WO2021082979A1 - 一种低色散单模光纤 - Google Patents

一种低色散单模光纤 Download PDF

Info

Publication number
WO2021082979A1
WO2021082979A1 PCT/CN2020/122057 CN2020122057W WO2021082979A1 WO 2021082979 A1 WO2021082979 A1 WO 2021082979A1 CN 2020122057 W CN2020122057 W CN 2020122057W WO 2021082979 A1 WO2021082979 A1 WO 2021082979A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
layer
dispersion
refractive index
cladding
Prior art date
Application number
PCT/CN2020/122057
Other languages
English (en)
French (fr)
Inventor
张磊
王瑞春
张睿
吴超
邓兰
周红燕
沈磊
罗杰
Original Assignee
长飞光纤光缆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆股份有限公司 filed Critical 长飞光纤光缆股份有限公司
Priority to US17/420,232 priority Critical patent/US11435519B2/en
Priority to EP20880727.1A priority patent/EP3869246A4/en
Publication of WO2021082979A1 publication Critical patent/WO2021082979A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02228Dispersion flattened fibres, i.e. having a low dispersion variation over an extended wavelength range
    • G02B6/02238Low dispersion slope fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02266Positive dispersion fibres at 1550 nm
    • G02B6/02271Non-zero dispersion shifted fibres, i.e. having a small positive dispersion at 1550 nm, e.g. ITU-T G.655 dispersion between 1.0 to 10 ps/nm.km for avoiding nonlinear effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03694Multiple layers differing in properties other than the refractive index, e.g. attenuation, diffusion, stress properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Definitions

  • the invention relates to a single-mode optical fiber used in an optical fiber communication system, in particular to a dispersion-adjusted low-dispersion single-mode optical fiber.
  • the single-mode fiber has lower dispersion in a larger wavelength range, can solve the system transmission performance problem caused by dispersion, and is particularly suitable for WDM transmission systems in the 1260nm-1460nm waveband.
  • the accumulation of chromatic dispersion in the single-mode optical fiber during transmission will deform the signal pulse, resulting in increased chromatic dispersion cost and increased bit error rate. Therefore, the larger chromatic dispersion in the optical fiber will affect the transmission system.
  • the optical module has higher requirements, and it is often necessary to add a cooler to the optical module or replace the existing detector with a detector with higher sensitivity. At the same time, dispersion is also a factor that limits the transmission distance.
  • a post-dispersion compensation (PDC) module can be placed at the receiving end to restore the waveform.
  • dispersion compensation module will increase the complexity of the system, requiring special placement space and increasing the workload of laying and maintenance.
  • a new type of dispersion-optimized single-mode fiber with a smaller dispersion value in a wide band can be developed.
  • Most of the current commercial dispersion-shifted single-mode fibers, non-zero dispersion-shifted single-mode fibers, and existing dispersion-flattened fiber patents focus on the dispersion optimization from 1530 nm to 1565 nm, and do not pay attention to the 1260 nm to 1460 nm band.
  • Chinese patent CN200610117423.7 describes a full-wave non-zero dispersion flat single-mode optical fiber, which is composed of an intermediate core layer, two layers of ring-shaped cladding layers, and an outer cladding layer.
  • the optical fiber gives a dispersion value in the range of 1300nm to 1625nm, it does not mention the cut-off wavelength value.
  • the refractive index difference and core diameter of the core layer and the first annular layer are relatively large, and the cut-off wavelength can be expected It is higher. Through calculation, it is found that there are high-order modes in the range of 1300nm ⁇ 1625nm in the whole band, which is not suitable for single-mode optical fiber transmission system.
  • the patent only gives the dispersion and effective area parameters, but does not give the attenuation characteristics of the optical fiber.
  • the second ring layered optical fiber has a relatively high refractive index difference, and the outer layer of the ring layer is not provided with a depressed layer. This structure is difficult to balance the effective area and bending performance. Increasing the effective area will cause bending. Performance is reduced.
  • Chinese patent CN1664635A describes a positive dispersion flattened dispersion single-mode fiber, a triple-clad structure fiber with alpha distribution, the structural parameters of the fiber can achieve flat dispersion in the 1460nm-1625nm band, but the patent does not mention that the optical fiber is small in size.
  • the characteristic parameters of the wavelength range of 1260nm to 1460nm also do not give the attenuation characteristics of the optical fiber. It can be seen from the embodiments that the upper limit of the cut-off wavelength is relatively high, and it can be seen that it cannot guarantee that the optical fiber can achieve single-mode transmission in the entire wavelength range of 1260 nm to 1460 nm.
  • Chinese patent CN100510811C describes a non-zero dispersion shifted fiber with low zero dispersion.
  • the described fiber also has an alpha-distributed triple-cladding structure fiber.
  • the relative refractive index of the first ring zone layer is greater than equal zero, which will make The difference in refractive index of the core and cladding is small, and the outer layer of the ring-shaped layer is not provided with a depressed cladding to limit the leakage of the optical fiber signal.
  • This structure has unsatisfactory bending performance, which will increase the attenuation of the optical fiber during actual use and operation.
  • This patent focuses on optimizing the dispersion in the 1525nm-1625nm band, and the absolute value of the dispersion in the 1310nm band is very large.
  • the dispersion of a single-mode fiber is composed of material dispersion and waveguide dispersion.
  • Material dispersion is caused by the nonlinear change of refractive index with wavelength. It is only related to the composition of the material. Small changes can be made by adding certain dopants, but only two As the raw material of optical fiber, silicon oxide has a small adjustable range of material dispersion.
  • Waveguide dispersion is an important part of fiber dispersion. It depends on the waveguide structure. Through reasonable design of the refractive index profile, the waveguide dispersion can be adjusted, so that the total dispersion of the fiber can be flexibly adjusted to meet actual application requirements.
  • Preform It is a glass rod or combination of a core layer and a cladding layer whose radial refractive index distribution complies with the design requirements of the optical fiber and can be directly drawn into the designed optical fiber;
  • Mandrel a solid glass preform containing a core layer and a partial cladding layer
  • Diameter the distance between the outer boundary of the layer and the center point
  • Refractive index profile the relationship between the refractive index of the glass of the optical fiber or optical fiber preform (including the core rod) and its diameter;
  • ni corresponds to the refractive index of each part of the optical fiber, and n 0 is the refractive index of pure silica glass for the outer cladding;
  • OVD deposition process use external vapor deposition to prepare the required thickness of SiO 2 glass;
  • VAD deposition process use axial vapor deposition to prepare the required thickness of SiO 2 glass;
  • APCVD deposition process use high-frequency plasma flame to fuse natural or synthetic quartz powder to the required thickness of SiO 2 glass;
  • PCVD deposition process use microwave plasma chemical vapor deposition process to prepare the required thickness of SiO 2 glass;
  • MPCVD deposition process use an improved plasma chemical vapor deposition process to prepare the required thickness of SiO 2 glass;
  • the total dispersion of a single-mode fiber refers to the algebraic sum of the material dispersion of the fiber and the waveguide dispersion; the inter-mode dispersion of the single-mode fiber is zero; the material dispersion is only related to the material composition, while the waveguide dispersion depends on the core radius and refractive index difference And the shape of the refractive index profile;
  • the measurement method of macrobending additional loss refers to the method specified in IEC60793-1-47.
  • the technical problem to be solved by the present invention is to provide a low-dispersion single-mode optical fiber for the above-mentioned shortcomings of the prior art.
  • the cut-off wavelength of the optical fiber cable is less than 1260nm, the overall dispersion is low in the 1260nm-1460nm waveband, and the attenuation performance is good.
