WO2021082978A1 - 低色散单模光纤 - Google Patents

低色散单模光纤 Download PDF

Info

Publication number
WO2021082978A1
WO2021082978A1 PCT/CN2020/122056 CN2020122056W WO2021082978A1 WO 2021082978 A1 WO2021082978 A1 WO 2021082978A1 CN 2020122056 W CN2020122056 W CN 2020122056W WO 2021082978 A1 WO2021082978 A1 WO 2021082978A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
dispersion
low
layer
mode optical
Prior art date
Application number
PCT/CN2020/122056
Other languages
English (en)
French (fr)
Inventor
闫长鹍
肖武丰
王润涵
王铁军
曹蓓蓓
程铭
Original Assignee
长飞光纤光缆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆股份有限公司 filed Critical 长飞光纤光缆股份有限公司
Priority to US17/420,291 priority Critical patent/US11550098B2/en
Priority to EP20883096.8A priority patent/EP3872541A4/en
Publication of WO2021082978A1 publication Critical patent/WO2021082978A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02266Positive dispersion fibres at 1550 nm
    • G02B6/02271Non-zero dispersion shifted fibres, i.e. having a small positive dispersion at 1550 nm, e.g. ITU-T G.655 dispersion between 1.0 to 10 ps/nm.km for avoiding nonlinear effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03694Multiple layers differing in properties other than the refractive index, e.g. attenuation, diffusion, stress properties

