WO2021083098A1 - 电子束团储存环以及具有该电子束团储存环的极紫外光源 - Google Patents

电子束团储存环以及具有该电子束团储存环的极紫外光源 Download PDF

Info

Publication number
WO2021083098A1
WO2021083098A1 PCT/CN2020/123840 CN2020123840W WO2021083098A1 WO 2021083098 A1 WO2021083098 A1 WO 2021083098A1 CN 2020123840 W CN2020123840 W CN 2020123840W WO 2021083098 A1 WO2021083098 A1 WO 2021083098A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage ring
end matching
zero
matching unit
electron
Prior art date
Application number
PCT/CN2020/123840
Other languages
English (en)
French (fr)
Inventor
唐传祥
潘志龙
赵午
万唯实
黄文会
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2021083098A1 publication Critical patent/WO2021083098A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/06Two-beam arrangements; Multi-beam arrangements storage rings; Electron rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/005Cyclotrons

Definitions

  • the invention relates to a storage ring for storing ultra-short electron bunches (for example, a beam length of 100 nm).
  • the present invention also relates to an extreme ultraviolet (EUV) light source based on steady-state micro-bunching with such a storage ring.
  • EUV extreme ultraviolet
  • the extreme ultraviolet light source is used to generate ultra-high-power extreme ultraviolet lasers, and is particularly suitable for nano-chip lithography applications, etc. field.
  • EUV lithography technology based on extreme ultraviolet (EUV) light source
  • EUV lithography technology has become the key core of the nanochip manufacturing industry.
  • the power of EUV light source limits the use of EUV lithography machines for large-scale The main technical limitations of commercial production.
  • the world-wide EUV lithography machine technology is mainly monopolized by the Dutch company ASML.
  • Its EUV light source works at a wavelength of 13.5 nanometers.
  • a 20kW/40kW carbon dioxide gas laser bombards liquid tin to generate plasma to generate 13.5 nanometer EUV light.
  • This technical route is called "Laser-produced plasma technology" (Laser-produced plasma, LPP).
  • LPP Laser-produced plasma
  • NXE3400B has an EUV power of 250W, a beam length pulse of femtosecond (fs) length, and a repetition frequency of 1-100kHz.
  • This power level just reaches the commercial standard, which is far from meeting the needs of the entire chip industry.
  • the light source has high operating cost, low efficiency, poor stability, and can only work in a pulse mode.
  • the chip industry urgently needs EUV light sources based on new principles to appear.
  • the scientific community has proposed a variety of concepts that are different from LPP-EUV light sources.
  • the more feasible is the accelerator-driven free electron laser (FEL) scheme.
  • the basic principle is: using the relativistic electron beam with a certain energy generated by the accelerator. Interacting with the undulator (a periodically arranged magnet array), the radiation generates high-power EUV light with a frequency that satisfies the resonance relationship.
  • the accelerator-driven EUV laser source is used for lithography.
  • the main advantages of free electron laser extreme ultraviolet (FEL-EUV) are large average power, good beam quality, and expansion of new and shorter wavelength lithography technologies. .
  • the average power of the FEL-EUV light source can reach the order of kW, but because of the power limitation of the gas laser, it is difficult for the LPP technology to further increase the power to more than 1kW.
  • accelerator-based FEL-EUV light source has great potential and is also one of the current research hotspots in the field of international accelerators, there is no mature FEL-EUV device concept that can simultaneously meet high-power coherence, continuous wave, and cost Acceptable and physically feasible EUV light source scheme and overall device design.
  • the main difficulty lies in the fact that in order to produce an EUV light source with high average power and high conversion efficiency, it is necessary to generate an electron beam that drives the FEL with a high repetition rate, and make the electron beam and the undulator act as many times as possible to improve the utilization rate of the beam.
  • accelerators are mainly divided into linear accelerators, circular accelerators and energy recovery accelerators according to the beam line method.
  • the linear accelerator In order to achieve a high repetition rate, the linear accelerator must adopt superconducting technology to bear the heat load caused by the high repetition frequency beam, so the cost is high. At the same time, because the beam passes straight through the undulator only once, the beam utilization rate is very low. .
  • the energy recovery accelerator can improve the beam utilization efficiency, but the beam injection section still needs to use high repetition frequency superconducting technology, which increases the cost. Therefore, the toroidal accelerator has become the first choice in terms of cost.
  • one of the keys to obtain high-power coherent FEL-EUV is to obtain from the physical design of the accelerator the electron beam micro-bundling with a beam length smaller than the radiation wavelength (for the EUV wavelength of 13.5 nm, the driving required for coherent radiation)
  • the electron beam is a micro-bunch with a length of nanometers. Only the formation of a micro-bunch with a length of nanometers can generate coherent high-power EUV radiation in the radiation section of the undulator.
  • due to its own beam physics problems, such as the quantum excitation effect of the beam in the deflection magnet it is difficult to stably store micro-beams with a length of nanometers.
  • EUV extreme ultraviolet
  • the storage ring includes a deflection structure and a straight section.
  • a matching section is arranged symmetrically before and after the main unit.
  • the matching section includes a matching unit and a matching section.
  • the straight section is suitable for arranging the radiator.
  • related modulation section, undulator, boost section, etc. it is desirable to set the integral of the dispersion function in each deflection structure to zero.
  • the integral of the dispersion function in a single magnet in the deflection structure should be zero.
  • the momentum compression factor of the entire ring In order to store ultra-short electron bunches in the storage ring, for example, less than 100 nm, the momentum compression factor of the entire ring must be almost zero. However, since the elongation effect of the bunch is proportional to the square root of the sum of the square of the momentum compression factor of the entire ring and the local momentum compression factor, when the momentum compression factor of the entire ring approaches zero, the local momentum compression factor has an effect on the bunch. The elongation effect cannot be ignored, so it is also necessary to reduce the local momentum compression factor as much as possible.