  • the technical solution adopted by the present invention to solve the above-mentioned problems is that it includes a core layer and a cladding layer, and is characterized in that the relative refractive index difference ⁇ 1 of the core layer is 0.30% to 0.65%, and the radius R1 is 2.5 ⁇ m ⁇ 4.5 ⁇ m, the cladding layer is divided into three cladding layers and one cladding layer from the inside to the outside.
  • the core layer is covered by the first cladding layer, and the relative refractive index of the first cladding layer is The difference ⁇ 2 is -0.70% to -0.30%, the radius R2 is 4.5 ⁇ m to 7.0 ⁇ m, the second cladding layer covers the first cladding layer, and the relative refractive index difference ⁇ 3 of the second cladding layer is -0.20% ⁇ 0.25%, the radius R3 is 7.0 ⁇ m ⁇ 12.0 ⁇ m, the third cladding layer covers the second cladding layer, the relative refractive index difference ⁇ 4 of the third cladding layer is -0.60% ⁇ 0.00%, the radius R4 is 10.0 ⁇ m-20.0 ⁇ m; the outer covering layer covers the third covering layer in layers, and the outer covering layer is a pure silica glass layer.
  • the core layer is provided with an inner core layer with a concave central portion, the relative refractive index difference ⁇ 0 of the inner core layer is 0.10% to 0.55%, and the radius R0 is 1.0 ⁇ m to 2.5 ⁇ m.
  • the optical fiber has a cable cut-off wavelength less than 1260 nm.
  • the dispersion coefficient of the optical fiber at a wavelength of 1260 nm is 0.0 ps/nm/km to -18 ps/nm/km.
  • the dispersion coefficient of the optical fiber at a wavelength of 1380 nm is less than or equal to 3.5 ps/nm/km.
  • the dispersion coefficient of the optical fiber at a wavelength of 1460 nm is less than or equal to 10.0 ps/nm/km.
  • the attenuation of the optical fiber in the 1260nm to 1460nm waveband is less than or equal to 0.80dB/km, preferably, the attenuation of the optical fiber is less than or equal to 0.60dB/km.
  • the optical fiber is bent 100 turns at a diameter of 60mm, and the bending loss at 1625nm wavelength is less than 0.1dB; more preferably, the optical fiber is bent 10 turns at a diameter of 30mm, and the bending loss at 1550nm and 1625nm wavelengths is less than 0.25dB and respectively. 1dB, the optical fiber is bent one turn at a diameter of 20mm, and the bending loss at 1550nm and 1625nm wavelengths is less than 0.75dB and 1.5dB, respectively.
  • the optical fiber of the present invention is used as a low-dispersion single-mode optical fiber in a communication system, characterized in that the optical fiber is used in a WDM transmission system in the 1260nm-1460nm waveband.
  • the beneficial effects of the present invention are: 1) By adjusting the refractive index profile of the optical fiber, a low first cladding layer refractive index, a reasonable first cladding layer radius, and a reasonable second cladding layer refractive index are improved.
  • the setting reduces the waveguide dispersion value of the fiber, thereby reducing the total fiber dispersion (the sum of the wavelength dispersion and the material dispersion).
  • a single-mode fiber with a lower dispersion in the 1260nm ⁇ 1460nm band is obtained, and the dispersion coefficient is higher than the conventional G.652.
  • D should be low, but higher than non-zero dispersion shift single-mode fiber, which can significantly reduce the cost of dispersion power compensation, reduce the requirements for optical modules, save the overall cost of the system, and meet the needs of high-performance and low-cost system transmission applications; 2) through reasonable The refractive index and radius of the core layer and the layered refractive index of the second cladding layer are set so that the cut-off wavelength of the fiber is less than 1260nm, and the overall attenuation in the 1260nm ⁇ 1460nm waveband is good, which can meet the needs of long-distance system transmission; There is a sunken cladding structure inside the layer, which can limit the leakage of the optical signal under the bending state, reduce the bending loss, and increase the reliability of the optical fiber under complex conditions; 4) While satisfying various performances, the optical fiber three The cladding layered refractive index profile design makes the manufacturing process simple, the optical fiber manufacturing cost is low, and it can be mass-produced and applied.
  • Fig. 1 is a schematic diagram of the refractive index profile of the first embodiment of the optical fiber of the present invention
  • FIG. 2 is a schematic diagram of the refractive index profile of the second embodiment of the optical fiber of the present invention.
  • Fig. 3 is the dispersion curve of the optical fiber of the present invention in the 1260nm to 1460nm waveband, and its comparison with ordinary G.652.D optical fiber and non-zero dispersion-shifted single-mode optical fiber.
  • the optical fiber includes a core layer and a cladding layer, and is characterized in that the relative refractive index difference of the core layer is ⁇ 1, the radius is R1, and the cladding layer is from the inner to the cladding.
  • the outer layer is divided into three cladding layers and one cladding layer.
  • the core layer is the first cladding layer.
  • the relative refractive index difference of the first cladding layer is ⁇ 2, the radius is R2, and the second cladding layer
  • the first cladding layer is layered in layers, the relative refractive index difference of the second cladding layer is ⁇ 3, and the radius is R3, and the third cladding layer is layered to cover the second cladding layer.
  • the relative refractive index difference of the third cladding layer is ⁇ 4, and the radius is R4; the outer cladding layer covers the third cladding layer, and the outer cladding layer is a pure silica glass layer.
  • Table 1 shows the design parameters of the optical fiber refractive index profile structure
  • Table 2 shows the fiber performance achieved under the structural parameters.
  • the second embodiment of the present invention is shown in Figure 2.
  • the difference from the first embodiment is that the core layer is provided with an inner core layer with a concave central portion, and the inner core layer has a relative refractive index difference. Is ⁇ 0 and the radius is R0.
  • the other structure is the same as the first embodiment.
  • Table 3 shows the design parameters of the optical fiber refractive index profile structure
  • Table 4 shows the fiber performance achieved under the structural parameters.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Depressed core layer layered radius R0/um 1.0 1.5 2.5 1.0 1.1 Relative refractive index of depressed core layer ⁇ 0 0.55% 0.35% 0.20% 0.15% 0.10% Outer core layer layering radius R1/um 2.7 3.3 4.5 3.0 3.1 Relative refractive index of outer core layer ⁇ 1 0.65% 0.45% 0.30% 0.52% 0.54% First cladding layering radius R2/um 4.7 5.5 7.0 6.0 5.6 Relative refractive index of the first cladding layer ⁇ 2 -0.60% -0.70% -0.30% -0.55% -0.42% Second cladding layering radius R3/um 7.0 12.0 9.0 10.5 10.0 Relative refractive index of the second cladding layer ⁇ 3 -0.20% 0.00% 0.25% 0.08% 0.14% The third cladding layer radius R4/um 10.0 20.0 18.0 12.5 14.0 Relative refractive index of the third cladding layer ⁇ 4
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Optical cable cut-off wavelength/nm 1240 1210 1190 1215 1220 Attenuation @1260nm 0.410 0.433 0.440 0.463 0.473 Attenuation@1380nm 0.800 0.607 0.450 0.500 0.530 Attenuation@1460nm 0.278 0.245 0.265 0.246 0.233 Dispersion coefficient@1260nm -5.4 -6.9 -10.0 -7.4 -14.0