Definitions

  • the invention relates to a low-dispersion single-mode optical fiber, which belongs to the technical field of optical communication.
  • the working range of the 5G fronthaul color light solution is in the range of 1271 to 1371 nm, while the traditional G.652 single-mode fiber has a large dispersion in the range of 1351 to 1371 nm, and the transmission power cost is slightly higher.
  • APD high sensitivity detector is required.
  • the cost of APD is much higher than that of PIN detectors.
  • Other fibers, such as dispersion-flattened fibers, non-zero dispersion-shifted single-mode fibers, and low-slope non-zero dispersion-shifted single-mode fibers have optimized dispersion ranges from 1450nm to 1600nm, which cannot meet the needs of 5G fronthaul color light solutions. Therefore, preparing a new type of single-mode fiber that is compatible with the existing G.652 fiber and has a lower dispersion in the range of 1270 to 1380 nm can greatly reduce the cost of 5G fronthaul.
  • Mandrel A preform containing a core layer and a partial cladding layer.
  • Radius the distance between the outer boundary of the layer and the center point.
  • Refractive index profile The relationship between the refractive index of the glass of an optical fiber or optical fiber preform (including the core rod) and its radius.
  • fluorine (F) the relative refractive index difference ( ⁇ F) of fluorine (F) doped silica glass with respect to pure silica glass, which expresses the amount of fluorine (F) doped.
  • germanium (Ge) the relative refractive index difference ( ⁇ Ge) of germanium (Ge) doped silica glass with respect to pure silica glass, which expresses the amount of germanium (Ge) doped.
  • Phosphorus (P) Contribution The relative refractive index difference ( ⁇ P) of phosphorus (P) doped silica glass with respect to pure silica glass, which expresses the amount of germanium (P) doped.
  • the relative refractive index difference is ⁇ i :
  • n i is the refractive index of each part of the corresponding optical fiber
  • n 0 is the refractive index of pure silica glass.
  • the dispersion of 1270 ⁇ 1380nm is monotonously increasing.
  • D 1380 and D 1270 are the dispersion at 1380nm and 1270nm, respectively, and the unit is ps/nm/km.
  • the technical problem to be solved by the present invention is to provide a core-cladding layer structure with reasonable design, convenient process control, compatible with existing G.652 fiber and capable of low dispersion in the 1270 ⁇ 1380nm band, aiming at the above-mentioned shortcomings of the prior art. optical fiber.
  • the technical solution adopted by the present invention to solve the above-mentioned problems is: including a core layer and a cladding layer, characterized in that the core layer radius R1 is 3 to 5 ⁇ m, and the relative refractive index difference ⁇ 1 of the core layer is 0.15% to 0.45%;
  • the cladding layer is the first depressed cladding layer, the convex cladding layer, the second depressed cladding layer and the outer cladding layer from the inside to the outside.
  • the single side width of the first depressed cladding layer (R2-R1) is 2 ⁇ 7 ⁇ m
  • the relative refractive index difference ⁇ 2 is -0.4% to -0.03%
  • the single side width (R3-R2) of the raised cladding layer is 2 to 7 ⁇ m
  • the relative refractive index difference ⁇ 3 is 0.05% to 0.20%.
  • the single side width (R4-R3) of the second depressed cladding layer is 0-8 ⁇ m
  • the relative refractive index difference ⁇ 4 is 0%-0.2%
  • the outer cladding layer is a pure silica glass layer.
  • the preferred range of the core layer radius is 3.5-4.5 ⁇ m.
  • the relative refractive index difference ⁇ 1 of the core layer is preferably in the range of 0.20% to 0.40%.
  • the core layer is a germanium-fluoride Ge/F co-doped silica glass layer, wherein the fluorine doping contribution of the core layer ⁇ F1 is -0.2% to -0.02%.
  • the single side width (R2-R1) of the first depressed cladding layer is preferably in the range of 2.5-5.5 ⁇ m.
  • the difference ⁇ 1- ⁇ 2 of the relative refractive index difference between the core layer and the first depressed cladding layer is 0.3% to 0.5%.
  • the value of the annular area integral ⁇ 2 ⁇ (R2 2 -R1 2 ) of the relative refractive index difference of the first depressed cladding layer is -15 to -2% ⁇ m 2 .
  • the first depressed cladding layer is a silicon dioxide glass layer co-doped with germanium-fluoride Ge/F, wherein the contribution of fluorine doping ⁇ F2 is -0.45% to -0.04%.
  • the value of the annular area integral ⁇ 3 ⁇ (R3 2 -R2 2 ) of the relative refractive index difference of the raised cladding layer is 4% to 21% ⁇ m 2 .
  • the bump cladding layer is a Ge or Ge/F co-doped silica glass layer, wherein the contribution of fluorine doping ⁇ F3 is -0.20% to 0%.
  • the MFD of the optical fiber at a wavelength of 1310 nm is 8.5-9.5 ⁇ m.
  • the preferred value of the cut-off wavelength ⁇ cc of the optical fiber of the optical fiber is ⁇ 1060 nm.
  • the attenuation of the optical fiber in the 1270-1380nm waveband is ⁇ 0.45dB.
  • the dispersion of the optical fiber in the wavelength band of 1270 to 1380 nm is -12 to 5 ps/nm/km.
  • the dispersion of the optical fiber in the wavelength band of 1340 to 1380 nm is -3.5 to 3.5 ps/nm/km.
  • the dispersion slope of the optical fiber in the 1270 ⁇ 1380nm band is ⁇ 0.08ps/nm 2 ⁇ km;
  • the better dispersion slope is ⁇ 0.070ps/nm 2 ⁇ km.
  • the zero-dispersion wavelength of the optical fiber is 1300-1400 nm.
  • the additional loss of the optical fiber macrobending (bending 100 turns, radius 25mm) ⁇ 0.05dB.
  • the optical fiber of the present invention is used as a low-dispersion single-mode optical fiber in a communication system, characterized in that the optical fiber is used in a WDM transmission system in the 1270nm to 1380nm band.
  • a low-dispersion single-mode optical fiber with a functionally graded material composition and a reasonable structure is provided.
  • the core and cladding of the optical fiber adopt Ge/F co-doping, which is beneficial to improve the viscosity matching and materials of the optical fiber.
  • Dispersion characteristics 2.
  • With larger MFD It is compatible with G.652 fiber; and the relative refractive index difference of the core layer is lower than that of traditional G655, and the Ge doping is low, so that the fiber has lower attenuation; 4.
  • the fiber of the present invention has excellent bending resistance and can be applied to In the access network and miniaturized optical devices; and the manufacturing method is simple and suitable for mass production.
  • Fig. 1 is a schematic diagram of a refractive index profile of an embodiment of the present invention.
  • Fig. 2 is a schematic view of a refractive index profile of another embodiment of the present invention.
  • Figure 3 is a schematic diagram of the material dispersion, waveguide dispersion and total dispersion of an optical fiber.
  • Fig. 4 is a schematic diagram of doping of an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of doping of another embodiment of the present invention.
  • Fig. 6 is a dispersion-wavelength diagram of some embodiments of the present invention.
  • the total dispersion of a single-mode fiber is the sum of material dispersion and waveguide dispersion, as shown in the following equation:
  • material dispersion In order to achieve broadband dispersion, it can be achieved by adjusting material dispersion and waveguide dispersion.
  • the main factors affecting material dispersion are doping composition and doping concentration. Germanium doping causes the dispersion of the material to increase, and the dispersion slope increases; the low concentration of F has little effect on the dispersion.
  • Waveguide dispersion is caused by pulses being transmitted in the core and cladding at the same time.
  • the difference in the refractive index of the core and the cladding leads to different propagation rates.
  • the core and cladding refractive index and cross-sectional structure can be adjusted to adjust the waveguide dispersion. Size and slope. Waveguide dispersion depends on the mode field distribution between the core and the cladding, that is, it depends on the MFD, and the MFD depends on the wavelength.
  • Reasonable design of the first depressed cladding parameters can reduce the dispersion slope of the fiber.
  • the width of the first depressed cladding layer increases, most of the energy is confined in the core layer, and the dispersion slope decreases; when it increases further, the influence of the convex layer is weakened, resulting in an increase in the dispersion slope.
  • the relative refractive index difference of the first depressed cladding layer decreases, more energy is confined in the core layer, the waveguide dispersion slope decreases, and the total dispersion slope decreases.
  • the above method of reducing the dispersion slope essentially changes the energy distribution by reducing the effective area, and its mode field diameter is also reduced.
  • the mode field diameter of the fiber is large enough.
  • the introduction of a raised cladding with reasonable parameter design into the cladding can reduce the propagation rate of the pulse in the cladding part, thereby reducing the difference in core-pack propagation rate and reducing the dispersion slope.
  • the raised cladding allows part of the energy to propagate, thereby increasing the effective area and increasing the mode field diameter.
  • the second depressed cladding outside the convex cladding can inhibit the propagation of optical power to the outer cladding, thereby improving the bending-insensitive performance of the optical fiber.
  • the optical fiber of the present invention includes a core layer and a cladding layer, the radius of the core layer is R1, and the relative refractive index difference of the core layer is ⁇ 1;
  • Two depressed cladding layers and an outer cladding layer the radius of the first depressed cladding layer is R2, and the relative refractive index difference is ⁇ 2;
  • the radius of the convex cladding layer is R3, and the relative refractive index difference is ⁇ 3;
  • the second The radius of the depressed cladding is R4, and the relative refractive index difference is ⁇ 4;
  • the outer cladding is a pure silica glass layer, and the radius of the cladding is 62.5 ⁇ m.
  • the introduction of the second depressed cladding can improve the bending resistance of the fiber, but will slightly increase the dispersion slope.
  • the first depressed cladding and the convex cladding can be adjusted To reduce the dispersion slope.
  • the dispersion slope is significantly reduced, as in Examples 2 to 5, ⁇ 2 ⁇ (R2 2 -R1 2 ) At least it needs to be less than -2% ⁇ m 2 ; but at this time the MFD is reduced and the dispersion is reduced, so ⁇ 2 ⁇ (R2 2 -R1 2 ) needs to be greater than -15% ⁇ m 2 to ensure matching with the traditional G.652 single-mode fiber The MFD and reasonable dispersion value.
  • Example 2 and Example 9 show that the increase of the integral ⁇ 3 ⁇ (R3 2 -R2 2 ) of the annular area of the relative refractive index difference of the single first cladding layer is not sufficient to improve the dispersion slope.
  • optical fiber has requirements for MFD, dispersion value and bending resistance.
  • the second sinking cladding pair The influence of each parameter is much smaller than the first depressed cladding and the convex cladding, so a deep and wide second depressed cladding can be prepared to improve the bending resistance.
  • the method of reducing the germanium doping of the core layer can be adopted, and the core layer parameters can be adjusted and optimized within a certain range, and the absolute value of the dispersion of 1270 ⁇ 1380nm can be small.
  • the broadband low-dispersion single-mode fiber with small slope and large MFD is shown in Examples 10 and 11.
  • Table 1 The main structural parameters and performance parameters of the optical fiber

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种低色散单模光纤,包括有芯层和包层,芯层半径R1为3~5μm,芯层相对折射率差Δ1为0.15%~0.45%;包层由内到外依次为第一下陷包层、凸起包层、第二下陷包层和外包层,第一下陷包层单边宽度(R2-R1)为2~7μm,相对折射率差Δ2为-0.4%~-0.03%,凸起包层单边宽度(R3-R2)为2~7μm,相对折射率差Δ3为0.05%~0.20%,第二下陷包层单边宽度(R4-R3)为0~8μm,相对折射率差Δ4为0%~-0.2%,外包层为纯二氧化硅玻璃层。芯包层设计合理、工艺控制方便、兼容现有G.652光纤,并能够在1270~1380nm波段具有低色散。

Description

低色散单模光纤 技术领域
本发明涉及一种低色散单模光纤,属于光通信技术领域。
背景技术
5G前传彩光方案的工作范围在1271~1371nm内,而传统G.652单模光纤在1351~1371nm波段范围内的色散偏大,传输的功率代价略大,需要用APD高灵敏度的探测器来做功率补偿,而APD相较于PIN探测器的成本高得多。而其他光纤如色散平坦光纤、非零色散位移单模光纤、低斜率非零色散位移单模光纤等对色散的优化区间集中在1450nm~1600nm,不能满足5G前传彩光方案的需求。因此,制备一种新型的兼容现有G.652光纤并在1270~1380nm的范围内色散较低的单模光纤,可以大大降低5G前传的成本。
发明内容
为方便介绍本发明内容,定义部分术语:
芯棒:含有芯层和部分包层的预制件。
半径:该层外边界与中心点之间的距离。
折射率剖面:光纤或光纤预制棒(包括芯棒)玻璃折射率与其半径之间的关系。
氟(F)的贡献量:掺氟(F)石英玻璃相对于纯石英玻璃的相对折射率差值(ΔF),以此来表示掺氟(F)量。
锗(Ge)的贡献量:掺锗(Ge)石英玻璃相对于纯石英玻璃的相对折射率差值(ΔGe),以此来表示掺锗(Ge)量。
磷(P)的贡献量:掺磷(P)石英玻璃相对于纯石英玻璃的相对折射率差值(ΔP),以此来表示掺锗(P)量。
相对折射率差即Δ i
Figure PCTCN2020122056-appb-000001
其中,n i为对应光纤各部分的折射率;n 0为纯二氧化硅玻璃的折射率。
1270~1380nm的色散是单调递增的,定义其该范围内的色散斜率S:
Figure PCTCN2020122056-appb-000002
其中D 1380和D 1270分别为1380nm和1270nm处的色散,单位为ps/nm/km。
本发明所要解决的技术问题是针对上述现有技术存在的不足提供一种芯包层结构设计合 理、工艺控制方便、兼容现有G.652光纤并能够在1270~1380nm波段具有低色散的单模光纤。
本发明为解决上述提出的问题所采用的技术方案为:包括有芯层和包层,其特征在于芯层半径R1为3~5μm,芯层相对折射率差Δ1为0.15%~0.45%;所述的包层由内到外依次为第一下陷包层、凸起包层、第二下陷包层和外包层,所述的第一下陷包层单边宽度(R2-R1)为2~7μm,相对折射率差Δ2为-0.4%~-0.03%,所述的凸起包层单边宽度(R3-R2)为2~7μm,相对折射率差Δ3为0.05%~0.20%,所述的第二下陷包层单边宽度(R4-R3)为0~8μm,相对折射率差Δ4为0%~-0.2%,所述的外包层为纯二氧化硅玻璃层。
按上述方案,所述的芯层半径较优的范围为3.5~4.5μm。
按上述方案,所述的芯层相对折射率差Δ1较优的范围为0.20~0.40%。
按上述方案,所述的芯层为锗氟Ge/F共掺的二氧化硅玻璃层,其中芯层的氟掺杂的贡献量ΔF1为-0.2%~-0.02%。
按上述方案,所述的第一下陷包层单边宽度(R2-R1)较优的范围为2.5~5.5μm。
按上述方案,所述的芯层与第一下陷包层的相对折射率差的差值Δ1-Δ2为0.3%~0.5%。
按上述方案,所述的第一下陷包层相对折射率差环状面积积分Δ2×(R2 2-R1 2)的值为-15~-2%·μm 2
按上述方案,所述的第一下陷包层为锗氟Ge/F共掺的二氧化硅玻璃层,其中氟掺杂的贡献量ΔF2为-0.45%~-0.04%。
按上述方案,所述的凸起包层的相对折射率差环状面积积分Δ3×(R3 2-R2 2)的值为4%~21%·μm 2
按上述方案,所述的凸起包层为Ge或Ge/F共掺的二氧化硅玻璃层,其中氟掺杂的贡献量ΔF3为-0.20%~0%。
按上述方案,所述光纤在1310nm波长处的MFD为8.5~9.5μm。
按上述方案,所述光纤的光缆截止波长λ cc≤1260nm。
按上述方案,所述光纤的光缆截止波长λ cc的较优值≥1060nm。
按上述方案,所述光纤在1270~1380nm波段的衰减≤0.45dB。
按上述方案,所述光纤在1270~1380nm波段的色散为-12~5ps/nm/km。
按上述方案,所述光纤在1340~1380nm波段的色散为-3.5~3.5ps/nm/km。
按上述方案,所述光纤在1270~1380nm波段的色散斜率≤0.08ps/nm 2·km;
较优的色散斜率≤0.070ps/nm 2·km。
按上述方案,所述光纤的零色散波长为1300~1400nm。
按上述方案,所述光纤宏弯附加损耗(弯曲100圈,半径25mm)≤0.05dB。
按上述方案,本发明所述的光纤作为低色散单模光纤在通信系统中的应用,其特征在于所述光纤用于1270nm~1380nm波段的WDM传输系统。
本发明的有益效果在于:1、提供了一种具有功能梯度材料组成和合理结构的低色散单模光纤,光纤芯层和包层采用Ge/F共掺,有利于改进光纤的粘度匹配和材料色散特性;2、第一下陷包层参数合理的设计,用于降低光纤的色散斜率;合理的凸起包层的参数设计,降低色散斜率,增大有效面积;3、具有较大的MFD,可以兼容G.652光纤;并且芯层的相对折射率差低于传统的G655,Ge的掺杂量低,使光纤具有较低衰减;4、本发明光纤具有优异的抗弯曲性能,可适用于接入网和小型化光器件中;且制造方法简便,适于大规模生产。
附图说明
图1是本发明一个实施例的折射率剖面示意图。
图2是本发明另一个实施例的折射率剖面示意图。
图3是光纤的材料色散、波导色散和总色散的示意图。
图4是本发明的一个实施例的掺杂示意图。
图5是本发明的另一个实施例的掺杂示意图。
图6是本发明的部分实施例的色散-波长图谱。
具体实施方式
单模光纤的总色散为材料色散和波导色散之和,如下式所示:
D(λ)=D mat(λ)+D wg(λ)
为了实现宽带的色散,可以通过调整材料色散和波导色散实现。影响材料色散的主要因素是掺杂组分和掺杂浓度。锗掺杂到导致材料色散增大,色散斜率增大;低浓度的F对色散的影响较小。
单模光纤中只有约80%的光功率在纤芯中传播,20%在包层中传播。波导色散是由于脉冲同时在纤芯和包层中传输,纤芯部分与包层部分的折射率不同导致传播速率不同而产生的,可通过调整调控芯包折射率和剖面结构以调整波导色散的大小和斜率。波导色散依赖于纤芯和包层之间的模场分布,即依赖于MFD,而MFD依赖于波长。
合理的第一下陷包层参数设计,可以降低光纤的色散斜率。当第一下陷包层宽度增大时,大部分能量限制在芯层中,色散斜率减小;进一步增大时,削弱了凸起层的影响,导致色散斜率增大。另一方面,当第一下陷包层的相对折射率差减小时,更多能量被限制在芯层中, 波导色散斜率减小,总色散斜率减小。然而,上述降低色散斜率的方法本质上是通过降低有效面积以改变能量分布,其模场直径也减小了。
为了与传统的G.652单模光纤兼容,需要保证光纤的模场直径足够大。而在包层中引入合理参数设计的凸起包层,可以减小脉冲在包层部分的传播速率,从而减小芯包传播速率之差,降低色散斜率。另一方面,凸起包层允许部分能量传播,从而增大有效面积,提高模场直径。而凸起包层外的第二下陷包层可以抑制光功率向外包层传播,从而提高光纤弯曲不敏感曲性能。
下面将给出具体的实施例,对本发明作进一步的说明。
本发明光纤包括有芯层和包层,芯层的半径为R1,芯层相对折射率差为Δ1;所述的包层由内到外依次为第一下陷包层、凸起包层、第二下陷包层以及外包层,所述的第一下陷包层半径为R2,相对折射率差为Δ2;所述的凸起包层半径为R3,相对折射率差为Δ3;所述的第二下陷包层半径为R4,相对折射率差为Δ4;所述的外包层为纯二氧化硅玻璃层,外包层半径为62.5μm。
按本发明所述,制备了一组预制棒并拉丝,采用双层涂覆,光纤的结构和主要性能参数见表1。
如实施例1和3所示,第二下陷包层的引入可以提高光纤的抗弯曲性能,但会稍微增大色散斜率,在此基础上,可以通过调整第一下陷包层和凸起包层来降低色散斜率。
随着第一下陷包层的相对折射率差环状面积积分Δ2×(R2 2-R1 2)的减小,色散斜率明显降低,如实施例2到5,Δ2×(R2 2-R1 2)至少需要小于-2%·μm 2;但此时MFD减小,色散降低,因此Δ2×(R2 2-R1 2)需要大于-15%·μm 2,以保证与传统G.652单模光纤匹配的MFD和合理的色散值。
随着凸起包层相对折射率差环状面积积分Δ3×(R3 2-R2 2)的增加,色散斜率减小,色散降低,如实施例6到8。再如实施例12,当Δ3×(R3 2-R2 2)很大时,色散斜率很小,但色散也进一步降低了。为了保证足够小的色散斜率和合适的色散值,Δ3×(R3 2-R2 2)需要介于4%~21%·um 2
实施例2和实施例9表明单一的第凸起包层相对折射率差环状面积积分Δ3×(R3 2-R2 2)的增加不足以改善色散斜率。
光纤实际应用对MFD、色散值和抗弯曲性能均有要求,在保证较大的Δ2×(R2 2-R1 2)和 Δ3×(R3 2-R2 2)的基础上,第二下陷包层对各参数的影响远小于第一下陷包层和凸起包层,因此可以制备出很深很宽的第二下陷包层以提高抗弯曲性能。基于上述多包层限制条件,为了降低材料色散和衰减,可以采用降低芯层锗掺杂的方法,在一定范围内调整并优化芯层参数,可以制备出1270~1380nm色散绝对值较小,色散斜率小,MFD较大的宽带低色散单模光纤,如实施例10和11所示。
表1:光纤的主要结构参数和性能参数
Figure PCTCN2020122056-appb-000003

Claims (18)

  1. 一种低色散单模光纤,包括有芯层和包层,其特征在于芯层半径R1为3~5μm,芯层相对折射率差Δ1为0.15%~0.45%;所述的包层由内到外依次为第一下陷包层、凸起包层、第二下陷包层和外包层,所述的第一下陷包层单边宽度(R2-R1)为2~7μm,相对折射率差Δ2为-0.4%~-0.03%,所述的凸起包层单边宽度(R3-R2)为2~7μm,相对折射率差Δ3为0.05%~0.20%,所述的第二下陷包层单边宽度(R4-R3)为0~8μm,相对折射率差Δ4为0%~-0.2%,所述的外包层为纯二氧化硅玻璃层。
  2. 按权利要求1所述的低色散单模光纤,其特征在于所述的芯层半径为3.5~4.5μm。
  3. 按权利要求1或2所述的低色散单模光纤,其特征在于所述的芯层相对折射率差Δ1为0.20~0.40%。
  4. 按权利要求1或2所述的低色散单模光纤,其特征在于所述的芯层为锗氟Ge/F共掺的二氧化硅玻璃层,其中芯层的氟掺杂的贡献量ΔF1为-0.2%~-0.02%。
  5. 按权利要求1或2所述的低色散单模光纤,其特征在于所述的第一下陷包层单边宽度(R2-R1)为2.5~5.5μm。
  6. 按权利要求1或2所述的低色散单模光纤,其特征在于所述的芯层与第一下陷包层的相对折射率差的差值Δ1-Δ2为0.3%~0.5%。
  7. 按权利要求1或2所述的低色散单模光纤,其特征在于所述的第一下陷包层的相对折射率差环状面积积分Δ2×(R2 2-R1 2)的值为-15~-2%·μm 2
  8. 按权利要求7所述的低色散单模光纤,其特征在于所述的第一下陷包层为锗氟Ge/F共掺的二氧化硅玻璃层,其中氟掺杂的贡献量ΔF2为-0.45%~-0.04%。
  9. 按权利要求1或2所述的低色散单模光纤,其特征在于所述的凸起包层的相对折射率差环状面积积分Δ3×(R3 2-R2 2)的值为4%~21%·μm 2
  10. 按权利要求9所述的低色散单模光纤,其特征在于所述的凸起包层为Ge或Ge/F共掺的二氧化硅玻璃层,其中氟掺杂的贡献量ΔF3为-0.20%~0%。
  11. 按权利要求1或2所述的低色散单模光纤,其特征在于所述光纤在1310nm波长处的MFD为8.5~9.5μm。
  12. 按权利要求1或2所述的低色散单模光纤,其特征在于所述光纤的光缆截止波长λ cc≤1260nm。
  13. 按权利要求1或2所述的低色散单模光纤,其特征在于所述光纤在1270~1380nm波段的衰减≤0.45dB。
  14. 按权利要求1或2所述的低色散单模光纤,其特征在于所述光纤在1270~1380nm波 段的色散为-12~5ps/nm/km。
  15. 按权利要求1或2所述的低色散单模光纤,其特征在于所述光纤在1340~1380nm波段的色散为-3.5~3.5ps/nm/km。
  16. 按权利要求1或2所述的低色散单模光纤,其特征在于所述光纤在1270~1380nm波段的色散斜率≤0.08ps/nm 2·km。
  17. 按权利要求1或2所述的低色散单模光纤,其特征在于所述光纤的零色散波长为1300~1400nm。
  18. 一种按权利要求1-17中任一光纤作为低色散单模光纤在通信系统的应用,其特征在于所述光纤用于1270nm~1380nm波段的WDM传输系统。
PCT/CN2020/122056 2019-10-29 2020-10-20 低色散单模光纤 WO2021082978A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/420,291 US11550098B2 (en) 2019-10-29 2020-10-20 Low-dispersion single-mode optical fiber
EP20883096.8A EP3872541A4 (en) 2019-10-29 2020-10-20 SINGLE MODE OPTICAL FIBER WITH LOW DISPERSION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911039850.1A CN110780379B (zh) 2019-10-29 2019-10-29 低色散单模光纤
CN201911039850.1 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021082978A1 true WO2021082978A1 (zh) 2021-05-06

Family

ID=69387485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122056 WO2021082978A1 (zh) 2019-10-29 2020-10-20 低色散单模光纤

Country Status (4)

Country Link
US (1) US11550098B2 (zh)
EP (1) EP3872541A4 (zh)
CN (1) CN110780379B (zh)
WO (1) WO2021082978A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110749953B (zh) * 2019-10-29 2023-07-14 长飞光纤光缆股份有限公司 一种低色散单模光纤
CN110780379B (zh) * 2019-10-29 2021-08-10 长飞光纤光缆股份有限公司 低色散单模光纤
CN116626805B (zh) * 2023-07-24 2023-10-13 中天科技光纤有限公司 超低损耗光纤及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040086243A1 (en) * 2002-11-04 2004-05-06 Fitel Usa Corp. Systems and methods for reducing splice loss in optical fibers
CN102200610A (zh) * 2011-05-27 2011-09-28 成都富通光通信技术有限公司 适用于超高速长距离密集波分复用的色散优化单模光纤
CN103257397A (zh) * 2009-01-27 2013-08-21 德拉克通信科技公司 单模光纤
CN107193079A (zh) * 2017-05-04 2017-09-22 长飞光纤光缆股份有限公司 一种低衰减大有效面积的单模光纤
CN107678087A (zh) * 2017-11-07 2018-02-09 长飞光纤光缆股份有限公司 一种低衰减大有效面积单模光纤
CN110780379A (zh) * 2019-10-29 2020-02-11 长飞光纤光缆股份有限公司 低色散单模光纤

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435040A (en) * 1981-09-03 1984-03-06 Bell Telephone Laboratories, Incorporated Double-clad optical fiberguide
US9279935B2 (en) * 2010-12-23 2016-03-08 Prysmian S.P.A. Low macrobending loss single-mode optical fibre
ES2438173T3 (es) * 2011-05-27 2014-01-16 Draka Comteq Bv Fibra óptica de modo único
CN105334569B (zh) * 2015-12-17 2018-03-16 长飞光纤光缆股份有限公司 一种高带宽抗弯多模光纤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040086243A1 (en) * 2002-11-04 2004-05-06 Fitel Usa Corp. Systems and methods for reducing splice loss in optical fibers
CN103257397A (zh) * 2009-01-27 2013-08-21 德拉克通信科技公司 单模光纤
CN102200610A (zh) * 2011-05-27 2011-09-28 成都富通光通信技术有限公司 适用于超高速长距离密集波分复用的色散优化单模光纤
CN107193079A (zh) * 2017-05-04 2017-09-22 长飞光纤光缆股份有限公司 一种低衰减大有效面积的单模光纤
CN107678087A (zh) * 2017-11-07 2018-02-09 长飞光纤光缆股份有限公司 一种低衰减大有效面积单模光纤
CN110780379A (zh) * 2019-10-29 2020-02-11 长飞光纤光缆股份有限公司 低色散单模光纤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3872541A4 *

Also Published As

Publication number Publication date
EP3872541A1 (en) 2021-09-01
CN110780379A (zh) 2020-02-11
US20220050244A1 (en) 2022-02-17
CN110780379B (zh) 2021-08-10
US11550098B2 (en) 2023-01-10
EP3872541A4 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2021082978A1 (zh) 低色散单模光纤
US10150695B2 (en) Low loss optical fibers with fluorine and chlorine codoped core regions
US10775558B2 (en) Low loss wide bandwidth optical fiber
CN1891649B (zh) 低损耗光纤的设计及其制造方法
US10571628B2 (en) Low loss optical fiber with core codoped with two or more halogens
CN106772788B (zh) 一种截止波长位移单模光纤
JP6298893B2 (ja) 損失低下を示す、台形コアを有するシングルモードファイバ
CN105204110B (zh) 一种具有较低差分模群时延的少模光纤
WO2017020456A1 (zh) 一种超低衰耗弯曲不敏感单模光纤
US10578796B2 (en) Optical fiber and method for manufacturing same
US10564349B2 (en) Low bend loss optical fiber with graded index core
WO2012149818A1 (zh) 一种单模光纤
US11579355B2 (en) Low cross-talk multicore optical fiber for single mode operation
EP3869246A1 (en) Low-dispersion single-mode optical fiber
WO2016173253A1 (zh) 一种超低衰耗弯曲不敏感单模光纤
CN103472525B (zh) 低损耗大有效面积单模光纤及其制造方法
WO2020119439A1 (zh) 一种低损耗大有效面积单模光纤及其制备方法
WO2019201147A1 (zh) 一种高带宽弯曲不敏感多模光纤
US11067744B2 (en) Low bend loss optical fiber with step index core
CN107132614A (zh) 大有效面积光纤
CN108594361B (zh) 一种高带宽多模光纤
US20150049999A1 (en) Ultra-low loss optical fiber
CN111257994A (zh) 宽带抗弯多模光纤
WO2024119527A1 (zh) 一种弯曲不敏感高带宽多模光纤
US11899239B2 (en) Optical fiber

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020883096

Country of ref document: EP

Effective date: 20210528

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE