first coating material and the second coating material that can transmit the active energy rays. Then, by cutting out to a specified size, a wavelength conversion member having the configuration shown in FIG. 1 can be obtained.
  • the coating film is irradiated with the active energy rays before the second coating material is bonded, and the cured product layer is formed. May be formed.
  • the backlight unit of the present disclosure includes the wavelength conversion member of the present disclosure described above and a light source.
  • the backlight unit is preferably a multi-wavelength light source from the viewpoint of improving color reproducibility.
  • blue light having an emission center wavelength in the wavelength range of 430 nm to 480 nm and having an emission intensity peak having a half-value width (half-value full width) of 100 nm or less, and an emission center wavelength in the wavelength range of 520 nm to 560 nm.
  • Green light having an emission intensity peak having a half-value width of 100 nm or less
  • red light having an emission center wavelength in the wavelength range of 600 nm to 680 nm and having an emission intensity peak having a half-value width of 100 nm or less.
  • a backlight unit that emits light can be mentioned.
  • the half-value width of the emission intensity peak means the peak width at a height of 1/2 of the peak height.
  • the emission center wavelength of the blue light emitted by the backlight unit is preferably in the range of 440 nm to 475 nm.
  • the emission center wavelength of the green light emitted by the backlight unit is preferably in the range of 520 nm to 545 nm.
  • the emission center wavelength of the red light emitted by the backlight unit is preferably in the range of 610 nm to 640 nm.
  • the half-value width of each emission intensity peak of the blue light, green light, and red light emitted by the backlight unit is preferably 80 nm or less, preferably 50 nm or less. It is more preferably 40 nm or less, particularly preferably 30 nm or less, and extremely preferably 25 nm or less.
  • the light source of the backlight unit for example, a light source that emits blue light having a emission center wavelength in the wavelength range of 430 nm to 480 nm can be used.
  • the light source include an LED (Light Emitting Diode) and a laser.
  • the wavelength conversion member preferably includes at least a quantum dot phosphor R that emits red light and a quantum dot phosphor G that emits green light.
  • white light can be obtained from the red light and green light emitted from the wavelength conversion member and the blue light transmitted through the wavelength conversion member.
  • the light source of the backlight unit for example, a light source that emits ultraviolet light having a emission center wavelength in the wavelength range of 300 nm to 430 nm can be used.
  • the light source include LEDs and lasers.
  • the wavelength conversion member preferably includes a quantum dot phosphor B that is excited by excitation light and emits blue light, together with a quantum dot phosphor R and a quantum dot phosphor G. As a result, white light can be obtained from the red light, green light, and blue light emitted from the wavelength conversion member.
  • the backlight unit of the present disclosure may be an edge light type or a direct type.
  • Fig. 2 shows an example of the schematic configuration of the edge light type backlight unit.
  • the backlight unit of the present disclosure is not limited to the configuration shown in FIG.
  • the size of the members in FIG. 2 is conceptual, and the relative relationship between the sizes of the members is not limited to this.
  • the backlight unit 20 shown in FIG. 2 includes a light source 21 for emitting the blue light L B, a light guide plate 22 to be emitted guiding the blue light L B emitted from the light source 21, the light guide plate 22 and disposed to face
  • the wavelength conversion member 10 is provided with a retroreflective member 23 arranged to face the light source plate 22 via the wavelength conversion member 10, and a reflector 24 arranged to face the wavelength conversion member 10 via the light guide plate 22. ..
  • Wavelength conversion member 10 emits the red light L R and the green light L G part of the blue light L B as the excitation light, the red light L and R and the green light L G, the blue light was not the excitation light L Exit B.
  • the red light L R, the green light L G, and the blue light L B, the white light L W is emitted from the retroreflective member 23.
  • the image display device of the present disclosure includes the backlight unit of the present disclosure described above.
  • the image display device is not particularly limited, and examples thereof include a liquid crystal display device.
  • FIG. 3 shows an example of the schematic configuration of the liquid crystal display device.
  • the liquid crystal display device of the present disclosure is not limited to the configuration shown in FIG.
  • the size of the members in FIG. 3 is conceptual, and the relative relationship between the sizes of the members is not limited to this.
  • the liquid crystal display device 30 shown in FIG. 3 includes a backlight unit 20 and a liquid crystal cell unit 31 arranged to face the backlight unit 20.
  • the liquid crystal cell unit 31 has a configuration in which the liquid crystal cell 32 is arranged between the polarizing plate 33A and the polarizing plate 33B.
  • the drive method of the liquid crystal cell 32 is not particularly limited, and is a TN (Twisted Nematic) method, an STN (Super Twisted Nematic) method, a VA (Vertical Birefringence) method, an IPS (In-Plane-Switching) method, and an OCB (Optical Reference) method.
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • VA Very Birefringence
  • IPS In-Plane-Switching
  • OCB Optical Reference
  • Examples 1A to 6A and Comparative Examples 1A and 2A> (Preparation of resin composition for wavelength conversion)
  • the wavelength conversion resin compositions of Examples 1A to 6A and Comparative Examples 1A and 2A were prepared by mixing each component shown in Table 1 in the blending amount (unit: parts by mass) shown in the same table. "-" In Table 1 means unblended. The meanings of the abbreviations in the table are as follows.
  • PETMP Pentaerythritol tetrakis (3-mercaptopropionate) (SC Organic Chemistry Co., Ltd., PEMP)
  • TCDD Tricyclodecanedimethanol diacrylate (Shin Nakamura Chemical Industry Co., Ltd., A-DCP)
  • Titanium oxide The Chemours Company, Typure R-706, particle size 0.36 ⁇ m was used.
  • a first oxide layer containing silicon oxide, a second oxide layer containing aluminum oxide, and an organic material layer containing a polyol compound are provided in this order in the order of the first oxide layer, the second oxide layer, and the organic material layer. Has been done.
  • Hyt 4-Hydroxy-2,2,6,6-Tetramethylpiperidin-N-oxyl (ADEKA Corporation, ADEKA STAB LA-7RD)
  • TPO 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (BASF, IRGACURE TPO)
  • Green Gen3.5 CdSe / ZnS (core / shell) dispersion (Nanosys, Gen3.5 QD Concentrate) was used. Isobornyl acrylate was used as a dispersion medium for this CdSe / ZnS (core / shell) dispersion liquid.
  • the CdSe / ZnS (core / shell) dispersion contains 90% by mass or more of isobornyl acrylate.
  • CdSe / ZnS (core / shell) dispersion (Nanosys, Gen2.8 QD Concentrate) was used. Isobornyl acrylate was used as a dispersion medium for this CdSe / ZnS (core / shell) dispersion liquid.
  • the CdSe / ZnS (core / shell) dispersion contains 90% by mass or more of isobornyl acrylate.
  • Each wavelength conversion resin composition obtained above was applied onto a PET film (TA063, Toyobo Co., Ltd.) (coating material) having an average thickness of 100 ⁇ m to form a coating film.
  • a PET film (TA063, Toyo Boseki Co., Ltd.) (coating material) with a thickness of 100 ⁇ m is laminated on this coating film, and ultraviolet rays are irradiated using an ultraviolet irradiation device (Igraphics Co., Ltd.) (irradiation amount: 1000 mJ / cm 2 ).
  • an ultraviolet irradiation device Igraphics Co., Ltd.
  • Each wavelength conversion member obtained above was cut into a size of 17 mm in diameter, and an evaluation sample was prepared.
  • the brightness of the evaluation sample was measured with a fiber multi-channel spectrometer (Ocean Photonics Co., Ltd., Ocean View).
  • the evaluation sample was processed under the conditions of the following conditions 1A to 4A, the brightness of the evaluation sample before and after the processing was obtained, and the brightness maintenance rate of the wavelength conversion member was calculated according to the following formula.
  • Luminance maintenance rate (RLb / RLa) x 100 RLa: Initial brightness RLb: Brightness after processing under any of the conditions 1A to 4A (condition)
  • Condition 1A The wavelength conversion member was allowed to stand for 100 hours in a constant temperature and humidity chamber set under the conditions of 85 ° C. and 5% RH. During the standing, the wavelength conversion member was continuously irradiated with light from a 150 mW light source (Light BOX (Nanosys) (LED peak wavelength 448 nm)).
  • Condition 2A The wavelength conversion member was allowed to stand for 100 hours in a constant temperature and humidity chamber set under the conditions of 65 ° C. and 95% RH.
  • the wavelength conversion member was continuously irradiated with light from a 60 mW light source (Light BOX (Nanosys) (LED peak wavelength 448 nm)).
  • Condition 3A The wavelength conversion member was allowed to stand for 100 hours in a constant temperature and humidity chamber set under the conditions of 65 ° C. and 95% RH.
  • Condition 4A The wavelength conversion member was allowed to stand for 100 hours in a constant temperature and humidity chamber set under the conditions of 25 ° C. and 50% RH.
  • Examples 1B to 6B and Comparative Examples 1B and 2B> Manufacturing of wavelength conversion member
  • the wavelength conversion resin compositions of Examples 1B to 6B and Comparative Examples 1B and 2B were the same as the wavelength conversion resin compositions of Examples 1A to 6A and Comparative Examples 1A and 2A, respectively.
  • a barrier film having an inorganic layer a barrier film having an average thickness of 125 ⁇ m (Dainippon Printing Co., Ltd.) was used instead of the PET film.
  • Each wavelength conversion resin composition was applied onto a barrier film (barrier film having an average thickness of 125 ⁇ m (Dainippon Printing Co., Ltd.)) (coating material) to form a coating film.
  • a barrier film (barrier film with an average thickness of 125 ⁇ m (Dainippon Printing Co., Ltd.)) (coating material) is attached to this coating film, and ultraviolet rays are irradiated using an ultraviolet irradiation device (Igraphics Co., Ltd.) (irradiation amount: By 1000 mJ / cm 2 ), wavelength conversion members in which coating materials were arranged on both sides of a cured product layer containing a cured resin for wavelength conversion were obtained.
  • the average thickness of the cured product layer was 100 ⁇ m.
  • Condition 1B The wavelength conversion member was allowed to stand for 500 hours in a constant temperature and humidity chamber set under the conditions of 85 ° C. and 5% RH. During the standing, the wavelength conversion member was continuously irradiated with light from a 150 mW light source (Light BOX (Nanosys) (LED peak wavelength 448 nm)).
  • Condition 2B The wavelength conversion member was allowed to stand for 500 hours in a constant temperature and humidity chamber set under the conditions of 65 ° C. and 95% RH.
  • the wavelength conversion member was continuously irradiated with light from a 60 mW light source (Light BOX (Nanosys) (LED peak wavelength 448 nm)).
  • Condition 3B The wavelength conversion member was allowed to stand for 500 hours in a constant temperature and humidity chamber set under the conditions of 65 ° C. and 95% RH.
  • Condition 4B The wavelength conversion member was allowed to stand for 500 hours in a constant temperature and humidity chamber set under the conditions of 25 ° C. and 50% RH.
  • the evaluation wavelength conversion member cut into a size of 17 mm in diameter was treated under the following condition 5B. With respect to the processed wavelength conversion member for evaluation, the presence or absence of black spot defects was visually evaluated using the evaluation device A shown in FIG. 4 and the evaluation device B shown in FIG. Black spot defects are more likely to be observed in the evaluation device A than in the evaluation device B.
  • the evaluation device A shown in FIG. 4 has a blue LED light source 40 and a diffuser plate 42 arranged on the blue LED light source 40.
  • the blue LED light source 40 has a plurality of blue LEDs 44, a drive substrate 46 for driving the blue LEDs 44, and a reflective sheet 48 arranged around the blue LEDs 44 on the surface of the drive substrate 46.
  • An aluminum plate 50 is arranged on the side opposite to the side that emits blue light of the plurality of blue LEDs 44. A certain gap is provided between the blue LED light source 40 and the diffuser plate 42 by the spacer 52.
  • the processed evaluation wavelength conversion member 54 is arranged on the diffuser plate 42 of the evaluation device A, and the processed evaluation wavelength is arranged at an angle within ⁇ 10 ° with respect to the line L orthogonal to the surface of the diffuser plate 42. The conversion member 54 was visually observed and evaluated. Further, in the evaluation device B shown in FIG. 5, a pair of prism sheets 56A and a prism sheet 56B are further placed on the evaluation device A so that the groove directions of the prism sheets are orthogonal to each other on the processed wavelength conversion member 54 for evaluation. It is arranged like this.
  • Condition 5B The wavelength conversion member was allowed to stand for 500 hours in a constant temperature and humidity chamber set under the conditions of 85 ° C. and 5% RH.
  • Lv1 No black spot defect is observed even in the evaluation device A.
  • Lv2 Black spot defect is observed in the evaluation device A, but no black spot defect is observed in the evaluation device B.
  • Lv3 Black spot defects are also observed in the evaluation device B. The results obtained are shown in Table 2.
  • the wavelength conversion member formed from the wavelength conversion resin composition of the example containing the compound having a carboxy group and a thiol group in one molecule has a carboxy group in one molecule. It can be seen that the decrease in the emission intensity of the quantum dot phosphor is suppressed as compared with the wavelength conversion member formed from the wavelength conversion resin composition of the comparative example which does not contain the compound having the thiol group and the thiol group.

Abstract

A resin composition for wavelength conversion comprising: a multifunctional (meth)acrylate compound that has an alicyclic structure; a multifunctional thiol compound; a compound that has a carboxy group and a thiol group in a single molecule; a photopolymerization initiator; and a quantum dot fluorescent body.

Description

波長変換用樹脂組成物、波長変換用樹脂硬化物、波長変換部材、バックライトユニット及び画像表示装置Wavelength conversion resin composition, wavelength conversion resin cured product, wavelength conversion member, backlight unit and image display device
 本開示は、波長変換用樹脂組成物、波長変換用樹脂硬化物、波長変換部材、バックライトユニット及び画像表示装置に関する。 The present disclosure relates to a wavelength conversion resin composition, a wavelength conversion resin cured product, a wavelength conversion member, a backlight unit, and an image display device.
 近年、液晶表示装置等の画像表示装置の分野においては、ディスプレイの色再現性を向上させることが求められている。色再現性を向上させる手段として、特表2013-544018号公報及び国際公開第2016/052625号に記載のように、量子ドット蛍光体を含む波長変換部材が注目を集めている。 In recent years, in the field of image display devices such as liquid crystal display devices, it has been required to improve the color reproducibility of displays. As a means for improving color reproducibility, a wavelength conversion member containing a quantum dot phosphor has attracted attention as described in Japanese Patent Application Laid-Open No. 2013-544018 and International Publication No. 2016/0526225.
 量子ドット蛍光体を含む波長変換部材は、例えば、画像表示装置のバックライトユニットに配置される。赤色光を発光する量子ドット蛍光体及び緑色光を発光する量子ドット蛍光体を含む波長変換部材を用いる場合、波長変換部材に対して励起光としての青色光を照射すると、量子ドット蛍光体から発光された赤色光及び緑色光と、波長変換部材を透過した青色光とにより、白色光を得ることができる。量子ドット蛍光体を含む波長変換部材の開発により、ディスプレイの色再現性は、従来のNTSC(National Television System Committee)比72%からNTSC比100%へと拡大している。 The wavelength conversion member including the quantum dot phosphor is arranged in, for example, the backlight unit of the image display device. When a wavelength conversion member including a quantum dot phosphor that emits red light and a quantum dot phosphor that emits green light is used, when the wavelength conversion member is irradiated with blue light as excitation light, the quantum dot phosphor emits light. White light can be obtained from the red light and green light produced and the blue light transmitted through the wavelength conversion member. With the development of wavelength conversion members containing quantum dot phosphors, the color reproducibility of displays has been expanded from 72% of the conventional NTSC (National Television System Committee) ratio to 100% of the NTSC ratio.
 量子ドット蛍光体は、水蒸気又は酸素の影響で劣化が起こりやすい。
 特に、量子ドット蛍光体を含有する光硬化型の硬化性組成物の硬化物は、高温高湿環境下における耐湿熱性が不十分であり、量子ドット蛍光体が劣化し発光強度が低下しやすい傾向にある。そのため、量子ドット蛍光体を含む波長変換部材を用いた画像表示装置が高温高湿環境下に放置されたり、画像表示装置の使用により画像表示装置本体の温度が上昇したりした場合に、量子ドット蛍光体の劣化に伴い画像表示装置の輝度が低下するおそれがある。
Quantum dot phosphors are prone to deterioration due to the effects of water vapor or oxygen.
In particular, a cured product of a photocurable composition containing a quantum dot phosphor has insufficient moisture and heat resistance in a high temperature and high humidity environment, and the quantum dot phosphor tends to deteriorate and the emission intensity tends to decrease. It is in. Therefore, when an image display device using a wavelength conversion member containing a quantum dot phosphor is left in a high temperature and high humidity environment, or when the temperature of the image display device main body rises due to the use of the image display device, the quantum dots The brightness of the image display device may decrease as the phosphor deteriorates.
 量子ドット蛍光体の発光強度の低下を抑制するため、量子ドット蛍光体を含む波長変換部材においては、量子ドット蛍光体を含む硬化物の少なくとも一部が被覆材によって被覆される場合がある。例えば、フィルム状の波長変換部材の場合、量子ドット蛍光体を含む硬化物層の片面又は両面に、酸素及び水の少なくとも一方に対するバリア性を有するバリアフィルムが設けられることがある。しかし、バリアフィルム等の被覆材を設けたとしても十分に発光強度の低下を抑制できない場合がある。 In order to suppress a decrease in the emission intensity of the quantum dot phosphor, at least a part of the cured product containing the quantum dot phosphor may be covered with a coating material in the wavelength conversion member containing the quantum dot phosphor. For example, in the case of a film-shaped wavelength conversion member, a barrier film having a barrier property against at least one of oxygen and water may be provided on one side or both sides of the cured product layer containing the quantum dot phosphor. However, even if a covering material such as a barrier film is provided, it may not be possible to sufficiently suppress the decrease in emission intensity.
 本開示は、上記事情に鑑みてなされたものであり、量子ドット蛍光体の発光強度の低下を抑制可能な波長変換用樹脂組成物、並びに、この波長変換用樹脂組成物を用いた波長変換用樹脂硬化物、波長変換部材、バックライトユニット及び画像表示装置を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and is a wavelength conversion resin composition capable of suppressing a decrease in emission intensity of a quantum dot phosphor, and a wavelength conversion resin composition using this wavelength conversion resin composition. An object of the present invention is to provide a cured resin product, a wavelength conversion member, a backlight unit, and an image display device.
 前記課題を達成するための具体的手段は以下の通りである。
  <1> 脂環式構造を有する多官能(メタ)アクリレート化合物、多官能チオール化合物、一分子中にカルボキシ基とチオール基とを有する化合物、光重合開始剤及び量子ドット蛍光体を含む波長変換用樹脂組成物。
  <2> 前記一分子中にカルボキシ基とチオール基とを有する化合物に含まれるカルボキシ基が、2個以下である<1>に記載の波長変換用樹脂組成物。
  <3> 前記一分子中にカルボキシ基とチオール基とを有する化合物に含まれるチオール基が、2個以下である<1>又は<2>に記載の波長変換用樹脂組成物。
  <4> 前記一分子中にカルボキシ基とチオール基とを有する化合物に含まれるチオール基の少なくとも1つが、一級チオール基である<1>~<3>のいずれか1項に記載の波長変換用樹脂組成物。
  <5> 前記一分子中にカルボキシ基とチオール基とを有する化合物の分子量が、80~300である<1>~<4>のいずれか1項に記載の波長変換用樹脂組成物。
  <6> 前記一分子中にカルボキシ基とチオール基とを有する化合物が、脂肪族化合物である<1>~<5>のいずれか1項に記載の波長変換用樹脂組成物。
  <7> 単官能(メタ)アクリレート化合物を含む<1>~<6>のいずれか1項に記載の波長変換用樹脂組成物。
  <8> 液状媒体を含有しないか又は液状媒体の含有率が0.5質量%以下である<1>~<7>のいずれか1項に記載の波長変換用樹脂組成物。
  <9> 白色顔料を含む<1>~<8>のいずれか1項に記載の波長変換用樹脂組成物。
  <10> <1>~<9>のいずれか1項に記載の波長変換用樹脂組成物の硬化物である波長変換用樹脂硬化物。
  <11> 動的粘弾性測定により測定されたガラス転移温度が、85℃以上である<10>に記載の波長変換用樹脂硬化物。
  <12> <10>又は<11>のいずれか1項に記載の波長変換用樹脂硬化物を有する波長変換部材。
  <13> 前記波長変換用樹脂硬化物の少なくとも一部を被覆する被覆材を有する<12>に記載の波長変換部材。
  <14> フィルム状である<12>又は<13>に記載の波長変換部材。
  <15> 画像表示用である<12>~<14>のいずれか1項に記載の波長変換部材。
  <16> <12>~<15>のいずれか1項に記載の波長変換部材と、光源と、を備えるバックライトユニット。
  <17> <16>に記載のバックライトユニットを備える画像表示装置。
Specific means for achieving the above-mentioned problems are as follows.
<1> For wavelength conversion containing a polyfunctional (meth) acrylate compound having an alicyclic structure, a polyfunctional thiol compound, a compound having a carboxy group and a thiol group in one molecule, a photopolymerization initiator and a quantum dot phosphor. Resin composition.
<2> The resin composition for wavelength conversion according to <1>, wherein the compound having a carboxy group and a thiol group in one molecule contains two or less carboxy groups.
<3> The resin composition for wavelength conversion according to <1> or <2>, wherein the compound having a carboxy group and a thiol group in one molecule contains two or less thiol groups.
<4> The wavelength conversion according to any one of <1> to <3>, wherein at least one of the thiol groups contained in the compound having a carboxy group and a thiol group in one molecule is a primary thiol group. Resin composition.
<5> The resin composition for wavelength conversion according to any one of <1> to <4>, wherein the compound having a carboxy group and a thiol group in one molecule has a molecular weight of 80 to 300.
<6> The resin composition for wavelength conversion according to any one of <1> to <5>, wherein the compound having a carboxy group and a thiol group in one molecule is an aliphatic compound.
<7> The resin composition for wavelength conversion according to any one of <1> to <6>, which contains a monofunctional (meth) acrylate compound.
<8> The resin composition for wavelength conversion according to any one of <1> to <7>, which does not contain a liquid medium or has a liquid medium content of 0.5% by mass or less.
<9> The resin composition for wavelength conversion according to any one of <1> to <8>, which contains a white pigment.
<10> A cured resin composition for wavelength conversion, which is a cured product of the resin composition for wavelength conversion according to any one of <1> to <9>.
<11> The cured resin for wavelength conversion according to <10>, wherein the glass transition temperature measured by dynamic viscoelasticity measurement is 85 ° C. or higher.
<12> A wavelength conversion member having the cured resin for wavelength conversion according to any one of <10> and <11>.
<13> The wavelength conversion member according to <12>, which has a coating material that covers at least a part of the cured resin for wavelength conversion.
<14> The wavelength conversion member according to <12> or <13>, which is in the form of a film.
<15> The wavelength conversion member according to any one of <12> to <14> for displaying an image.
<16> A backlight unit including the wavelength conversion member according to any one of <12> to <15> and a light source.
<17> An image display device including the backlight unit according to <16>.
 本開示によれば、量子ドット蛍光体の発光強度の低下を抑制可能な波長変換用樹脂組成物、並びに、この波長変換用樹脂組成物を用いた波長変換用樹脂硬化物、波長変換部材、バックライトユニット及び画像表示装置を提供することができる。 According to the present disclosure, a wavelength conversion resin composition capable of suppressing a decrease in emission intensity of a quantum dot phosphor, a wavelength conversion resin cured product using this wavelength conversion resin composition, a wavelength conversion member, and a bag. A light unit and an image display device can be provided.
波長変換部材の概略構成の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the schematic structure of the wavelength conversion member. バックライトユニットの概略構成の一例を示す図である。It is a figure which shows an example of the schematic structure of the backlight unit. 液晶表示装置の概略構成の一例を示す図である。It is a figure which shows an example of the schematic structure of the liquid crystal display device. 実施例で用いられた評価装置Aの説明図である。It is explanatory drawing of the evaluation apparatus A used in an Example. 実施例で用いられた評価装置Bの説明図である。It is explanatory drawing of the evaluation apparatus B used in an Example.
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。 Hereinafter, the mode for implementing the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to the numerical values and their ranges, and does not limit this disclosure.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、各成分には、該当する物質が複数種含まれていてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において、各成分に該当する粒子には、複数種の粒子が含まれていてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において「(メタ)アクリロイル基」とは、アクリロイル基及びメタクリロイル基の少なくとも一方を意味し、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を意味し、「(メタ)アリル」はアリル及びメタリルの少なくとも一方を意味する。
In the present disclosure, the term "process" includes not only a process independent of other processes but also the process if the purpose of the process is achieved even if the process cannot be clearly distinguished from the other process. ..
The numerical range indicated by using "-" in the present disclosure includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present disclosure, each component may contain a plurality of applicable substances. When a plurality of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, the particles corresponding to each component may include a plurality of types of particles. When a plurality of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
In the present disclosure, the term "layer" or "membrane" is used only in a part of the region in addition to the case where the layer or the membrane is formed in the entire region when the region in which the layer or the membrane is present is observed. The case where it is formed is also included.
In the present disclosure, the term "laminated" refers to stacking layers, and two or more layers may be bonded or the two or more layers may be removable.
In the present disclosure, "(meth) acryloyl group" means at least one of an acryloyl group and a methacryloyl group, "(meth) acrylate" means at least one of acrylate and methacrylate, and "(meth) allyl" means allyl. And at least one of metallicyl.
<波長変換用樹脂組成物>
 本開示の波長変換用樹脂組成物は、脂環式構造を有する多官能(メタ)アクリレート化合物、多官能チオール化合物、一分子中にカルボキシ基とチオール基とを有する化合物(以下、「特定カルボン酸化合物」と称することがある)、光重合開始剤及び量子ドット蛍光体を含む。本開示の波長変換用樹脂組成物は、必要に応じて、他の成分をさらに含有していてもよい。本開示の波長変換用樹脂組成物は、上記構成を有することにより、量子ドット蛍光体の発光強度の低下を抑制可能となる。
<Resin composition for wavelength conversion>
The resin composition for wavelength conversion of the present disclosure includes a polyfunctional (meth) acrylate compound having an alicyclic structure, a polyfunctional thiol compound, and a compound having a carboxy group and a thiol group in one molecule (hereinafter, "specific carboxylic acid"). It may be referred to as a "compound"), a photopolymerization initiator and a quantum dot phosphor. The wavelength conversion resin composition of the present disclosure may further contain other components, if necessary. By having the above-mentioned structure, the wavelength conversion resin composition of the present disclosure can suppress a decrease in the emission intensity of the quantum dot phosphor.
 以下、本開示の波長変換用樹脂組成物に含有される成分について詳細に説明する。 Hereinafter, the components contained in the wavelength conversion resin composition of the present disclosure will be described in detail.
(多官能(メタ)アクリレート化合物)
 本開示の波長変換用樹脂組成物は、脂環式構造を有する多官能(メタ)アクリレート化合物を含有する。脂環式構造を有する多官能(メタ)アクリレート化合物は、骨格に脂環式構造を有し、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート化合物である。具体例としては、トリシクロデカンジメタノールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、水添ビスフェノールA(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールA(ポリ)プロポキシジ(メタ)アクリレート、水添ビスフェノールF(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールF(ポリ)プロポキシジ(メタ)アクリレート、水添ビスフェノールS(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールS(ポリ)プロポキシジ(メタ)アクリレート等の脂環式(メタ)アクリレートなどが挙げられる。
 波長変換用樹脂組成物の耐湿熱性の観点から、脂環式構造を有する多官能(メタ)アクリレート化合物に含まれる脂環式構造がトリシクロデカン骨格を含むことが好ましい。脂環式構造がトリシクロデカン骨格を含む多官能(メタ)アクリレート化合物としては、トリシクロデカンジメタノールジ(メタ)アクリレートであることが好ましい。
(Polyfunctional (meth) acrylate compound)
The wavelength conversion resin composition of the present disclosure contains a polyfunctional (meth) acrylate compound having an alicyclic structure. The polyfunctional (meth) acrylate compound having an alicyclic structure is a polyfunctional (meth) acrylate compound having an alicyclic structure in the skeleton and having two or more (meth) acryloyl groups in one molecule. Specific examples include tricyclodecanedimethanol di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, 1,3-adamantan dimethanol di (meth) acrylate, and hydrogenated bisphenol A (poly) ethoxydi (meth) acrylate. , Hydrogenated bisphenol A (poly) propoxydi (meth) acrylate, hydrogenated bisphenol F (poly) ethoxydi (meth) acrylate, hydrogenated bisphenol F (poly) propoxydi (meth) acrylate, hydrogenated bisphenol S (poly) ethoxydi (meth) ) Acrylate type (meth) acrylate such as acrylate and hydrogenated bisphenol S (poly) propoxydi (meth) acrylate can be mentioned.
From the viewpoint of moisture and heat resistance of the wavelength conversion resin composition, it is preferable that the alicyclic structure contained in the polyfunctional (meth) acrylate compound having an alicyclic structure contains a tricyclodecane skeleton. The polyfunctional (meth) acrylate compound having a tricyclodecane skeleton in the alicyclic structure is preferably tricyclodecanedimethanol di (meth) acrylate.
 波長変換用樹脂組成物中の脂環式構造を有する多官能(メタ)アクリレート化合物の含有率は、波長変換用樹脂組成物の全量に対して、例えば、40質量%~90質量%であることが好ましく、40質量%~80質量%であることがより好ましく、40質量%~70質量%であることがさらに好ましい。脂環式構造を有する多官能(メタ)アクリレート化合物の含有率が上記範囲にある場合、硬化物の耐湿熱性がより向上する傾向にある。 The content of the polyfunctional (meth) acrylate compound having an alicyclic structure in the resin composition for wavelength conversion shall be, for example, 40% by mass to 90% by mass with respect to the total amount of the resin composition for wavelength conversion. Is more preferable, 40% by mass to 80% by mass is more preferable, and 40% by mass to 70% by mass is further preferable. When the content of the polyfunctional (meth) acrylate compound having an alicyclic structure is in the above range, the moisture and heat resistance of the cured product tends to be further improved.
 波長変換用樹脂組成物は、1種類の脂環式構造を有する多官能(メタ)アクリレート化合物を単独で含有していてもよく、2種類以上の脂環式構造を有する多官能(メタ)アクリレート化合物を組み合わせて含有していてもよい。 The wavelength conversion resin composition may contain a polyfunctional (meth) acrylate compound having one kind of alicyclic structure alone, or a polyfunctional (meth) acrylate having two or more kinds of alicyclic structures. It may contain a combination of compounds.
(多官能チオール化合物)
 波長変換用樹脂組成物は、1分子中に2個以上のチオール基を有する多官能チオール化合物を含有する。波長変換用樹脂組成物が多官能チオール化合物を含有することで、波長変換用樹脂組成物が硬化する際に多官能(メタ)アクリレート化合物と多官能チオール化合物との間でエンチオール反応が進行し、硬化物の耐湿熱性がより向上する傾向にある。また、波長変換用樹脂組成物が多官能チオール化合物を含有することで、硬化物の光学特性がより向上する傾向にある。
(Polyfunctional thiol compound)
The wavelength conversion resin composition contains a polyfunctional thiol compound having two or more thiol groups in one molecule. When the wavelength conversion resin composition contains a polyfunctional thiol compound, an enthiol reaction proceeds between the polyfunctional (meth) acrylate compound and the polyfunctional thiol compound when the wavelength conversion resin composition is cured. The moisture and heat resistance of the cured product tends to be further improved. Further, when the wavelength conversion resin composition contains a polyfunctional thiol compound, the optical properties of the cured product tend to be further improved.
 なお、(メタ)アリル化合物と多官能チオール化合物とを含有する組成物は保存安定性に劣ることが多いが、本開示の波長変換用樹脂組成物は多官能チオール化合物を含有するにもかかわらず保存安定性に優れる。これは、波長変換用樹脂組成物が多官能(メタ)アクリレート化合物を含有するためと推測される。 The composition containing the (meth) allyl compound and the polyfunctional thiol compound is often inferior in storage stability, although the resin composition for wavelength conversion of the present disclosure contains the polyfunctional thiol compound. Excellent storage stability. It is presumed that this is because the wavelength conversion resin composition contains a polyfunctional (meth) acrylate compound.
 多官能チオール化合物の具体例としては、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、1,2-プロピレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトブチレート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(3-メルカプトブチレート)、1,8-オクタンジオールビス(3-メルカプトプロピオネート)、1,8-オクタンジオールビス(3-メルカプトブチレート)、ヘキサンジオールビスチオグリコレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトイソブチレート)、トリメチロールプロパントリス(2-メルカプトイソブチレート)、トリメチロールプロパントリスチオグリコレート、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、トリメチロールエタントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトイソブチレート)、ペンタエリスリトールテトラキス(2-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(2-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(2-メルカプトイソブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ジペンタエリスリトールヘキサキスチオグリコレート等が挙げられる。 Specific examples of the polyfunctional thiol compound include ethylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate), 1,2-. Propropylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptobutyrate), 1,4-butanediol bis (3-mercaptopropionate), 1,4-butanediol bis (3-mercaptobutyrate) Rate), 1,8-octanediol bis (3-mercaptopropionate), 1,8-octanediol bis (3-mercaptobutyrate), hexanediol bisthioglycolate, trimethylolpropanthris (3-mercaptopro) Pionate), trimethylolpropanetris (3-mercaptobutyrate), trimethylolpropanetris (3-mercaptoisobutyrate), trimethylolpropanetris (2-mercaptoisobutyrate), trimethylolpropanetristhioglycolate, Tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, trimethyl ethanetris (3-mercaptobutyrate), pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate) ), Pentaerythritol tetrakis (3-mercaptoisobutyrate), pentaerythritol tetrakis (2-mercaptoisobutyrate), dipentaerythritol hexakis (3-mercaptopropionate), dipentaerythritol hexakis (2-mercaptopro) Pionate), dipentaerythritol hexakis (3-mercaptobutyrate), dipentaerythritol hexakis (3-mercaptoisobutyrate), dipentaerythritol hexakis (2-mercaptoisobutyrate), pentaerythritol tetrakisthioglycol Rate, dipentaerythritol hexaxthioglycolate and the like can be mentioned.
 多官能チオール化合物は、あらかじめ多官能(メタ)アクリレート化合物と反応したチオエーテルオリゴマーの状態であってもよい。 The polyfunctional thiol compound may be in the state of a thioether oligomer that has been previously reacted with the polyfunctional (meth) acrylate compound.
 チオエーテルオリゴマーは、多官能チオール化合物と多官能(メタ)アクリレート化合物とを重合開始剤の存在下で付加重合させることにより得ることができる。チオエーテルオリゴマーを付加重合により得る場合、原料となる多官能(メタ)アクリレート化合物の(メタ)アクリロイル基の当量数に対する多官能チオール化合物のチオール基の当量数の割合(チオール基の当量数/(メタ)アクリロイル基の当量数)は、例えば、3.0~3.3であることが好ましく、3.0~3.2であることがより好ましく、3.05~3.15であることがさらに好ましい。 The thioether oligomer can be obtained by addition polymerization of a polyfunctional thiol compound and a polyfunctional (meth) acrylate compound in the presence of a polymerization initiator. When the thioether oligomer is obtained by addition polymerization, the ratio of the equivalent number of thiol groups of the polyfunctional thiol compound to the equivalent number of (meth) acryloyl groups of the polyfunctional (meth) acrylate compound as a raw material (the equivalent number of thiol groups / (meth). ) The equivalent number of acryloyl groups) is, for example, preferably 3.0 to 3.3, more preferably 3.0 to 3.2, and further preferably 3.05 to 3.15. preferable.
 チオエーテルオリゴマーの重量平均分子量は、例えば、3000~10000であることが好ましく、3000~8000であることがより好ましく、4000~6000であることがさらに好ましい。
 なお、チオエーテルオリゴマーの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される分子量分布から標準ポリスチレンの検量線を使用して換算して求められる。