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Glass Compositions (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

一种低色散单模光纤,包括有纤芯层和包层,芯层相对折射率差Δ1为0.30%~0.65%,半径R1为2.5μm~4.5μm,包层由内至外分为三个包层分层和一个外包层,包覆芯层的为第一包层分层,第一包层分层相对折射率差Δ2为-0.70%~-0.30%,半径R2为4.5μm~7.0μm,第二包层分层包覆第一包层分层,第二包层分层相对折射率差Δ3为-0.20%~0.25%,半径R3为7.0μm~12.0μm,第三包层分层包覆第二包层分层,第三包层分层相对折射率差Δ4为-0.60%~0.00%,半径R4为10.0μm~20.0μm;外包层包覆第三包层分层,外包层为纯二氧化硅玻璃层。光纤光缆截止波长小于1260nm,在1260nm~1460nm波段整体色散较低,且衰减性能良好,特别地适用于1260nm~1460nm波段的WDM传输系统。

Description

一种低色散单模光纤 技术领域
本发明涉及一种用于光纤通信系统的单模光纤,尤其涉及一种色散调整的低色散单模光纤。该单模光纤在较大的波长范围内具有较低的色散,可解决由色散引起的系统传输性能问题,特别地适用于1260nm~1460nm波段的WDM传输系统。
背景技术
在光纤通讯系统中,单模光纤中存在的色散在传输过程中的累积会使得信号脉冲变形,导致色散代价变大,误码率增大,因此光纤中较大的色散,对传输系统中的光模块有着更高的要求,往往需要光模块增加制冷器或将现有探测器更换成灵敏度更高的探测器。同时,色散也是限制传输距离的一个因素。为了矫正色散对传输性能的影响,在使用常规光纤进行传输时,可在接收端放置后置色散补偿(Post—Dispersion Compensation,PDC)模块来还原波形。但增加色散补偿模块会增加系统的复杂性,需要配置专门的放置空间,增加铺设和维护的工作量。为了减小色散对传输性能的影响,简化系统的色散补偿设计,降低系统总体成本,延长系统的传输距离,可开发宽波段范围内都具有较小色散值的新型色散优化单模光纤。目前商用的色散位移单模光纤、非零色散位移单模光纤以及现有的色散平坦光纤的专利大都关注于1530nm~1565nm的色散优化,并未关注1260nm~1460nm波段。
中国专利CN200610117423.7描述了一种全波非零色散平坦单模光纤,该光纤由包含有中间芯层,两层环形包层分层,以及外包层组成。所述光纤虽然给出了1300nm~1625nm波段范围内色散值,但是没有提及截至波长数值,所述的芯层和第一环形分层折射率差和芯径均较大,可预期其截止波长较高,通过计算发现其全波段1300nm~1625nm范围内均存在高阶模,无法适用于单模光纤传输系统。该专利只给出了色散和有效面积参数,没有给出光纤的衰减特性。同时该光纤的第二环形分层折射率差较高,而环形分层外层未设置下陷分层,这种结构在有效面积和弯曲性能上很难平衡,增大有效面积的同时会造成弯曲性能降低。
中国专利CN1664635A描述了一种正色散的色散平坦单模光纤,具有阿尔法分布的三包层结构光纤,光纤的结构参数可以实现1460nm~1625nm波段的色散平坦,但是专利中没有提及光纤在较小波长1260nm~1460nm波段的特性参数,也没有给出光纤的衰减特性。从实施例中看到截止波长上限较高,可见其不能保证光纤在1260nm~1460nm全波段都实现单模传输。中国专利CN100510811C描述了一种低零色散的非零色散位移光纤,其所描述的光纤也具有阿尔法分布的三包层结构光纤,其第一环形区域分层相对折射率大于等零,这会使得芯包层折射率差值较小,且环形分层外层未设置下陷包层来限制光纤信号的泄露,这种结构其弯曲性 能不理想,在实际使用操作过程中会引起光纤衰减增加。该专利重点优化了1525nm~1625nm波段的色散,1310nm波段的色散绝对值非常大。
综上所述,目前大多数色散优化光纤具有大于1260nm的光缆截止波长,主要关注C+L(1530nm~1625nm)波段的传输和色散优化,因此只给出了该波段的光纤特性,并未关注O+E(1260nm~1460nm)波段。普通单模G.652.D光纤在1260nm~1460nm波段色散斜率较大,长波长的色散较大,使得系统灵敏度变差,色散功率代价较大,传输距离越长对系统的影响越严重。为了提高单模光纤在1260nm~1460nm波段WDM系统中的传输性能,降低色散功率代价,降低系统整体成本,开发新型色散优化的单模光纤具有十分重要意义。单模光纤的色散由材料色散和波导色散组成,材料色散由折射率随波长的非线性变化所引起,仅仅与材料的组成相关,加入某些摻杂物可以进行小的改动,但只要使用二氧化硅作为光纤的原材料,材料色散的可调整范围较小。波导色散是光纤色散的重要组成部分,其取决于波导结构,通过对折射率剖面的合理设计,能够调整波导色散,从而对光纤总色散进行灵活的调整,以满足实际应用需求。
发明内容
为方便介绍本发明内容,定义部分术语:
预制棒:是由芯层和包层组成的径向折射率分布符合光纤设计要求可直接拉制成所设计光纤的玻璃棒或组合体;
芯棒:含有芯层和部分包层的实心玻璃预制件;
直径:该层外边界与中心点之间的距离;
折射率剖面:光纤或光纤预制棒(包括芯棒)玻璃折射率与其直径之间的关系;
相对折射率差Δ:
Figure PCTCN2020122057-appb-000001
ni对应光纤各部分的折射率,n 0为外包层纯二氧化硅玻璃的折射率;
OVD沉积工艺:用外部气相沉积制备所需要厚度的SiO 2玻璃;
VAD沉积工艺:用轴向气相沉积制备所需要厚度的SiO 2玻璃;
APCVD沉积工艺:用高频等离子体火焰将天然或者合成石英粉熔缩所需要厚度的SiO 2玻璃;
PCVD沉积工艺:用微波等离子体化学气相沉积工艺制备所需要厚度的SiO 2玻璃;
MPCVD沉积工艺:用改良的等离子化学气相沉积工艺制备所需要厚度的SiO 2玻璃;
单模光纤的总色散:指的光纤的材料色散和波导色散的代数总和;单模光纤的模间色散 为零;材料色散仅与材料成分有关,而波导色散取决于纤芯半径、折射率差以及折射率剖面的形状;
宏弯附加损耗测试方法参考IEC60793-1-47中规定的方法。
本发明所要解决的技术问题在于针对上述现有技术存在的不足提供一种低色散单模光纤,该光纤光缆截止波长小于1260nm,在1260nm~1460nm波段整体色散较低,且衰减性能良好。
本发明为解决上述提出的问题所采用的技术方案为:包括有纤芯层和包层,其特征在于所述的芯层相对折射率差Δ1为0.30%~0.65%,半径R1为2.5μm~4.5μm,所述的包层由内至外分为三个包层分层和一个外包层,包覆芯层的为第一包层分层,所述的第一包层分层相对折射率差Δ2为-0.70%~-0.30%,半径R2为4.5μm~7.0μm,第二包层分层包覆第一包层分层,所述的第二包层分层相对折射率差Δ3为-0.20%~0.25%,半径R3为7.0μm~12.0μm,第三包层分层包覆第二包层分层,所述的第三包层分层相对折射率差Δ4为-0.60%~0.00%,半径R4为10.0μm~20.0μm;外包层包覆第三包层分层,所述的外包层为纯二氧化硅玻璃层。
按上述方案,所述的芯层设置有中部下凹的内芯层,所述的内芯层相对折射率差Δ0为0.10%~0.55%,半径R0为1.0μm~2.5μm。
按上述方案,所述光纤具有小于1260nm的光缆截止波长。
按上述方案,所述光纤在1260nm波长处色散系数为0.0ps/nm/km~-18ps/nm/km。
按上述方案,所述光纤在1380nm波长处色散系数小于或等于3.5ps/nm/km。
按上述方案,所述光纤在1460nm波长处色散系数小于或等于10.0ps/nm/km。
按上述方案,所述光纤在1260nm~1460nm波段衰减小于或等于0.80dB/km,优选的,所述光纤衰减小于或等于0.60dB/km。
按上述方案,所述光纤在直径60mm下弯曲100圈,1625nm波长弯曲损耗小于0.1dB;更优的,所述光纤在直径30mm下弯曲10圈,1550nm和1625nm波长下弯曲损耗分别小于0.25dB和1dB,所述光纤在直径20mm下弯曲1圈,1550nm和1625nm波长下弯曲损耗分别小于0.75dB和1.5dB。
按上述方案,本发明所述的光纤作为低色散单模光纤在通信系统中的应用,其特征在于所述光纤用于1260nm~1460nm波段的WDM传输系统。
本发明的有益效果在于:1)通过对光纤折射率剖面的调整,低的第一包层分层折射率、合理的第一包层分层半径以及合理的第二包层分层折射率的设置,降低了光纤的波导色散值,从而将光纤总色散(波段色散和材料色散之和)降低,特别地获得了1260nm~1460nm波段色散较低的单模光纤,色散系数比常规G.652.D要低,但高于非零色散位移单模光纤,可明显 降低色散功率补偿代价,降低对光模块的要求,节省系统总体成本,满足高性能低成本的系统传输应用需求;2)通过合理的芯层折射率和半径、第二包层分层折射率的设置,使得光纤截止波长小于1260nm,且在1260nm~1460nm波段整体衰减良好,可满足长距离系统传输需求;3)本发明在外包层内部设置有一个下陷的包层结构,可限制了弯曲状态下光信号的泄露,降低弯曲损耗,增加光纤在复杂情况使用情况下的可靠性;4)在满足各项性能的同时,光纤三包层分层折射率剖面设计,从而使得制造过程简单,光纤制造成本低,可大规模生产和应用。
附图说明
图1是本发明的光纤第一个实施例折射率剖面示意图;
图2是本发明的光纤第二个实施例折射率剖面示意图;
图3是本发明光纤在1260nm~1460nm波段的色散曲线,以及其和普通G.652.D光纤以及非零色散位移单模光纤的对比。
具体实施方式
下面将给出详细的实施例,对本发明作进一步补充和说明。
本发明的第一各实施例如图1所示,光纤包括有纤芯层和包层,其特征在于所述的芯层相对折射率差为Δ1,半径为R1,所述的包层由内至外分为三个包层分层和一个外包层,包覆芯层的为第一包层分层,所述的第一包层分层相对折射率差为Δ2,半径为R2,第二包层分层包覆第一包层分层,所述的第二包层分层相对折射率差为Δ3,半径为R3,第三包层分层包覆第二包层分层,所述的第三包层分层相对折射率差为Δ4,半径为R4;外包层包覆第三包层分层,所述的外包层为纯二氧化硅玻璃层。
表1给出了光纤折射率剖面结构设计参数,表2给出了该结构参数下所实现的光纤性能。
表1
Figure PCTCN2020122057-appb-000002
表2
Figure PCTCN2020122057-appb-000003
本发明的第二个实施例如图2所示,其与第一个实施例的不同之处在于所述的芯层设置有中部下凹的内芯层,所述的内芯层相对折射率差为Δ0,半径为R0。其它结构与第一个实施例相同。通过在光纤芯层设置一个中间下陷层的结构,使得光纤内部能量分布从典型的高斯分布变成非高斯分布,可在保证截止波长小于1260nm的条件下,适当增加光纤模场直径。
表3给出了光纤折射率剖面结构设计参数,表4给出了该结构参数下所实现的光纤性能。
表3
指标 实施例1 实施例2 实施例3 实施例4 实施例5
凹陷芯层分层半径R0/um 1.0 1.5 2.5 1.0 1.1
凹陷芯层分层相对折射率Δ0 0.55% 0.35% 0.20% 0.15% 0.10%
外芯层分层半径R1/um 2.7 3.3 4.5 3.0 3.1
外芯层分层相对折射率Δ1 0.65% 0.45% 0.30% 0.52% 0.54%
第一包层分层半径R2/um 4.7 5.5 7.0 6.0 5.6
第一包层分层相对折射率Δ2 -0.60% -0.70% -0.30% -0.55% -0.42%
第二包层分层半径R3/um 7.0 12.0 9.0 10.5 10.0
第二包层分层相对折射率Δ3 -0.20% 0.00% 0.25% 0.08% 0.14%
第三包层分层半径R4/um 10.0 20.0 18.0 12.5 14.0
第三包层分层相对折射率Δ4 -0.40% -0.60% 0 -0.10% -0.10%
表4
参数 实施例1 实施例2 实施例3 实施例4 实施例5
光缆截止波长/nm 1240 1210 1190 1215 1220
衰减@1260nm 0.410 0.433 0.440 0.463 0.473
衰减@1380nm 0.800 0.607 0.450 0.500 0.530
衰减@1460nm 0.278 0.245 0.265 0.246 0.233
色散系数@1260nm -5.4 -6.9 -10.0 -7.4 -14.0
色散系数@1380nm 2.1 3.0 -1.6 -0.9 -11.0
色散系数@1460nm 5.5 5.4 3.1 0.4 -10.5
直径60mm 100圈弯曲损耗@1625nm 0.025 0.040 0.095 0.090 0.070
直径30mm 10圈弯曲损耗@1550nm 0.045 0.050 0.220 0.085 0.152
直径30mm 10圈弯曲损耗@1625nm 0.108 0.119 0.850 0.370 0.325
直径20mm 1圈弯曲损耗@1550nm 0.360 0.065 0.950 0.355 0.144
直径20mm1圈弯曲损耗@1625nm 1.055 0.632 1.700 0.955 0..742

Claims (10)

  1. 一种低色散单模光纤,包括有纤芯层和包层,其特征在于所述的芯层相对折射率差Δ1为0.30%~0.65%,半径R1为2.5μm~4.5μm,所述的包层由内至外分为三个包层分层和一个外包层,包覆芯层的为第一包层分层,所述的第一包层分层相对折射率差Δ2为-0.70%~-0.30%,半径R2为4.5μm~7.0μm,第二包层分层包覆第一包层分层,所述的第二包层分层相对折射率差Δ3为-0.20%~0.25%,半径R3为7.0μm~12.0μm,第三包层分层包覆第二包层分层,所述的第三包层分层相对折射率差Δ4为-0.60%~0.00%,半径R4为10.0μm~20.0μm;外包层包覆第三包层分层,所述的外包层为纯二氧化硅玻璃层。
  2. 按权利要求1所述的低色散单模光纤,其特征在于所述的芯层设置有中部下凹的内芯层,所述的内芯层相对折射率差Δ0为0.10%~0.55%,半径R0为1.0μm~2.5μm。
  3. 按权利要求1或2所述的低色散单模光纤,其特征在于所述光纤具有小于1260nm的光缆截止波长。
  4. 按权利要求1或2所述的低色散单模光纤,其特征在于所述光纤在1260nm波长处色散系数为0.0ps/nm/km~-18ps/nm/km。
  5. 按权利要求1或2所述的低色散单模光纤,其特征在于所述光纤在1380nm波长处色散系数小于或等于3.5ps/nm/km。
  6. 按权利要求1或2所述的低色散单模光纤,其特征在于所述光纤在1460nm波长处色散系数小于或等于10.0ps/nm/km。
  7. 按权利要求1或2所述的低色散单模光纤,其特征在于所述光纤在1260nm~1460nm波段衰减小于或等于0.80dB/km。
  8. 按权利要求1或2所述的低色散单模光纤,其特征在于所述光纤在直径60mm下弯曲100圈,1625nm波长弯曲损耗小于0.1dB。
  9. 按权利要求1或2所述的低色散单模光纤,其特征在于所述光纤在直径30mm下弯曲10圈,1550nm和1625nm波长下弯曲损耗分别小于0.25dB和1dB,所述光纤在直径20mm下弯曲1圈,1550nm和1625nm波长下弯曲损耗分别小于0.75dB和1.5dB。
  10. 一种按权利要求1-9中任一光纤作为低色散单模光纤在通信系统的应用,其特征在于所述光纤用于1260nm~1460nm波段的WDM传输系统。
PCT/CN2020/122057 2019-10-29 2020-10-20 一种低色散单模光纤 WO2021082979A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/420,232 US11435519B2 (en) 2019-10-29 2020-10-20 Low-dispersion single-mode optical fiber
EP20880727.1A EP3869246A4 (en) 2019-10-29 2020-10-20 SINGLE MODE LOW DISPERSION FIBER OPTIC

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911038440.5 2019-10-29
CN201911038440.5A CN110749953B (zh) 2019-10-29 2019-10-29 一种低色散单模光纤

Publications (1)

Publication Number Publication Date
WO2021082979A1 true WO2021082979A1 (zh) 2021-05-06

Family

ID=69280818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122057 WO2021082979A1 (zh) 2019-10-29 2020-10-20 一种低色散单模光纤

Country Status (4)

Country Link
US (1) US11435519B2 (zh)
EP (1) EP3869246A4 (zh)
CN (1) CN110749953B (zh)
WO (1) WO2021082979A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110749953B (zh) * 2019-10-29 2023-07-14 长飞光纤光缆股份有限公司 一种低色散单模光纤
CN111897045B (zh) * 2020-09-17 2022-08-02 长飞光纤光缆股份有限公司 一种抗弯曲多芯光纤

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1664635A (zh) 2004-03-02 2005-09-07 汪业衡 三波长窗口正色散的色散平坦单模光纤
CN100510811C (zh) 2002-07-31 2009-07-08 康宁股份有限公司 具有大有效面积、低斜率以及低零色散的非零色散位移光纤
CN103217736A (zh) * 2013-03-12 2013-07-24 江西省电力公司信息通信分公司 一种多层光纤
CN103257397A (zh) * 2009-01-27 2013-08-21 德拉克通信科技公司 单模光纤
CN103380389A (zh) * 2010-12-23 2013-10-30 普睿司曼股份公司 低宏弯曲损耗单模光纤
CN107678087A (zh) * 2017-11-07 2018-02-09 长飞光纤光缆股份有限公司 一种低衰减大有效面积单模光纤
US20180321438A1 (en) * 2017-05-03 2018-11-08 Corning Incorporated Low bend loss optical fiber with a germania doped core
CN110749953A (zh) * 2019-10-29 2020-02-04 长飞光纤光缆股份有限公司 一种低色散单模光纤

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221352A (ja) * 1998-11-26 2000-08-11 Sumitomo Electric Ind Ltd 光ファイバおよび光伝送システム
EP1111414A3 (en) * 1999-12-13 2007-08-08 Sumitomo Electric Industries, Ltd. Optical fiber and optical transmission system
US6826341B2 (en) * 2002-11-04 2004-11-30 Fitel Usa Corp. Systems and methods for reducing splice loss in optical fibers
FR2849213B1 (fr) * 2002-12-24 2005-03-04 Cit Alcatel Fibre optique
CN1268952C (zh) * 2003-01-27 2006-08-09 斯德莱特光学技术有限公司 具有较大亮点面积的色散优化光导纤维
CN1252498C (zh) * 2003-07-15 2006-04-19 长飞光纤光缆有限公司 与正色散和正色散斜率单模光纤匹配使用的色散补偿传输光纤及用途
JP2005221662A (ja) * 2004-02-04 2005-08-18 Sumitomo Electric Ind Ltd 光ファイバおよび光伝送システム
CN101169497A (zh) 2006-10-23 2008-04-30 汪业衡 全波非零色散平坦单模光纤
CN102200610B (zh) * 2011-05-27 2012-10-17 成都富通光通信技术有限公司 适用于超高速长距离密集波分复用的色散优化单模光纤
CN102944910B (zh) * 2012-10-30 2015-07-22 长飞光纤光缆股份有限公司 具有大有效面积的单模光纤
CN103941334A (zh) * 2014-04-21 2014-07-23 长飞光纤光缆股份有限公司 一种低衰耗单模光纤
CN110780379B (zh) * 2019-10-29 2021-08-10 长飞光纤光缆股份有限公司 低色散单模光纤

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100510811C (zh) 2002-07-31 2009-07-08 康宁股份有限公司 具有大有效面积、低斜率以及低零色散的非零色散位移光纤
CN1664635A (zh) 2004-03-02 2005-09-07 汪业衡 三波长窗口正色散的色散平坦单模光纤
CN103257397A (zh) * 2009-01-27 2013-08-21 德拉克通信科技公司 单模光纤
CN103380389A (zh) * 2010-12-23 2013-10-30 普睿司曼股份公司 低宏弯曲损耗单模光纤
CN103217736A (zh) * 2013-03-12 2013-07-24 江西省电力公司信息通信分公司 一种多层光纤
US20180321438A1 (en) * 2017-05-03 2018-11-08 Corning Incorporated Low bend loss optical fiber with a germania doped core
CN107678087A (zh) * 2017-11-07 2018-02-09 长飞光纤光缆股份有限公司 一种低衰减大有效面积单模光纤
CN110749953A (zh) * 2019-10-29 2020-02-04 长飞光纤光缆股份有限公司 一种低色散单模光纤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3869246A4

Also Published As

Publication number Publication date
US11435519B2 (en) 2022-09-06
US20220091328A1 (en) 2022-03-24
CN110749953A (zh) 2020-02-04
EP3869246A1 (en) 2021-08-25
CN110749953B (zh) 2023-07-14
EP3869246A4 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
CN106772788B (zh) 一种截止波长位移单模光纤
JP6298893B2 (ja) 損失低下を示す、台形コアを有するシングルモードファイバ
US10571628B2 (en) Low loss optical fiber with core codoped with two or more halogens
US20080138021A1 (en) Fluorine-Doped Optical Fiber
WO2017020456A1 (zh) 一种超低衰耗弯曲不敏感单模光纤
WO2021082979A1 (zh) 一种低色散单模光纤
EP3438715B1 (en) Method for manufacturing an optical fiber
WO2021082978A1 (zh) 低色散单模光纤
WO2017101568A1 (zh) 一种高带宽抗弯多模光纤
WO2016173253A1 (zh) 一种超低衰耗弯曲不敏感单模光纤
US11714229B2 (en) Optical fiber and method of manufacturing optical fiber
CN103472525B (zh) 低损耗大有效面积单模光纤及其制造方法
US10162109B2 (en) Multimode optical fibers for attenuators
CN106716198A (zh) 光纤及其制造方法
US6904213B2 (en) Step index optical fiber with doped cladding and core, a preform, and a method of fabricating such a fiber
WO2023240881A1 (zh) 一种陆地用g.654.e光纤及其制作工艺
US11714228B2 (en) Optical fiber and method of manufacturing optical fiber
WO2020108141A1 (zh) 宽带抗弯多模光纤
CN113552666A (zh) 光纤
CN220650930U (zh) 一种低衰减大模场直径弯曲不敏感单模光纤
WO2023228743A1 (ja) 光ファイバ
CN113625390B (zh) 一种色散优化弯曲不敏感光纤
US11899239B2 (en) Optical fiber
WO2021109940A1 (zh) 一种光纤
CN116974003A (zh) 一种低衰减大模场直径弯曲不敏感单模光纤及制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020880727

Country of ref document: EP

Effective date: 20210521

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE