WO2021083760A1 - Axialflussmaschine für ein elektrisches bearbeitungsgerät sowie elektrisches bearbeitungsgerät mit einer axialflussmaschine - Google Patents

Axialflussmaschine für ein elektrisches bearbeitungsgerät sowie elektrisches bearbeitungsgerät mit einer axialflussmaschine Download PDF

Info

Publication number
WO2021083760A1
WO2021083760A1 PCT/EP2020/079615 EP2020079615W WO2021083760A1 WO 2021083760 A1 WO2021083760 A1 WO 2021083760A1 EP 2020079615 W EP2020079615 W EP 2020079615W WO 2021083760 A1 WO2021083760 A1 WO 2021083760A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
machine
axial flux
axial
flux machine
Prior art date
Application number
PCT/EP2020/079615
Other languages
English (en)
French (fr)
Inventor
Andreas ECHLE
Nejila Parspour
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP20796550.0A priority Critical patent/EP4052355A1/de
Priority to US17/754,576 priority patent/US20240063668A1/en
Priority to CN202080075057.1A priority patent/CN114600342A/zh
Publication of WO2021083760A1 publication Critical patent/WO2021083760A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/182Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to stators axially facing the rotor, i.e. with axial or conical air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores

Definitions

  • the invention relates to an axial flux machine, in particular a one-sided axial flux motor, for an electrical machining device and an electrical machining device with an axial flux machine according to the preamble of the independent claims.
  • Axial flux machines have the advantage over conventional electric machines with radial flow direction that they are very efficient and have a significantly reduced overall length. In addition, a higher torque or power density can be achieved with the same outer diameter. These improvements are due, among other things, to a larger air gap area with a comparable construction volume. Thanks to the lower iron volume of the rotating components, there is also a higher degree of efficiency over a larger speed range.
  • stator of an axial flux machine is relatively complex due to the required 3-D magnetic flux guidance.
  • the grooves in the laminated core usually have to be punched out before the stator winding is wound.
  • the individual sheets result in disadvantages such that the pole pieces only protrude tangentially and that the stator teeth with the pronounced pole pieces cannot be wound externally, which results in a low fill factor of the stator winding and a correspondingly reduced efficiency.
  • the stator of the axial flow machine has a sintered support structure made of soft magnetic material and an insert designed as a laminated core.
  • the insert is connected to the support structure via a form fit and / or force fit and at least partially forms a pole piece of the axial flow machine.
  • the laminated core is formed by means of individual, stacked layers of single metal sheets, which consist of a soft iron. The individual sheets are electrically connected to one another in an insulated manner with respect to the respectively adjacent sheet.
  • the stators of axial flux machines are also built purely from composite materials (Soft Magnetic Composites - SMC).
  • S MC materials consist of high-purity iron powder with a special surface coating on each individual particle. This electrically insulating surface ensures a high electrical resistance even after pressing and heat treatment, which in turn minimizes or prevents eddy current losses.
  • SMC materials are known to the person skilled in the art, so that their composition will not be discussed further here.
  • stators made of composite materials are particularly brittle or sensitive to impact and have a reduced permeability compared to soft magnetic sheet metal.
  • the invention relates to an axial flux machine, in particular a one-sided axial flux motor, for an electrical machining device, with a machine shaft, in particular a motor shaft, a disk-shaped stator and a disk-shaped rotor arranged in the axial direction of the machine shaft adjacent to the stator, the stator as a winding carrier for at least one Stator winding is formed, and the rotatably connected to the machine shaft dene rotor relative to the stator can be set in a rotary motion.
  • the stator consists of a combination of composite materials, in particular of fiber-plastic Ver, and soft magnetic iron.
  • an axial flux machine that is extremely resistant to mechanical loads and at the same time very powerful and efficient, or a high-torque axial flux motor, can be provided.
  • This enables the use in electrical processing devices, which on the one hand have to be very robust against shocks and vibrations and on the other hand have to deliver very high electromechanical performance over a longer period of use.
  • the invention therefore also relates to an electrical processing device, in particular an electric tool machine, with an axial flux machine according to the invention, in particular an axial flux motor according to the invention.
  • the electric machining device is to be understood to mean, among other things, battery-powered or mains-operated electric machine tools for machining workpieces by means of an electrically driven insert tool.
  • the electrical processing device can be designed both as a handheld electrical tool and as a stationary electrical machine tool.
  • Typical power tools in this context are hand or standing drills, screwdrivers, impact drills, rotary hammers, demolition hammers, planes, angle grinders, orbital grinders, polishing machines or the like.
  • Motor-driven garden tools such as lawnmowers, lawn trimmers, pruning saws or the like are also suitable as electrical processing devices.
  • the invention is applicable to axial flow machines in household and kitchen appliances, such as washing machines, dryers, vacuum cleaners, mixers, etc.
  • axial flux machine can include both an axial flux motor and an axial flux generator for converting mechanical into electrical energy.
  • An axial flux machine is also to be understood as an axial flux motor that is used at least temporarily for recuperation from mechanical to electrical energy, as can be the case, for example, with electrodynamic braking of an axial flux motor.
  • a plurality of stator teeth and a first stator yoke of the stator are formed from the composite materials. This ensures with particular advantage a high torque density of the axial flow machine.
  • tangential and radial overhangs of the pole piece can be achieved. This has the advantage that the individual tooth windings can be embedded in the respective stator teeth, which in turn leads to a reduction in the end windings.
  • the additional design of the first stator yoke made of composite materials ensures a defined transition of the magnetic flux from the stator teeth to the stator yoke.
  • stator teeth formed from the composite materials and the first stator yoke are permanently connected to one another by a joining process, in particular glued.
  • the coil carrier can be wound externally by applying the stator winding or the individual tooth windings to the stator teeth during the joining process, so that a high fill factor of the stator winding can be achieved.
  • a second stator yoke made of soft magnetic iron is arranged in the axial direction of the machine shaft between the first stator yoke and the stator teeth. This stabilizes the stator under heavy mechanical stress and, due to its high permeability, ensures improved magnetic flux guidance.
  • the second stator yoke is designed as a laminated core with a plurality of grooves distributed over its outer circumference for receiving the composite materials. It is more the position of the grooves as their width is decisive. Furthermore, the second stator yoke has a plurality of annularly arranged, circular segment-shaped recesses for receiving the stator teeth. Each groove interrupts the outer circumference of the second stator yoke up to the respective radially inner recess.
  • Each stator tooth has a circular segment-shaped tooth flange which extends through the circular segment-shaped recess of the second stator yoke, and a circular segment-shaped support frame encompassing the toothed flange with a U-profile running around to accommodate the stator winding. Toothed flange and carrier frame are permanently connected to one another via a joining process, in particular glued.
  • the rotor of the axial flow machine is designed as a laminated ring made of magnetically soft iron. It also carries an alternating magnetized ring magnet that interacts with the stator winding of the stator to set the rotor in a rotary motion in Mo gate operation or to induce a voltage in the stator winding in the generator operation.
  • Fig. 1 a section through an axial flow machine according to the invention in
  • FIG. 2 a schematic view of a further exemplary embodiment of a stator of the axial flux machine according to the invention
  • 3 an exploded view of the stator from FIG. 2 in a schematic view without the stator winding
  • Fig. 5 a schematic sectional view of a rotor of the fiction, contemporary axial flow machine
  • FIG. 7 a further schematic view of the empty housing of the axial flow machine according to the invention from FIG. 6,
  • FIG. 9 two exemplary embodiments of triangular parallel connections in FIG.
  • an electrical processing device in particular an electric machine tool in the form of a hammer drill, with an axial flow machine according to the invention.
  • FIG. 1 a first embodiment of an axial flow machine 10 according to the invention is shown in a section.
  • the axial flux machine 10 can equally be designed as an axial flux motor or as an axial flux generator.
  • a disk-shaped rotor 14 is arranged in a rotationally fixed manner with the machine shaft 12.
  • the rotor 14 is designed as a laminated ring 16 made of soft magnetic iron and carries a alternately magnetized magnetic ring 18, which will be discussed in greater detail with reference to FIG.
  • the rotor 14 can alternatively consist of non-soft magnetic materials such as iron or of a soft magnetic steel with a low carbon content.
  • a disk-shaped stator 20 which is designed as a winding carrier 22 for at least one stator winding 24 (see FIG. 2) and which has a first stator yoke 26 which serves as a magnetic return path of the magnetic field resulting from the stator winding 24 and the magnetic ring 18.
  • the rotor 14 can be set in a rotary movement via the motor shaft 12.
  • the motor shaft 12 is on the one hand via a first bearing 28 integrated in the stator yoke 26, which is designed, for example, as a fixed bearing 30, and on the other hand via a second bearing 36 accommodated in a housing 32 of an electrical machining device 34 (see FIG. 10), the example is designed as a floating bearing 38, rotatably mounted.
  • the first and second bearings 28, 36 are preferably designed as ball bearings.
  • the first bearing 28 is integrated directly into the winding support 22 and / or into the first stator yoke 26. For example, it can be pressed in or injected.
  • one-sided axial flux machines have a very high tensile force in the axial direction A of the machine shaft 12 in the air gap between the rotor 14 and the stator 20, this can be intercepted by the first bearing 28, designed as a fixed bearing 30, in the first stator yoke 26. It is therefore not necessary to absorb the axial force through the housing 32 of the electrical machining device 34 and / or through a housing of the axial flow machine (cf. FIGS. 6 and 7).
  • a fan wheel 40 is arranged on the machine shaft 12 in a rotationally fixed manner and transports cooling air through the axial flow machine 10.
  • the fan wheel 40 preferably sucks in the cooling air radially in order to then convey it axially through the axial flow machine 10.
  • FIG. 2 shows a schematic view of a further exemplary embodiment of the disk-shaped stator 20 of the axial flux machine 10 according to the invention
  • Stator 20 essentially comprises the first stator yoke 26, a second stator yoke 42 arranged adjacent to it in the axial direction A of the machine shaft 12, and the winding carrier 22 arranged adjacent to the second stator yoke 42 in the axial direction A of the machine shaft 12.
  • the winding carrier 22 consists essentially of a plurality of, in particular six, stator teeth 44 carrying the stator winding 24, each stator tooth 44 being assigned an individual tooth winding 46 of the stator winding 24.
  • the individual tooth windings 46 are electrically connected to one another in a triangular parallel circuit 48.
  • the stator teeth 44 and the first stator yoke 26 of the stator 20 are made of composite materials (Soft Magnetic Composites - SMC) and are permanently connected to one another, in particular glued, by means of a joining process.
  • SMC materials consist of high-purity iron powder with a special surface coating on each individual particle. This electrically insulating surface ensures a high electrical resistance even after pressing and heat treatment, which in turn minimizes or prevents eddy current losses.
  • stator teeth 44 with the first stator yoke 26 enables the winding carrier 22 to be wound externally by applying the stator winding 24 or the individual tooth windings 46 to the stator teeth 44 during the joining process. In this way, a high fill factor of the stator winding 24 can be achieved.
  • the number of grooves 50 corresponds to the number of stator teeth 44.
  • the second stator yoke 42 thus stabilizes the stator 20 in the event of strong mechanical stress and ensures improved magnetic flux guidance due to its high permeability.
  • the grooving of the laminated core 48 not only causes the Better absorption of the composite materials and thus the higher stability of the stator 20, but also ensures an optimized guidance of the eddy currents caused by the stator winding 24 in essence.
  • the second stator yoke 42 has ring-shaped, circular segment-shaped recesses 52 for receiving the stator teeth 44, each groove 50 interrupting the outer circumference of the second stator yoke 42 up to the respective radially inner recess 52.
  • Each stator tooth 44 is formed by a circular segment-shaped tooth flange 54, which engages through the circular segment-shaped recess 52 of the second stator yoke 42, and a circular segment-shaped support frame 56 encompassing the tooth flange 54 with a circumferential U-profile 58 for receiving the stator winding 24 or the individual tooth windings 46 .
  • Tooth flange 54 and support frame 56 are permanently connected to one another, in particular glued, by means of a joining process.
  • FIG. 4 shows a schematic view of a section of the stator 20 according to the invention in a further exemplary embodiment.
  • the stator teeth 44 or their tooth flanges 54 are passed through the recesses 52 of the second stator yoke 42 and permanently connected to the first stator yoke 26 by laser welding.
  • a bore 60 is provided in the first stator yoke 26, through which the stator tooth 44 can be connected to the first stator yoke 26 by means of laser welding.
  • a weld seam extends over the entire circumference of the bore 60.
  • the weld seam extends only selectively over the circumference of the bore 60.
  • stator yoke 42 1, it is alternatively also conceivable to use the second To dispense with the stator yoke 42 and instead to connect the first stator yoke 26, designed as a laminated ring 16 made of soft magnetic iron, directly to the stator teeth 44 made of composite materials, in particular to weld it by means of the bore 60 in the first stator yoke 42.
  • FIG. 5 a schematic view of the rotor 14 of the axial flow machine 10 according to the invention is shown in section.
  • the rotor 14 is designed as a laminated ring 16 made of soft magnetic iron. It also carries an alternately polarized magnet ring 18, which interacts with the stator winding 24 of the stator 20 in order to set the rotor 14 in rotation during motor operation or to induce a voltage in the stator winding 24 in generator operation.
  • the magnets of the magnet ring 18, not shown in detail, are designed in the shape of a segment of a circle that their surfaces largely overlap with the segment of a circle stator teeth 44 in order to achieve an optimal magnetic flux in conjunction with a high torque.
  • a ring with embedded individual magnets is alternatively also conceivable.
  • the rotor 14 is generally not exposed to an alternating field, so that no or only very low eddy current losses occur here. Therefore, the rotor 14 of the axial flow machine 10 can alternatively also consist of a non-soft magnetic material.
  • the laminated ring 16 of the rotor 14 is designed as a rotor yoke 62 which is either permanently connected to a bidirectional fan 40 by a joining process, in particular glued, or which itself serves as a bidirectional fan 64.
  • the bidirectional fan 40, 64 has at least one radial air flow direction 66 and one axial air flow direction 68 for cooling the axial flow machine 10, in particular for cooling the stator 20 or the stator winding 24 and the rotor 14.
  • the radial air flow direction 66 is essentially achieved by a plurality of radial air blades 70 arranged in a circle in the outer radius area of the bidirectional fan 40, 64 and the axial air flow direction 68 by a plurality of axial openings 72 arranged in the inner radius area of the rotor yoke 62.
  • the bidirectional fan 40, 64 causes a radial suction 74 of an air flow 76 with an axial flow 78 through the stator 20 and the rotor 14 of the axial flow machine 10 and a radial outlet 80 of the heated air flow 76 from a housing 82 of the Axial flux machine 10.
  • the radial suction 74 of the air flow 76 takes place on the one hand through the air gap between the stator teeth 44 (see FIG. 2) and on the other hand in the area of the first stator yoke 26 of the stator 20, in particular on a distal end face viewed from the rotor 14 84 of the first stator yoke 26.
  • FIG. 7 the axial flow machine 10 is shown with its housing 82 together with a cover 86 that closes it.
  • FIG. 8 shows the housing 82 without axial flow machine 10 and cover 86.
  • the housing 82 is open on one side to accommodate the cover 86 and, opposite, has an essentially closed end face 88 (cf. FIG. 8).
  • the cover 86 closes the housing 82 and thus frictionally connects the stator 20 and the rotor 14 of the axial flow machine 10.
  • “essentially closed” should be understood to mean that the end face 88 has a plurality of openings 90, for example for cooling , as cable passages and / or as a lead-through for the machine shaft 12, but alternatively also that the end face 88 is completely closed.
  • the housing 82 is cylindrical and fixes the stator 20 in such a way that a defined air gap is created between the rotor 14 or its magnetic ring 18 and the stator 20 or its winding carrier 22.
  • the housing 82 is made of a magnetically insulating mate rial with the lowest possible permeability such as plastic (PA66) ago.
  • the cover 86 can also be designed accordingly.
  • the essentially closed end face 86 of the housing 82 has the second bearing designed as a floating bearing 38 in a further bearing flange 94 36 for the displaceable mounting of the machine shaft 12.
  • the housing 82 can be pushed on very easily after the assembly of the Axialpoundma machine 10 and removed again for any service work.
  • a plurality of recesses 96 and tabs 98 for receiving and fixing the stator 20 are arranged alternately over the circumference of the housing 82. Radial projections (see FIGS.
  • the cover 86 also contains radial projections formed as tabs 106 which engage in the recesses 96 of the housing 82. In this way, the high axial forces of the axial flow machine 10 can be dissipated in the direction of the cover 86.
  • each tab 98 of the housing 82 there is at least one bore 100 for fixing the cover 86 and consequently also the stator 20 by means of corresponding fastening means 102, in particular screws 104.
  • the fastening means 102 transmit the axial force of the axial flow machine 10 to the housing 82 and are thus subject to shear stress.
  • the openings 90 on the essentially closed end 88 of the housing 82 are designed as radially and / or axially acting ventilation openings 104, in particular as ventilation outlet openings 106, for cooling the axial flow machine 10 (see also FIG. 6).
  • the housing 82 has a plurality of radially acting ventilation openings 108 distributed over the circumference, in particular ventilation inlet openings 110, approximately centrally between the essentially closed end face 88 and the open side opposite in the axial direction A.
  • further openings 90 are provided, in particular in the tabs 98 of the housing 82, which can serve as feedthroughs 112 for sensor lines or the like.
  • FIG. 9a shows a circuit diagram of the stator winding 22 as a triangular parallel circuit 48 of the six individual tooth windings 46 of the stator teeth 44 (see FIG. 2).
  • Two individual tooth windings 46 are connected in parallel between the connection points U and V, V and W or W and U per phase.
  • the delta connection as such has the effect that the entire supply voltage drops across each individual tooth winding 46. This requires an increase in the number of turns of the individual tooth windings 46 in order to achieve a specifically required rotational speed in motor operation. number or to realize a specifically required energy yield in generator mode. Due to the additional parallel connection, the winding wire diameter can be increased in a particularly advantageous manner and thus the resulting internal resistance can be reduced.
  • FIG. 9 b shows an alternative embodiment of the triangular parallel circuit 48 for a total of nine individual tooth windings 46 of the stator winding 22.
  • FIG. 10 an exemplary embodiment of an electrical machining device 34 with the axial flow machine 10 according to the invention according to FIG. 1 is shown.
  • the electrical processing device 34 is designed as an electric machine tool 112 in the form of a mains-operated hammer drill with an electric motor driven percussion mechanism 114, which sets a drill chuck 116 for a tool (not shown) in a rotary and / or percussive movement.
  • the exact design of the hammer drill will not be discussed in detail here, since this is well known to the person skilled in the art.
  • Any other battery-powered or mains-operated power tool 112 for machining workpieces by means of an electrically driven insert tool can also be understood as an electrical machining device.
  • the electrical Bear processing device can be designed both as an electrical hand tool and as a stationary electrical machine tool.
  • Typical electric machine tools in this context are hand or standing drills, screwdrivers, impact drills, rotary hammers, demolition hammers, planes, angle grinders, orbital grinders, polishing machines or the like.
  • Motor-driven gardening tools such as lawn mowers, lawn trimmers, pruning saws or the like can also be used as electrical processing equipment.
  • the invention is applicable to axial flow machines in household and kitchen appliances, such as washing machines, dryers, vacuum cleaners, mixers, etc.
  • the axial flux machine 10 of the power tool machine 112 which operates as an axial flux motor, drives the hammer mechanism 114 by means of its machine shaft 12 in a known manner via a gear 118.
  • the control of the axial flow Machine 10 takes place via a main switch 122 which is arranged in a D-handle 120 of the electric power tool 112 and which interacts with electronics not shown to energize the stator winding 22 connected in triangular parallel circuit 48.
  • the stator 20 of the axial flux machine 10 is received directly in the housing 32 of the electric machine tool 112.
  • stator 20 and the housing 32 are permanently connected to one another, in particular glued, by a joining process.
  • stator 20 can also be permanently connected to the housing 32, in particular pressed, by a form fit.
  • the housing 32 or a gear housing 122 of the electric machine tool 112 receives the second bearing 36 connected to the machine shaft 12 of the axial flow machine 10, in particular as a floating bearing 38.
  • the electric machine tool 112 or the electrical processing device 34 can also be equipped with an axial flow machine 10 according to FIGS. 6 to 8 without restricting the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Die Erfindung betrifft eine Axialflussmaschine (10), insbesondere einen einseitigen Axialflussmotor, für ein elektrisches Bearbeitungsgerät (34), mit einer Maschinenwelle (12), insbesondere Motorwelle, einem scheibenförmigen Stator (20) und einem in axialer Richtung (A) der Maschinenwelle (12) benachbart zum Stator (20) angeordneten scheibenförmigen Rotor (14), wobei der Stator (20) als Wicklungsträger (22) für zumindest eine Statorwicklung (24) ausgebildet ist, und der drehfest mit der Maschinenwelle (12) verbundene Rotor (14) relativ zum Stator (20) in eine Drehbewegung versetzbar ist. Es wird vorgeschlagen, dass der Stator (20) der Axialflussmaschine (10) aus einer Kombination aus Verbundwerkstoffen, insbesondere aus Faser-Kunststoff-Verbunden, und weichmagnetischem Eisen besteht. Weiterhin betrifft die Erfindung ein elektrisches Bearbeitungsgerät (34) mit einer erfindungsgemäßen Axialflussmaschine (10).

Description

Titel
Axialflussmaschine für ein elektrisches Bearbeitungsgerät sowie elektrisches Be arbeitungsgerät mit einer Axialflussmaschine
Beschreibung
Die Erfindung betrifft eine Axialflussmaschine, insbesondere einen einseitigen Axialflussmotor, für ein elektrisches Bearbeitungsgerät sowie ein elektrisches Be arbeitungsgerät mit einer Axialflussmaschine nach der Gattung der unabhängi gen Ansprüche.
Stand der Technik
Axialflussmaschinen haben gegenüber konventionellen Elektromaschinen mit ra dialer Flussrichtung den Vorteil, dass sie sehr effizient sind und eine deutlich ver kürzte Baulänge aufweisen. Zudem kann bei gleichem Außendurchmesser eine höhere Drehmoment- bzw. Leistungsdichte erreicht werden. Diese Verbesserun gen sind unter anderem auf eine größere Luftspaltfläche bei vergleichbarem Bau volumen zurückzuführen. Dank eines geringeren Eisenvolumens der rotierenden Komponenten ergibt sich zudem ein höherer Wirkungsgrad über einen größeren Drehzahlbereich.
Der Aufbau eines Stators einer Axialflussmaschine ist aufgrund der erforderlichen magnetischen 3D- Flussführung relativ aufwändig. Die Nutung des Blechpakets muss in der Regel vor dem Wickelprozess der Statorwicklung ausgestanzt wer den. Zudem ergeben sich durch die einzelnen Bleche Nachteile derart, dass die Polschuhe lediglich einen tangentialen Überstand erreichen und dass sich die Statorzähne mit den ausgeprägten Polschuhen nicht extern bewickeln lassen, was einen geringen Füllfaktor der Statorwicklung und einen entsprechend redu zierten Wirkungsgrad zur Folge hat. Aus der DE 102015 223 766 Al ist eine Axialflussmaschine mit gebogenen und gewickelten Blechpaketen als Wicklungsträger bekannt. Der Stator der Axialfluss maschine weist eine gesinterte Trägerstruktur aus weichmagnetischem Material und einen als Blechpaket ausgebildeten Einsatz auf. Der Einsatz ist über einen Form- und/oder Kraftschluss an der Trägerstruktur angebunden und bildet zumin dest teilweise einen Polschuh der Axialflussmaschine. Das Blechpaket ist mittels einzelner, übereinander gestapelter Lagen an Einzelblechen gebildet, die aus ei nem Weicheisen bestehen. Die einzelnen Bleche sind elektrisch zu dem jeweils benachbarten Blech isoliert aneinander angebunden.
Alternativ werden Statoren von Axialflussmaschinen auch rein aus Verbundwerk stoffen (Soft Magnetic Composites - SMC) aufgebaut. S MC- Werkstoffe bestehen aus hoch reinem Eisenpulver mit einer speziellen Oberflächenbeschichtung auf jedem einzelnen Partikel. Diese elektrisch isolierende Oberfläche gewährleistet einen hohen elektrischen Widerstand auch nach dem Pressen und der Wärme behandlung, was wiederum eine Minimierung bzw. ein Vermeiden von Wir belstromverlusten nach sich zieht. SMC- Werkstoffe sind dem Fachmann be kannt, so dass hier nicht weiter auf deren Zusammensetzung eingegangen wer den soll. Statoren aus Verbundwerkstoffen sind jedoch besonders spröde bzw. stoßempfindlich und weisen eine reduzierte Permeabilität gegenüber weichmag netischen Blechen auf. Für den Einsatz einer Axialflussmaschine, insbesondere eines Axialflussmotors, in einem elektrischen Bearbeitungsgerät, insbesondere in einer Elektrowerkzeugmaschine, ist eine hohe Unempfindlchkeit gegen Erschüt terungen und Schlägen jedoch besonders wichtig. Andererseits kann auf die Ver wendung von Verbundwerkstoffen aufgrund der geforderten Drehmomentdichte der Axialflussmaschine nicht verzichtet werden.
Es ist daher Aufgabe der Erfindung, einen gegenüber dem Stand der Technik be sonders stoßunempfindlichen Aufbau eines Stators für eine Axialflussmaschine in Verbindung mit einer hohen Drehmomentdichte der Axialflussmaschine bereitzu stellen.
Vorteile der Erfindung Die Erfindung betrifft eine Axialflussmaschine, insbesondere einen einseitigen Axialflussmotor, für ein elektrisches Bearbeitungsgerät, mit einer Maschinen welle, insbesondere Motorwelle, einem scheibenförmigen Stator und einem in axialer Richtung der Maschinenwelle benachbart zum Stator angeordneten schei benförmigen Rotor, wobei der Stator als Wicklungsträger für zumindest eine Statorwicklung ausgebildet ist, und der drehfest mit der Maschinenwelle verbun dene Rotor relativ zum Stator in eine Drehbewegung versetzbar ist.
Zur Lösung der gestellten Aufgabe ist vorgesehen, dass der Stator aus einer Kombination aus Verbundwerkstoffen, insbesondere aus Faser- Kunststoff- Ver bunden, und weichmagnetischem Eisen besteht. Mit besonderem Vorteil gegen über Axialflussmaschinen des Standes der Technik kann so eine gegenüber me chanischen Beanspruchungen extrem widerstandsfähige und gleichzeitig sehr leistungsfähige und effiziente Axialflussmaschine bzw. ein drehmomentstarker Axialflussmotor bereitgestellt werden. Dies ermöglicht den Einsatz in elektrischen Bearbeitungsgeräten, die einerseits sehr robust gegenüber Stößen und Erschüt terungen sein müssen und andererseits über eine längere Einsatzdauer sehr hohe elektromechanische Leistungen liefern müssen. Die Erfindung betrifft daher auch ein elektrisches Bearbeitungsgerät, insbesondere eine Elektrowerkzeugma schine, mit einer erfindungsgemäßen Axialflussmaschine, insbesondere einem erfindungsgemäßen Axialflussmotor.
Als elektrisches Bearbeitungsgerät sollen im Kontext der Erfindung unter ande rem akku- oder netzbetriebene Elektrowerkzeugmaschinen zur Bearbeitung von Werkstücken mittels eines elektrisch angetriebenen Einsatzwerkzeugs verstan den werden. Dabei kann das elektrische Bearbeitungsgerät sowohl als Elektro- handwerkzeug als auch als stationäre Elektrowerkzeugmaschine ausgebildet sein. Typische Elektrowerkzeugmaschinen sind in diesem Zusammenhang Hand oder Standbohrmaschinen, Schrauber, Schlagbohrmaschinen, Bohrhämmer, Ab risshämmer, Hobel, Winkelschleifer, Schwingschleifer, Poliermaschinen oder der gleichen. Als elektrische Bearbeitungsgeräte kommen aber auch Motor getrie bene Gartengeräte wie Rasenmäher, Rasentrimmer, Astsägen oder dergleichen in Frage. Weiterhin ist die Erfindung auf Axialflussmaschinen in Haushalts- und Küchengeräten, wie Waschmaschinen, Trockner, Staubsauger, Mixer, etc. an wendbar. Der Begriff Axialflussmaschine kann dabei sowohl einen Axialflussmotor als auch einen Axialflussgenerator zur Umwandlung von mechanischer in elektrische Energie umfassen. Ebenso soll unter einer Axialflussmaschine auch ein Axial flussmotor verstanden werden, der zumindest zeitweise zur Rekuperation von mechanischer in elektrische Energie genutzt wird, wie dies z.B. beim elektrody namischen Bremsen eines Axialflussmotors der Fall sein kann.
In einer Weiterbildung der Erfindung ist vorgesehen, dass eine Mehrzahl von Statorzähnen und ein erstes Statorjoch des Stators aus den Verbundwerkstoffen gebildet ist. Dies gewährleistet mit besonderem Vorteil eine hohe Drehmoment dichte der Axialflussmaschine. Zudem können durch die Verwendung von Ver bundwerkstoffen im Aufbau des Statorzahns tangentiale und radiale Überhänge des Polschuhs erzielt werden. Dies hat den Vorteil, dass die Einzelzahnwicklun gen in die jeweiligen Statorzähne eingebettet werden können, was wiederum zu einer Reduktion der Wickelköpfe führt. Die zusätzliche Ausführung des ersten Statorjochs aus Verbundwerkstoffen gewährleistet einen definierten Übergang des magnetischen Flusses von den Statorzähnen zum Statorjoch. Dabei sind die aus den Verbundwerkstoffen gebildeten Statorzähne und das erste Statorjoch durch einen Fügeprozess miteinander dauerhaft verbunden, insbesondere ver klebt. Dadurch kann der Spulenträger durch das Aufbringen der Statorwicklung bzw. der Einzelzahnwicklungen auf die Statorzähne während des Fügeprozesses extern bewickelt werden, so dass ein hoher Füllfaktor der Statorwicklung erziel bar ist.
In einer weiteren Ausgestaltung der erfindungsgemäßen Axialflussmaschine ist in axialer Richtung der Maschinenwelle zwischen dem ersten Statorjoch und den Statorzähnen ein aus weichmagnetischem Eisen bestehendes, zweites Statorjoch angeordnet. Dieses stabilisiert den Stator bei starker mechanischer Beanspruchung und gewährleistet aufgrund seiner hohen Permeabilität eine ver besserte magnetische Flussführung.
Zur Unterbrechung der Wirbelstrom- Pfade ist das zweite Statorjoch als ein Blech paket mit einer Mehrzahl über seinen Außenumfang verteilter Nuten zur Auf nahme der Verbundwerkstoffe ausgebildet. Dabei ist eher die Position der Nuten als deren Breite ausschlaggebend. Weiterhin weist das zweite Statorjoch eine Mehrzahl ringförmig angeordneter, kreissegmentförmiger Ausnehmungen zur Aufnahme der Statorzähne auf. Dabei unterbricht jede Nut den Außenumfang des zweiten Statorjochs bis zu der jeweils radial innenliegenden Ausnehmung.
Jeder Statorzahn weist einen kreissegmentförmigen Zahnflansch, der die kreis segmentförmige Ausnehmung des zweiten Statorjochs durchgreift, und einen den Zahnflansch umgreifenden, kreissegmentförmigen Trägerrahmen mit einem um laufenden U-Profil zur Aufnahme der Statorwicklung auf. Zahnflansch und Trä gerrahmen sind über einen Fügeprozess miteinander dauerhaft verbunden, ins besondere verklebt.
Der Rotor der Axialflussmaschine ist als ein geblechter Ring aus weichmagneti schem Eisen ausgebildet. Er trägt zudem einen abwechselnd magnetisierten Magnetring, der mit der Statorwicklung des Stators zusammenwirkt, um im Mo torbetrieb den Rotor in eine Drehbewegung zu versetzen oder im Generatorbe trieb eine Spannung in die Statorwicklung zu induzieren.
Ausführungsbeispiele
Zeichnung
Die Erfindung wird im Folgenden anhand der Figuren 1 bis 10 beispielhaft erläu tert, wobei gleiche Bezugszeichen in den Figuren auf gleiche Bestandteile mit ei ner gleichen Funktionsweise hindeuten.
Es zeigen
Fig. 1: ein Schnitt durch eine erfindungsgemäße Axialflussmaschine in
Form eines einseitigen Axialflussmotors in einem ersten Ausfüh rungsbeispiel,
Fig. 2: eine schematische Ansicht eines weiteren Ausführungsbeispiels eines Stators der erfindungsgemäßen Axialflussmaschine, Fig. 3: eine Explosionszeichnung des Stators aus Figur 2 in einer sche matischen Ansicht ohne Statorwicklung,
Fig. 4: eine schematische Ansicht eines Ausschnitts des erfindungsge mäßen Stators in einem weiteren Ausführungsbeispiel,
Fig. 5: eine schematische Schnitt-Ansicht eines Rotors der erfindungs gemäßen Axialflussmaschine,
Fig. 6: eine schematische Ansicht eines Gehäuses der erfindungsgemä ßen Axialflussmaschine,
Fig. 7: eine weitere schematische Ansicht des Leergehäuses der erfin dungsgemäßen Axialflussmaschine aus Figur 6,
Fig. 8: eine schematische Ansicht eines weiteren Ausführungsbeispiels der Kühlluftführung innerhalb der erfindungsgemäßen Axialfluss maschine in einem Schnitt,
Fig. 9: zwei Ausführungsbeispiele von Dreieck-Parallelschaltungen der
Einzelzahnwicklungen einer Statorwicklung der erfindungsgemä ßen Axialflussmaschine und
Fig. 10: ein elektrisches Bearbeitungsgerät, insbesondere eine Elekt rowerkzeugmaschine in Gestalt eines Bohrhammers, mit einer erfindungsgemäßen Axialflussmaschine.
Beschreibung der Ausführungsbeispiele
In Figur 1 ist ein erstes Ausführungsbeispiel einer erfindungsgemäßen Axialfluss maschine 10 in einem Schnitt dargestellt. Die Axialflussmaschine 10 kann gleich ermaßen als Axialflussmotor oder als Axialflussgenerator ausgebildet sein. Auf einer Maschinenwelle 12 der Axialflussmaschine 10 ist drehfest mit der Maschi nenwelle 12 ein scheibenförmiger Rotor 14 angeordnet. Der Rotor 14 ist als ein geblechter Ring 16 aus weichmagnetischem Eisen ausgebildet und trägt einen abwechselnd magnetisierten Magnetring 18, auf den mit Bezug auf Figur 5 noch näher eingegangen werden soll. Da der Rotor 14 jedoch in der Regel keinem Wechselfeld ausgesetzt ist und somit die Gefahr von Wirbelstromverlusten ver hältnismäßig gering ist, kann der Rotor 14 alternativ auch aus nicht weichmagne tischen Materialen wie Eisen oder aus einem weichmagnetischem Stahl mit nied rigem Kohlenstoffanteil bestehen. In axialer Richtung A der Motorwelle 12 befin det sich benachbart zum Rotor 14 bzw. zum Magnetring 18 ein ebenfalls schei benförmiger Stator 20, der als Wicklungsträger 22 für zumindest eine Statorwick lung 24 (vgl. Figur 2) ausgebildet ist und der ein erstes Statorjoch 26 aufweist, das als magnetischer Rückschluss des durch die Statorwicklung 24 und den Magnetring 18 resultierenden Magnetfelds dient. Relativ zum Stator 20 bzw. der Statorwicklung 24 ist der Rotor 14 über die Motorwelle 12 in eine Drehbewegung versetzbar. Dazu ist die Motorwelle 12 einerseits über ein in das Statorjoch 26 integriertes erstes Lager 28, das beispielsweise als ein Festlager 30 ausgebildet ist, und andererseits über ein in einem Gehäuse 32 eines elektrischen Bearbei tungsgeräts 34 (vgl. Figur 10) aufgenommenes zweites Lager 36, das beispiels weise als ein Loslager 38 ausgebildet ist, drehbar gelagert. Das erste und das zweite Lager 28, 36 sind bevorzugt als Kugellager ausgebildet. Das erste Lager 28 ist direkt in den Wicklungsträger 22 und/oder in das erste Statorjoch 26 inte griert. So kann es beispielweise eingepresst oder eingespritzt sein. Da insbeson dere einseitige Axialflussmaschinen eine sehr hohe Zugkraft in axialer Richtung A der Maschinenwelle 12 im Luftspalt zwischen Rotor 14 und Stator 20 aufwei sen, kann diese durch das als Festlager 30 ausgebildete erste Lager 28 im ers ten Statorjoch 26 abgefangen werden. Somit ist es nicht notwendig, die axiale Kraft durch das Gehäuse 32 des elektrischen Bearbeitungsgeräts 34 und/oder durch ein Gehäuse der Axialflussmaschine (vgl. Figur 6 und 7) aufzunehmen.
Zur Kühlung der Axialflussmaschine 10 ist drehfest auf der Maschinenwelle 12 ein Lüfterrad 40 angeordnet, das Kühlluft durch die Axialflussmaschine 10 trans portiert. Dazu saugt das Lüfterrad 40 die Kühlluft bevorzugt radial an, um sie dann axial durch die Axialflussmaschine 10 zu befördern.
Figur 2 zeigt eine schematische Ansicht eines weiteren Ausführungsbeispiels des scheibenförmigen Stators 20 der erfindungsgemäßen Axialflussmaschine 10. Der Stator 20 umfasst im Wesentlichen das erste Statorjoch 26, ein in axialer Rich tung A der Maschinenwelle 12 benachbart dazu angeordnetes, zweites Statorjoch 42 und den zum zweiten Statorjoch 42 in axialer Richtung A der Ma schinenwelle 12 benachbart angeordneten Wicklungsträger 22. Der Wicklungs träger 22 besteht im Wesentlichen aus einer Mehrzahl von, insbesondere sechs, die Statorwicklung 24 tragenden Statorzähnen 44, wobei jedem Statorzahn 44 eine Einzelzahnwicklung 46 der Statorwicklung 24 zugeordnet ist. Die Einzel zahnwicklungen 46 sind mit Bezug auf Figur 9a in einer Dreieck-Parallel-Schal- tung 48 miteinander elektrisch verbunden.
Die Statorzähne 44 und das erste Statorjoch 26 des Stators 20 sind aus Ver bundwerkstoffen (Soft Magnetic Composites - SMC) gebildet und durch einen Fügeprozess miteinander dauerhaft verbunden, insbesondere verklebt. SMC- Werkstoffe bestehen aus hoch reinem Eisenpulver mit einer speziellen Oberflä chenbeschichtung auf jedem einzelnen Partikel. Diese elektrisch isolierende Oberfläche gewährleistet einen hohen elektrischen Widerstand auch nach dem Pressen und der Wärmebehandlung, was wiederum eine Minimierung bzw. ein Vermeiden von Wirbelstromverlusten nach sich zieht. Mit besonderem Vorteil ge genüber Axialflussmaschinen des Standes der Technik kann so eine gegenüber mechanischen Beanspruchungen extrem widerstandsfähige und gleichzeitig sehr leistungsfähige und effiziente Axialflussmaschine bzw. ein drehmomentstarker Axialflussmotor bereitgestellt werden. Die Fügung der Statorzähne 44 mit dem ersten Statorjoch 26 ermöglicht ein externes Bewickeln des Wicklungsträgers 22 durch das Aufbringen der Statorwicklung 24 bzw. der Einzelzahnwicklungen 46 auf die Statorzähne 44 während des Fügeprozesses. Auf diese Weise ist ein ho her Füllfaktor der Statorwicklung 24 erzielbar.
Das zweite Statorjoch 42 des Rotors 20 besteht im Unterschied zum ersten Statorjoch 26 aus weichmagnetischem Eisen und ist als ein Blechpaket 48 (vgl. Figur 3) mit einer Mehrzahl, insbesondere sechs, über seinem Außenumfang ver teilter Nuten 50 zur Aufnahme der Verbundwerkstoffe ausgebildet. Die Anzahl der Nuten 50 entspricht dabei der Anzahl der Statorzähne 44. Das zweite Statorjoch 42 stabilisiert so den Stator 20 bei starker mechanischer Beanspru chung und gewährleistet aufgrund seiner hohen Permeabilität eine verbesserte magnetische Flussführung. Die Nutung des Blechpakets 48 bewirkt nicht nur die bessere Aufnahme der Verbundwerkstoffe und damit die höhere Stabilität des Stators 20, sondern gewährleistet auch eine optimierte Führung der im Wesentli chen durch die Statorwicklung 24 verursachten Wirbelströme.
Gemäß Figur 3 weist das zweite Statorjoch 42 zur Aufnahme der Statorzähne 44 ringförmig angeordnete, kreissegmentförmige Ausnehmungen 52 auf, wobei jede Nut 50 den Außenumfang des zweiten Statorjochs 42 bis zu der jeweils radial in nenliegenden Ausnehmung 52 unterbricht. Jeder Statorzahn 44 ist durch einen kreissegmentförmigen Zahnflansch 54, der die kreissegmentförmige Ausneh mung 52 des zweiten Statorjochs 42 durchgreift, und einen den Zahnflansch 54 umgreifenden, kreissegmentförmigen Trägerrahmen 56 mit einem umlaufenden U-Profil 58 zur Aufnahme der Statorwicklung 24 bzw. der Einzelzahnwicklungen 46 gebildet. Zahnflansch 54 und Trägerrahmen 56 sind über einen Fügeprozess miteinander dauerhaft verbunden, insbesondere verklebt.
Figur 4 zeigt eine schematische Ansicht eines Ausschnitts des erfindungsgemä ßen Stators 20 in einem weiteren Ausführungsbeispiel. Dabei werden die Statorzähne 44 bzw. deren Zahnflansche 54 (vgl. Figur 3) durch die Ausnehmun gen 52 des zweiten Statorjochs 42 hindurchgeführt und mit dem ersten Statorjoch 26 durch eine Laserschweißung dauerhaft verbunden. Jeweils in etwa mittig jeder auf dem ersten Statorjoch 26 aufliegenden Fläche eines Statorzahns 44 ist eine Bohrung 60 im ersten Statorjoch 26 vorgesehen, durch die der Stator zahn 44 mittels der Laserschweißung mit dem ersten Statorjoch 26 verbindbar ist. Zur dauerhaften Verbindung des ersten Statorjochs 26 und des jeweiligen Statorzahns 44 erstreckt sich eine Schweißnaht über den vollständigen Umfang der Bohrung 60. Alternativ kann aber auch vorgesehen sein, dass sich die Schweißnaht nur punktuell über den Umfang der Bohrung 60 erstreckt. Durch die Schweißung in der Mitte eines jeden Statorzahns 44 wird die Führung des mag netischen Flusses nur gering beeinflusst und es ist eine hohe Planparallelität der Statorzähne 44 zum radialen Luftspalt zwischen ihnen erreichbar. Durch das Ver meiden einer Klebung kann wirksam ein Klebespalt zwischen Statorzahn 44 und erstem Statorjoch 26 vermieden werden und es ist keine Fixierung von Stator zahn 44 und erstem Statorjoch 26 während des Aushärtens der Klebung erfor derlich. Mit Bezug auf Figur 1 ist es alternativ auch denkbar, auf das zweite Statorjoch 42 zu verzichten und stattdessen das als geblechten Ring 16 aus weichmagnetischem Eisen ausgebildete erste Statorjoch 26 direkt mit den aus Verbundwerkstoffen bestehenden Statorzähnen 44 zu verbinden, insbesondere mittels der Bohrung 60 im ersten Statorjoch 42 zu verschweißen.
In Figur 5 ist eine schematische Ansicht des Rotors 14 der erfindungsgemäßen Axialflussmaschine 10 im Schnitt dargestellt. Der Rotor 14 ist als ein geblechter Ring 16 aus weichmagnetischem Eisen ausgebildet. Er trägt zudem einen ab wechselnd polarisierten Magnetring 18, der mit der Statorwicklung 24 des Stators 20 zusammenwirkt, um im Motorbetrieb den Rotor 14 in eine Drehbewegung zu versetzen oder im Generatorbetrieb eine Spannung in die Statorwicklung 24 zu induzieren. Die nicht näher gezeigten Magnete des Magnetrings 18 sind derart kreissegmentförmig ausgestaltet, dass sich ihre Flächen weitestgehend mit den kreissegmentförmigen Statorzähnen 44 überdecken, um einen optimalen magne tischen Fluss in Verbindung mit einem hohen Drehmoment zu erzielen. Statt ei nes abwechselnd polarisierten Magnetrings 18 ist alternativ auch ein Ring mit eingelassenen Einzelmagneten denkbar. Wie bereits erwähnt, ist der Rotor 14 in der Regel keinem Wechselfeld ausgesetzt, so dass hier keine oder nur sehr ge ringe Wirbelstromverluste entstehen. Daher kann der Rotorl4 der Axialflussma schine 10 alternativ auch aus einem nicht weichmagnetischen Material bestehen.
In einer bevorzugten Ausgestaltung der Erfindung ist der geblechte Ring 16 des Rotors 14 als ein Rotorjoch 62 ausgebildet, das entweder mit einem bidirektiona len Lüfter 40 durch einen Fügeprozess dauerhaft verbunden, insbesondere ver klebt, ist oder das selbst als bidirektionaler Lüfter 64 dient. Dabei weist der bidi rektionale Lüfter 40, 64 zumindest eine radiale Luftströmungsrichtung 66 und eine axiale Luftströmungsrichtung 68 zur Kühlung der Axialflussmaschine 10, ins besondere zur Kühlung des Stators 20 bzw. der Statorwicklung 24 und des Ro tors 14, auf. Die radiale Luftströmungsrichtung 66 wird dabei im Wesentlichen durch eine Mehrzahl kreisförmig im äußeren Radiusbereich des bidirektionalen Lüfters 40, 64 angeordneter radialer Luftschaufeln 70 und die axiale Luftströ mungsrichtung 68 durch eine Mehrzahl im inneren Radiusbereich des Rotorjochs 62 angeordneter axialer Öffnungen 72 erzielt. Somit bewirkt der bidirektionale Lüfter 40, 64 mit Bezug auf Figur 6 eine radiale Ansaugung 74 eines Luftstroms 76 mit einer axialen Durchströmung 78 des Sta tors 20 und des Rotors 14 der Axialflussmaschine 10 und einem radialen Austritt 80 des erwärmten Luftstroms 76 aus einem Gehäuse 82 der Axialflussmaschine 10. Die radiale Ansaugung 74 des Luftstroms 76 erfolgt zum einen durch die Luft spalte zwischen den Statorzähnen 44 (vgl. Figur 2) und zum anderen im Bereich des ersten Statorjochs 26 des Stators 20, insbesondere an einer vom Rotor 14 aus gesehenen distalen Stirnseite 84 des ersten Statorjochs 26.
In Figur 7 ist die Axialflussmaschine 10 mit ihrem Gehäuse 82 samt eines dieses verschließenden Deckels 86 dargestellt. Figur 8 zeigt das Gehäuse 82 ohne Axi alflussmaschine 10 und Deckel 86. Das Gehäuse 82 ist einseitig offen zur Auf nahme des Deckels 86 und weist gegenüberliegend eine im Wesentlichen ge schlossene Stirnseite 88 (vgl. Figur 8) auf. Der Deckel 86 verschließt das Ge häuse 82 und verbindet so kraftschlüssig den Stator 20 und den Rotor 14 der Axialflussmaschine 10. Unter „im Wesentlichen geschlossen“ soll in diesem Zu sammenhang verstanden werden, dass die Stirnseite 88 eine Mehrzahl von Öff nungen 90 beispielsweise zur Kühlung, als Kabeldurchlässe und/oder als Durch führung für die Maschinenwelle 12 aufweisen kann, aber alternativ auch, dass die Stirnseite 88 vollkommen geschlossen ist. Das Gehäuse 82 ist zylinderförmig ausgebildet und fixiert den Stator 20 derart, dass ein definierter Luftspalt zwi schen dem Rotor 14 bzw. dessen Magnetring 18 und dem Stator 20 bzw. dessen Wicklungsträger 22 entsteht. Zur Reduzierung bzw. Vermeidung von Wir belstromverlusten ist das Gehäuse 82 aus einem magnetisch isolierenden Mate rial mit möglichst geringer Permeabilität wie zum Beispiel Kunststoff (PA66) her gestellt. Entsprechend kann auch der Deckel 86 ausgebildet sein.
Während in einem Lagerflansch 92 des Deckels 86 das als Festlager 30 ausge bildete erste Lager 28 fixiert ist, das die Maschinenwelle 12 unverschieblich la gert, weist die im Wesentlichen geschlossene Stirnseite 86 des Gehäuses 82 in einem weiteren Lagerflansch 94 das als Loslager 38 ausgebildete zweite Lager 36 zur verschieblichen Lagerung der Maschinenwelle 12 auf. Auf diese Weise kann das Gehäuse 82 sehr einfach nach dem Zusammenbau der Axialflussma schine 10 aufgeschoben und für etwaige Servicearbeiten wieder entfernt werden. An seiner offenen Seite sind über den Umfang des Gehäuses 82 verteilt abwech selnd eine Mehrzahl von Ausnehmungen 96 und Laschen 98 zur Aufnahme und Fixierung des Stators 20 angeordnet. Dabei greifen über den Umfang des ersten und des zweiten Statorjochs 26, 42 des Stators 20 verteilte radiale Vorsprünge (vgl. die Figuren 2 und 3) in die jeweiligen Ausnehmungen 96 des Gehäuses 82. Entsprechend enthält auch der Deckel 86 als Laschen 106 ausgebildete radiale Vorsprünge, die in die Ausnehmungen 96 des Gehäuses 82 eingreifen. Auf diese Weise können die hohen axialen Kräfte der Axialflussmaschine 10 in Richtung des Deckels 86 abgeführt werden. In jeder Lasche 98 des Gehäuses 82 ist min destens eine Bohrung 100 zur Fixierung des Deckels 86 und demzufolge auch des Stators 20 mittels entsprechender Befestigungsmittel 102, insbesondere Schrauben 104, vorgesehen. Die Befestigungsmittel 102 übertragen die Axial kraft der Axialflussmaschine 10 auf das Gehäuse 82 und werden somit auf Sche rung beansprucht.
Die Öffnungen 90 an der im Wesentlichen geschlossenen Stirnseite 88 des Ge häuses 82 sind als radial und/oder axial wirkende Lüftungsöffnungen 104, insbe sondere als Lüftungsauslassöffnungen 106, zur Kühlung der Axialflussmaschine 10 ausgebildet (vgl. auch Figur 6). Zudem weist das Gehäuse 82 etwa mittig zwi schen der im Wesentlichen geschlossenen Stirnseite 88 und der in axialer Rich tung A gegenüberliegenden offenen Seite eine Mehrzahl über den Umfang ver teilte radial wirkende Lüftungsöffnungen 108, insbesondere Lüftungseinlassöff nungen 110, auf. Neben den Öffnungen 90 zur Kühlung der Axialflussmaschine 10 sind insbesondere in den Laschen 98 des Gehäuses 82 noch weitere Öffnun gen 90 vorgesehen, die als Durchführungen 112 für Sensorleitungen oder der gleichen dienen können.
In Figur 9a ist ein Schaltbild der Statorwicklung 22 als Dreieck-Parallel-Schaltung 48 der sechs Einzelzahnwicklungen 46 der Statorzähne 44 (vgl. Figur 2) darge stellt. Pro Phase sind jeweils zwei Einzelzahnwicklungen 46 zwischen den An schlusspunkten U und V, V und W bzw. W und U parallelgeschaltet. Die Dreieck- Schaltung als solche bewirkt, dass an jeder Einzelzahnwicklung 46 die gesamte Versorgungsspannung abfällt. Dies bedingt eine Erhöhung der Windungszahl der Einzelzahnwicklungen 46, um im Motorbetrieb eine spezifisch geforderte Dreh- zahl bzw. im Generatorbetrieb einen spezifisch geforderten Energieertrag zu rea lisieren. Durch die zusätzliche Parallelschaltung kann in besonders vorteilhafter Weise der Wicklungsdrahtdurchmesser erhöht und damit der resultierende Innen widerstand verringert werden. Die Dreieck-Parallel-Schaltung 48 ermöglicht somit die Reduzierung des Innenwiderstands der Axialflussmaschine 10 gegenüber ei ner üblichen Stern-Schaltung, was zu einer deutlichen Erhöhung der Leistungsfä higkeit der Axialflussmaschine 10 gegenüber bisherigen Lösungen führt. Figur 9b zeigt eine alternative Ausgestaltungsform der Dreieck-Parallel-Schaltung 48 für insgesamt neun Einzelzahnwicklungen 46 der Statorwicklung 22.
In Figur 10 ist ein Ausführungsbeispiel eines elektrischen Bearbeitungsgeräts 34 mit der erfindungsgemäßen Axialflussmaschine 10 gemäß Figur 1 gezeigt. Das elektrische Bearbeitungsgerät 34 ist als eine Elektrowerkzeugmaschine 112 in Form eines netzbetriebenen Bohrhammers mit einem elektromotorisch angetrie benen Schlagwerk 114, das ein Bohrfutter 116 für ein nicht gezeigtes Einsatz werkzeug in eine Dreh- und/oder Schlagbewegung versetzt, ausgebildet. Auf die genaue Ausgestaltung des Bohrhammers soll hier nicht näher eingegangen wer den, da dies dem Fachmann hinlänglich bekannt ist. Als elektrisches Bearbei tungsgerät kann auch jede andere akku- oder netzbetriebene Elektrowerkzeug maschine 112 zur Bearbeitung von Werkstücken mittels eines elektrisch angetrie benen Einsatzwerkzeugs verstanden werden. Dabei kann das elektrische Bear beitungsgerät sowohl als Elektrohandwerkzeug als auch als stationäre Elekt rowerkzeugmaschine ausgebildet sein. Typische Elektrowerkzeugmaschinen sind in diesem Zusammenhang Hand- oder Standbohrmaschinen, Schrauber, Schlagbohrmaschinen, Bohrhämmer, Abrisshämmer, Hobel, Winkelschleifer, Schwingschleifer, Poliermaschinen oder dergleichen. Als elektrische Bearbei tungsgeräte kommen aber auch Motor getriebene Gartengeräte wie Rasenmä her, Rasentrimmer, Astsägen oder dergleichen in Frage. Weiterhin ist die Erfin dung auf Axialflussmaschinen in Haushalts- und Küchengeräten, wie Waschma schinen, Trockner, Staubsauger, Mixer, etc. anwendbar.
Die als Axialflussmotor arbeitende Axialflussmaschine 10 der Elektrowerkzeug maschine 112 treibt mittels ihrer Maschinenwelle 12 in bekannter Art und Weise das Schlagwerk 114 über ein Getriebe 118 an. Die Ansteuerung der Axialfluss- maschine 10 erfolgt dabei über einen in einem D-Handgriff 120 der Elektrowerk zeugmaschine 112 angeordneten Hauptschalter 122, der mit einer nicht gezeig ten Elektronik zur Bestromung der in Dreieck-Parallel-Schaltung 48 verschalteten Statorwicklung 22 zusammenwirkt. Der Stator 20 der Axialflussmaschine 10 ist direkt in dem Gehäuse 32 der Elektrowerkzeugmaschine 112 aufgenommen.
Dazu sind der Stator 20 und das Gehäuse 32 durch einen Fügeprozess dauer haft miteinander verbunden, insbesondere verklebt. Alternativ kann der Stator 20 aber auch durch einen Formschluss dauerhaft mit dem Gehäuse 32 verbunden, insbesondere verpresst, sein. Weiterhin kann vorgesehen sein, dass das Ge- häuse 32 oder ein Getriebegehäuse 122 der Elektrowerkzeugmaschine 112 das mit der Maschinenwelle 12 der Axialflussmaschine 10 verbundene zweite Lager 36, insbesondere als Loslager 38, aufnimmt. Statt der gezeigten Axialflussma schine 10 gemäß Figur 1 kann die Elektrowerkzeugmaschine 112 bzw. das elekt rische Bearbeitungsgerät 34 ohne Einschränkung der Erfindung auch mit einer Axialflussmaschine 10 gemäß der Figuren 6 bis 8 ausgestattet sein.
Es sei abschließend noch darauf hingewiesen, dass die Erfindung weder auf die gezeigten Ausführungsbeispiele gemäß der Figuren 1 bis 10 noch auf die ge nannte Anzahl der Statorzähne, Einzelzahnwicklungen und Magnete des Mag netrings beschränkt ist.

Claims

Ansprüche
1. Axialflussmaschine (10), insbesondere einseitiger Axialflussmotor, für ein elektrisches Bearbeitungsgerät (34), mit einer Maschinenwelle (12), insbe sondere Motorwelle, einem scheibenförmigen Stator (20) und einem in axi aler Richtung (A) der Maschinenwelle (12) benachbart zum Stator (20) an geordneten scheibenförmigen Rotor (14), wobei der Stator (20) als Wick lungsträger (22) für zumindest eine Statorwicklung (24) ausgebildet ist, und der drehfest mit der Maschinenwelle (12) verbundene Rotor (14) relativ zum Stator (20) in eine Drehbewegung versetzbar ist, dadurch gekenn zeichnet, dass der Stator (20) aus einer Kombination aus Verbundwerkstof fen, insbesondere aus Faser- Kunststoff- Verbunden, und weichmagneti schem Eisen besteht.
2. Axialflussmaschine (10) nach Anspruch 1, dadurch gekennzeichnet, dass eine Mehrzahl von Statorzähnen (44) und ein erstes Statorjoch (26) des Stators (20) aus den Verbundwerkstoffen gebildet ist.
3. Axialflussmaschine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die aus den Verbundwerkstoffen gebildeten Statorzähne (44) und das erste Statorjoch (26) durch einen Fügeprozess miteinander dauerhaft verbunden, insbesondere verklebt, sind.
4. Axialflussmaschine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in axialer Richtung (A) der Maschinenwelle (12) zwischen dem ersten Statorjoch (26) und den Statorzähnen (44) ein aus weichmagnetischem Eisen bestehendes, zweites Statorjoch (42) ange ordnet ist.
5. Axialflussmaschine (10) nach Anspruch 4, dadurch gekennzeichnet, dass das zweite Statorjoch (42) als ein Blechpaket (48) mit einer Mehrzahl über seinen Außenumfang verteilter Nuten (50) zur Aufnahme der Verbundwerk stoffe ausgebildet ist.
6. Axialflussmaschine (10) nach einem der vorhergehenden Ansprüche 4 oder 5, dadurch gekennzeichnet, dass das zweite Statorjoch (42) ringförmig an geordnete, kreissegmentförmige Ausnehmungen (52) zur Aufnahme der Statorzähne (44) aufweist.
7. Axialflussmaschine (10) nach Anspruch 6, dadurch gekennzeichnet, dass jede Nut (50) den Außenumfang des zweiten Statorjochs (42) bis zu der je weils radial innenliegenden Ausnehmung (52) unterbricht.
8. Axialflussmaschine (10) nach einem der vorhergehenden Ansprüche 2 bis
7, dadurch gekennzeichnet, dass jeder Statorzahn (44) einen kreisseg mentförmigen Zahnflansch (54), der die kreissegmentförmige Ausnehmung (52) des zweiten Statorjochs (42) durchgreift, und einen den Zahnflansch (54) umgreifenden, kreissegmentförmigen Trägerrahmen (56) mit einem umlaufenden U-Profil (58) zur Aufnahme der Statorwicklung (22) aufweist.
9. Axialflussmaschine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rotor (14) als ein geblechter Ring (16) aus weichmagnetischem Eisen ausgebildet ist.
10. Elektrisches Bearbeitungsgerät (34), insbesondere Elektrowerkzeugma schine (112), mit einer Axialflussmaschine (10) nach einem der vorherge henden Ansprüche.
PCT/EP2020/079615 2019-10-31 2020-10-21 Axialflussmaschine für ein elektrisches bearbeitungsgerät sowie elektrisches bearbeitungsgerät mit einer axialflussmaschine WO2021083760A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20796550.0A EP4052355A1 (de) 2019-10-31 2020-10-21 Axialflussmaschine für ein elektrisches bearbeitungsgerät sowie elektrisches bearbeitungsgerät mit einer axialflussmaschine
US17/754,576 US20240063668A1 (en) 2019-10-31 2020-10-21 Axial Flux Machine for an Electrical Processing Device and Electrical Processing Device with an Axial Flux Machine
CN202080075057.1A CN114600342A (zh) 2019-10-31 2020-10-21 用于电加工器具的轴向磁通机以及具有轴向磁通机的电加工器具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019216844.2A DE102019216844A1 (de) 2019-10-31 2019-10-31 Axialflussmaschine für ein elektrisches Bearbeitungsgerät sowie elektrisches Bearbeitungsgerät mit einer Axialflussmaschine
DE102019216844.2 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021083760A1 true WO2021083760A1 (de) 2021-05-06

Family

ID=73005620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/079615 WO2021083760A1 (de) 2019-10-31 2020-10-21 Axialflussmaschine für ein elektrisches bearbeitungsgerät sowie elektrisches bearbeitungsgerät mit einer axialflussmaschine

Country Status (5)

Country Link
US (1) US20240063668A1 (de)
EP (1) EP4052355A1 (de)
CN (1) CN114600342A (de)
DE (1) DE102019216844A1 (de)
WO (1) WO2021083760A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937915B (zh) * 2021-09-09 2023-09-26 北京交通大学 一种采用复合材料的轴向磁通定子铁心

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140009022A1 (en) * 2011-03-25 2014-01-09 Amotech Co., Ltd. Amorphous divided-core stator and axial-gap-type motor using same
DE102015223766A1 (de) 2015-11-30 2017-06-01 Baumüller Nürnberg GmbH Elektrische Maschine
EP3331140A1 (de) * 2016-12-02 2018-06-06 Miba Sinter Austria GmbH Scheibenläufermotor
US20180219459A1 (en) * 2017-01-31 2018-08-02 Regal Beloit Australia, PTY., Ltd. Modular stator drive units for axial flux electric machines

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5576246B2 (ja) * 2010-01-06 2014-08-20 株式会社神戸製鋼所 アキシャルギャップ型ブラシレスモータ
JP6464856B2 (ja) * 2015-03-20 2019-02-06 スズキ株式会社 アキシャルギャップ型の回転電機
AT520633B1 (de) * 2018-02-08 2019-06-15 Miba Sinter Austria Gmbh Pumpenanordnung, Axialflussmaschine und Kompressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140009022A1 (en) * 2011-03-25 2014-01-09 Amotech Co., Ltd. Amorphous divided-core stator and axial-gap-type motor using same
DE102015223766A1 (de) 2015-11-30 2017-06-01 Baumüller Nürnberg GmbH Elektrische Maschine
EP3331140A1 (de) * 2016-12-02 2018-06-06 Miba Sinter Austria GmbH Scheibenläufermotor
US20180219459A1 (en) * 2017-01-31 2018-08-02 Regal Beloit Australia, PTY., Ltd. Modular stator drive units for axial flux electric machines

Also Published As

Publication number Publication date
CN114600342A (zh) 2022-06-07
DE102019216844A1 (de) 2021-05-06
EP4052355A1 (de) 2022-09-07
US20240063668A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
DE19636591C2 (de) Synchrongenerator für einen getriebelosen Windenergiekonverter
EP4052360A1 (de) Axialflussmaschine für ein elektrisches bearbeitungsgerät sowie elektrisches bearbeitungsgerät mit einer axialflussmaschine
EP2934817A1 (de) Handwerkzugmaschine mit elektronisch kommutiertem elektromotor und integrierter elektronik
DE102006020867A1 (de) Elektrische Maschine, insbesondere permanenterregter Synchronmotor mit einstellbarer Feldschwächung
WO2021104765A1 (de) Rotor für eine elektromaschine und verfahren zur herstellung eines rotors
WO2015192994A1 (de) Handwerkzeugmaschine mit elektronisch kommutiertem elektromotor als direktantrieb
EP2279058B1 (de) Werkzeugmaschine mit elektrischem antriebsmotor
WO2017144228A1 (de) Läufer einer permanenterregten dynamoelektrischen rotatorischen maschine und deren verwendung
DE102013210962B4 (de) Handwerkzeugmaschine mit einem elektromotorischen Antrieb und mindestens einem ersten Gehäuseteil
EP4052355A1 (de) Axialflussmaschine für ein elektrisches bearbeitungsgerät sowie elektrisches bearbeitungsgerät mit einer axialflussmaschine
WO2021083784A1 (de) Axialflussmaschine für ein elektrisches bearbeitungsgerät sowie elektrisches bearbeitungsgerät mit einer axialflussmaschine
WO2021083763A1 (de) Axialflussmaschine für ein elektrisches bearbeitungsgerät sowie elektrisches bearbeitungsgerät mit einer axialflussmaschine
EP2097964B1 (de) Drehfeldmaschine mit glockenläufer
EP1923978A2 (de) Exzenterschleifmaschine mit bürstenlosem Motor
EP1923173B1 (de) Handwerkzeugmaschine
EP4052357A1 (de) Axialflussmaschine für ein elektrisches bearbeitungsgerät sowie elektrisches bearbeitungsgerät mit einer axialflussmaschine
WO2021083783A1 (de) Axialflussmaschine für ein elektrisches bearbeitungsgerät sowie elektrisches bearbeitungsgerät mit einer axialflussmaschine
DE4138014C1 (en) Electromechanical power converter in rotary or linear form - has permanent magnets assembled in rotor driven by AC stator winding with pole elements
DE19957131A1 (de) Seitenkanalmaschine
EP2295621A1 (de) Friktions-Motorspindel
DE4443844A1 (de) Gebläseaggregat zum Erzeugen von Gasströmen
WO1999017423A2 (de) Elektrische maschine, insbesondere drehstromgenerator
AT511907B1 (de) Elektrische maschine mit einem gelagerten, ein ferromagnetisches material und mindestens einen reluktanzhauptpol aufweisenden reluktanzläufer
EP4333266A1 (de) Elektronisch kommutierter elektromotor
EP2871752A1 (de) Läufer einer rotatorischen permanenterregten Synchronmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796550

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17754576

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020796550

Country of ref document: EP

Effective date: 20220531