  • the electron bunch storage ring includes a plurality of deflection structures and a plurality of straight sections connecting the deflection structures, and the deflection structure and the straight sections together form An annular structure suitable for continuous orbiting electron beam clusters, wherein, in the running direction of the electron beam, each of the deflection structures is sequentially arranged with a front end matching section, a front end matching unit, a number of main units successively arranged with each other, and a rear end matching Unit and rear-end matching section; wherein each main unit includes a front-end diode and a rear-end diode arranged at both ends, and a number of quadrupoles and hexapoles arranged in the center; a front-end matching unit and a rear-end matching unit It includes front end dipole iron and rear end dipole iron arranged at both ends, and several quadrupole irons and hexapole irons arranged in the center; the front end dipole iron and rear end dipole iron arranged at both ends, and several qua
  • each magnet in the electron bunch storage ring is appropriately arranged so that: the adjacent front-end dipole iron and the rear-end dipole iron of the adjacent main unit
  • the integral value of the dispersion function is zero, and the integral value of the dispersion function in the back-end diode of each front-end matching unit and the front-end diode of the first adjacent main unit is zero, and each back-end matching unit
  • the integral value of the dispersion function in the front end diode of the front end diode and the rear end diode of the adjacent last main unit is zero; and the dispersion function at the entrance of the front end diode of the front end matching unit and its derivative value Is zero, and the dispersion function and its derivative value at the outlet of the rear
  • the expectation and technical means to set the integral of the dispersion function in the entire deflection structure to zero are known.
  • the integral of the dispersion function in the deflection structure is set to zero so that the electron beams entering and leaving the deflection structure can naturally converge with the straight section.
  • the technical solution of the present invention is further dedicated to making the dispersion function integral of all monolithic diodes in the deflection structure except the matching section zero to achieve an ultra-low full-loop momentum compression factor, while the local momentum compression factor is naturally become very small, and further optimize the second-order momentum compression factor.
  • the above-mentioned electron bunch storage ring proposed by the present invention further requires that the integral value of the dispersion function in the adjacent front-end diode and the rear-end diode of the adjacent main unit is zero, and each front-end matching unit
  • the integral value of the dispersion function in the front end diode of the rear end diode of the adjacent first main unit and the front end diode of the adjacent main unit is zero, and the front end diode of each rear end matching unit and the adjacent last main unit
  • the integral value of the dispersion function in the back-end diode is zero, that is, the integral value of the dispersion function in all the monolithic diodes except the matching section is zero, thereby depressing the momentum compression factor of the entire ring.
  • the local momentum compression factor is positively correlated with the maximum value of the dispersion function. Therefore, the dispersion function at the entrance of the front and rear matching unit and its derivative value are zero, and the dispersion function at the junction of the adjacent front-end diode and the rear-end diode of the adjacent main unit is set to be zero.
  • the derivative value is zero, which depresses the maximum value of the dispersion function, thereby reducing the local momentum compression factor.
  • the adjustment parameters that can be considered include: the arrangement of the magnets, the length of the straight line between the magnets, the length of the quadrupole, the number of the quadrupole, and the strength of the quadrupole.
  • the matching unit and the matching section are used to make the long straight section into a dispersion-free area, and the matching section fine-tunes the entire structure by adjusting two sets of quadrupole irons.
  • the dispersion function and its derivative at its entrance or exit are still zero at the same time, and the two sets of hexapole irons inside the matching section are responsible for adjusting the non-linear dynamics of the storage ring, that is, adjusting the dynamic aperture.
  • adjacent two-pole irons jointly form a magnet, and at this time, it is desirable that the integral value of the dispersion function in the magnet is zero.
  • at least a pair of adjacent front-end dipoles and rear-end dipoles of the main unit together form a magnet, and the integral value of the dispersion function in the magnet is zero.
  • the rear end diode of at least one front end matching unit and the front end diode of the first adjacent main unit together form a magnet, and the integral value of the dispersion function in the magnet is zero.
  • the front end dipole iron of at least one rear end matching unit and the rear end dipole iron of the last adjacent main unit together form a magnet, and the integral value of the dispersion function in the magnet is zero.
  • the arrangement of magnets in the front-end matching unit and the rear-end matching unit are arranged mirror-symmetrically on both sides with respect to the main unit.
  • the arrangement of magnets in the front-end matching section and the rear-end matching section are arranged mirror-symmetrically on both sides with respect to the main unit.
  • the mirror symmetry design is conducive to simplifying parameter adjustment.
  • the electron bunch storage ring includes the same four symmetrical deflection structures.
  • each deflection structure is composed of eight identical main units.
  • the front-end matching section and the rear-end matching section are respectively composed of at least two sets of quadrupole irons and at least two sets of hexapole irons.
  • the quadrupoles of the front-end matching unit and the rear-end matching unit are respectively greater than or equal to four groups.
  • the quadrupole iron and the hexapole iron of the main unit are respectively greater than or equal to three groups.
  • Figure 1 schematically shows the overall structure of the electron bunch storage ring
  • Figure 2 schematically shows the arrangement of the magnets of a single deflection structure
  • Figure 3 schematically shows the arrangement of magnets in the main unit
  • Figure 4 schematically shows the arrangement of magnets in the matching unit
  • Figure 5 schematically shows the arrangement of magnets in the matching section
  • Fig. 6 schematically shows the dispersion function distribution in the diode in the main unit.
  • Fig. 1 schematically shows the overall structure of the electron bunch storage ring.
  • the electron bunch storage ring is composed of four symmetrical deflection structures and four long linear sections. Place electron beam injection devices, electron beam extraction devices, laser energy supply systems, laser modulators, laser anti-modulators, and radiators (especially extreme ultraviolet laser radiators) on the linear section, or ordinary radiators for generating High-power x-rays.
  • Fig. 2 schematically shows the arrangement of magnets of a single deflection structure.
  • the two ends of the deflection structure are connected to linear sections that are not fully shown.
  • a single symmetrical deflection structure is composed of two mirror-symmetric matching units, two mirror-symmetric matching sections, and eight main units. There are eight main units in the middle. The two sides of the eight main units are mirror-symmetrical front and back-end matching units, and the outer side is mirror-symmetrical front and back-end matching sections.
  • Figures 3, 4, and 5 schematically show the main unit, the matching unit on the left in Figure 2 (front end matching unit), and the magnet arrangement of the matching section on the left in Figure 2 (front end matching section).
  • the arrangement of the magnets of the matching unit on the right and the matching section on the right is the mirror image structure of Fig. 4 and Fig. 5 respectively.
  • Q1, Q2, Q3 are three different sets of quadrupoles
  • S1, S2, S3, S4 are four different hexapole iron
  • B 1 is a two-pole iron. Since there is no straight line connection between the main units, in fact, two pieces of B 1 together form a piece of dipole iron.
  • Q4, Q5, Q6, Q7, Q8, Q9 are six different sets of quadrupoles
  • S5, S6, S7, S8 are the same as the hexapoles S1, S2 in the main unit
  • S3, S4 are the same four groups of hexapole iron
  • B 1 is the same dipole iron as in the main unit
  • Bm is also a dipole iron, which is slightly different from B 1.
  • QFS and QDS are two different sets of quadrupole irons
  • SFS and SDS are two different sets of hexapole irons. All the straight lines connected between the magnets are straight sections.
  • Fig. 6 shows the desired dispersion function distribution in the monolithic diode in the electron bunch storage ring of the present invention.
  • the integral of the dispersion function in a single magnet corresponds to the sum of the area S1 and S2 enclosed by the dispersion function ⁇ (s) and the s-axis as 0 (or the sum of S3 and S4 as 0).
  • the curve in the figure shows the trend of the dispersion function inside the two magnets that are both B 1.
  • the vertical line in the middle indicates the junction of the two magnets.
  • the junction corresponds to the junction of any two main units and the main unit and the matching unit in FIG. 2.
  • the integral of the dispersion function is satisfied to be zero. Since most of the electron bunch storage rings are B 1 magnets, the number of B m magnets in the matching unit is small, and there are a total of eight in the entire ring, so it can be ensured that the momentum compression factor of the entire ring is basically zero. In order to ensure a small local momentum compression factor at the same time, we make the junction, that is, point o in Fig. 6, also the derivative of the dispersion function at the center of symmetry in Fig.
  • ⁇ 0 ' 0, so as to ensure that it is in the magnet
  • the maximum value of the absolute value of the dispersion function is as small as possible, which reduces the local momentum compression factor as much as possible.
  • the dispersion function at any point in the magnet is determined, and it is known that the dispersion in a single magnet
  • the integral of the function is zero, and the derivative of the dispersion function at the entrance is zero, the dispersion function at the entrance of the magnet can be obtained That is, the dispersion function of point O at the junction is the determined value.
  • is the deflection radius of the magnet
  • ⁇ 0 is the deflection angle of the magnet.
  • the matching unit and the matching section are to make the long straight section into a dispersion-free area. Therefore, for the matching unit on the left side of Fig. 2, the dispersion function at the entrance of the diode B m at the entrance of the matching unit and its derivatives ⁇ m and ⁇ m 'should be zero at the same time.
  • the deflection angle ⁇ m of B m is selected to be approximately 0.65 times the deflection angle ⁇ 0 of B1. This multiple ⁇ m/ ⁇ 0 can also take other values between 0 and 1. The smaller the value, the smaller the local momentum compression factor.
  • the parameters of the six groups of quadrupoles Q4, Q5, Q6, Q7, Q8, and Q9 are also adjusted to ensure that the dispersion function and its derivative at the entrance are both zero.
  • the length of the straight line between the magnets is also adjustable, and the quadrupole iron does not necessarily need six groups.
  • the number of periods in the horizontal and vertical directions must also be guaranteed to be a certain value, so in the matching unit, four groups of quadrupoles or more can meet the conditions.
  • the matching section fine-tunes the entire structure by adjusting the two sets of quadrupole QFS and QDS, so that the dispersion function and its derivative at its entrance or exit are still 0 at the same time.
  • the dispersion function is almost always zero, so the two sets of hexapole SFS and SDS inside the matching section are responsible for adjusting the nonlinear dynamics of the storage ring, that is, adjusting the dynamic aperture.
  • the four groups of hexapoles S1, S2, S3, S4 and S5, S6, S7, S8 in the main unit and the matching unit are used to simultaneously adjust the horizontal chromaticity, vertical chromaticity and chromaticity of the storage ring.
  • the second-order momentum compression factor In fact, at least three different groups of hexapoles are enough to adjust these three parameters.
  • the four groups are used to have more degrees of freedom to control the nonlinear dynamics.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Particle Accelerators (AREA)

Abstract

一种电子束团储存环(100),电子束团储存环(100)包括若干偏转结构(110)以及连接偏转结构(110)的若干直线节(120),偏转结构(110)和直线节(120)共同形成适于电子束团持续环绕运行的环形结构,在电子束的运行方向上,每个偏转结构(110)依次布置有前端匹配节(116)、前端匹配单元(118)、彼此连续布置的若干主单元(112)、后端匹配单元(119)以及后端匹配节(122),适当地布置电子束团储存环(100)中的各磁铁,使得匹配单元(114)之外的所有二极铁(B1,Bm)内的色散函数积分值为零,并且,前端匹配单元(118)的入口处以及后端匹配单元(119)的出口处的色散函数及其导数值为零,并且,相邻的主单元(112)的二极铁(B1,Bm)的交界处的色散函数的导数值为零。

Description

电子束团储存环以及具有该电子束团储存环的极紫外光源 技术领域
本发明涉及一种用于储存超短电子束团(比如束长100nm)的储存环。本发明还涉及一种具有这种储存环的、基于稳态微聚束的极紫外(EUV)光源,该极紫外光源用于产生超高功率极紫外激光,尤其适用于纳米芯片光刻应用等领域。
背景技术
随着人类社会信息化、智能化的深入发展,芯片制造技术成为一个国家的核心竞争力的重要体现。目前芯片技术已经向纳米尺度推进,基于极紫外(EUV)光源的光刻技术(简称EUV光刻技术)成为纳米芯片制造产业的关键核心,其中EUV光源功率是限制EUV光刻机用于大规模商业生产的主要技术限制。
目前世界范围内的EUV光刻机技术主要为荷兰ASML公司垄断,其EUV光源工作在波长13.5纳米,通过一台20kW/40kW的二氧化碳气体激光器轰击液态锡产生等离子体从而产生13.5纳米的EUV光,这一技术路线被称为“光生等离子体技术”(Laser-produced plasma,LPP)。其最新产品NXE3400B输出EUV功率250W,束长脉冲飞秒(fs)长度,重复频率1-100kHz。该功率水平刚好达到商用标准,还远不能满足整个芯片工业的需求。另外,该光源运行成本高、效率低、稳定性差、只能脉冲方式工作。芯片工业界迫切需要基于新原理的EUV光源出现。
科学界提出了多种区别于LPP-EUV光源的概念,其中可行性较高的是基于加速器驱自由电子激光(FEL)方案,其基本原理是:利用加速器产生的具有一定能量的相对论电子束,与波荡器(周期性排布的磁铁阵列)相互作用,辐射产生频率满足共振关系的高功率EUV光。加速器驱动的EUV激 光源用于光刻,相比于LPP,自由电子激光极紫外光(FEL-EUV)的主要优点是平均功率大、光束质量好、可拓展新的更短波长的光刻技术。理论上FEL-EUV光源的平均功率可达到kW量级,而LPP技术因为气体激光器的功率限定也很难将功率进一步加大到1kW以上。
尽管基于加速器的FEL-EUV光源极具潜力,也是目前国际加速器领域的研究热点之一,但目前的FEL-EUV装置概念中,还没有一个成熟的,可以同时满足高功率相干、连续波、造价可接受、同时物理上可行的EUV光源方案与总体装置设计。其困难主要在于:为了产生高平均功率、高转换效率的EUV光源,必须产生高重复频率驱动FEL的电子束,并尽可能使得电子束和波荡器多次作用,提高束流的利用率。目前加速器按照束线方式主要分为直线加速器、环形加速器和能量回收性加速器。直线加速器为了实现高的重复频率,必然要采用超导技术以承担高重频束流带来热负载,因此造价高昂,同时由于束流直线通过波荡器只利用一次,束流的利用率很低。能量回收加速器可以提高束流利用效率,但束流注入段部分依然需要采用高重频的超导技术,增加了造价成本。因此从造价成本上环形加速器成为首选。但是另一方面,获得高功率相干FEL-EUV的关键之一是必须要从加速器物理设计中获得束长小于辐射波长的电子束微聚束(对于13.5纳米的EUV波长,相干辐射所需的驱动电子束为束长纳米量级长度的微聚束),只有纳米量级长度的微聚束的形成才能在波荡器辐射段中产生相干的高功率EUV辐射。而环形加速器由于自身的束流物理问题,如束流在偏转磁铁中的量子激发效应等,难以稳定存储纳米量级长度的微聚束。
综上所述,目前的kW量级极紫外(EUV)光源存在空白,基于加速器的FEL-EUV光源具有极大潜力,但尚没有一个可以同时满足高功率相干、连续波、造价可接受,同时物理可行的完整的EUV光源方案与总体装置设计。
在加速器领域的现有设计中,储存环包括偏转结构和直线节,偏转结构中在主单元前后对称地布置匹配段,该匹配段包括匹配单元和匹配节,直线节中则适于布置辐射器及相关的调制段、波荡器、增能段,等等。通常,希 望将各个偏转结构中的色散函数积分设定为零。但在任何现有技术的公开内容中,并没有披露要使偏转结构内的单块磁铁内的色散函数积分为零。
为了在储存环中储存超短电子束团,例如小于100nm,必须做到全环的动量压缩因子几乎为零。然而由于束团的拉长效应正比于全环的动量压缩因子与局部的动量压缩因子的平方和的平方根,当全环的动量压缩因子趋近于零之后,局部的动量压缩因子对束团的拉长效应就不能忽略,因此也需要尽可能减小局部的动量压缩因子。
发明内容
为解决上述技术问题,本发明提出了一种电子束团储存环,该电子束团储存环包括若干偏转结构以及连接所述偏转结构的若干直线节,所述偏转结构和所述直线节共同形成适于电子束团持续环绕运行的环形结构,其中,在电子束的运行方向上,每个所述偏转结构依次布置有前端匹配节、前端匹配单元、彼此连续布置的若干主单元、后端匹配单元以及后端匹配节;其中,每个主单元包括布置在两端的前端二极铁和后端二极铁以及布置在中央的若干四极铁和六极铁;前端匹配单元和后端匹配单元分别包括布置在两端的前端二极铁和后端二极铁和布置在中央的若干四极铁和六极铁;前端匹配节和后端匹配节则分别仅包括若干四极铁和六极铁,用于对储存环内的光学函数和周期数进行微调;其中,所述直线节被设计为适于放置电子束注入装置、电子束引出装置、激光供能系统、激光调制器、激光反调制器或辐射器中的至少一个;其中,适当地布置该电子束团储存环中的各磁铁,使得:相邻的所述主单元的相邻的前端二极铁和后端二极铁内的色散函数积分值为零,且每个前端匹配单元的后端二极铁与相邻的首个所述主单元的前端二极铁内的色散函数积分值为零,且每个后端匹配单元的前端二极铁与相邻的末位主单元的后端二极铁内的色散函数积分值为零;并且,所述前端匹配单元的前端二极铁的入口处的色散函数及其导数值为零,且所述后端匹配单元的后端二极铁的出口处的色散函数及其导数值为零,因此整个偏转结构形成一个消色散结构;并且,相邻的所述主单元的相邻的前端二极铁和后端二极铁交界处的色散函数的导数值为零。
为了减小储存环中电子束团的纵向长度,将各个偏转结构整体中的色散函数积分设定为零的期望和技术手段都是公知的。偏转结构中的色散函数积分设定为零使得进入和离开偏转结构的电子束流能够与直线节自然衔接。但本发明的技术方案进一步致力于使偏转结构中的除匹配段之外的所有单块二极铁中的色散函数积分为零以实现超低的全环动量压缩因子,同时局部动量压缩因子自然变得很小,并进一步优化二阶动量压缩因子。
因此,本发明提出的上述电子束团储存环进一步要求相邻的所述主单元的相邻的前端二极铁和后端二极铁内的色散函数积分值为零,且每个前端匹配单元的后端二极铁与相邻的首个所述主单元的前端二极铁内的色散函数积分值为零,且每个后端匹配单元的前端二极铁与相邻的末位主单元的后端二极铁内的色散函数积分值为零,也就是除匹配段之外的所有单块二极铁内的色散函数积分值为零,从而压低全环动量压缩因子。
另外,局部动量压缩因子与色散函数的最大值正相关。因此,使前、后端匹配单元的入口处的色散函数及其导数值为零且使相邻的所述主单元的相邻的前端二极铁和后端二极铁交界处的色散函数的导数值为零,也就压低了色散函数的最大值,从而降低了局部动量压缩因子。
通过调整参数,可以满足单块磁铁内色散函数积分值为零的条件。可以考虑的调节参数包括:磁铁的排布方式、磁铁之间直线段的长度、四极铁长度、四极铁个数、四极铁强度。
匹配单元和匹配节用于使长直线节内成为无色散区域,匹配节通过调节两组四极铁对整个结构进行微调。使它的入口或出口处的色散函数及其导数仍然同时为零而匹配节内部的两组六极铁则负责调节储存环的非线性动力学的,也即调整动力学孔径。
优选的是,在上述技术方案中,相邻的二极铁共同组成一块磁铁,此时希望该磁铁内的色散函数积分值为零。例如,至少一对相邻的所述主单元的相邻的前端二极铁和后端二极铁共同组成一块磁铁,且该磁铁内的色散函数 积分值为零。或者,至少一个前端匹配单元的后端二极铁与相邻的首个所述主单元的前端二极铁共同组成一块磁铁,且该磁铁内的色散函数积分值为零。或者,至少一个后端匹配单元的前端二极铁与相邻的最后一个所述主单元的后端二极铁共同组成一块磁铁,且该磁铁内的色散函数积分值为零。
优选的是,所述前端匹配单元和所述后端匹配单元内的磁铁排列关于所述主单元镜像对称地布置在两侧。类似地,亦优选的是,所述前端匹配节和所述后端匹配节内的磁铁排列关于所述主单元镜像对称地布置在两侧。镜像对称的设计有利于简化参数调节。
在一种优选的实施形式中,所述电子束团储存环包括相同的四个对称的所述偏转结构。优选的是,每个偏转结构由八个相同的主单元组成。更优选的是,所述前端匹配节和所述后端匹配节分别由至少两组四极铁和至少两组六极铁组成。优选的是,所述前端匹配单元和所述后端匹配单元的四极铁分别大于或等于四组。优选的是,所述主单元的四极铁、六极铁分别大于或等于三组。
附图说明
下面结合附图阐释本发明的实施例。在附图中:
图1示意性地示出了电子束团储存环的整体结构;
图2示意性地示出了单个偏转结构的磁铁排列布置;
图3示意性地示出了主单元中的磁铁排列布置;
图4示意性地示出了匹配单元中的磁铁排布;
图5示意性地示出了匹配节中的磁铁排布;
图6示意性地示出了主单元中二极铁内的色散函数分布。
具体实施方式
图1示意性地示出了电子束团储存环的整体结构。在此实施例中,电子束团储存环由四个对称的偏转结构和四段长直线节组成。在直线节上放置电子束流注入装置、电子束流引出装置、激光供能系统、激光调制器、激光反调制器以及辐射器(尤其是极紫外激光辐射器),或者普通的辐射器用来产 生高功率的x射线。
图2示意性地示出了单个偏转结构的磁铁排列布置。该偏转结构的两端与未充分示出的直线节相连。在此实施例中,单个对称偏转结构由两个镜像对称的匹配单元、两个镜像对称的匹配节和八个主单元组成。中间是八个主单元,八个主单元的两侧是镜像对称的前、后端匹配单元,更外侧是镜像对称的前、后端匹配节。
图3、图4、图5分别示意性地示出了主单元、图2中左侧的匹配单元(前端匹配单元),图2中左侧的匹配节的磁铁排列布置(前端匹配节)。右侧的匹配单元和右侧的匹配节的磁铁排列布置则分别是图4、图5的镜像结构。
在主单元中,如图3所示,Q1,Q2,Q3是三组不同的四极铁,S1,S2,S3,S4是四组不同的六极铁,B 1是二极铁。由于主单元之间是没有直线节直接相连的,所以实际上两块B 1共同组成一块二极铁。
在匹配单元中,如图4所示,Q4,Q5,Q6,Q7,Q8,Q9是六组不同的四极铁,S5,S6,S7,S8是与主单元中的六极铁S1,S2,S3,S4相同的四组六极铁,B 1是与主单元中相同的二极铁,Bm也是二极铁,与B 1略有不同。
在匹配节中,QFS,QDS是两组不同的四极铁,SFS,SDS是两组不同的六极铁。所有连接在磁铁之间的直线都是直线节。
图6示出了本发明的电子束团储存环中单块二极铁内希望达到的色散函数分布。单块的磁铁内色散函数的积分在图6中对应于色散函数η(s)与s轴所围成的面积S1与S2的和为0(或S3与S4的和为0)。图中的曲线表示色散函数在两块都是B 1的磁铁内部的走势。中间的竖线表示两块磁铁的交界处。该交界处对应于图2中任意两个主单元以及主单元与匹配单元的交界处。不管是在单块的B 1磁铁还是由两块B 1组成的磁铁中,都满足色散函数的积分为零。由于电子束团储存环中大部分都是B 1磁铁,在匹配单元中 的B m磁铁数目很少,全环总共八块,所以可以保证全环的动量压缩因子基本为0。为了同时保证较小的局部动量压缩因子,我们使交界处,即图6中的o点,同时也是图6中的对称中心处的色散函数的导数η 0’=0,这样可以保证在磁铁中色散函数绝对值的最大值尽可能小,也就尽可能减小了局部动量压缩因子。以图6中右侧的磁铁B 1为例,因为知道了入口处的色散函数η 0,η 0’之后,在磁铁内任意点的色散函数就确定了,又已知在单块磁铁中色散函数积分为零,入口处色散函数导数为零,可以求得在该磁铁入口处的色散函数
Figure PCTCN2020123840-appb-000001
也即交界处O点的色散函数为该确定值。其中ρ是磁铁偏转半径,θ 0是磁铁的偏转角度。二极铁的长度和数目确定以后,这个值就是确定的,所以在储存环设计时,通过调整主单元中三块四极铁的参数,可以保证这个条件得到满足。在这里,可以调节的参数不仅仅包括磁铁的排布方式,亦可以适当改变磁铁之间直线段的长度,适当改变四极铁长度,适当增加不同的四极铁个数,都可以使这个条件得到满足。
匹配单元和匹配节是为了使长直线节内成为无色散区域。因此对于图2中左侧的匹配单元来说,应使匹配单元入口处的二极铁B m的入口处的色散函数及其导数η m,η m’同时为零。为了使B m出口处的色散函数不至于太大,选取了B m的偏转角度θ m大约为B1的偏转角度θ 0的0.65倍。这个倍数θ m/θ 0还可以取0到1之间的其他值,选的越小,局部动量压缩因子就越小。在匹配单元中,也是通过调节六组四极铁Q4,Q5,Q6,Q7,Q8,Q9的参数来保证入口处的色散函数及其导数同时为0。同样,各磁铁之间的直线段长度也是可调的,四极铁也不一定需要六组。事实上,除了入口处的色散函数及其导数之外,水平和垂直方向的周期数也是要保证为某个确定值的,所以在匹配单元中,大于等于四组四极铁就可以满足条件。
匹配节则通过调节两组四极铁QFS和QDS对整个结构进行微调,使它的入口或出口处的色散函数及其导数仍然同时为0。当然在匹配节内部,色散函数也是几乎处处为0的,所以在匹配节内部的两组六极铁SFS和SDS是负责调节储存环的非线性动力学的,也即调整动力学孔径。
此外,在主单元和匹配单元中的各四组六极铁S1,S2,S3,S4和S5, S6,S7,S8分别是用来同时调节储存环的水平方向色品,垂直方向色品以及二阶动量压缩因子的。事实上,最少三组不同的六极铁就够用来调整这三个参数了,使用四组是为了有更多的自由度去控制非线性动力学。
尽管已经示出和描述了本发明的实施例,但是本领域的普通技术人员可以理解:在不背离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换、变型以及任意组合,本发明的范围由权利要求及其等同物限定。
附图标记列表
100电子束团储存环
110偏转结构
120直线节
210电子束注入装置
220电子束引出装置
230激光供能系统
240激光调制器
250激光反调制器
260辐射器
112主单元
114匹配单元
116前端匹配节
118前端匹配单元
119后端匹配单元
122后端匹配节;
B1,Bm二极铁
Q1,Q2,Q3主单元的四极铁
S1,S2,S3,S4主单元的六极铁
Q4,Q5,Q6,Q7,Q8,Q9匹配单元的四极铁
S5,S6,S7,S8匹配单元的六极铁
QFS,QDS匹配节的四极铁
SFS,SDS匹配节的六极铁

Claims (13)

  1. 一种电子束团储存环,该电子束团储存环包括若干偏转结构以及连接所述偏转结构的若干直线节,所述偏转结构和所述直线节共同形成适于电子束团持续环绕运行的环形结构,其中,在电子束的运行方向上,每个所述偏转结构依次布置有前端匹配节、前端匹配单元、彼此连续布置的若干主单元、后端匹配单元以及后端匹配节;
    其中,每个主单元包括布置在两端的前端二极铁和后端二极铁以及布置在中央的若干四极铁和六极铁;前端匹配单元和后端匹配单元分别包括布置在两端的前端二极铁和后端二极铁和布置在中央的若干四极铁和六极铁;前端匹配节和后端匹配节则分别仅包括若干四极铁和六极铁,用于对储存环内的光学函数和周期数进行微调;
    其中,所述直线节被设计为适于放置电子束注入装置、电子束引出装置、激光供能系统、激光调制器、激光反调制器或辐射器中的至少一个;
    其特征在于,适当地布置该电子束团储存环中的各磁铁,使得
    相邻的所述主单元的相邻的前端二极铁和后端二极铁内的色散函数积分值为零,且每个前端匹配单元的后端二极铁与相邻的首个所述主单元的前端二极铁内的色散函数积分值为零,且每个后端匹配单元的前端二极铁与相邻的末位主单元的后端二极铁内的色散函数积分值为零,并且,
    所述前端匹配单元的前端二极铁的入口处的色散函数及色散函数的导数值为零,且所述后端匹配单元的后端二极铁的出口处的色散函数及色散函数的导数值为零,并且,
    相邻的所述主单元的相邻的前端二极铁和后端二极铁交界处的色散函数的导数值为零。
  2. 根据权利要求1所述的电子束团储存环,其特征在于,
    至少一对相邻的所述主单元的相邻的前端二极铁和后端二极铁共同组成一块磁铁,且该磁铁内的色散函数积分值为零。
  3. 根据权利要求1所述的电子束团储存环,其特征在于,
    至少一个前端匹配单元的后端二极铁与相邻的首个所述主单元的前端 二极铁共同组成一块磁铁,且该磁铁内的色散函数积分值为零。
  4. 根据权利要求1所述的电子束团储存环,其特征在于,
    至少一个后端匹配单元的前端二极铁与相邻的最后一个所述主单元的后端二极铁共同组成一块磁铁,且该磁铁内的色散函数积分值为零。
  5. 根据权利要求1所述的电子束团储存环,其特征在于,通过调节以下参数中至少之一,实现单块磁铁内色散函数积分值为零:磁铁的排布方式、磁铁之间直线段的长度、四极铁长度、四极铁个数、四极铁强度。
  6. 根据权利要求1所述的电子束团储存环,其特征在于,所述前端匹配单元和所述后端匹配单元内的磁铁排列关于所述主单元镜像对称地布置在两侧。
  7. 根据权利要求1所述的电子束团储存环,其特征在于,所述前端匹配节和所述后端匹配节内的磁铁排列关于所述主单元镜像对称地布置在两侧。
  8. 根据权利要求6或7所述的电子束团储存环,其特征在于,所述电子束团储存环包括相同的四个对称的所述偏转结构。
  9. 如权利要求8所述的电子束团储存环,其特征在于,每个偏转结构由八个相同的主单元组成。
  10. 如权利要求8所述的电子束团储存环,其特征在于,所述前端匹配节和所述后端匹配节分别由至少两组四极铁和至少两组六极铁组成。
  11. 如权利要求8所述的电子束团储存环,其特征在于,所述前端匹配单元和所述后端匹配单元的四极铁分别大于或等于四组。
  12. 如权利要求8所述的电子束团储存环,其特征在于,所述主单元的 四极铁、六极铁分别大于或等于三组。
  13. 一种包括如权利要求1至12中任一项所述电子束团储存环的极紫外光源。
PCT/CN2020/123840 2019-10-29 2020-10-27 电子束团储存环以及具有该电子束团储存环的极紫外光源 WO2021083098A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911034817.XA CN110944446B (zh) 2019-10-29 2019-10-29 电子束团储存环以及具有该电子束团储存环的极紫外光源
CN201911034817.X 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021083098A1 true WO2021083098A1 (zh) 2021-05-06

Family

ID=69906261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123840 WO2021083098A1 (zh) 2019-10-29 2020-10-27 电子束团储存环以及具有该电子束团储存环的极紫外光源

Country Status (2)

Country Link
CN (1) CN110944446B (zh)
WO (1) WO2021083098A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944446B (zh) * 2019-10-29 2020-09-25 清华大学 电子束团储存环以及具有该电子束团储存环的极紫外光源
CN110944439B (zh) * 2019-10-29 2021-05-28 清华大学 基于电子储存环的高平均功率极紫外光源装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102119586A (zh) * 2008-05-22 2011-07-06 弗拉迪米尔·叶戈罗维奇·巴拉金 多场带电粒子癌症治疗方法和装置
WO2014128848A1 (ja) * 2013-02-20 2014-08-28 株式会社日立製作所 有機薄膜パターン形成装置および形成方法
CN104034740A (zh) * 2014-05-12 2014-09-10 中国工程物理研究院流体物理研究所 基于能量损失聚焦成像的带电粒子照相装置
CN104914119A (zh) * 2015-06-15 2015-09-16 中国工程物理研究院流体物理研究所 一种匹配束流为平行束的带电粒子照相装置
CN109814148A (zh) * 2019-03-14 2019-05-28 中国科学院近代物理研究所 一种探测器的高能准单能电子束地面标定系统
US20190254155A1 (en) * 2016-10-20 2019-08-15 Paul Scherrer Institut Multi-Undulator Spiral Compact Light Source
CN110383175A (zh) * 2017-04-26 2019-10-25 极光先进雷射株式会社 Euv光生成装置
CN110944446A (zh) * 2019-10-29 2020-03-31 清华大学 电子束团储存环以及具有该电子束团储存环的极紫外光源

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8749179B2 (en) * 2012-08-14 2014-06-10 Kla-Tencor Corporation Optical characterization systems employing compact synchrotron radiation sources
DE102013211830A1 (de) * 2013-06-21 2014-06-12 Carl Zeiss Smt Gmbh EUV-Lithographieanlage mit Freie-Elektronen-Laser-Einheit
US9408290B2 (en) * 2013-11-30 2016-08-02 Jefferson Science Associates, Llc Method and apparatus for recirculation with control of synchrotron radiation
JP6180976B2 (ja) * 2014-03-20 2017-08-16 株式会社東芝 イオン加速器、イオン加速制御方法及び粒子線治療装置
KR102340172B1 (ko) * 2014-08-15 2021-12-16 에이에스엠엘 네델란즈 비.브이. Euv용 자유 전자 레이저 방사원

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102119586A (zh) * 2008-05-22 2011-07-06 弗拉迪米尔·叶戈罗维奇·巴拉金 多场带电粒子癌症治疗方法和装置
WO2014128848A1 (ja) * 2013-02-20 2014-08-28 株式会社日立製作所 有機薄膜パターン形成装置および形成方法
CN104034740A (zh) * 2014-05-12 2014-09-10 中国工程物理研究院流体物理研究所 基于能量损失聚焦成像的带电粒子照相装置
CN104914119A (zh) * 2015-06-15 2015-09-16 中国工程物理研究院流体物理研究所 一种匹配束流为平行束的带电粒子照相装置
US20190254155A1 (en) * 2016-10-20 2019-08-15 Paul Scherrer Institut Multi-Undulator Spiral Compact Light Source
CN110383175A (zh) * 2017-04-26 2019-10-25 极光先进雷射株式会社 Euv光生成装置
CN109814148A (zh) * 2019-03-14 2019-05-28 中国科学院近代物理研究所 一种探测器的高能准单能电子束地面标定系统
CN110944446A (zh) * 2019-10-29 2020-03-31 清华大学 电子束团储存环以及具有该电子束团储存环的极紫外光源

Also Published As

Publication number Publication date
CN110944446B (zh) 2020-09-25
CN110944446A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
Streun The anti-bend cell for ultralow emittance storage ring lattices
WO2021083098A1 (zh) 电子束团储存环以及具有该电子束团储存环的极紫外光源
Labat et al. High-Gain Harmonic-Generation Free-Electron Laser Seeded<? format?> by Harmonics Generated in Gas
Shevchenko et al. The Novosibirsk Free Electron Laser–unique source of terahertz and infrared coherent radiation
Raimondi The ESRF low-emittance upgrade
Merminga Energy recovery linacs
Nakamura Review of ERL Projects at KEK and Around the World
Raimondi Hybrid multi bend achromat: from SuperB to EBS
Li et al. Extremely bright coherent synchrotron radiation production in a diffraction-limited storage ring using an angular dispersion-induced microbunching scheme
TW201524053A (zh) 自由電子雷射
WO2021083099A1 (zh) 基于电子储存环的高平均功率极紫外光源装置
Streun et al. Proposed upgrade of the SLS storage ring
Klysubun et al. Design and optimisation of SPS-II storage ring
Freund et al. Multiple-beam free-electron lasers
US12057674B2 (en) Method and apparatus for producing a high gain free electron laser using a large energy spread electron beam
US7858951B1 (en) Skew chicane based betatron eigenmode exchange module
Aiba et al. Towards an upgrade of the Swiss light source
Brunelle et al. Application of an emittance adapter to increase photon flux density on a synchrotron radiation beam line
Clarke et al. Prospects for a 4th Generation Light Source for the UK
Li et al. Extreme bright coherent synchrotron radiation produced in a low emittance electron storage ring by the angular dispersion induced microbunching scheme
Peng et al. Generation of Large-Bandwidth High-Power X-Ray Free-Electron-Laser Pulses Using a Hollow-Channel Plasma
Pagani et al. A high current proton linac with 352 MHz SC cavities
Härer Lattice design and beam optics calculations for the new large-scale electron-positron collider FCC-ee
Bacher et al. PETRA III—Status of the Storage Ring
Nam et al. The Simulation Study for Single and Multi Turn ERL Based EUV FEL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883002

Country of ref document: EP

Kind code of ref document: A1