The weight average molecular weight of the thioether oligomer is, for example, preferably 3000 to 10000, more preferably 3000 to 8000, and even more preferably 4000 to 6000.
The weight average molecular weight of the thioether oligomer is obtained by converting the molecular weight distribution measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
 チオエーテルオリゴマーのチオール当量は、例えば、200g/eq~400g/eqであることが好ましく、250g/eq~350g/eqであることがより好ましく、250g/eq~270g/eqであることがさらに好ましい。 The thiol equivalent of the thioether oligomer is, for example, preferably 200 g / eq to 400 g / eq, more preferably 250 g / eq to 350 g / eq, and even more preferably 250 g / eq to 270 g / eq.
 なお、チオエーテルオリゴマーのチオール当量は、以下のようなヨウ素滴定法により測定することができる。
 測定試料0.2gを精秤し、これにクロロホルム20mLを加えて試料溶液とする。デンプン指示薬として可溶性デンプン0.275gを30gの純水に溶解させたものを用いて、純水20mL、イソプロピルアルコール10mL、及びデンプン指示薬1mLを加え、スターラーで撹拌する。ヨウ素溶液を滴下し、クロロホルム層が緑色を呈した点を終点とする。このとき下記式にて与えられる値を、測定試料のチオール当量とする。
 チオール当量(g/eq)=測定試料の質量(g)×10000/ヨウ素溶液の滴定量(mL)×ヨウ素溶液のファクター
The thiol equivalent of the thioether oligomer can be measured by the following iodine titration method.
0.2 g of the measurement sample is precisely weighed, and 20 mL of chloroform is added thereto to prepare a sample solution. Using 0.275 g of soluble starch dissolved in 30 g of pure water as a starch indicator, 20 mL of pure water, 10 mL of isopropyl alcohol, and 1 mL of starch indicator are added and stirred with a stirrer. The iodine solution is added dropwise, and the point at which the chloroform layer turns green is defined as the end point. At this time, the value given by the following formula is taken as the thiol equivalent of the measurement sample.
Equivalent of thiol (g / eq) = mass of measurement sample (g) x 10000 / titer of iodine solution (mL) x factor of iodine solution
(単官能チオール化合物)
 波長変換用樹脂組成物は、1分子中に1個のチオール基を有する単官能チオール化合物を含有してもよい。
(Monofunctional thiol compound)
The wavelength conversion resin composition may contain a monofunctional thiol compound having one thiol group in one molecule.
 単官能チオール化合物の具体例としては、ヘキサンチオール、1-ヘプタンチオール、1-オクタンチオール、1-ノナンチオール、1-デカンチオール、メルカプトプロピオン酸メチル、メルカプトプロピオン酸メトキシブチル、メルカプトプロピオン酸オクチル、メルカプトプロピオン酸トリデシル、2-エチルヘキシル-3-メルカプトプロピオネート、n-オクチル-3-メルカプトプロピオネート等が挙げられる。 Specific examples of the monofunctional thiol compound include hexanethiol, 1-heptanethiol, 1-octanethiol, 1-nonanthiol, 1-decanethiol, methyl mercaptopropionate, methoxybutyl mercaptopropionate, octyl mercaptopropionate, and mercapto. Examples thereof include tridecyl propionate, 2-ethylhexyl-3-mercaptopropionate, and n-octyl-3-mercaptopropionate.
 波長変換用樹脂組成物中のチオール化合物(多官能チオール化合物及び必要に応じて用いられる単官能チオール化合物の合計)の含有率は、波長変換用樹脂組成物の全量に対して、例えば、5質量%~50質量%であることが好ましく、5質量%~40質量%であることがより好ましく、10質量%~30質量%であることがさらに好ましく、15質量%~30質量%であることが特に好ましい。この場合、多官能(メタ)アクリレート化合物とのエンチオール反応により、硬化物がさらに緻密な架橋構造を形成し、耐湿熱性がより向上する傾向にある。
 多官能チオール化合物及び必要に応じて用いられる単官能チオール化合物の合計に占める多官能チオール化合物の質量基準の割合は、60質量%~100質量%であることが好ましく、70質量%~100質量%であることがより好ましく、80質量%~100質量%であることがさらに好ましい。
The content of the thiol compound (total of the polyfunctional thiol compound and the monofunctional thiol compound used as needed) in the wavelength conversion resin composition is, for example, 5% by mass with respect to the total amount of the wavelength conversion resin composition. It is preferably% to 50% by mass, more preferably 5% by mass to 40% by mass, further preferably 10% by mass to 30% by mass, and further preferably 15% by mass to 30% by mass. Especially preferable. In this case, due to the enthiol reaction with the polyfunctional (meth) acrylate compound, the cured product tends to form a more dense crosslinked structure, and the moisture and heat resistance tends to be further improved.
The mass-based ratio of the polyfunctional thiol compound to the total of the polyfunctional thiol compound and the monofunctional thiol compound used as needed is preferably 60% by mass to 100% by mass, preferably 70% by mass to 100% by mass. Is more preferable, and 80% by mass to 100% by mass is further preferable.
 多官能(メタ)アクリレート化合物と多官能チオール化合物及び必要に応じて用いられる単官能チオール化合物の合計との質量基準の含有比率(多官能(メタ)アクリレート化合物/チオール化合物の合計)は、0.5~10であることが好ましく、0.5~8.0であることがより好ましく、0.5~6.0であることがさらに好ましい。 The mass-based content ratio (total of polyfunctional (meth) acrylate compound / thiol compound) to the total of the polyfunctional (meth) acrylate compound, the polyfunctional thiol compound, and the monofunctional thiol compound used as needed is 0. It is preferably 5 to 10, more preferably 0.5 to 8.0, and even more preferably 0.5 to 6.0.
(特定カルボン酸化合物)
 波長変換用樹脂組成物は、特定カルボン酸化合物を含有する。特定カルボン酸化合物としては、一分子中にカルボキシ基とチオール基とを有する化合物であれば特に限定されるものではない。
 なお、チオール化合物(多官能チオール化合物又は単官能チオール化合物)がカルボキシ基を有する場合、当該化合物は、チオール化合物ではなく特定カルボン酸化合物と見なすこととする。
 特定カルボン酸化合物は、芳香族化合物であっても、鎖式脂肪族化合物、脂環式化合物等の脂肪族化合物であってもよく、脂肪族化合物であることが好ましい。
 特定カルボン酸化合物に含まれるカルボキシ基は、2個以下であることが好ましく、1個であることがより好ましい。
 特定カルボン酸化合物に含まれるチオール基は、2個以下であることが好ましく、1個であることがより好ましい。
 特定カルボン酸化合物に含まれるチオール基の少なくとも1つが、一級チオール基であることが好ましく、特定カルボン酸化合物がチオール基を1個含み当該チオール基が一級チオール基であること(つまり、特定カルボン酸化合物は、第一チオール化合物であること)がより好ましい。本開示において、一級チオール基とは、第一級炭素に結合しているチオール基をいう。また、第一チオール化合物とは、一級チオール基を有するチオール化合物をいう。
 特定カルボン酸化合物の分子量は、80~300であることが好ましく、90~250であることがより好ましく、100~200であることがさらに好ましい。
 特定カルボン酸化合物の具体例としては、チオグリコール酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、2-メルカプト安息香酸、3-メルカプト安息香酸、4-メルカプト安息香酸、4-メルカプトブタン酸、3-メルカプトブタン酸、2-メルカプトイソブチル酸、3-メルカプトイソ酪酸、2-メルカプト安息香酸、4-メルカプトフェニル酢酸、チオりんご酸等が挙げられる。これらの中でも、3-メルカプトプロピオン酸が好ましい。
(Specific carboxylic acid compound)
The wavelength conversion resin composition contains a specific carboxylic acid compound. The specific carboxylic acid compound is not particularly limited as long as it is a compound having a carboxy group and a thiol group in one molecule.
When the thiol compound (polyfunctional thiol compound or monofunctional thiol compound) has a carboxy group, the compound is regarded as a specific carboxylic acid compound rather than a thiol compound.
The specific carboxylic acid compound may be an aromatic compound or an aliphatic compound such as a chain-type aliphatic compound or an alicyclic compound, and is preferably an aliphatic compound.
The number of carboxy groups contained in the specific carboxylic acid compound is preferably two or less, and more preferably one.
The number of thiol groups contained in the specific carboxylic acid compound is preferably two or less, and more preferably one.
At least one of the thiol groups contained in the specific carboxylic acid compound is preferably a primary thiol group, and the specific carboxylic acid compound contains one thiol group and the thiol group is a primary thiol group (that is, the specific carboxylic acid. The compound is more preferably a first thiol compound). In the present disclosure, the primary thiol group means a thiol group bonded to a primary carbon. The primary thiol compound refers to a thiol compound having a primary thiol group.
The molecular weight of the specific carboxylic acid compound is preferably 80 to 300, more preferably 90 to 250, and even more preferably 100 to 200.
Specific examples of the specific carboxylic acid compound include thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, 2-mercaptobenzoic acid, 3-mercaptobenzoic acid, 4-mercaptobenzoic acid, 4-mercaptobenzoic acid, Examples thereof include 3-mercaptobutanoic acid, 2-mercaptoisobutyric acid, 3-mercaptoisobutyric acid, 2-mercaptobenzoic acid, 4-mercaptophenylacetic acid, and thioapple acid. Among these, 3-mercaptopropionic acid is preferable.
 波長変換用樹脂組成物中の特定カルボン酸化合物の含有率は、波長変換用樹脂組成物の全量に対して、例えば、0.5質量%~40質量%であることが好ましく、1質量%~30質量%であることがより好ましく、2質量%~20質量%であることがさらに好ましい。特定カルボン酸化合物の含有率が0.5質量%以上であれば、波長変換部材の輝度維持率が向上する傾向にある。特定カルボン酸化合物の含有率が40質量%以下であれば、波長変換用樹脂組成物の硬化物の強度を保つことができる傾向にある。 The content of the specific carboxylic acid compound in the wavelength conversion resin composition is preferably, for example, 0.5% by mass to 40% by mass, and is preferably 1% by mass to 40% by mass, based on the total amount of the wavelength conversion resin composition. It is more preferably 30% by mass, further preferably 2% by mass to 20% by mass. When the content of the specific carboxylic acid compound is 0.5% by mass or more, the brightness maintenance rate of the wavelength conversion member tends to be improved. When the content of the specific carboxylic acid compound is 40% by mass or less, the strength of the cured product of the wavelength conversion resin composition tends to be maintained.
(光重合開始剤)
 波長変換用樹脂組成物は、光重合開始剤を含有する。光重合開始剤としては特に制限されず、具体例として、紫外線等の活性エネルギー線の照射によりラジカルを発生する化合物が挙げられる。
(Photopolymerization initiator)
The wavelength conversion resin composition contains a photopolymerization initiator. The photopolymerization initiator is not particularly limited, and specific examples thereof include compounds that generate radicals when irradiated with active energy rays such as ultraviolet rays.
 光重合開始剤の具体例としては、ベンゾフェノン、N,N’-テトラアルキル-4,4’-ジアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパノン-1、4,4’-ビス(ジメチルアミノ)ベンゾフェノン(「ミヒラーケトン」とも称される)、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等の芳香族ケトン化合物;アルキルアントラキノン、フェナントレンキノン等のキノン化合物;ベンゾイン、アルキルベンゾイン等のベンゾイン化合物;ベンゾインアルキルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;9-フェニルアクリジン、1,7-(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル化合物;7-ジエチルアミノ-4-メチルクマリン等のクマリン化合物;2,4-ジエチルチオキサントン等のチオキサントン化合物;2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、2,4,6-トリメチルベンゾイル-フェニル-エトキシ-ホスフィンオキサイド等のアシルホスフィンオキサイド化合物;などが挙げられる。波長変換用樹脂組成物は、1種類の光重合開始剤を単独で含有していてもよく、2種類以上の光重合開始剤を組み合わせて含有していてもよい。 Specific examples of the photopolymerization initiator include benzophenone, N, N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1, 4,4'-bis (dimethylamino) benzophenone (also referred to as "Michler ketone"), 4,4'-bis (Diethylamino) benzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 1-hydroxycyclohexylphenylketone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4- (4-) Aromatic ketone compounds such as (2-hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1-propane-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one; alkyl Kinone compounds such as anthraquinone and phenanthrenquinone; benzoin compounds such as benzoin and alkylbenzoin; benzoin ether compounds such as benzoin alkyl ether and benzoin phenyl ether; benzyl derivatives such as benzyl dimethyl ketal; 2- (o-chlorophenyl) -4,5 -Diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (m-methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2,4-di (p-methoxyphenyl) -5-phenylimidazole dimer, 2- (2,4-dimethoxyphenyl)- 2,4,5-Triarylimidazole dimer such as 4,5-diphenylimidazole dimer; aclysine derivative such as 9-phenylaclysine, 1,7- (9,9'-acrydinyl) heptane; 1,2 -Octanedione 1- [4- (Phenylthio) -2- (O-benzoyloxime)], Ethanone 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl] -1- Oxyme ester compounds such as (O-acetyloxime); coumarin compounds such as 7-diethylamino-4-methylkumarin; thioxanthone compounds such as 2,4-diethylthioxanthone; 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, 2,4,6-trimethylbenzoyl Acylphosphine oxide compounds such as -phenyl-ethoxy-phosphine oxide; and the like. The wavelength conversion resin composition may contain one kind of photopolymerization initiator alone, or may contain two or more kinds of photopolymerization initiators in combination.
 光重合開始剤としては、硬化性の観点から、アシルホスフィンオキサイド化合物、芳香族ケトン化合物、及びオキシムエステル化合物からなる群より選択される少なくとも1種が好ましく、アシルホスフィンオキサイド化合物及び芳香族ケトン化合物からなる群より選択される少なくとも1種がより好ましく、アシルホスフィンオキサイド化合物がさらに好ましい。 As the photopolymerization initiator, at least one selected from the group consisting of an acylphosphine oxide compound, an aromatic ketone compound, and an oxime ester compound is preferable from the viewpoint of curability, and from the acylphosphine oxide compound and the aromatic ketone compound. At least one selected from the above group is more preferable, and an acylphosphine oxide compound is further preferable.
 波長変換用樹脂組成物中の光重合開始剤の含有率は、波長変換用樹脂組成物の全量に対して、例えば、0.1質量%~5質量%であることが好ましく、0.1質量%~3質量%であることがより好ましく、0.5質量%~1.5質量%であることがさらに好ましい。光重合開始剤の含有率が0.1質量%以上であると、波長変換用樹脂組成物の感度が充分なものとなる傾向にあり、光重合開始剤の含有率が5質量%以下であると、波長変換用樹脂組成物の硬化物の色相への影響及び保存安定性の低下が抑えられる傾向にある。 The content of the photopolymerization initiator in the wavelength conversion resin composition is preferably, for example, 0.1% by mass to 5% by mass, and 0.1% by mass, based on the total amount of the wavelength conversion resin composition. It is more preferably% to 3% by mass, and further preferably 0.5% by mass to 1.5% by mass. When the content of the photopolymerization initiator is 0.1% by mass or more, the sensitivity of the wavelength conversion resin composition tends to be sufficient, and the content of the photopolymerization initiator is 5% by mass or less. As a result, the influence of the cured product of the wavelength conversion resin composition on the hue and the decrease in storage stability tend to be suppressed.
(量子ドット蛍光体)
 波長変換用樹脂組成物は、量子ドット蛍光体を含有する。量子ドット蛍光体としては特に制限されず、II-VI族化合物、III-V族化合物、IV-VI族化合物、及びIV族化合物からなる群より選択される少なくとも1種を含む粒子が挙げられる。発光効率の観点からは、量子ドット蛍光体は、Cd及びInの少なくとも一方を含む化合物を含むことが好ましい。
(Quantum dot phosphor)
The wavelength conversion resin composition contains a quantum dot phosphor. The quantum dot phosphor is not particularly limited, and examples thereof include particles containing at least one selected from the group consisting of a group II-VI compound, a group III-V compound, a group IV-VI compound, and a group IV compound. From the viewpoint of luminous efficiency, the quantum dot phosphor preferably contains a compound containing at least one of Cd and In.
 II-VI族化合物の具体例としては、CdSe、CdTe、CdS、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe等が挙げられる。
 III-V族化合物の具体例としては、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb等が挙げられる。
 IV-VI族化合物の具体例としては、SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe等が挙げられる。
 IV族化合物の具体例としては、Si、Ge、SiC、SiGe等が挙げられる。
Specific examples of the II-VI group compounds include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSte, ZnSeS, ZnSeTe, ZnSte, HgSeS, ZnS. , CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSeTe
Specific examples of the Group III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, COLP, GaNAs, PLACSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb. , AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInNSb, GaInPAs, GaInPSb, InNAAl
Specific examples of the IV-VI group compounds include SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSte, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbSe ..
Specific examples of the Group IV compound include Si, Ge, SiC, SiGe and the like.
 量子ドット蛍光体としては、コアシェル構造を有するものが好ましい。コアを構成する化合物のバンドギャップよりもシェルを構成する化合物のバンドギャップを広くすることで、量子ドット蛍光体の量子効率をより向上させることが可能となる。コア及びシェルの組み合わせ(コア/シェル)としては、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、CdTe/ZnS等が挙げられる。 The quantum dot phosphor preferably has a core-shell structure. By making the band gap of the compound constituting the shell wider than the band gap of the compound constituting the core, it is possible to further improve the quantum efficiency of the quantum dot phosphor. Examples of the combination of core and shell (core / shell) include CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, and CdTe / ZnS.
 また、量子ドット蛍光体としては、シェルが多層構造である、いわゆるコアマルチシェル構造を有するものであってもよい。バンドギャップの広いコアにバンドギャップの狭いシェルを1層又は2層以上積層し、さらにこのシェルの上にバンドギャップの広いシェルを積層することで、量子ドット蛍光体の量子効率をさらに向上させることが可能となる。 Further, the quantum dot phosphor may have a so-called core multi-shell structure in which the shell has a multi-layer structure. By stacking one or more layers of shells with a narrow bandgap on a core with a wide bandgap, and further stacking a shell with a wide bandgap on top of this shell, the quantum efficiency of the quantum dot phosphor can be further improved. Is possible.
 波長変換用樹脂組成物は、1種類の量子ドット蛍光体を単独で含有していてもよく、2種類以上の量子ドット蛍光体を組み合わせて含有していてもよい。2種類以上の量子ドット蛍光体を組み合わせて含有する態様としては、例えば、成分は異なるものの平均粒子径を同じくする量子ドット蛍光体を2種類以上含有する態様、平均粒子径は異なるものの成分を同じくする量子ドット蛍光体を2種類以上含有する態様、並びに成分及び平均粒子径の異なる量子ドット蛍光体を2種類以上含有する態様が挙げられる。量子ドット蛍光体の成分及び平均粒子径の少なくとも一方を変更することで、量子ドット蛍光体の発光中心波長を変更することができる。 The wavelength conversion resin composition may contain one type of quantum dot phosphor alone, or may contain two or more types of quantum dot phosphors in combination. Examples of a mode in which two or more types of quantum dot phosphors are contained in combination include a mode in which two or more types of quantum dot phosphors having different components but the same average particle size are contained, and a mode in which components having different average particle sizes are contained. Examples thereof include an embodiment containing two or more types of quantum dot phosphors, and an embodiment containing two or more types of quantum dot phosphors having different components and average particle diameters. The emission center wavelength of the quantum dot phosphor can be changed by changing at least one of the components of the quantum dot phosphor and the average particle size.
 例えば、波長変換用樹脂組成物は、520nm~560nmの緑色の波長域に発光中心波長を有する量子ドット蛍光体Gと、600nm~680nmの赤色の波長域に発光中心波長を有する量子ドット蛍光体Rとを含有していてもよい。量子ドット蛍光体Gと量子ドット蛍光体Rとを含有する波長変換用樹脂組成物の硬化物に対して430nm~480nmの青色の波長域の励起光を照射すると、量子ドット蛍光体G及び量子ドット蛍光体Rからそれぞれ緑色光及び赤色光が発光される。その結果、量子ドット蛍光体G及び量子ドット蛍光体Rから発光される緑色光及び赤色光と、硬化物を透過する青色光とにより、白色光を得ることができる。 For example, the wavelength conversion resin composition includes a quantum dot phosphor G having an emission center wavelength in the green wavelength range of 520 nm to 560 nm and a quantum dot phosphor R having an emission center wavelength in the red wavelength range of 600 nm to 680 nm. And may be contained. When the cured product of the wavelength conversion resin composition containing the quantum dot phosphor G and the quantum dot phosphor R is irradiated with excitation light in the blue wavelength range of 430 nm to 480 nm, the quantum dot phosphor G and the quantum dots are irradiated. Green light and red light are emitted from the phosphor R, respectively. As a result, white light can be obtained by the green light and red light emitted from the quantum dot phosphor G and the quantum dot phosphor R and the blue light transmitted through the cured product.
 量子ドット蛍光体は、分散媒体に分散された量子ドット蛍光体分散液の状態で用いてもよい。量子ドット蛍光体を分散する分散媒体としては、各種溶剤及び単官能(メタ)アクリレート化合物が挙げられる。
 分散媒体として使用可能な溶剤としては、水、アセトン、酢酸エチル、トルエン、n-ヘキサン等が挙げられる。
 分散媒体として使用可能な単官能(メタ)アクリレート化合物としては、室温(25℃)において液体であれば特に限定されるものではなく、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が挙げられる。
 これらの中でも、分散媒体としては、波長変換用樹脂組成物を硬化する際に分散媒体を揮発させる工程が不要になる観点から、単官能(メタ)アクリレート化合物であることが好ましく、脂環式構造を有する単官能(メタ)アクリレート化合物であることがより好ましく、イソボルニル(メタ)アクリレート及びジシクロペンタニル(メタ)アクリレートであることがさらに好ましく、イソボルニル(メタ)アクリレートであることが特に好ましい。
The quantum dot phosphor may be used in the state of a quantum dot phosphor dispersion liquid dispersed in a dispersion medium. Examples of the dispersion medium for dispersing the quantum dot phosphor include various solvents and monofunctional (meth) acrylate compounds.
Examples of the solvent that can be used as the dispersion medium include water, acetone, ethyl acetate, toluene, n-hexane and the like.
The monofunctional (meth) acrylate compound that can be used as a dispersion medium is not particularly limited as long as it is a liquid at room temperature (25 ° C.), and isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and the like are used. Can be mentioned.
Among these, the dispersion medium is preferably a monofunctional (meth) acrylate compound from the viewpoint of eliminating the step of volatilizing the dispersion medium when curing the wavelength conversion resin composition, and has an alicyclic structure. It is more preferably a monofunctional (meth) acrylate compound having, more preferably isobornyl (meth) acrylate and dicyclopentanyl (meth) acrylate, and particularly preferably isobornyl (meth) acrylate.
 分散媒体として単官能(メタ)アクリレート化合物を用いる場合、単官能(メタ)アクリレート化合物と多官能(メタ)アクリレート化合物との質量基準の含有比率(単官能(メタ)アクリレート化合物/多官能(メタ)アクリレート化合物)は、0.01~0.30であることが好ましく、0.02~0.20であることがより好ましく、0.05~0.20であることがさらに好ましい。 When a monofunctional (meth) acrylate compound is used as the dispersion medium, the content ratio based on the mass of the monofunctional (meth) acrylate compound and the polyfunctional (meth) acrylate compound (monofunctional (meth) acrylate compound / polyfunctional (meth)). The acrylate compound) is preferably 0.01 to 0.30, more preferably 0.02 to 0.20, and even more preferably 0.05 to 0.20.
 量子ドット蛍光体分散液に占める量子ドット蛍光体の質量基準の割合は、1質量%~20質量%であることが好ましく、1質量%~10質量%であることがより好ましい。 The mass-based ratio of the quantum dot phosphor to the quantum dot phosphor dispersion liquid is preferably 1% by mass to 20% by mass, and more preferably 1% by mass to 10% by mass.
 波長変換用樹脂組成物中の量子ドット蛍光体分散液の含有率は、量子ドット蛍光体分散液に占める量子ドット蛍光体の質量基準の割合が1質量%~20質量%である場合、波長変換用樹脂組成物の全量に対して、例えば、1質量%~10質量%であることが好ましく、4質量%~10質量%であることがより好ましく、4質量%~7質量%であることがさらに好ましい。
 また、波長変換用樹脂組成物中の量子ドット蛍光体の含有率は、波長変換用樹脂組成物の全量に対して、例えば、0.01質量%~1.0質量%であることが好ましく、0.05質量%~0.5質量%であることがより好ましく、0.1質量%~0.5質量%であることがさらに好ましい。量子ドット蛍光体の含有率が0.01質量%以上であると、硬化物に励起光を照射する際に充分な発光強度が得られる傾向にあり、量子ドット蛍光体の含有率が1.0質量%以下であると、量子ドット蛍光体の凝集が抑えられる傾向にある。
The content of the quantum dot phosphor dispersion liquid in the wavelength conversion resin composition is wavelength conversion when the mass-based ratio of the quantum dot phosphor to the quantum dot phosphor dispersion liquid is 1% by mass to 20% by mass. For example, it is preferably 1% by mass to 10% by mass, more preferably 4% by mass to 10% by mass, and 4% by mass to 7% by mass with respect to the total amount of the resin composition for use. More preferred.
The content of the quantum dot phosphor in the wavelength conversion resin composition is preferably, for example, 0.01% by mass to 1.0% by mass, based on the total amount of the wavelength conversion resin composition. It is more preferably 0.05% by mass to 0.5% by mass, and further preferably 0.1% by mass to 0.5% by mass. When the content of the quantum dot phosphor is 0.01% by mass or more, sufficient emission intensity tends to be obtained when the cured product is irradiated with excitation light, and the content of the quantum dot phosphor is 1.0. When it is mass% or less, the aggregation of the quantum dot phosphor tends to be suppressed.
(液状媒体)
 波長変換用樹脂組成物は、液状媒体を含有しないか又は液状媒体の含有率が0.5質量%以下であることが好ましい。液状媒体とは、室温(25℃)において液体の状態の媒体をいう。
(Liquid medium)
The wavelength conversion resin composition preferably does not contain a liquid medium or has a liquid medium content of 0.5% by mass or less. The liquid medium means a medium in a liquid state at room temperature (25 ° C.).
 液状媒体の具体例としては、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチルイソプロピルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、メチル-n-ペンチルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン等のケトン溶剤;ジエチルエーテル、メチルエチルエーテル、メチル-n-プロピルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル-n-プロピルエーテル、ジエチレングリコールメチル-n-ブチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、ジエチレングリコールメチル-n-ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル-n-ブチルエーテル、トリエチレングリコールジ-n-ブチルエーテル、トリエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル-n-ブチルエーテル、テトラエチレングリコールジ-n-ブチルエーテル、テトラエチレングリコールメチル-n-ヘキシルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、ジプロピレングリコールジ-n-プロピルエーテル、ジプロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールメチル-n-ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル-n-ブチルエーテル、トリプロピレングリコールジ-n-ブチルエーテル、トリプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル-n-ブチルエーテル、テトラプロピレングリコールジ-n-ブチルエーテル、テトラプロピレングリコールメチル-n-ヘキシルエーテル等のエーテル溶剤;プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート等のカーボネート溶剤;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸2-(2-ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリエチレングリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸イソアミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン等のエステル溶剤;アセトニトリル、N-メチルピロリジノン、N-エチルピロリジノン、N-プロピルピロリジノン、N-ブチルピロリジノン、N-ヘキシルピロリジノン、N-シクロヘキシルピロリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、n-ペンタノール、イソペンタノール、2-メチルブタノール、sec-ペンタノール、t-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル溶剤;テルピネン、テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、ピネン、カルボン、オシメン、フェランドレン等のテルペン溶剤;ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等のストレートシリコーンオイル;アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシ変性シリコーンオイル、カルビノール変性シリコーンオイル、メルカプト変性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、親水性特殊変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸変性シリコーンオイル、フッ素変性シリコーンオイル等の変性シリコーンオイル;ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、エイコセン酸等の炭素数4以上の飽和脂肪族モノカルボン酸;オレイン酸、エライジン酸、リノール酸、パルミトレイン酸等の炭素数8以上の不飽和脂肪族モノカルボン酸;などが挙げられる。波長変換用樹脂組成物が液状媒体を含有する場合、1種類の液状媒体を単独で含有していてもよく、2種類以上の液状媒体を組み合わせて含有していてもよい。 Specific examples of the liquid medium include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, and the like. Ketone solvents such as dipropyl ketone, diisobutyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentandione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl Ether, tetrahydrofuran, methyl tetrahydrofuran, dioxane, dimethyl dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, Diethylene glycol methyl-n-propyl ether, diethylene glycol methyl-n-butyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether, diethylene glycol methyl-n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, tri Ethylene glycol methyl ethyl ether, triethylene glycol methyl-n-butyl ether, triethylene glycol di-n-butyl ether, triethylene glycol methyl-n-hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol methyl ethyl Ether, tetraethylene glycol methyl-n-butyl ether, tetraethylene glycol di-n-butyl ether, tetraethylene glycol methyl-n-hexyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol Di-n-butyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol methyl ethyl ether, dipropylene glycol methyl-n-butyl ether, dipropi Lenglycol di-n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl-n-hexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol methyl ethyl ether, tripropylene glycol methyl -N-butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol methyl-n-hexyl ether, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether, tetrapropylene glycol methyl ethyl ether, tetrapropylene glycol methyl-n-butyl ether , Tetrapropylene glycol di-n-butyl ether, tetrapropylene glycol methyl-n-hexyl ether and other ether solvents; propylene carbonate, ethylene carbonate, diethyl carbonate and other carbonate solvents; methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate , N-butyl acetate, isobutyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, 2- (2- (2-) Butoxyethoxy) ethyl, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, nonyl acetate, methyl acetoacetate, ethyl acetoacetate, diethylene glycol methyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate, dipropylene glycol ethyl acetate ether , Glycol diacetate, methoxytriethylene glycol acetate, ethyl propionate, n-butyl propionate, isoamyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n lactate -Amil, ethylene glycol methyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, γ -Ester solvents such as butyrolactone and γ-valerolactone; acetonitrile, N- Aprotonic polarities such as methylpyrrolidinone, N-ethylpyrrolidinone, N-propylpyrrolidinone, N-butylpyrrolidinone, N-hexylpyrrolidinone, N-cyclohexylpyrrolidinone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, etc. Solvents: methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, n-pentanol, isopentanol, 2-methylbutanol, sec-pentanol, t-pentanol , 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, n-octanol, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, n-decanol , Se-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, cyclohexanol, methylcyclohexanol, benzyl alcohol, ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, Alcohol solvents such as diethylene glycol, dipropylene glycol, triethylene glycol, and tripropylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether. , Diethylene glycol mono-n-hexyl ether, triethylene glycol monoethyl ether, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, etc. Glycol monoether solvent; terpene solvent such as terpinene, terpineol, milsen, aloosimene, limonene, dipentene, pinene, carboxylic, ossimen, ferlandrene; straight silicone oil such as dimethyl silicone oil, methylphenyl silicone oil, methylhydrogen silicone oil; Amino-modified silicone oil, epoxy-modified silicone oil, cal Boxy-modified silicone oil, carbinol-modified silicone oil, mercapto-modified silicone oil, heterologous functional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, hydrophilic special-modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acid Modified silicone oils such as modified silicone oils and fluorine-modified silicone oils; butanoic acid, pentanoic acid, hexanoic acid, heptanic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, Saturated aliphatic monocarboxylic acids having 4 or more carbon atoms such as hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, icosanoic acid, and eicosenoic acid; Saturated aliphatic monocarboxylic acids; and the like. When the wavelength conversion resin composition contains a liquid medium, one type of liquid medium may be contained alone, or two or more types of liquid media may be contained in combination.
(白色顔料)
 波長変換用樹脂組成物は、白色顔料をさらに含有していてもよい。
 白色顔料の具体例としては、酸化チタン、硫酸バリウム、酸化亜鉛、炭酸カルシウム等が挙げられる。これらの中でも、光散乱効率の観点から酸化チタンであることが好ましい。
 波長変換用樹脂組成物が白色顔料として酸化チタンを含有する場合、酸化チタンとしては、ルチル型酸化チタンであってもアナターゼ型酸化チタンであってもよく、ルチル型酸化チタンであることが好ましい。
(White pigment)
The wavelength conversion resin composition may further contain a white pigment.
Specific examples of the white pigment include titanium oxide, barium sulfate, zinc oxide, calcium carbonate and the like. Among these, titanium oxide is preferable from the viewpoint of light scattering efficiency.
When the wavelength conversion resin composition contains titanium oxide as a white pigment, the titanium oxide may be rutile-type titanium oxide or anatase-type titanium oxide, and is preferably rutile-type titanium oxide.
 白色顔料の平均粒子径は、0.1μm~1μmであることが好ましく、0.2μm~0.8μmであることがより好ましく、0.2μm~0.5μmであることがさらに好ましい。
 本開示において白色顔料の平均粒子径は、以下のようにして測定することができる。
 波長変換用樹脂組成物から抽出した白色顔料を、界面活性剤を含んだ精製水に分散させ、分散液を得る。この分散液を用いてレーザー回折式粒度分布測定装置(例えば、株式会社島津製作所、SALD-3000J)で測定される体積基準の粒度分布において、小径側からの積算が50%となるときの値(メジアン径(D50))を白色顔料の平均粒子径とする。波長変換用樹脂組成物から白色顔料を抽出する方法としては、例えば、波長変換用樹脂組成物を液状媒体で希釈し、遠心分離処理等により白色顔料を沈澱させて分収する方法が挙げられる。
 なお、波長変換用樹脂硬化物中に含まれる白色顔料の平均粒子径は、走査型電子顕微鏡を用いた粒子の観察により、50個の粒子について円相当径(長径と短径の幾何平均)を算出し、その算術平均値として求めることができる。
The average particle size of the white pigment is preferably 0.1 μm to 1 μm, more preferably 0.2 μm to 0.8 μm, and even more preferably 0.2 μm to 0.5 μm.
In the present disclosure, the average particle size of the white pigment can be measured as follows.
The white pigment extracted from the wavelength conversion resin composition is dispersed in purified water containing a surfactant to obtain a dispersion liquid. In the volume-based particle size distribution measured by a laser diffraction type particle size distribution measuring device (for example, Shimadzu Corporation, SALD-3000J) using this dispersion, the value when the integration from the small diameter side is 50% ( The median diameter (D50)) is defined as the average particle size of the white pigment. Examples of the method of extracting the white pigment from the wavelength conversion resin composition include a method of diluting the wavelength conversion resin composition with a liquid medium and precipitating the white pigment by centrifugation or the like to distribute the white pigment.
The average particle size of the white pigment contained in the cured resin for wavelength conversion is the equivalent circle diameter (geometric mean of major axis and minor axis) for 50 particles by observing the particles using a scanning electron microscope. It can be calculated and calculated as the arithmetic mean value.
 波長変換用樹脂組成物が白色顔料を含有する場合、波長変換用樹脂組成物中で白色顔料が凝集するのを抑制する観点から、白色粒子は、表面の少なくとも一部に有機物を含む有機物層を有することが好ましい。有機物層に含まれる有機物としては、有機シラン、オルガノシロキサン、フルオロシラン、有機ホスホネート、有機リン酸化合物、有機ホスフィネート、有機スルホン酸化合物、カルボン酸、カルボン酸エステル、カルボン酸の誘導体、アミド、炭化水素ワックス、ポリオレフィン、ポリオレフィンのコポリマー、ポリオール、ポリオールの誘導体、アルカノールアミン、アルカノールアミンの誘導体、有機分散剤等が挙げられる。
 有機物層に含まれる有機物は、ポリオール、有機シラン等を含むことが好ましく、ポリオール又は有機シランの少なくとも一方を含むことがより好ましい。
 有機シランの具体例としては、オクチルトリエトキシシラン、ノニルトリエトキシシラン、デシルトリエトキシシラン、ドデシルトリエトキシシラン、トリデシルトリエトキシシラン、テトラデシルトリエトキシシラン、ペンタデシルトリエトキシシラン、ヘキサデシルトリエトキシシラン、ヘプタデシルトリエトキシシラン、オクタデシルトリエトキシシラン等が挙げられる。
 オルガノシロキサンの具体例としては、トリメチルシリル官能基で終端されたポリジメチルシロキサン(PDMS)、ポリメチルヒドロシロキサン(PMHS)、PMHSのオレフィンによる官能化(ヒドロシリル化による)により誘導されるポリシロキサン等が挙げられる。
 有機ホスホネートの具体例としては、例えば、n-オクチルホスホン酸及びそのエステル、n-デシルホスホン酸及びそのエステル、2-エチルヘキシルホスホン酸及びそのエステル並びにカンフィル(camphyl)ホスホン酸及びそのエステルが挙げられる。
 有機リン酸化合物の具体例としては、有機酸性ホスフェート、有機ピロホスフェート、有機ポリホスフェート、有機メタホスフェート、これらの塩等が挙げられる。
 有機ホスフィネートの具体例としては、例えば、n-ヘキシルホスフィン酸及びそのエステル、n-オクチルホスフィン酸及びそのエステル、ジ-n-ヘキシルホスフィン酸及びそのエステル並びにジ-n-オクチルホスフィン酸及びそのエステルが挙げられる。
 有機スルホン酸化合物の具体例としては、ヘキシルスルホン酸、オクチルスルホン酸、2-エチルヘキシルスルホン酸等のアルキルスルホン酸、これらアルキルスルホン酸と、ナトリウム、カルシウム、マグネシウム、アルミニウム、チタン等の金属イオン、アンモニウムイオン、トリエタノールアミン等の有機アンモニウムイオンなどとの塩が挙げられる。
 カルボン酸の具体例としては、マレイン酸、マロン酸、フマル酸、安息香酸、フタル酸、ステアリン酸、オレイン酸、リノール酸等が挙げられる。
 カルボン酸エステルの具体例としては、上記カルボン酸と、エチレングリコール、プロピレングリコール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、グリセロール、ヘキサントリオール、エリトリトール、マンニトール、ソルビトール、ペンタエリトリトール、ビスフェノールA、ヒドロキノン、フロログルシノール等のヒドロキシ化合物との反応により生成するエステル及び部分エステルが挙げられる。
 アミドの具体例としては、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド等が挙げられる。
 ポリオレフィン及びそのコポリマーの具体例としては、ポリエチレン、ポリプロピレン、エチレンと、プロピレン、ブチレン、酢酸ビニル、アクリレート、アクリルアミド等から選択される1種又は2種以上の化合物との共重合体などが挙げられる。
 ポリオールの具体例としては、グリセロール、トリメチロールエタン、トリメチロールプロパン等が挙げられる。
 アルカノールアミンの具体例としては、ジエタノールアミン、トリエタノールアミン等が挙げられる。
 有機分散剤の具体例としては、クエン酸、ポリアクリル酸、ポリメタクリル酸、陰イオン性、陽イオン性、双性、非イオン性等の官能基をもつ高分子有機分散剤などが挙げられる。
 波長変換用樹脂組成物中における白色顔料の凝集が抑制されると、波長変換用樹脂硬化物中における白色顔料の分散性が向上する傾向にある。
When the wavelength conversion resin composition contains a white pigment, the white particles have an organic substance layer containing an organic substance on at least a part of the surface from the viewpoint of suppressing aggregation of the white pigment in the wavelength conversion resin composition. It is preferable to have. The organic substances contained in the organic substance layer include organic silane, organosiloxane, fluorosilane, organic phosphonate, organic phosphoric acid compound, organic phosphinate, organic sulfonic acid compound, carboxylic acid, carboxylic acid ester, carboxylic acid derivative, amide, and hydrocarbon. Examples thereof include waxes, polyolefins, copolymers of polyolefins, polyols, derivatives of polyols, alkanolamines, derivatives of alkanolamines, organic dispersants and the like.
The organic substance contained in the organic substance layer preferably contains a polyol, an organic silane, or the like, and more preferably contains at least one of the polyol or the organic silane.
Specific examples of organic silanes include octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tridecyltriethoxysilane, tetradecyltriethoxysilane, pentadecyltriethoxysilane, and hexadecyltriethoxysilane. Examples thereof include silane, heptadecyltriethoxysilane, and octadecyltriethoxysilane.
Specific examples of the organosiloxane include polydimethylsiloxane (PDMS) terminated with a trimethylsilyl functional group, polymethylhydrosiloxane (PMHS), polysiloxane induced by functionalization of PMHS with an olefin (by hydrosilylation), and the like. Be done.
Specific examples of organic phosphonates include n-octylphosphonic acid and its ester, n-decylphosphonic acid and its ester, 2-ethylhexylphosphonic acid and its ester, and camphyl phosphonic acid and its ester.
Specific examples of the organic phosphoric acid compound include organic acidic phosphate, organic pyrophosphate, organic polyphosphate, organic metaphosphate, salts thereof and the like.
Specific examples of the organic phosphinate include n-hexylphosphinic acid and its ester, n-octylphosphinic acid and its ester, di-n-hexylphosphinic acid and its ester, and di-n-octylphosphinic acid and its ester. Can be mentioned.
Specific examples of the organic sulfonic acid compound include alkyl sulfonic acids such as hexyl sulfonic acid, octyl sulfonic acid, and 2-ethylhexyl sulfonic acid, these alkyl sulfonic acids, metal ions such as sodium, calcium, magnesium, aluminum, and titanium, and ammonium. Examples thereof include salts with ions and organic ammonium ions such as triethanolamine.
Specific examples of the carboxylic acid include maleic acid, malonic acid, fumaric acid, benzoic acid, phthalic acid, stearic acid, oleic acid, linoleic acid and the like.
Specific examples of the carboxylic acid ester include the above carboxylic acid, ethylene glycol, propylene glycol, trimethylolpropane, diethanolamine, triethanolamine, glycerol, hexanetriol, erythritol, mannitol, sorbitol, pentaerythritol, bisphenol A, hydroquinone, and flo. Examples thereof include esters and partial esters produced by reaction with a hydroxy compound such as loglucinol.
Specific examples of the amide include stearic acid amide, oleic acid amide, and erucic acid amide.
Specific examples of the polyolefin and its copolymer include a copolymer of polyethylene, polypropylene, ethylene and one or more compounds selected from propylene, butylene, vinyl acetate, acrylate, acrylamide and the like.
Specific examples of the polyol include glycerol, trimethylolethane, trimethylolpropane and the like.
Specific examples of the alkanolamine include diethanolamine and triethanolamine.
Specific examples of the organic dispersant include high molecular weight organic dispersants having functional groups such as citric acid, polyacrylic acid, polymethacrylic acid, anionic, cationic, bipolar and nonionic.
When the aggregation of the white pigment in the wavelength conversion resin composition is suppressed, the dispersibility of the white pigment in the wavelength conversion resin cured product tends to be improved.
 白色顔料は、表面の少なくとも一部に金属酸化物等を含む酸化物層を有していてもよい。酸化物層に含まれる金属酸化物等としては、二酸化ケイ素、酸化アルミニウム、ジルコニア、ホスホリア(phosphoria)、ボリア(boria)等が挙げられる。酸化物層は一層であっても二層以上であってもよい。白色顔料が二層の酸化物層を有する場合、二酸化ケイ素を含む第一酸化物層及び酸化アルミニウムを含む第二酸化物層を含むものであることが好ましい。
 白色顔料が酸化物層を有することで、脂環式構造とスルフィド構造とを含む波長変換用樹脂硬化物中における白色顔料の分散性が向上する傾向にある。
The white pigment may have an oxide layer containing a metal oxide or the like on at least a part of the surface thereof. Examples of the metal oxide contained in the oxide layer include silicon dioxide, aluminum oxide, zirconia, phosphoria, and boria. The oxide layer may be one layer or two or more layers. When the white pigment has two oxide layers, it preferably contains a first oxide layer containing silicon dioxide and a second oxide layer containing aluminum oxide.
When the white pigment has an oxide layer, the dispersibility of the white pigment in the cured resin for wavelength conversion including the alicyclic structure and the sulfide structure tends to be improved.
 白色顔料は、有機物層と酸化物層とを有するものであってもよい。この場合、白色顔料の表面に、酸化物層及び有機物層が、酸化物層及び有機物層の順に設けられることが好ましい。白色顔料が有機物層と二層の酸化物層とを有するものである場合、白色顔料の表面に、二酸化ケイ素を含む第一酸化物層、酸化アルミニウムを含む第二酸化物層及び有機物層が、第一酸化物層、第二酸化物層及び有機物層の順に設けられることが好ましい。 The white pigment may have an organic substance layer and an oxide layer. In this case, it is preferable that the oxide layer and the organic substance layer are provided on the surface of the white pigment in the order of the oxide layer and the organic substance layer. When the white pigment has an organic material layer and two oxide layers, the first oxide layer containing silicon dioxide, the second oxide layer containing aluminum oxide and the organic material layer are placed on the surface of the white pigment. It is preferable that the monooxide layer, the second oxide layer, and the organic substance layer are provided in this order.
 波長変換用樹脂組成物が白色顔料を含有する場合、波長変換用樹脂組成物中の白色顔料の含有率は、波長変換用樹脂組成物の全量に対して、例えば、0.1質量%~5質量%であることが好ましく、0.5質量%~4質量%であることがより好ましく、1質量%~3質量%であることがさらに好ましい。 When the wavelength conversion resin composition contains a white pigment, the content of the white pigment in the wavelength conversion resin composition is, for example, 0.1% by mass to 5% by mass with respect to the total amount of the wavelength conversion resin composition. It is preferably mass%, more preferably 0.5% by mass to 4% by mass, and even more preferably 1% by mass to 3% by mass.
(その他の成分)
 波長変換用樹脂組成物は、重合禁止剤、シランカップリング剤、界面活性剤、密着付与剤、酸化防止剤等のその他の成分をさらに含有していてもよい。波長変換用樹脂組成物は、その他の成分のそれぞれについて、1種類を単独で含有していてもよく、2種類以上を組み合わせて含有していてもよい。
 また、波長変換用樹脂組成物は、必要に応じて(メタ)アリル化合物を含有してもよい。
(Other ingredients)
The wavelength conversion resin composition may further contain other components such as a polymerization inhibitor, a silane coupling agent, a surfactant, an adhesion imparting agent, and an antioxidant. The wavelength conversion resin composition may contain one type alone or a combination of two or more types for each of the other components.
Further, the wavelength conversion resin composition may contain a (meth) allyl compound, if necessary.
(波長変換用樹脂組成物の調製方法)
 波長変換用樹脂組成物は、脂環式構造を有する多官能(メタ)アクリレート化合物、多官能チオール化合物、特定カルボン酸化合物、光重合開始剤及び量子ドット蛍光体並びに必要に応じてその他の成分を常法により混合することで調製することができる。量子ドット蛍光体は、液状媒体に分散させた状態で混合することが好ましい。
(Method for preparing resin composition for wavelength conversion)
The wavelength conversion resin composition contains a polyfunctional (meth) acrylate compound having an alicyclic structure, a polyfunctional thiol compound, a specific carboxylic acid compound, a photopolymerization initiator and a quantum dot phosphor, and other components as necessary. It can be prepared by mixing by a conventional method. The quantum dot phosphors are preferably mixed in a state of being dispersed in a liquid medium.
(波長変換用樹脂組成物の用途)
 波長変換用樹脂組成物は、フィルム形成に好適に使用可能である。また、波長変換用樹脂組成物は、波長変換部材の形成に好適に使用可能である。
(Use of resin composition for wavelength conversion)
The wavelength conversion resin composition can be suitably used for film formation. Further, the wavelength conversion resin composition can be suitably used for forming a wavelength conversion member.
<波長変換用樹脂硬化物>
 本開示の波長変換用樹脂硬化物は、本開示の波長変換用樹脂組成物の硬化物である。本開示の波長変換用樹脂組成物は脂環式構造を有する多官能(メタ)アクリレート化合物、多官能チオール化合物等を含むため、本開示の波長変化用樹脂硬化物には、脂環式構造とスルフィド構造とが含まれる。脂環式構造とスルフィド構造とを含む本開示の波長変換用樹脂硬化物は、耐湿熱性に優れると推察される。
<Cured resin for wavelength conversion>
The wavelength conversion resin cured product of the present disclosure is a cured product of the wavelength conversion resin composition of the present disclosure. Since the wavelength conversion resin composition of the present disclosure contains a polyfunctional (meth) acrylate compound having an alicyclic structure, a polyfunctional thiol compound, etc., the cured resin composition for wavelength change of the present disclosure has an alicyclic structure. Includes sulfide structures. It is presumed that the cured resin for wavelength conversion of the present disclosure including an alicyclic structure and a sulfide structure is excellent in moisture and heat resistance.
 波長変化用樹脂硬化物に含まれる脂環式構造は特に限定されるものではない。脂環式構造の具体例としては、トリシクロデカン骨格、シクロヘキサン骨格、1,3-アダマンタン骨格、水添ビスフェノールA骨格、水添ビスフェノールF骨格、水添ビスフェノールS骨格、イソボルニル骨格等が挙げられる。これらの中でも、トリシクロデカン骨格又はイソボルニル骨格であることが好ましく、トリシクロデカン骨格であることがより好ましい。 The alicyclic structure contained in the cured resin for wavelength change is not particularly limited. Specific examples of the alicyclic structure include a tricyclodecane skeleton, a cyclohexane skeleton, a 1,3-adamantane skeleton, a hydrogenated bisphenol A skeleton, a hydrogenated bisphenol F skeleton, a hydrogenated bisphenol S skeleton, and an isobornyl skeleton. Among these, a tricyclodecane skeleton or an isobornyl skeleton is preferable, and a tricyclodecane skeleton is more preferable.
 波長変化用樹脂硬化物に含まれる脂環式構造は、1種類単独であっても、少なくとも2種類であってもよく、少なくとも2種類であることが好ましい。
 少なくとも2種類の脂環式構造が波長変化用樹脂硬化物に含まれる場合、脂環式構造の組み合わせとしては、トリシクロデカン骨格及びイソボルニル骨格の組み合わせ、水添ビスフェノールA骨格及びイソボルニル骨格の組み合わせ等が挙げられる。これらの中でも、トリシクロデカン骨格及びイソボルニル骨格の組み合わせが好ましい。
The alicyclic structure contained in the cured resin for wavelength change may be one type alone or at least two types, and preferably at least two types.
When at least two types of alicyclic structures are contained in the cured resin for wavelength change, the alicyclic structure combinations include a combination of a tricyclodecane skeleton and an isobornyl skeleton, a combination of a hydrogenated bisphenol A skeleton and an isobornyl skeleton, and the like. Can be mentioned. Among these, a combination of a tricyclodecane skeleton and an isobornyl skeleton is preferable.
 フーリエ変換赤外分光光度計で測定した波長変化用樹脂硬化物における、S-H伸縮振動に帰属されるピーク面積(V1)と、C-H伸縮振動に帰属されるピーク面積(V2)との比率(V1/V2)は、0.005以下であることが好ましく、0.004以下であることがより好ましく、0.002以下であることがさらに好ましい。
 波長変化用樹脂硬化物において、比率(V1/V2)が小さいことは即ち、重合反応に寄与していないチオール基が少ないことを示唆する。重合反応に寄与していないチオール基が少ないと、波長変化用樹脂硬化物のガラス転移温度が高くなる傾向にある。
 波長変化用樹脂硬化物における、S-H伸縮振動に帰属されるピーク面積(V1)及びC-H伸縮振動に帰属されるピーク面積(V2)は、フーリエ変換赤外分光光度計を用いて下記方法により測定された値をいう。
 FT-IR Spectrometer(Perkin Elmer社)を用いて、測定対象の波長変化用樹脂硬化物の表面をATR(Attenuated Total Reflection(全反射測定法))分析する。バックグラウンド測定は、空気で測定し、積算回数16回の条件でFT-IR測定を実施する。
The peak area (V1) attributable to SH expansion and contraction vibration and the peak area (V2) attributable to CH expansion and contraction vibration in the cured resin for wavelength change measured by a Fourier transform infrared spectrophotometer. The ratio (V1 / V2) is preferably 0.005 or less, more preferably 0.004 or less, and even more preferably 0.002 or less.
The small ratio (V1 / V2) in the cured resin for wavelength change suggests that there are few thiol groups that do not contribute to the polymerization reaction. If the number of thiol groups that do not contribute to the polymerization reaction is small, the glass transition temperature of the cured resin for wavelength change tends to increase.
The peak area (V1) attributable to SH expansion and contraction vibration and the peak area (V2) attributable to CH expansion and contraction vibration in the cured resin for wavelength change are as follows using a Fourier transform infrared spectrophotometer. The value measured by the method.
Using an FT-IR Spectrometer (Perkin Elmer), the surface of the cured resin for wavelength change to be measured is analyzed by ATR (Attenuated Total Reflection). The background measurement is performed with air, and the FT-IR measurement is performed under the condition that the number of integrations is 16 times.
 波長変化用樹脂硬化物は、白色顔料を包含してもよい。波長変化用樹脂硬化物に包含される白色顔料についての詳細は、既述の波長変換用樹脂組成物の項に記載のとおりである。 The cured resin for wavelength change may include a white pigment. Details of the white pigment included in the cured resin composition for wavelength change are as described in the section of the resin composition for wavelength conversion described above.
 波長変化用樹脂硬化物は、被覆材との密着性をより向上させる観点から、動的粘弾性測定により周波数10Hzかつ温度25℃の条件で測定した損失正接(tanδ)が0.4~1.5であることが好ましく、0.4~1.2であることがより好ましく、0.4~0.6であることがさらに好ましい。波長変化用樹脂硬化物の損失正接(tanδ)は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて測定することができる。 From the viewpoint of further improving the adhesion to the coating material, the cured resin for wavelength change has a loss tangent (tan δ) of 0.4 to 1 measured under the conditions of a frequency of 10 Hz and a temperature of 25 ° C. by dynamic viscoelasticity measurement. It is preferably 5, more preferably 0.4 to 1.2, and even more preferably 0.4 to 0.6. The loss tangent (tan δ) of the cured resin for wavelength change can be measured using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
 また、波長変化用樹脂硬化物は、被覆材との密着性、耐熱性、及び耐湿熱性をより向上させる観点から、ガラス転移温度(Tg)が85℃以上であることが好ましく、85℃~160℃であることがより好ましく、90℃~120℃であることがさらに好ましい。波長変化用樹脂硬化物のガラス転移温度(Tg)は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて、周波数10Hzの条件で測定することができる。 Further, the cured resin for wavelength change preferably has a glass transition temperature (Tg) of 85 ° C. or higher, preferably 85 ° C. to 160 ° C., from the viewpoint of further improving the adhesion to the coating material, heat resistance, and moist heat resistance. The temperature is more preferably 90 ° C to 120 ° C. The glass transition temperature (Tg) of the cured resin for wavelength change can be measured under the condition of a frequency of 10 Hz using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
 また、波長変化用樹脂硬化物は、被覆材との密着性、耐熱性、及び耐湿熱性をより向上させる観点から、周波数10Hzかつ温度25℃の条件で測定した貯蔵弾性率が1×10Pa~1×1010Paであることが好ましく、5×10Pa~1×1010Paであることがより好ましく、5×10Pa~5×10Paであることがさらに好ましい。波長変化用樹脂硬化物の貯蔵弾性率は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて測定することができる。 Further, the cured resin for wavelength change has a storage elastic modulus of 1 × 10 7 Pa measured under the conditions of a frequency of 10 Hz and a temperature of 25 ° C. from the viewpoint of further improving the adhesion to the coating material, heat resistance, and moist heat resistance. ~ is preferably 1 × 10 10 Pa, 5 × more preferably 10 7 Pa ~ 1 × 10 10 Pa, further preferably 5 × 10 7 Pa ~ 5 × 10 9 Pa. The storage elastic modulus of the cured resin for wavelength change can be measured using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
 波長変化用樹脂硬化物を得るための波長変換用樹脂組成物の硬化条件は、後述する。 The curing conditions of the wavelength conversion resin composition for obtaining the wavelength change resin cured product will be described later.
<波長変換部材>
 本開示の波長変換部材は、本開示の波長変換用樹脂硬化物を有する。本開示の波長変換部材は、必要に応じて、後述する被覆材等のその他の構成要素を含んでいてもよい。
 本開示の波長変換部材は、画像表示用として好適に用いられる。
<Wavelength conversion member>
The wavelength conversion member of the present disclosure has a cured resin for wavelength conversion of the present disclosure. The wavelength conversion member of the present disclosure may include other components such as a covering material described later, if necessary.
The wavelength conversion member of the present disclosure is suitably used for displaying an image.
 波長変換部材の形状は特に制限されず、フィルム状、レンズ状等が挙げられる。波長変換部材を後述するバックライトユニットに適用する場合には、波長変換部材はフィルム状であることが好ましい。 The shape of the wavelength conversion member is not particularly limited, and examples thereof include a film shape and a lens shape. When the wavelength conversion member is applied to a backlight unit described later, the wavelength conversion member is preferably in the form of a film.
 波長変換部材がフィルム状である場合、波長変換部材の平均厚みは、例えば、50μm~200μmであることが好ましく、50μm~150μmであることがより好ましく、80μm~120μmであることがさらに好ましい。波長変換部材の平均厚みが50μm以上であると、波長変換効率がより向上する傾向にあり、平均厚みが200μm以下であると、波長変換部材を後述するバックライトユニットに適用した場合に、バックライトユニットをより薄型化できる傾向にある。
 フィルム状の波長変換部材の平均厚みは、例えば、マイクロメータを用いて測定した任意の3箇所の厚みの算術平均値として求められる。
 本開示において、フィルム状の波長変換部材の平均厚みは、波長変換部材が被覆材を有さない場合にはフィルム状の波長変換部材そのものの平均厚みをいい、波長変換部材が被覆材を有する場合には被覆材を除いた波長変換部材(つまり、硬化物層)の平均厚みをいう。
When the wavelength conversion member is in the form of a film, the average thickness of the wavelength conversion member is, for example, preferably 50 μm to 200 μm, more preferably 50 μm to 150 μm, and even more preferably 80 μm to 120 μm. When the average thickness of the wavelength conversion member is 50 μm or more, the wavelength conversion efficiency tends to be further improved, and when the average thickness is 200 μm or less, the backlight is applied to the backlight unit described later. There is a tendency for the unit to be thinner.
The average thickness of the film-shaped wavelength conversion member is obtained as, for example, an arithmetic mean value of the thicknesses of any three points measured using a micrometer.
In the present disclosure, the average thickness of the film-shaped wavelength conversion member means the average thickness of the film-shaped wavelength conversion member itself when the wavelength conversion member does not have a coating material, and when the wavelength conversion member has a coating material. Refers to the average thickness of the wavelength conversion member (that is, the cured product layer) excluding the coating material.
 波長変換部材は、1種類の波長変換用樹脂組成物を硬化したものであってもよく、2種類以上の波長変換用樹脂組成物を硬化したものであってもよい。例えば、波長変換部材がフィルム状である場合、波長変換部材は、第1の量子ドット蛍光体を含有する波長変換用樹脂組成物を硬化した第1の波長変換用樹脂硬化物の層と、第1の量子ドット蛍光体とは発光特性が異なる第2の量子ドット蛍光体を含有する波長変換用樹脂組成物を硬化した第2の波長変換用樹脂硬化物の層とが積層されたものであってもよい。 The wavelength conversion member may be one obtained by curing one kind of wavelength conversion resin composition, or may be one obtained by curing two or more kinds of wavelength conversion resin compositions. For example, when the wavelength conversion member is in the form of a film, the wavelength conversion member includes a layer of a first wavelength conversion resin cured product obtained by curing a wavelength conversion resin composition containing a first quantum dot phosphor and a first layer of the wavelength conversion resin cured product. A layer of a cured resin composition for wavelength conversion obtained by curing a resin composition for wavelength conversion containing a second quantum dot phosphor having different emission characteristics from the quantum dot phosphor of 1 is laminated. You may.
 波長変換部材は、波長変換用樹脂組成物の塗膜、成形体等を形成し、必要に応じて乾燥処理を行った後、紫外線等の活性エネルギー線を照射することにより得ることができる。活性エネルギー線の波長及び照射量は、波長変換用樹脂組成物の組成に応じて適宜設定することができる。一態様では、280nm~400nmの波長の紫外線を100mJ/cm~5000mJ/cmの照射量で照射する。紫外線源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯等が挙げられる。 The wavelength conversion member can be obtained by forming a coating film, a molded product, or the like of a wavelength conversion resin composition, performing a drying treatment as necessary, and then irradiating with active energy rays such as ultraviolet rays. The wavelength and irradiation amount of the active energy rays can be appropriately set according to the composition of the wavelength conversion resin composition. In one aspect, it is irradiated with ultraviolet rays having a wavelength of 280 nm ~ 400 nm at an irradiation amount of 100mJ / cm 2 ~ 5000mJ / cm 2. Examples of the ultraviolet source include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and the like.
 本開示の波長変換部材は、波長変換用樹脂硬化物の少なくとも一部を被覆する被覆材を有していてもよい。例えば、波長変換用樹脂硬化物がフィルム状である場合、フィルム状の波長変換用樹脂硬化物の片面又は両面がフィルム状の被覆材によって被覆されていてもよい。 The wavelength conversion member of the present disclosure may have a coating material that covers at least a part of the cured resin for wavelength conversion. For example, when the cured resin for wavelength conversion is in the form of a film, one or both sides of the cured resin for wavelength conversion in the form of a film may be coated with a film-like covering material.
 被覆材は、量子ドット蛍光体のさらなる発光強度の低下を抑える観点から、酸素及び水の少なくとも一方に対するバリア性を有することが好ましく、酸素及び水の両方に対するバリア性を有することがより好ましい。酸素及び水の少なくとも一方に対するバリア性を有する被覆材としては特に制限されず、無機層を有するバリアフィルム、有機物層を有するバリアフィルム等の公知の被覆材を用いることができる。
 従来、被覆材として無機層を有するバリアフィルムを用いると、無機層に存在するピンホール付近の量子ドット蛍光体が失活し、波長変換部材に黒点の生ずることがあった。しかしながら、波長変換部材が本開示の波長変化用樹脂硬化物を有することで、黒点不良の発生を抑制できる傾向にある。
The coating material preferably has a barrier property against at least one of oxygen and water, and more preferably has a barrier property against both oxygen and water, from the viewpoint of further suppressing a decrease in the emission intensity of the quantum dot phosphor. The coating material having a barrier property against at least one of oxygen and water is not particularly limited, and known coating materials such as a barrier film having an inorganic layer and a barrier film having an organic substance layer can be used.
Conventionally, when a barrier film having an inorganic layer is used as a coating material, the quantum dot phosphor near the pinhole existing in the inorganic layer may be deactivated and black spots may be generated on the wavelength conversion member. However, since the wavelength conversion member has the cured resin for wavelength change of the present disclosure, there is a tendency that the occurrence of black spot defects can be suppressed.
 被覆材がフィルム状である場合、被覆材の平均厚みは、例えば、10μm~150μmであることが好ましく、30μm~140μmであることがより好ましく、50μm~135μmであることがさらに好ましい。平均厚みが10μm以上であると、バリア性等の機能が充分なものとなる傾向にあり、平均厚みが150μm以下であると、光透過率の低下が抑えられる傾向にある。
 フィルム状の被覆材の平均厚みは、フィルム状の波長変換部材と同様にして求められる。
When the covering material is in the form of a film, the average thickness of the covering material is, for example, preferably 10 μm to 150 μm, more preferably 30 μm to 140 μm, and even more preferably 50 μm to 135 μm. When the average thickness is 10 μm or more, the functions such as barrier property tend to be sufficient, and when the average thickness is 150 μm or less, the decrease in light transmittance tends to be suppressed.
The average thickness of the film-shaped covering material is obtained in the same manner as in the film-shaped wavelength conversion member.
 被覆材の酸素透過率は、例えば、0.5mL/(m・24h・atm)以下であることが好ましく、0.3mL/(m・24h・atm)以下であることがより好ましく、0.1mL/(m・24h・atm)以下であることがさらに好ましい。被覆材の酸素透過率は、酸素透過率測定装置(例えば、MOCON社、OX-TRAN)を用いて、温度23℃かつ相対湿度65%の条件で測定することができる。
 また、被覆材の水蒸気透過率は、例えば、5×10-2g/(m・24h・Pa)以下であることが好ましく、1×10-2g/(m・24h・Pa)以下であることがより好ましく、5×10-3g/(m・24h・Pa)以下であることがさらに好ましい。被覆材の水蒸気透過率は、水蒸気透過率測定装置(例えば、MOCON社、AQUATRAN)を用いて、温度40℃かつ相対湿度90%の条件で測定することができる。
Oxygen permeability of the dressing, for example, is preferably 0.5mL / (m 2 · 24h · atm) or less, more preferably 0.3mL / (m 2 · 24h · atm) or less, 0 and more preferably .1mL / (m 2 · 24h · atm) or less. The oxygen permeability of the coating material can be measured using an oxygen permeability measuring device (for example, MOCON, OX-TRAN) under the conditions of a temperature of 23 ° C. and a relative humidity of 65%.
Further, the water vapor permeability of the dressing, for example, 5 × 10 -2 g / is preferably (m 2 · 24h · Pa) or less, 1 × 10 -2 g / ( m 2 · 24h · Pa) or less more preferably, even more preferably 5 × 10 -3 g / (m 2 · 24h · Pa) or less. The water vapor permeability of the coating material can be measured using a water vapor permeability measuring device (for example, MOCON, AQUATRAN) under the conditions of a temperature of 40 ° C. and a relative humidity of 90%.
 本開示の波長変換部材は、光の利用効率をより向上させる観点から、全光線透過率が55%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることがさらに好ましい。波長変換部材の全光線透過率は、JIS K 7361-1:1997の測定法に準拠して測定することができる。 From the viewpoint of further improving the light utilization efficiency, the wavelength conversion member of the present disclosure preferably has a total light transmittance of 55% or more, more preferably 60% or more, and more preferably 65% or more. More preferred. The total light transmittance of the wavelength conversion member can be measured according to the measurement method of JIS K 7361-1: 1997.
 また、本開示の波長変換部材は、光の利用効率をより向上させる観点から、ヘーズが95%以上であることが好ましく、97%以上であることがより好ましく、99%以上であることがさらに好ましい。波長変換部材のヘーズは、JIS K 7136:2000の測定法に準拠して測定することができる。 Further, the wavelength conversion member of the present disclosure preferably has a haze of 95% or more, more preferably 97% or more, and further preferably 99% or more, from the viewpoint of further improving the light utilization efficiency. preferable. The haze of the wavelength conversion member can be measured according to the measurement method of JIS K 7136: 2000.
 波長変換部材の概略構成の一例を図1に示す。但し、本開示の波長変換部材は図1の構成に限定されるものではない。また、図1における波長変換用樹脂硬化物の層及び被覆材の大きさは概念的なものであり、大きさの相対的な関係はこれに限定されない。なお、各図面において、同一の部材には同一の符号を付し、重複した説明は省略することがある。 FIG. 1 shows an example of the schematic configuration of the wavelength conversion member. However, the wavelength conversion member of the present disclosure is not limited to the configuration shown in FIG. Further, the sizes of the layer of the cured resin for wavelength conversion and the coating material in FIG. 1 are conceptual, and the relative relationship between the sizes is not limited to this. In each drawing, the same member may be designated by the same reference numeral, and duplicate description may be omitted.
 図1に示す波長変換部材10は、フィルム状の波長変換用樹脂硬化物である硬化物層11と、硬化物層11の両面に設けられたフィルム状の被覆材12A及び12Bとを有する。被覆材12A及び被覆材12Bの種類及び平均厚みは、それぞれ同一であっても異なっていてもよい。 The wavelength conversion member 10 shown in FIG. 1 has a cured product layer 11 which is a film-shaped cured resin for wavelength conversion, and film-shaped coating materials 12A and 12B provided on both sides of the cured product layer 11. The types and average thicknesses of the covering material 12A and the covering material 12B may be the same or different.
 図1に示す構成の波長変換部材は、例えば、以下のような公知の製造方法により製造することができる。 The wavelength conversion member having the configuration shown in FIG. 1 can be manufactured by, for example, the following known manufacturing method.
 まず、連続搬送されるフィルム状の被覆材(以下、「第1の被覆材」ともいう。)の表面に波長変換用樹脂組成物を付与し、塗膜を形成する。波長変換用樹脂組成物の付与方法は特に制限されず、ダイコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法、ロールコーティング法等が挙げられる。 First, a wavelength conversion resin composition is applied to the surface of a film-like coating material (hereinafter, also referred to as "first coating material") that is continuously conveyed to form a coating film. The method for applying the wavelength conversion resin composition is not particularly limited, and examples thereof include a die coating method, a curtain coating method, an extrusion coating method, a rod coating method, and a roll coating method.
 次いで、波長変換用樹脂組成物の塗膜の上に、連続搬送されるフィルム状の被覆材(以下、「第2の被覆材」ともいう。)を貼り合わせる。 Next, a film-like coating material (hereinafter, also referred to as "second coating material") that is continuously conveyed is attached onto the coating film of the wavelength conversion resin composition.
 次いで、第1の被覆材及び第2の被覆材のうち活性エネルギー線を透過可能な被覆材側から活性エネルギー線を照射することにより、塗膜を硬化し、硬化物層を形成する。その後、規定のサイズに切り出すことにより、図1に示す構成の波長変換部材を得ることができる。 Next, the coating film is cured and a cured product layer is formed by irradiating the active energy rays from the side of the first coating material and the second coating material that can transmit the active energy rays. Then, by cutting out to a specified size, a wavelength conversion member having the configuration shown in FIG. 1 can be obtained.
 なお、第1の被覆材及び第2の被覆材のいずれも活性エネルギー線を透過可能でない場合には、第2の被覆材を貼り合わせる前に塗膜に活性エネルギー線を照射し、硬化物層を形成してもよい。 If neither the first coating material nor the second coating material can transmit the active energy rays, the coating film is irradiated with the active energy rays before the second coating material is bonded, and the cured product layer is formed. May be formed.
<バックライトユニット>
 本開示のバックライトユニットは、上述した本開示の波長変換部材と、光源とを備える。
<Backlight unit>
The backlight unit of the present disclosure includes the wavelength conversion member of the present disclosure described above and a light source.
 バックライトユニットとしては、色再現性を向上させる観点から、多波長光源化されたものが好ましい。好ましい一態様としては、430nm~480nmの波長域に発光中心波長を有し、半値幅(半値全幅)が100nm以下である発光強度ピークを有する青色光と、520nm~560nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する緑色光と、600nm~680nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する赤色光と、を発光するバックライトユニットを挙げることができる。なお、発光強度ピークの半値幅とは、ピーク高さの1/2の高さにおけるピーク幅を意味する。 The backlight unit is preferably a multi-wavelength light source from the viewpoint of improving color reproducibility. In a preferred embodiment, blue light having an emission center wavelength in the wavelength range of 430 nm to 480 nm and having an emission intensity peak having a half-value width (half-value full width) of 100 nm or less, and an emission center wavelength in the wavelength range of 520 nm to 560 nm. Green light having an emission intensity peak having a half-value width of 100 nm or less, and red light having an emission center wavelength in the wavelength range of 600 nm to 680 nm and having an emission intensity peak having a half-value width of 100 nm or less. A backlight unit that emits light can be mentioned. The half-value width of the emission intensity peak means the peak width at a height of 1/2 of the peak height.
 色再現性をより向上させる観点から、バックライトユニットが発光する青色光の発光中心波長は、440nm~475nmの範囲であることが好ましい。同様の観点から、バックライトユニットが発光する緑色光の発光中心波長は、520nm~545nmの範囲であることが好ましい。また、同様の観点から、バックライトユニットが発光する赤色光の発光中心波長は、610nm~640nmの範囲であることが好ましい。 From the viewpoint of further improving the color reproducibility, the emission center wavelength of the blue light emitted by the backlight unit is preferably in the range of 440 nm to 475 nm. From the same viewpoint, the emission center wavelength of the green light emitted by the backlight unit is preferably in the range of 520 nm to 545 nm. From the same viewpoint, the emission center wavelength of the red light emitted by the backlight unit is preferably in the range of 610 nm to 640 nm.
 また、色再現性をより向上させる観点から、バックライトユニットが発光する青色光、緑色光、及び赤色光の各発光強度ピークの半値幅は、いずれも80nm以下であることが好ましく、50nm以下であることがより好ましく、40nm以下であることがさらに好ましく、30nm以下であることが特に好ましく、25nm以下であることが極めて好ましい。 Further, from the viewpoint of further improving the color reproducibility, the half-value width of each emission intensity peak of the blue light, green light, and red light emitted by the backlight unit is preferably 80 nm or less, preferably 50 nm or less. It is more preferably 40 nm or less, particularly preferably 30 nm or less, and extremely preferably 25 nm or less.
 バックライトユニットの光源としては、例えば、430nm~480nmの波長域に発光中心波長を有する青色光を発光する光源を用いることができる。光源としては、例えば、LED(Light Emitting Diode)及びレーザーが挙げられる。青色光を発光する光源を用いる場合、波長変換部材は、少なくとも、赤色光を発光する量子ドット蛍光体R及び緑色光を発光する量子ドット蛍光体Gを含むことが好ましい。これにより、波長変換部材から発光される赤色光及び緑色光と、波長変換部材を透過した青色光とにより、白色光を得ることができる。 As the light source of the backlight unit, for example, a light source that emits blue light having a emission center wavelength in the wavelength range of 430 nm to 480 nm can be used. Examples of the light source include an LED (Light Emitting Diode) and a laser. When a light source that emits blue light is used, the wavelength conversion member preferably includes at least a quantum dot phosphor R that emits red light and a quantum dot phosphor G that emits green light. As a result, white light can be obtained from the red light and green light emitted from the wavelength conversion member and the blue light transmitted through the wavelength conversion member.
 また、バックライトユニットの光源としては、例えば、300nm~430nmの波長域に発光中心波長を有する紫外光を発光する光源を用いることもできる。光源としては、例えば、LED及びレーザーが挙げられる。紫外光を発光する光源を用いる場合、波長変換部材は、量子ドット蛍光体R及び量子ドット蛍光体Gとともに、励起光により励起され青色光を発光する量子ドット蛍光体Bを含むことが好ましい。これにより、波長変換部材から発光される赤色光、緑色光、及び青色光により、白色光を得ることができる。 Further, as the light source of the backlight unit, for example, a light source that emits ultraviolet light having a emission center wavelength in the wavelength range of 300 nm to 430 nm can be used. Examples of the light source include LEDs and lasers. When a light source that emits ultraviolet light is used, the wavelength conversion member preferably includes a quantum dot phosphor B that is excited by excitation light and emits blue light, together with a quantum dot phosphor R and a quantum dot phosphor G. As a result, white light can be obtained from the red light, green light, and blue light emitted from the wavelength conversion member.
 本開示のバックライトユニットは、エッジライト方式であっても直下型方式であってもよい。 The backlight unit of the present disclosure may be an edge light type or a direct type.
 エッジライト方式のバックライトユニットの概略構成の一例を図2に示す。但し、本開示のバックライトユニットは、図2の構成に限定されるものではない。また、図2における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。 Fig. 2 shows an example of the schematic configuration of the edge light type backlight unit. However, the backlight unit of the present disclosure is not limited to the configuration shown in FIG. Further, the size of the members in FIG. 2 is conceptual, and the relative relationship between the sizes of the members is not limited to this.
 図2に示すバックライトユニット20は、青色光Lを出射する光源21と、光源21から出射された青色光Lを導光して出射させる導光板22と、導光板22と対向配置される波長変換部材10と、波長変換部材10を介して導光板22と対向配置される再帰反射性部材23と、導光板22を介して波長変換部材10と対向配置される反射板24とを備える。波長変換部材10は、青色光Lの一部を励起光として赤色光L及び緑色光Lを発光し、赤色光L及び緑色光Lと、励起光とならなかった青色光Lとを出射する。この赤色光L、緑色光L、及び青色光Lにより、再帰反射性部材23から白色光Lが出射される。 The backlight unit 20 shown in FIG. 2 includes a light source 21 for emitting the blue light L B, a light guide plate 22 to be emitted guiding the blue light L B emitted from the light source 21, the light guide plate 22 and disposed to face The wavelength conversion member 10 is provided with a retroreflective member 23 arranged to face the light source plate 22 via the wavelength conversion member 10, and a reflector 24 arranged to face the wavelength conversion member 10 via the light guide plate 22. .. Wavelength conversion member 10 emits the red light L R and the green light L G part of the blue light L B as the excitation light, the red light L and R and the green light L G, the blue light was not the excitation light L Exit B. The red light L R, the green light L G, and the blue light L B, the white light L W is emitted from the retroreflective member 23.
<画像表示装置>
 本開示の画像表示装置は、上述した本開示のバックライトユニットを備える。画像表示装置としては特に制限されず、例えば、液晶表示装置が挙げられる。
<Image display device>
The image display device of the present disclosure includes the backlight unit of the present disclosure described above. The image display device is not particularly limited, and examples thereof include a liquid crystal display device.
 液晶表示装置の概略構成の一例を図3に示す。但し、本開示の液晶表示装置は、図3の構成に限定されるものではない。また、図3における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。 FIG. 3 shows an example of the schematic configuration of the liquid crystal display device. However, the liquid crystal display device of the present disclosure is not limited to the configuration shown in FIG. Further, the size of the members in FIG. 3 is conceptual, and the relative relationship between the sizes of the members is not limited to this.
 図3に示す液晶表示装置30は、バックライトユニット20と、バックライトユニット20と対向配置される液晶セルユニット31とを備える。液晶セルユニット31は、液晶セル32が偏光板33Aと偏光板33Bとの間に配置された構成とされる。 The liquid crystal display device 30 shown in FIG. 3 includes a backlight unit 20 and a liquid crystal cell unit 31 arranged to face the backlight unit 20. The liquid crystal cell unit 31 has a configuration in which the liquid crystal cell 32 is arranged between the polarizing plate 33A and the polarizing plate 33B.
 液晶セル32の駆動方式は特に制限されず、TN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、VA(Vertical Alignment)方式、IPS(In-Plane-Switching)方式、OCB(Optically Compensated Birefringence)方式等が挙げられる。 The drive method of the liquid crystal cell 32 is not particularly limited, and is a TN (Twisted Nematic) method, an STN (Super Twisted Nematic) method, a VA (Vertical Birefringence) method, an IPS (In-Plane-Switching) method, and an OCB (Optical Reference) method. The method and the like can be mentioned.
 以下、本開示を実施例により具体的に説明するが、本開示はこれらの実施例に限定されるものではない。 Hereinafter, the present disclosure will be specifically described with reference to Examples, but the present disclosure is not limited to these Examples.
<実施例1A~6A並びに比較例1A及び2A>
(波長変換用樹脂組成物の調製)
 表1に示す各成分を同表に示す配合量(単位:質量部)で混合することにより、実施例1A~6A並びに比較例1A及び2Aの波長変換用樹脂組成物をそれぞれ調製した。表1中の「-」は未配合を意味する。
 なお、表中の略号の意味は、以下の通りである。
PETMP:ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(SC有機化学株式会社、PEMP)
TCDD:トリシクロデカンジメタノールジアクリレート(新中村化学工業株式会社、A-DCP)
酸化チタン:Chemours社、タイピュア R-706、粒子径0.36μmを用いた。酸化チタンの表面には、酸化ケイ素を含む第一酸化物層、酸化アルミニウムを含む第二酸化物層及びポリオール化合物を含む有機物層が、第一酸化物層、第二酸化物層及び有機物層の順に設けられている。
Hyt:4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル(株式会社ADEKA、アデカスタブLA-7RD)
TPO:2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド(BASF社、IRGACURE TPO)
Green Gen3.5:CdSe/ZnS(コア/シェル)分散液(Nanosys社、Gen3.5 QD Concentrate)を用いた。このCdSe/ZnS(コア/シェル)分散液の分散媒体としては、イソボルニルアクリレートを使用した。CdSe/ZnS(コア/シェル)分散液中に、イソボルニルアクリレートが90質量%以上含有されている。
Red Gen2.8:CdSe/ZnS(コア/シェル)分散液(Nanosys社、Gen2.8 QD Concentrate)を用いた。このCdSe/ZnS(コア/シェル)分散液の分散媒体としては、イソボルニルアクリレートを使用した。CdSe/ZnS(コア/シェル)分散液中に、イソボルニルアクリレートが90質量%以上含有されている。
<Examples 1A to 6A and Comparative Examples 1A and 2A>
(Preparation of resin composition for wavelength conversion)
The wavelength conversion resin compositions of Examples 1A to 6A and Comparative Examples 1A and 2A were prepared by mixing each component shown in Table 1 in the blending amount (unit: parts by mass) shown in the same table. "-" In Table 1 means unblended.
The meanings of the abbreviations in the table are as follows.
PETMP: Pentaerythritol tetrakis (3-mercaptopropionate) (SC Organic Chemistry Co., Ltd., PEMP)
TCDD: Tricyclodecanedimethanol diacrylate (Shin Nakamura Chemical Industry Co., Ltd., A-DCP)
Titanium oxide: The Chemours Company, Typure R-706, particle size 0.36 μm was used. On the surface of titanium oxide, a first oxide layer containing silicon oxide, a second oxide layer containing aluminum oxide, and an organic material layer containing a polyol compound are provided in this order in the order of the first oxide layer, the second oxide layer, and the organic material layer. Has been done.
Hyt: 4-Hydroxy-2,2,6,6-Tetramethylpiperidin-N-oxyl (ADEKA Corporation, ADEKA STAB LA-7RD)
TPO: 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (BASF, IRGACURE TPO)
Green Gen3.5: CdSe / ZnS (core / shell) dispersion (Nanosys, Gen3.5 QD Concentrate) was used. Isobornyl acrylate was used as a dispersion medium for this CdSe / ZnS (core / shell) dispersion liquid. The CdSe / ZnS (core / shell) dispersion contains 90% by mass or more of isobornyl acrylate.
Red Gen2.8: CdSe / ZnS (core / shell) dispersion (Nanosys, Gen2.8 QD Concentrate) was used. Isobornyl acrylate was used as a dispersion medium for this CdSe / ZnS (core / shell) dispersion liquid. The CdSe / ZnS (core / shell) dispersion contains 90% by mass or more of isobornyl acrylate.
(波長変換部材の製造)
 上記で得られた各波長変換用樹脂組成物を平均厚み100μmのPETフィルム(TA063、東洋紡株式会社)(被覆材)上に塗布して塗膜を形成した。この塗膜上に厚み100μmのPETフィルム(TA063、東洋紡株式会社)(被覆材)を貼り合わせ、紫外線照射装置(アイグラフィックス株式会社)を用いて紫外線を照射(照射量:1000mJ/cm)することにより、波長変換用樹脂硬化物を含む硬化物層の両面に被覆材が配置された波長変換部材をそれぞれ得た。硬化物層の平均厚みは100μmであった。
(Manufacturing of wavelength conversion member)
Each wavelength conversion resin composition obtained above was applied onto a PET film (TA063, Toyobo Co., Ltd.) (coating material) having an average thickness of 100 μm to form a coating film. A PET film (TA063, Toyo Boseki Co., Ltd.) (coating material) with a thickness of 100 μm is laminated on this coating film, and ultraviolet rays are irradiated using an ultraviolet irradiation device (Igraphics Co., Ltd.) (irradiation amount: 1000 mJ / cm 2 ). By doing so, wavelength conversion members in which coating materials were arranged on both sides of the cured product layer containing the cured resin for wavelength conversion were obtained. The average thickness of the cured product layer was 100 μm.
<評価>
 実施例1A~6A並びに比較例1A及び2Aで得られた波長変換部材を用いて、以下の各評価項目を評価した。結果を表1に示す。
<Evaluation>
Each of the following evaluation items was evaluated using the wavelength conversion members obtained in Examples 1A to 6A and Comparative Examples 1A and 2A. The results are shown in Table 1.
(輝度維持率)
 上記で得られた各波長変換部材を、直径17mmの寸法に裁断し、評価用サンプルを準備した。評価用サンプルについてファイバマルチチャンネル分光器(オーシャンフォトニクス株式会社、オーシャンビュー)にて輝度の測定を行った。下記条件1A~条件4Aの条件で評価用サンプルを処理し、処理前後の評価用サンプルの輝度を求め、下記式に従って波長変換部材の輝度維持率を算出した。
  輝度維持率:(RLb/RLa)×100
   RLa:初期輝度
   RLb:条件1A~条件4Aのいずれかの条件での処理後の輝度
(条件)
条件1A:85℃、5%RHの条件に設定された恒温恒湿槽に波長変換部材を100時間静置した。静置の間、連続して波長変換部材に、150mWの光源(Light BOX(Nanosys社)(LEDピーク波長448nm))から光照射を行った。
条件2A:65℃、95%RHの条件に設定された恒温恒湿槽に波長変換部材を100時間静置した。静置の間、連続して波長変換部材に、60mWの光源(Light BOX(Nanosys社)(LEDピーク波長448nm))から光照射を行った。
条件3A:65℃、95%RHの条件に設定された恒温恒湿槽に波長変換部材を100時間静置した。
条件4A:25℃、50%RHの条件に設定された恒温恒湿槽に波長変換部材を100時間静置した。
(Brightness maintenance rate)
Each wavelength conversion member obtained above was cut into a size of 17 mm in diameter, and an evaluation sample was prepared. The brightness of the evaluation sample was measured with a fiber multi-channel spectrometer (Ocean Photonics Co., Ltd., Ocean View). The evaluation sample was processed under the conditions of the following conditions 1A to 4A, the brightness of the evaluation sample before and after the processing was obtained, and the brightness maintenance rate of the wavelength conversion member was calculated according to the following formula.
Luminance maintenance rate: (RLb / RLa) x 100
RLa: Initial brightness RLb: Brightness after processing under any of the conditions 1A to 4A (condition)
Condition 1A: The wavelength conversion member was allowed to stand for 100 hours in a constant temperature and humidity chamber set under the conditions of 85 ° C. and 5% RH. During the standing, the wavelength conversion member was continuously irradiated with light from a 150 mW light source (Light BOX (Nanosys) (LED peak wavelength 448 nm)).
Condition 2A: The wavelength conversion member was allowed to stand for 100 hours in a constant temperature and humidity chamber set under the conditions of 65 ° C. and 95% RH. During the standing, the wavelength conversion member was continuously irradiated with light from a 60 mW light source (Light BOX (Nanosys) (LED peak wavelength 448 nm)).
Condition 3A: The wavelength conversion member was allowed to stand for 100 hours in a constant temperature and humidity chamber set under the conditions of 65 ° C. and 95% RH.
Condition 4A: The wavelength conversion member was allowed to stand for 100 hours in a constant temperature and humidity chamber set under the conditions of 25 ° C. and 50% RH.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例1B~6B並びに比較例1B及び2B>
(波長変換部材の製造)
 実施例1B~6B並びに比較例1B及び2Bの波長変換用樹脂組成物は、各々実施例1A~6A並びに比較例1A及び2Aの波長変換用樹脂組成物と同じとした。
 実施例1B~6B並びに比較例1B及び2Bでは、PETフィルムに替えて、無機層を有するバリアフィルム(平均厚み125μmのバリアフィルム(大日本印刷株式会社))を用いた。
 各波長変換用樹脂組成物をバリアフィルム(平均厚み125μmのバリアフィルム(大日本印刷株式会社))(被覆材)上に塗布して塗膜を形成した。この塗膜上にバリアフィルム(平均厚み125μmのバリアフィルム(大日本印刷株式会社))(被覆材)を貼り合わせ、紫外線照射装置(アイグラフィックス株式会社)を用いて紫外線を照射(照射量:1000mJ/cm)することにより、波長変換用樹脂硬化物を含む硬化物層の両面に被覆材が配置された波長変換部材をそれぞれ得た。硬化物層の平均厚みは100μmであった。
<Examples 1B to 6B and Comparative Examples 1B and 2B>
(Manufacturing of wavelength conversion member)
The wavelength conversion resin compositions of Examples 1B to 6B and Comparative Examples 1B and 2B were the same as the wavelength conversion resin compositions of Examples 1A to 6A and Comparative Examples 1A and 2A, respectively.
In Examples 1B to 6B and Comparative Examples 1B and 2B, a barrier film having an inorganic layer (a barrier film having an average thickness of 125 μm (Dainippon Printing Co., Ltd.)) was used instead of the PET film.
Each wavelength conversion resin composition was applied onto a barrier film (barrier film having an average thickness of 125 μm (Dainippon Printing Co., Ltd.)) (coating material) to form a coating film. A barrier film (barrier film with an average thickness of 125 μm (Dainippon Printing Co., Ltd.)) (coating material) is attached to this coating film, and ultraviolet rays are irradiated using an ultraviolet irradiation device (Igraphics Co., Ltd.) (irradiation amount: By 1000 mJ / cm 2 ), wavelength conversion members in which coating materials were arranged on both sides of a cured product layer containing a cured resin for wavelength conversion were obtained. The average thickness of the cured product layer was 100 μm.
<評価>
 実施例1B~6B並びに比較例1B及び2Bで得られた波長変換部材を用いて、以下の各評価項目を評価した。結果を表2に示す。
<Evaluation>
Each of the following evaluation items was evaluated using the wavelength conversion members obtained in Examples 1B to 6B and Comparative Examples 1B and 2B. The results are shown in Table 2.
(輝度維持率)
 輝度維持率は、実施例1A等と同様にして評価した。得られた結果を表2に示す。なお、処理条件は、条件1A~条件4Aに替えて、下記条件1B~条件4Bとした。
(条件)
条件1B:85℃、5%RHの条件に設定された恒温恒湿槽に波長変換部材を500時間静置した。静置の間、連続して波長変換部材に、150mWの光源(Light BOX(Nanosys社)(LEDピーク波長448nm))から光照射を行った。
条件2B:65℃、95%RHの条件に設定された恒温恒湿槽に波長変換部材を500時間静置した。静置の間、連続して波長変換部材に、60mWの光源(Light BOX(Nanosys社)(LEDピーク波長448nm))から光照射を行った。
条件3B:65℃、95%RHの条件に設定された恒温恒湿槽に波長変換部材を500時間静置した。
条件4B:25℃、50%RHの条件に設定された恒温恒湿槽に波長変換部材を500時間静置した。
(Brightness maintenance rate)
The brightness maintenance rate was evaluated in the same manner as in Example 1A and the like. The results obtained are shown in Table 2. The processing conditions were changed to the following conditions 1B to 4B instead of the conditions 1A to 4A.
(conditions)
Condition 1B: The wavelength conversion member was allowed to stand for 500 hours in a constant temperature and humidity chamber set under the conditions of 85 ° C. and 5% RH. During the standing, the wavelength conversion member was continuously irradiated with light from a 150 mW light source (Light BOX (Nanosys) (LED peak wavelength 448 nm)).
Condition 2B: The wavelength conversion member was allowed to stand for 500 hours in a constant temperature and humidity chamber set under the conditions of 65 ° C. and 95% RH. During the standing, the wavelength conversion member was continuously irradiated with light from a 60 mW light source (Light BOX (Nanosys) (LED peak wavelength 448 nm)).
Condition 3B: The wavelength conversion member was allowed to stand for 500 hours in a constant temperature and humidity chamber set under the conditions of 65 ° C. and 95% RH.
Condition 4B: The wavelength conversion member was allowed to stand for 500 hours in a constant temperature and humidity chamber set under the conditions of 25 ° C. and 50% RH.
(黒点不良)
 直径17mmの寸法に裁断された評価用波長変換部材を、下記条件5Bの条件で処理した。処理済みの評価用波長変換部材について、図4に示す評価装置A及び図5に示す評価装置Bを用いて目視により黒点不良の発生の有無を評価した。評価装置Bに比較して評価装置Aの方が、黒点不良が観察されやすい。
 図4に示す評価装置Aは、青色LED光源40と、青色LED光源40上に配置された拡散板42とを有する。青色LED光源40は、複数個の青色LED44と、青色LED44を駆動する駆動基板46と、駆動基板46表面における青色LED44の周囲に配置された反射シート48とを有する。複数個の青色LED44の青色光を射出する側と反対側には、アルミニウムプレート50が配置されている。青色LED光源40と拡散板42との間には、スペーサ52によって一定の間隙が設けられている。
 評価装置Aの拡散板42上に処理済みの評価用波長変換部材54を配置し、拡散板42の表面と直交する線Lに対して±10°の範囲内の角度で処理済みの評価用波長変換部材54を目視により観察し、評価した。
 また、図5に示す評価装置Bでは、評価装置Aにさらに一対のプリズムシート56A及びプリズムシート56Bが、処理済みの評価用波長変換部材54上に、プリズムシートの溝方向が直交する状態となるように配置されている。
(条件)
条件5B:85℃、5%RHの条件に設定された恒温恒湿槽に波長変換部材を500時間静置した。
(基準)
Lv1:評価装置Aでも黒点不良が観察されない。
Lv2:評価装置Aでは黒点不良が観察されるが、評価装置Bでは黒点不良が観察されない。
Lv3:評価装置Bでも黒点不良が観察される。
 得られた結果を表2に示す。
(Poor black spot)
The evaluation wavelength conversion member cut into a size of 17 mm in diameter was treated under the following condition 5B. With respect to the processed wavelength conversion member for evaluation, the presence or absence of black spot defects was visually evaluated using the evaluation device A shown in FIG. 4 and the evaluation device B shown in FIG. Black spot defects are more likely to be observed in the evaluation device A than in the evaluation device B.
The evaluation device A shown in FIG. 4 has a blue LED light source 40 and a diffuser plate 42 arranged on the blue LED light source 40. The blue LED light source 40 has a plurality of blue LEDs 44, a drive substrate 46 for driving the blue LEDs 44, and a reflective sheet 48 arranged around the blue LEDs 44 on the surface of the drive substrate 46. An aluminum plate 50 is arranged on the side opposite to the side that emits blue light of the plurality of blue LEDs 44. A certain gap is provided between the blue LED light source 40 and the diffuser plate 42 by the spacer 52.
The processed evaluation wavelength conversion member 54 is arranged on the diffuser plate 42 of the evaluation device A, and the processed evaluation wavelength is arranged at an angle within ± 10 ° with respect to the line L orthogonal to the surface of the diffuser plate 42. The conversion member 54 was visually observed and evaluated.
Further, in the evaluation device B shown in FIG. 5, a pair of prism sheets 56A and a prism sheet 56B are further placed on the evaluation device A so that the groove directions of the prism sheets are orthogonal to each other on the processed wavelength conversion member 54 for evaluation. It is arranged like this.
(conditions)
Condition 5B: The wavelength conversion member was allowed to stand for 500 hours in a constant temperature and humidity chamber set under the conditions of 85 ° C. and 5% RH.
(Standard)
Lv1: No black spot defect is observed even in the evaluation device A.
Lv2: Black spot defect is observed in the evaluation device A, but no black spot defect is observed in the evaluation device B.
Lv3: Black spot defects are also observed in the evaluation device B.
The results obtained are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2の評価結果から、一分子中にカルボキシ基とチオール基とを有する化合物を含有する実施例の波長変換用樹脂組成物から形成された波長変換部材は、一分子中にカルボキシ基とチオール基とを有する化合物を含有しない比較例の波長変換用樹脂組成物から形成された波長変換部材に比較して、量子ドット蛍光体の発光強度の低下が抑制されることがわかる。 From the evaluation results of Tables 1 and 2, the wavelength conversion member formed from the wavelength conversion resin composition of the example containing the compound having a carboxy group and a thiol group in one molecule has a carboxy group in one molecule. It can be seen that the decrease in the emission intensity of the quantum dot phosphor is suppressed as compared with the wavelength conversion member formed from the wavelength conversion resin composition of the comparative example which does not contain the compound having the thiol group and the thiol group.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (17)

  1.  脂環式構造を有する多官能(メタ)アクリレート化合物、多官能チオール化合物、一分子中にカルボキシ基とチオール基とを有する化合物、光重合開始剤及び量子ドット蛍光体を含む波長変換用樹脂組成物。 A resin composition for wavelength conversion containing a polyfunctional (meth) acrylate compound having an alicyclic structure, a polyfunctional thiol compound, a compound having a carboxy group and a thiol group in one molecule, a photopolymerization initiator, and a quantum dot phosphor. ..
  2.  前記一分子中にカルボキシ基とチオール基とを有する化合物に含まれるカルボキシ基が、2個以下である請求項1に記載の波長変換用樹脂組成物。 The resin composition for wavelength conversion according to claim 1, wherein the compound having a carboxy group and a thiol group in one molecule contains two or less carboxy groups.
  3.  前記一分子中にカルボキシ基とチオール基とを有する化合物に含まれるチオール基が、2個以下である請求項1又は請求項2に記載の波長変換用樹脂組成物。 The resin composition for wavelength conversion according to claim 1 or 2, wherein the compound having a carboxy group and a thiol group in one molecule contains two or less thiol groups.
  4.  前記一分子中にカルボキシ基とチオール基とを有する化合物に含まれるチオール基の少なくとも1つが、一級チオール基である請求項1~請求項3のいずれか1項に記載の波長変換用樹脂組成物。 The wavelength conversion resin composition according to any one of claims 1 to 3, wherein at least one of the thiol groups contained in the compound having a carboxy group and a thiol group in one molecule is a primary thiol group. ..
  5.  前記一分子中にカルボキシ基とチオール基とを有する化合物の分子量が、80~300である請求項1~請求項4のいずれか1項に記載の波長変換用樹脂組成物。 The wavelength conversion resin composition according to any one of claims 1 to 4, wherein the compound having a carboxy group and a thiol group in one molecule has a molecular weight of 80 to 300.
  6.  前記一分子中にカルボキシ基とチオール基とを有する化合物が、脂肪族化合物である請求項1~請求項5のいずれか1項に記載の波長変換用樹脂組成物。 The wavelength conversion resin composition according to any one of claims 1 to 5, wherein the compound having a carboxy group and a thiol group in one molecule is an aliphatic compound.
  7.  単官能(メタ)アクリレート化合物を含む請求項1~請求項6のいずれか1項に記載の波長変換用樹脂組成物。 The resin composition for wavelength conversion according to any one of claims 1 to 6, which contains a monofunctional (meth) acrylate compound.
  8.  液状媒体を含有しないか又は液状媒体の含有率が0.5質量%以下である請求項1~請求項7のいずれか1項に記載の波長変換用樹脂組成物。 The resin composition for wavelength conversion according to any one of claims 1 to 7, which does not contain a liquid medium or has a liquid medium content of 0.5% by mass or less.
  9.  白色顔料を含む請求項1~請求項8のいずれか1項に記載の波長変換用樹脂組成物。 The wavelength conversion resin composition according to any one of claims 1 to 8, which contains a white pigment.
  10.  請求項1~請求項9のいずれか1項に記載の波長変換用樹脂組成物の硬化物である波長変換用樹脂硬化物。 A cured resin for wavelength conversion, which is a cured product of the resin composition for wavelength conversion according to any one of claims 1 to 9.
  11.  動的粘弾性測定により測定されたガラス転移温度が、85℃以上である請求項10に記載の波長変換用樹脂硬化物。 The cured resin for wavelength conversion according to claim 10, wherein the glass transition temperature measured by dynamic viscoelasticity measurement is 85 ° C. or higher.
  12.  請求項10又は請求項11のいずれか1項に記載の波長変換用樹脂硬化物を有する波長変換部材。 A wavelength conversion member having the cured resin for wavelength conversion according to any one of claims 10 and 11.
  13.  前記波長変換用樹脂硬化物の少なくとも一部を被覆する被覆材を有する請求項12に記載の波長変換部材。 The wavelength conversion member according to claim 12, further comprising a coating material that covers at least a part of the cured resin for wavelength conversion.
  14.  フィルム状である請求項12又は請求項13に記載の波長変換部材。 The wavelength conversion member according to claim 12 or 13, which is in the form of a film.
  15.  画像表示用である請求項12~請求項14のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 12 to 14, which is for displaying an image.
  16.  請求項12~請求項15のいずれか1項に記載の波長変換部材と、光源と、を備えるバックライトユニット。 A backlight unit including the wavelength conversion member according to any one of claims 12 to 15, and a light source.
  17.  請求項16に記載のバックライトユニットを備える画像表示装置。 An image display device including the backlight unit according to claim 16.
PCT/JP2019/042308 2019-10-29 2019-10-29 Resin composition for wavelength conversion, cured resin material for wavelength conversion, wavelength conversion member, backlight unit and image display device WO2021084603A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042308 WO2021084603A1 (en) 2019-10-29 2019-10-29 Resin composition for wavelength conversion, cured resin material for wavelength conversion, wavelength conversion member, backlight unit and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042308 WO2021084603A1 (en) 2019-10-29 2019-10-29 Resin composition for wavelength conversion, cured resin material for wavelength conversion, wavelength conversion member, backlight unit and image display device

Publications (1)

Publication Number Publication Date
WO2021084603A1 true WO2021084603A1 (en) 2021-05-06

Family

ID=75715881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042308 WO2021084603A1 (en) 2019-10-29 2019-10-29 Resin composition for wavelength conversion, cured resin material for wavelength conversion, wavelength conversion member, backlight unit and image display device

Country Status (1)

Country Link
WO (1) WO2021084603A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068781A1 (en) * 2015-10-20 2017-04-27 富士フイルム株式会社 Polymerizable composition, polymer, wavelength conversion member, backlight unit, and liquid crystal display device
JP2018155946A (en) * 2017-03-17 2018-10-04 大日本印刷株式会社 Light wavelength conversion member, backlight device, and image display device
WO2019189495A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
JP2019175952A (en) * 2018-03-27 2019-10-10 日立化成株式会社 Image display device, curable composition, wavelength conversion member, and backlight unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068781A1 (en) * 2015-10-20 2017-04-27 富士フイルム株式会社 Polymerizable composition, polymer, wavelength conversion member, backlight unit, and liquid crystal display device
JP2018155946A (en) * 2017-03-17 2018-10-04 大日本印刷株式会社 Light wavelength conversion member, backlight device, and image display device
WO2019189495A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
JP2019175952A (en) * 2018-03-27 2019-10-10 日立化成株式会社 Image display device, curable composition, wavelength conversion member, and backlight unit

Similar Documents

Publication Publication Date Title
JP6760509B2 (en) Wavelength conversion member, backlight unit, image display device, wavelength conversion resin composition and wavelength conversion resin cured product
JP6782419B2 (en) Wavelength conversion member, backlight unit, image display device, wavelength conversion resin composition and wavelength conversion resin cured product
JPWO2019189495A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition
WO2019186734A1 (en) Wavelength conversion member, backlight unit, image display device, curable composition and cured product
JPWO2019189269A1 (en) Wavelength conversion member, backlight unit, and image display device
JP6702515B2 (en) Wavelength conversion member, backlight unit, image display device and curable composition
WO2020184562A1 (en) Wavelength conversion member, backlight unit, image display device, and wavelength conversion resin composition
JP6658990B1 (en) Wavelength conversion member, backlight unit, image display device, and curable composition
WO2021084603A1 (en) Resin composition for wavelength conversion, cured resin material for wavelength conversion, wavelength conversion member, backlight unit and image display device
WO2019186735A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition
WO2022013983A1 (en) Wavelength conversion member, backlight unit, and image display device
JP2021015284A (en) Wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion, and cured resin product for wavelength conversion
WO2022208663A1 (en) Wavelength conversion member, backlight unit, image display device, and curable composition
JP6798655B1 (en) Wavelength conversion member and its use, backlight unit, and image display device
WO2019186730A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition
JP2021173838A (en) Wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion, and cured resin product for wavelength conversion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.07.2022).

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19950246

Country of ref document: EP

Kind code of ref document: A1