WO2021082906A1 - 双电源转换开关触头同步性检测方法及其装置 - Google Patents

双电源转换开关触头同步性检测方法及其装置 Download PDF

Info

Publication number
WO2021082906A1
WO2021082906A1 PCT/CN2020/120604 CN2020120604W WO2021082906A1 WO 2021082906 A1 WO2021082906 A1 WO 2021082906A1 CN 2020120604 W CN2020120604 W CN 2020120604W WO 2021082906 A1 WO2021082906 A1 WO 2021082906A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
group
key
auxiliary parameter
contact
Prior art date
Application number
PCT/CN2020/120604
Other languages
English (en)
French (fr)
Inventor
龚柱
Original Assignee
龚柱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 龚柱 filed Critical 龚柱
Priority to GB2200369.3A priority Critical patent/GB2599869A/en
Priority to CN202080006936.9A priority patent/CN113196071B/zh
Publication of WO2021082906A1 publication Critical patent/WO2021082906A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3275Fault detection or status indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/025General constructional details concerning dedicated user interfaces, e.g. GUI, or dedicated keyboards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3272Apparatus, systems or circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3272Apparatus, systems or circuits therefor
    • G01R31/3274Details related to measuring, e.g. sensing, displaying or computing; Measuring of variables related to the contact pieces, e.g. wear, position or resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies

Definitions

  • the invention belongs to the field of power equipment detection, and in particular relates to a method for detecting the synchronization of the contacts of a double power supply conversion switch.
  • the dual power transfer switch is a switch device that is standard for important power use places. When one power supply fails, the dual power transfer switch switches the load circuit from the current faulty power supply circuit to another normal power supply. In order to ensure the normal operation of the electrical equipment on the circuit, the circuit switching is completed by the contact conversion of the dual power conversion switch.
  • the dual power transfer switch can be divided into a three-pole dual power transfer switch and a four-pole dual power transfer switch. Taking the four poles as an example, the four-pole dual power transfer switch has four sets of linkage contacts for changing the load circuit from the first The power supply side is switched to the second power supply side or the load circuit is switched from the second power supply side back to the first power supply side.
  • the four linked contact groups may not be able to move completely synchronously, that is, some pole contact groups will be disconnected first, some pole contact groups will be disconnected later, and some pole contact groups will be disconnected later.
  • the head group will be turned on first, and some extremely contact groups will be turned on later.
  • Such an asynchronous action may cause the load circuit to run without phase for a certain period of time.
  • the lack of phase operation is harmful to some equipment, so , Contact synchronization is one of the important parameters reflecting the performance of the switch.
  • the purpose of the present invention is to provide a method for detecting the synchronization of the contacts of a dual-power conversion switch, which is used to collect the on-off condition of the contact group of a dual-power conversion switch when the circuit is switched once and detect the synchronization of the contacts of the switch.
  • the present invention provides a method for detecting the synchronization of the contacts of a dual power supply switch, which includes:
  • the contact group of the dual power switch corresponds to the keys of the keyboard of the computer
  • the contact group state corresponds to the key state
  • the first key group composed of multiple keys corresponds to the multiple keys on the first power source side
  • the first power contact group composed of contact groups, and the second key group composed of multiple other keys corresponds to the second power contact group composed of multiple contact groups on the second power source side;
  • Frequency acquisition step to acquire the device frequency value of the computer
  • the counting value acquisition step is to acquire and store the first numerical value group of the computer counter when the first key group is in the closed state, and each value in the first numerical value group corresponds to the counter when the corresponding key in the first key group is in the closed state
  • the count value of the computer acquire and store the second value group of the computer counter when the second key group is in the closed state, and each value in the second value group corresponds to the counter value when the corresponding key in the second key group is in the closed state Count value
  • the calculation step is to separately calculate the difference between each value in the first value group and one of the values, divide the difference by the device frequency value, and then obtain the first difference group composed of multiple time difference values; calculate the second value separately The difference between each value in the group and one of the values is divided by the device frequency value to obtain a second difference group composed of multiple time difference values.
  • Another object of the present invention is to provide a double power switch contact synchronization detection device, which is used to collect the on-off condition of the contact group of a double power switch when switching the circuit at a time and detect the contact synchronization of the switch Sex.
  • the present invention provides a double power switch contact synchronization detection device, which includes:
  • the corresponding unit is used to correspond the contact group of the dual power switch to the keys of the keyboard of the computer, the contact group state corresponds to the key state, and the first key group composed of multiple keys corresponds to the first power contact group , The second key group composed of multiple other keys corresponds to the second power contact group;
  • the frequency acquisition unit is used to acquire the device frequency value of the computer
  • the first count acquisition unit is used to acquire the first numerical value group of the computer counter when the first key group is in the closed state, and each value in the first numerical value group corresponds to when the corresponding key in the first key group is in the closed state
  • the count value of the counter
  • the second counting acquisition unit is used to acquire the second numerical value group of the computer counter when the second key group is in the closed state, and each value in the second numerical value group corresponds to when the corresponding key in the second key group is in the closed state The count value of the counter;
  • the first storage unit is used to store the first value group
  • the second storage unit is used to store the second value group
  • the third storage unit is used to store the device frequency value of the computer
  • the calculation unit is used to separately calculate the difference between each value in the first value group and one of the values, divide the difference by the device frequency value, and then obtain the first difference group composed of multiple time difference values; also used for Calculate the difference between each value in the second value group and one of the values, divide the difference by the device frequency value, and then obtain the second difference group composed of multiple time difference values;
  • the fourth storage unit is used to store the first difference group
  • the fifth storage unit is used to store the second difference group.
  • the contact group of the dual power switch corresponds to the key of the computer keyboard and the state of the contact group corresponds to the key state, the number of keys on the keyboard is as small as 61 and as many as 104, so it can correspond The number of contact groups is between 61 and 104.
  • One pole of the switch needs 2 keys to correspond to the contact group, and a four-pole switch needs 8 keys to correspond. Therefore, one keyboard can collect and detect the synchronization of the contacts of 7 to 13 four-pole switches at the same time. Therefore, the efficiency of using the collection and detection method or collection and detection device disclosed in the present invention to collect and detect the synchronization of the contacts of the dual power conversion switch is significantly improved.
  • the collection and detection method or the collection and detection device disclosed in the present invention is used to detect the dual power switch
  • the synchronism of the contact can obtain the detection accuracy of microsecond level, and the detection accuracy is significantly improved.
  • Each value in this second value group accurately reflects the count value at the moment when the contact group of the corresponding pole on the second power supply side is closed, and the difference between each value in the first value group and one of the values is calculated to obtain the A first difference group composed of a plurality of differences, and a difference between each value in the second value group and one of the values is calculated respectively to obtain a second difference group composed of a plurality of differences.
  • the first difference group and the second difference group accurately reflect the synchronization of the contacts of each pole of the dual power supply switch.
  • the value of the second auxiliary parameter group changes.
  • This setting makes when the contact group closes the second power supply, the value of the second auxiliary parameter group changes after the system collects the second value group, because the value of the second value group is obtained based on the value of the second auxiliary parameter group Therefore, after the value of the second auxiliary parameter group changes, the system no longer acquires and stores the count value of the counter when the contact group is closed, ensuring that the value of the second value group acquired and stored by the system is the contact of each pole The count value at the moment when the group is closed.
  • the detection method or detection device disclosed in the present invention can not only detect the synchronization of the contacts of the dual power switch from the first power source side to the second power source side, but also without changing the dual power switch terminal and the detection device. In the case of the connection method, continue to measure the contact synchronization of the dual power supply switch from the second power supply side to the first power supply side.
  • the detection method or the detection device disclosed in the present invention can continuously and uninterruptedly detect the dual power supply
  • the synchronism of the contacts of each pole in the multiple switching cycles of the transfer switch provides basic data for further judging the influence of frequent operations on the synchronism of the contacts.
  • Fig. 1 is a flowchart of a method for detecting synchronization of contacts of a dual power supply switch according to an exemplary embodiment of the present application
  • Fig. 2 is a block diagram of a device for detecting synchronization of contacts of a dual power switch according to an exemplary embodiment of the present application
  • Fig. 3 is a flowchart of obtaining and storing a first value group according to an exemplary embodiment of the present application
  • Fig. 4 is a flowchart of obtaining and storing a second value group according to an exemplary embodiment of the present application
  • Fig. 5 is a flowchart of changing the value of a first position parameter according to an exemplary embodiment of the present application
  • Fig. 6 is a flowchart of changing the value of the second auxiliary parameter group according to an exemplary embodiment of the present application
  • Fig. 7 is a flowchart of changing the value of a second position parameter according to an exemplary embodiment of the present application.
  • Fig. 8 is a flowchart of changing the value of the first auxiliary parameter group according to an exemplary embodiment of the present application.
  • Fig. 9 is a block diagram of a device for detecting synchronization of contacts of a dual power switch according to an exemplary embodiment of the present application.
  • Fig. 10 is a flow chart of a method for detecting synchronization of contacts of a dual power switch according to an exemplary embodiment of the present application
  • Fig. 11 is a flow chart of a method for detecting synchronization of the contacts of a dual power switch according to an exemplary embodiment of the present application
  • Figure 12 is a schematic diagram of the moving contact of the dual power transfer switch being transferred to the first power source side
  • Figure 13 is a schematic diagram of the moving contact of the dual power transfer switch during the conversion process
  • Figure 14 is a schematic diagram of the moving contact of the dual power transfer switch being transferred to the second power source side
  • Figure 15 is a schematic diagram of the movable contact group of the dual power transfer switch
  • Figure 16 is a schematic diagram of a circuit board of a computer keyboard
  • Fig. 17 is a schematic diagram of a collecting device disclosed according to an exemplary embodiment of the present application.
  • Figure 12-14 is a schematic diagram of the contact action of one pole of the dual power switch.
  • A is the first terminal used to connect to the first power source
  • B is the second terminal used to connect to the second power source
  • L is the second terminal used to connect to the second power source.
  • the current movable contact is located on the first power supply side, the electrical connection state between the load circuit and the first power supply is in the on state, the electrical connection state between the load circuit and the second power supply is in the off state, and the current load circuit is in A power supply.
  • the current movable contact is located between the first power supply side and the second power supply side, the electrical connection state of the load circuit and the first power supply is in the off state, and the electrical connection state of the load circuit and the second power supply is in the off state ,
  • the current load circuit has no power supply.
  • the current movable contact is located on the second power supply side, the electrical connection state between the load circuit and the first power supply is in the disconnected state, the electrical connection state between the load circuit and the second power supply is in the on state, and the current load circuit is in the on state.
  • Two power supply
  • the contact group that electrically connects or disconnects the first power source and the load circuit is defined as the first power contact group
  • the contact group that electrically connects or disconnects the second power source and the load circuit is defined as the second power contact group. Head group.
  • the switching process of the load circuit is from the moving contact disconnected from the static contact of the first power supply to the moving contact contacting the second power supply.
  • This switching process includes a breaking action And a switch-on action, therefore, a four-pole dual power transfer switch in a switching process includes 4 breaking actions and 4 switch-on actions, specifically the first power side A phase, B phase, C phase and N The phase breaking action and the A phase, B phase, C phase and N phase connection action of the second power supply.
  • the four-pole dual power transfer switch has 4 linked contact groups for connecting and disconnecting the first power supply or the second power supply. Therefore, the switching process includes the disconnection synchronization and the connection Synchronization.
  • a detection of breaking synchronization needs to collect the on-off conditions of 4 circuits at the same time.
  • the contact groups of A-phase, B-phase, C-phase and N-phase are converted from the original closed state to the open state.
  • the detection of switching on synchronization needs to collect the on-off conditions of 4 circuits at the same time.
  • the contact groups of A-phase, B-phase, C-phase and N-phase are converted from the original open state to the closed state. Therefore, when the load circuit is switched from the first power supply side to the second power supply side, it is necessary to collect the on-off conditions of 8 circuits at the same time.
  • One conversion cycle of the dual power supply switch is that the load circuit switches from the first power supply side to the second power supply side and then from the second power supply side back to the first power supply side.
  • 16 is a schematic diagram of the circuit board of a computer keyboard, which includes a USB interface or PS2 interface for connecting to a computer, a signal input terminal for obtaining a closing signal, and an electronic circuit processing unit for processing input and output signals, wherein the signal input terminal includes multiple Two contacts are arranged in parallel, and two of the contacts are electrically connected, and the computer will obtain the character corresponding to a certain key on the keyboard.
  • the number of keys on the keyboard is as small as 61 and as many as 104. Therefore, the number of corresponding characters is between 61 and 104.
  • Fig. 17 is a schematic diagram of a collection device provided according to an exemplary embodiment of the present application, which includes a circuit board of a computer keyboard and a sampling terminal electrically connected to the circuit board.
  • the sampling terminal includes a plurality of sampling lines.
  • the device is used to connect a computer and a dual power switch. Taking a four-pole dual power switch as an example, the sampling end of the sampling device includes 9 sampling lines, labeled 1-7, 14, and 14, respectively. 19. Use the 19th sampling line to connect the 1-7 and 14th sampling lines respectively, and the computers will get different characters, as shown in Table 1.
  • the sampling lines 1, 3, 5, and 7 are used to electrically connect the A-phase, B-phase, C-phase, and N-phase of the first power supply, respectively.
  • the No. 19 sampling line is used to electrically connect the load, and the No. 19 sampling line is a common line. Therefore, it is not necessary to distinguish the ABCN phases.
  • No. 19 sampling line is electrically connected.
  • Table 1 The line number, character, phase sequence and power supply comparison relationship shown in Table 1.
  • Fig. 1 is a flow chart of a method for detecting the synchronization of the contacts of a dual power transfer switch according to an exemplary embodiment of the present application. As shown in Fig. 1, the method is applied to the determination of the synchronization of the contacts of a dual power transfer switch. Taking a dual power switch as an example, the measurement method includes the following steps:
  • Step 101 Correspondingly, the contact group of the dual power switch corresponds to the keys of the keyboard of the computer, the contact group state corresponds to the key state, and the first key group composed of multiple keys corresponds to the first power source side
  • the first power contact group composed of a plurality of contact groups, and the second key group composed of a plurality of other keys correspond to the second power contact group composed of a plurality of contact groups on the second power source side.
  • the first key group includes a first key q, a second key e, a third key u, and a fourth key o
  • the second key group includes a fifth key w, a sixth key r, and a seventh key.
  • i and the eighth key p The first power contact group includes a first contact group, a second contact group, a third contact group, and a fourth contact group.
  • the second power contact group includes a fifth contact group, a sixth contact group, The seventh contact group and the eighth contact group.
  • the A-phase, B-phase, C-phase and N-phase of the first power supply side correspond to the first contact group, the second contact group, the third contact group and the fourth contact group respectively.
  • the first key q, the second The key e, the third key u, and the fourth key o respectively correspond to the first contact group, the second contact group, the third contact group, and the fourth contact group.
  • the A phase, B phase, C phase and N phase of the second power supply side correspond to the fifth contact group, the sixth contact group, the seventh contact group and the eighth contact group respectively.
  • the fifth key of the computer keyboard w , The sixth key r, the seventh key i, and the eighth key p respectively correspond to the fifth contact group, the sixth contact group, the seventh contact group, and the eighth contact group.
  • the first contact group and the fifth contact group correspond to the same pole
  • the second contact group and the sixth contact group correspond to the same pole
  • the third contact group and the seventh contact group correspond to the same pole
  • the fourth contact group and the eighth contact group correspond to the same pole.
  • the key state of the computer keyboard corresponding to the open state of the contact group is the reset state
  • the key state of the computer keyboard corresponding to the closed state of the contact group is the closed state. Therefore, taking one extreme of the switch as an example, when the first contact group is closed, the character obtained by the computer is q; when the first contact group is open, the computer no longer obtains the character q.
  • the fifth contact group is closed, the character obtained by the computer is w; when the fifth contact group is open, the computer no longer obtains the character w.
  • step 102 the frequency obtaining step is to obtain the device frequency value of the computer.
  • the device frequency value of the current computer can be obtained through the command QueryPerformanceFrequency ().
  • Step 103 the counting value obtaining step, obtaining and storing the first numerical value group of the computer counter when the first key group is in the closed state, and each value in the first numerical value group corresponds to the corresponding key in the first key group being in the closed state
  • the count value of the counter at the time acquire and store the second value group of the computer counter when the second key group is in the closed state, and each value in the second value group corresponds to when the corresponding key in the second key group is in the closed state The count value of the counter.
  • the corresponding count value when the current event occurs can be calibrated. in particular,
  • the value group consisting of the first value, the second value, the third value, and the fourth value is represented as the first value group.
  • the value group consisting of the fifth value, the sixth value, the seventh value, and the eighth value is represented as the second value group.
  • the first power contact group changes from the original closed state to the open state
  • the second power contact group changes from the original
  • the open state changes to the closed state.
  • the first key q changes from the closed state to the open state
  • the fifth key w changes from the open state to the closed state
  • the second key e changes from the closed state to the open state.
  • the sixth key r changes from the open state to the closed state
  • the third key u changes from the closed state to the open state
  • the seventh key i changes from the open state to the closed state
  • the fourth key o changes from the closed state to the off state.
  • the eighth key p changes from the open state to the closed state.
  • the command GetAsyncKeyState() can be used to determine whether the current key is pressed, that is, the first key q, the second key e, the third key u, the fourth key o, the fifth key w, and the sixth key Whether the key r, the seventh key i, or the eighth key p is closed.
  • QueryPerformanceCounter( ) you can get the current counter count value and store the count value.
  • the command if (GetAsyncKeyState( ) ⁇ 0) ⁇ QueryPerformanceCounter( ) ⁇ to obtain the count value of the counter when each key in the first key group is in the closed state and obtain the count value of the counter when each key in the second key group is in the closed state.
  • the first numerical value group consisting of the count value of the counter when each contact group in the first power contact group is in the closed state and the count value of the counter when each contact group in the second power contact group is in the closed state is obtained The second value group.
  • the program Since the program is executed according to instructions, the value stored in each parameter is overwritten with the current value obtained. Therefore, when the first contact group is in the closed state, the computer uses the currently obtained count value The previously stored count value is overwritten, so the first value is updated in real time. When the first contact group changes from the closed state to the open state, the computer no longer obtains and stores the count value. Therefore, the stored first value is the moment when the first contact group changes from closed to open. Count value, so the first value is true and valid. In the same way, the second value, third value, and fourth value are also true and valid, that is, the first value group is true and valid. When the fifth contact group is in the closed state, the fifth value of the counter of the computer is acquired and stored.
  • the computer obtains the current count value of the counter and stores it in the fifth value. Since the fifth contact group remains in the closed state after it is closed, in order to avoid the fifth value being updated and the fifth value stored is not the count value at the moment the fifth contact group is closed, the calculation step is directly set to obtain and store the fifth value. After the value. This setting ensures that the command to obtain and store the fifth value is executed only once, and it is executed at the moment when the fifth contact group is closed, so the fifth value is true and effective. In the same way, the sixth value, the seventh value, and the eighth value are also true and valid, that is, the second value group is true and valid.
  • Step 104 the calculation step, respectively calculate the difference between each value in the first value group and one of the values, divide the difference by the device frequency value, and then obtain the first difference group composed of multiple time difference values; calculate separately The difference between each value in the second value group and one of the values is divided by the device frequency value to obtain a second difference value group composed of multiple time difference values.
  • the first difference group accurately reflects the synchronization of the contact groups of each pole of the dual power conversion switch to disconnect the first power source
  • the second difference group accurately reflects the dual power conversion switch The synchronization of each pole contact group connecting to the second power supply.
  • the first value is used as the reference value in the first value group, the difference between the first value and the first value is calculated, the difference between the second value and the first value is calculated, and the third value is calculated as The difference between the first value, calculate the difference between the fourth value and the first value, divide these differences by the device frequency value to obtain a time value in time unit, and the obtained time value is calibrated corresponding to the corresponding phase.
  • the contact group is earlier or later than the A-phase contact group by the time value of breaking the first power source, so each time value in the first difference group can accurately reflect the breaking synchronization of the contact group of each pole of the switch.
  • the fifth value is used as the reference value in the second value group, the difference between the fifth value group and the fifth value group is calculated, the difference between the sixth value group and the fifth value group is calculated, and the seventh value is calculated.
  • the difference between the group and the fifth value group calculate the difference between the eighth value group and the fifth value group, divide these differences by the device frequency value to obtain a time value in time unit, and the obtained time value is calibrated
  • the contact group of the corresponding phase is earlier or later than the contact group of phase A to turn on the second power time value, so each time value in the second difference group can accurately reflect the connection of the contact group of each pole of the switch Synchronization.
  • the acquisition detection method disclosed in the present invention can be used to determine the synchronization of the contacts of the dual power switch.
  • the detection accuracy of microsecond level is obtained, and the detection accuracy is significantly improved.
  • the contact group of the dual power switch corresponds to the key of the computer keyboard and the state of the contact group corresponds to the key state, the number of keys on the keyboard is as small as 61 and as many as 104. Therefore, the corresponding touch The number of head groups is between 61 and 104.
  • One pole of the switch needs 2 keys to correspond to the contact group, and a four-pole switch needs 8 keys to correspond.
  • one keyboard can collect and detect the synchronization of the contacts of 7 to 13 four-pole switches at the same time. Therefore, the efficiency of measuring the synchronization of the contacts of the dual power transfer switch by adopting the collection and detection method disclosed in the present invention is significantly improved.
  • Fig. 3 is a flow chart of obtaining and storing a first numerical value group according to an exemplary embodiment of the present application.
  • the method is used to obtain and store the value of the first auxiliary parameter group when the first key group is in a closed state according to an exemplary embodiment of the present application.
  • the first value group of the computer's counter As shown in Figure 3, the method includes the following steps:
  • Step 201 Provide a first auxiliary parameter group.
  • the dual power switch switches the load circuit from the first power supply side to the second power supply side.
  • the first auxiliary parameter group includes a first auxiliary parameter, a second auxiliary parameter, a third auxiliary parameter, and a fourth auxiliary parameter. Initialize the values of all auxiliary parameters in the first auxiliary parameter group to 0 in the early stage of the acquisition and measurement program.
  • the first auxiliary parameter group is used to assist in the execution of the first value group acquisition instruction.
  • the preset condition for the first value group acquisition is the first The value of an auxiliary parameter group is 0.
  • the first numerical value command is executed
  • the value of the second auxiliary parameter is 0, the second numerical value command is executed
  • the value of the third auxiliary parameter is 0, the first numerical value command is executed.
  • a three-value instruction when the value of the fourth auxiliary parameter is 0, the fourth value instruction is executed.
  • Step 202 It is detected that the first key group is in a closed state.
  • Step 203 Determine whether the value of the first auxiliary parameter group meets a preset condition.
  • Step 204 If the value of the first auxiliary parameter group meets the preset condition, the computer acquires and stores the first value group. If the value of the first auxiliary parameter group does not meet the preset condition, the computer abandons obtaining the first value group.
  • the first numerical value of the first contact group corresponding to the first key q when it is closed is acquired and stored according to the value of the first auxiliary parameter
  • the value corresponding to the second key e is acquired and stored according to the value of the second auxiliary parameter.
  • the second value of the second contact group when it is closed is acquired, the third value of the third contact group corresponding to the third key u when it is closed is acquired and stored according to the value of the third auxiliary parameter, according to the value of the fourth auxiliary parameter Acquire and store the fourth value corresponding to the fourth key o when the fourth contact group is closed.
  • the first power contact group and the second power contact group maintain their current positions. Therefore, the first power contact group remains in the closed state, so the computer continues to obtain the current count value of the counter and store it in The first value group, therefore, after the first power contact group is closed, under the condition that the value of each auxiliary parameter in the first auxiliary parameter group is 0, each value in the first value group is continuously updated in real time.
  • na, nb, nc, nn are the first auxiliary parameters, The second auxiliary parameter, the third auxiliary parameter, and the fourth auxiliary parameter.
  • Fig. 4 is a flow chart of obtaining and storing a second numerical value group according to an exemplary embodiment of the present application.
  • the method is used to obtain and store the value of the second auxiliary parameter group when the second key group is in a closed state according to an exemplary embodiment of the present application.
  • the second value group of the computer's counter As shown in Figure 4, the method includes the following steps:
  • Step 301 Provide a second auxiliary parameter group.
  • the dual power switch switches the load circuit from the first power supply side to the second power supply side.
  • the second auxiliary parameter group includes a fifth auxiliary parameter, a sixth auxiliary parameter, a seventh auxiliary parameter, and an eighth auxiliary parameter. Initialize the values of all auxiliary parameters in the second auxiliary parameter group to 0 in the early stage of the acquisition and measurement program.
  • the second auxiliary parameter group is used to assist in the execution of the second value group acquisition instruction, and the preset condition for the second value group acquisition is the first The value of the second auxiliary parameter group is 0.
  • the fifth value obtaining instruction is executed
  • the sixth value obtaining instruction is executed
  • the value of the seventh auxiliary parameter is 0, it is executed
  • the seventh numerical value acquisition instruction is acquired
  • the eighth numerical value acquisition instruction is executed when the value of the eighth auxiliary parameter is 0.
  • Step 302 It is detected that the second key group is in a closed state.
  • Step 303 Determine whether the value of the second auxiliary parameter group meets a preset condition.
  • Step 304 If the value of the second auxiliary parameter group meets the preset condition, the computer obtains and stores the second value group. If the value of the second auxiliary parameter group does not meet the preset condition, the computer abandons obtaining the second value group.
  • the computer obtains the count value of the counter at this time, and stores the obtained count value in the first auxiliary parameter group. Two value group, and then change the value of the second auxiliary parameter group from 0 to 1.
  • the fifth value of the fifth contact group corresponding to the fifth key w when it is closed is acquired and stored, and the value of the fifth auxiliary parameter is changed from 0 to 1;
  • the sixth The value of the auxiliary parameter is obtained and stored corresponding to the sixth value of the sixth contact group of the fifth key r when it is closed, and then the value of the sixth auxiliary parameter is changed from 0 to 1;
  • the value of the seventh auxiliary parameter is obtained and combined Store the seventh value of the seventh contact group corresponding to the sixth key i when it is closed, and then change the value of the seventh auxiliary parameter from 0 to 1; obtain and store the value corresponding to the seventh key according to the value of the eighth auxiliary parameter The eighth value of the eighth contact group of p when it is closed, and then change the value of the eighth auxiliary parameter from 0 to 1.
  • the computer Since the value of the second auxiliary parameter group is updated to 1 and no longer meets the preset condition for obtaining the second value group, the computer no longer obtains and stores the second value group. Therefore, the current second value group is the second power contact The count value of the counter obtained by the computer at the moment the group is closed.
  • the computer abandons obtaining the second value group. Can be through instructions
  • na, nb, nc, nn are the fifth auxiliary parameter and the first Six auxiliary parameters, seventh auxiliary parameters and eighth auxiliary parameters.
  • Fig. 5 is a flow chart for changing the value of the first position parameter according to an exemplary embodiment of the present application.
  • the method is used to change the value of the first position parameter after the computer obtains the first numerical value group. As shown in Figure 5, the method includes the following steps:
  • Step 401 Provide a first position parameter.
  • the value of the first position parameter is initialized to 0 in the early stage of running the acquisition measurement program.
  • the first position parameter is used to assist in indicating the power information currently connected to the load circuit.
  • Step 402 Obtain a first value group.
  • Step 403 Change the value of the first position parameter.
  • the execution condition of the display command is that the first key group is closed and the value of the first position parameter is 0. Since the first position parameter has been initialized to 0, after all the keys in the first key group are closed, That is, after the computer obtains all the values in the first value group, the computer screen can display that the current power source connected to the load circuit is the first power source, and then the value of the first position parameter changes from 0 to 1. Since the value of the first position parameter is not 0 at this time, the display instruction is no longer executed, which ensures that only one power supply indication information is displayed in one switch, and avoids the power supply indication information from appearing in the way of refreshing the screen.
  • Fig. 6 is a flow chart for changing the value of the second auxiliary parameter group according to an exemplary embodiment of the present application.
  • the method is used to change the value of the second auxiliary parameter group after the computer acquires and stores the second value group. As shown in Figure 6, the method includes the following steps:
  • Step 501 Provide a second auxiliary parameter group.
  • the second auxiliary parameter group is used as a basis for judging whether to acquire and store the second value group during the process of switching the dual power switch from the first power supply side to the second power supply side.
  • Step 502 Obtain and store the second value group.
  • the second power contact group changes from the open state to the closed state, that is, the second key set is in the closed state, and the computer obtains and stores the first value set.
  • Step 503 Change the value of the second auxiliary parameter group.
  • the value of the second auxiliary parameter group is changed after the second value group is acquired and stored. Since the dual power switch switches the load circuit from the first power supply side to the second power supply side, the moment when the second value group is acquired and stored is the moment when the second key group is closed, so after the second value group is acquired and stored The value of the second auxiliary parameter group is changed so that the preset condition for obtaining the second value group is not satisfied, so as to prevent the currently stored second value group from being updated, thereby ensuring the true validity of the second value group.
  • Fig. 7 is a flow chart for changing the value of the second position parameter according to an exemplary embodiment of the present application.
  • the method is used to change the value of the second position parameter after acquiring and storing the second value group. As shown in Figure 7, the method includes the following steps:
  • Step 601 Provide a second location parameter.
  • the value of the second position parameter is initialized to 0 in the early stage of running the acquisition measurement program.
  • the second position parameter is used to assist in indicating the power information currently connected to the load circuit.
  • Step 602 Obtain a second value group.
  • Step 603 Change the value of the second position parameter.
  • Obtaining the second value group indicates that the second power contact group is in the closed state, which means that the current load circuit is powered by the second power source, and the current working power source can be displayed on the screen through the command cout. Since the initial value of the second position parameter is 0, after the dual power switch is switched from the first power source to the second power source, that is, after the computer obtains the second value group, the value of the second position parameter changes from 0 to 1. Therefore, the execution condition of the display command is that the second key group is closed and the value of the second position parameter is 1. Therefore, after the second key group is closed, that is, after the computer obtains the second value group, the computer screen can be displayed.
  • the current power source connected to the load circuit is the second power source, and then the value of the second position parameter is changed from 1 to 2. Since the value of the second position parameter at this time is not 1, the display instruction is no longer executed, which ensures that only one power supply indication information is displayed in one switching, and avoids the power supply indication information from appearing in the way of refreshing the screen.
  • Fig. 8 is a flow chart for changing the value of the first auxiliary parameter group according to an exemplary embodiment of the present application.
  • the method is used to change the value of the first auxiliary parameter group after acquiring and storing the first value group, as
  • the dual power switch switches the load circuit from the second power supply side back to the first power supply side. As shown in Figure 8, the method includes the following steps:
  • Step 701 Provide a first auxiliary parameter group.
  • the first auxiliary parameter group is used to determine whether to obtain and store the basis of the first value group during the process of switching from the second power supply side to the first power supply side after the dual power switch is switched from the first power supply side to the second power supply side.
  • Step 702 Obtain and store the first value group.
  • the first power contact group changes from the open state to the closed state, that is, the first key group is in the closed state, and the computer acquires and stores the first value group.
  • Step 703 Change the value of the first auxiliary parameter group.
  • the value of the first auxiliary parameter group is changed after the first value group is acquired and stored. Since the dual power switch switches the load circuit from the second power supply side back to the first power supply side, the moment when the first value group is acquired and stored is the moment when the first key group is closed, so after the first value group is acquired and stored The value of the first parameter group is changed so that the preset condition for obtaining the first value group is not satisfied, so as to prevent the first value group currently stored from being updated, thereby ensuring the true validity of the first value group.
  • Fig. 10 is a flow chart of a method for detecting the synchronization of the contacts of a dual power transfer switch according to an exemplary embodiment of the present application. As shown in Fig. 10, the method is applied to the detection of the synchronization of the contacts of a dual power transfer switch. Taking a dual power switch as an example, detecting the synchronization of each pole contact breaking the first power source during the first half of the conversion cycle of the dual power switch from the first power source side to the second power source side.
  • the detection method includes The following steps:
  • Step 801 Acquire and store the first value group.
  • the dual power switch switches the load circuit from the first power supply to the second power supply
  • the first power contact group is switched from the closed state to the open state
  • the first value group stored in the computer is the first power contact group disconnected The count value of the instant counter.
  • Step 802 Change the value of the first position parameter group.
  • the value of the first position parameter is changed after storing the first value group to avoid the prompt information being presented in a swipe mode.
  • Step 803 Obtain and store the second value group.
  • the dual power switch switches the load circuit from the first power source to the second power source
  • the second power contact group is switched from the open state to the closed state, and the computer obtains and stores the second value.
  • Step 804 Change the value of the second auxiliary parameter group.
  • Step 805 Determine whether the value of the second auxiliary parameter, the value of the first position parameter, and the state of the second key group meet the conditions.
  • the preset condition is: the value of all auxiliary parameters in the second auxiliary parameter group is 1, the value of the first position parameter is 1, and the state of the second key group is the closed state. Specifically, the state of the second key group being in the closed state indicates that the second power contact group is currently in the closed state; the first position parameter being 1 indicates that the load circuit is displayed on the screen and the second power source is currently connected; the second auxiliary parameter group A value of 1 indicates that the computer has acquired and stored the count value of the counter at the moment when the second key group is closed.
  • Step 806 Calculate the difference between each value in the first value group and one of the values, divide the difference by the device frequency value, and obtain a first difference group composed of multiple time difference values.
  • Step 807 Calculate the difference between each value in the second value group and one of the values, divide the difference by the device frequency value, and obtain a second difference group composed of multiple time difference values.
  • Step 808 Store the obtained first difference group and second difference group.
  • Step 809 Output the obtained first difference group and second difference group.
  • the calculation step is executed when the value of the second auxiliary parameter group, the value of the first position parameter, and the state of the second key group meet the preset conditions.
  • the first value is used as the reference value in the first value group, the difference between the first value and the first value is calculated, the difference between the second value and the first value is calculated, and the third value is calculated as The difference between the first value, calculate the difference between the fourth value and the first value, divide these differences by the device frequency value to obtain a time value in time unit, and the obtained time value is calibrated corresponding to the corresponding phase.
  • the contact group is earlier or later than the A-phase contact group by the time value of breaking the first power source, so each time value in the first difference group can accurately reflect the breaking synchronization of the contact group of each pole of the switch.
  • the fifth value is used as the reference value in the second value group, the difference between the fifth value group and the fifth value group is calculated, the difference between the sixth value group and the fifth value group is calculated, and the seventh value is calculated.
  • the difference between the group and the fifth value group calculate the difference between the eighth value group and the fifth value group, divide these differences by the device frequency value to obtain a time value in time unit, and the obtained time value is calibrated
  • the contact group of the corresponding phase is earlier or later than the contact group of phase A to turn on the second power time value, so each time value in the second difference group can accurately reflect the connection of the contact group of each pole of the switch Synchronization.
  • Store the calculated first difference group and second difference group and display the time value on the screen through the command cout.
  • Step 810 Change the value of the first auxiliary parameter group, the value of the second auxiliary parameter group, and the value of the second position parameter.
  • One conversion cycle of the dual power supply switch is that the load circuit switches from the first power supply side to the second power supply side and then from the second power supply side back to the first power supply side.
  • the calibration of contact synchronization is the synchronization of each pole contact group disconnecting the first power source and the synchronization of each pole contact group turning on the second power source.
  • the synchronism of the contacts is calibrated by the synchronism of each pole contact group disconnecting the second power source and the synchronism of each pole contact group turning on the first power source.
  • the second position parameter is to correctly indicate the power information of the current load circuit.
  • FIG. 11 is a flow chart of a method for detecting the synchronization of the contacts of a dual power transfer switch according to an exemplary embodiment of the present application. As shown in FIG. 11, the method is applied to the detection of the synchronization of the contacts of a dual power transfer switch. Taking a dual power switch as an example, the contact synchronization of the dual power switch during the second half of the conversion cycle, that is, when the dual power switch is switched from the second power side back to the first power side, is collected and measured.
  • the detection method includes the following steps:
  • Step 901 Obtain and store a second value group.
  • the dual power switch switches the load circuit from the second power source back to the first power source
  • the second power contact group is switched from the closed state to the open state
  • the second value group stored in the computer is the second power contact group disconnected The count value of the instant counter.
  • Step 902 Change the value of the second position parameter.
  • the second position parameter is changed to avoid the prompt information being presented in a swipe mode.
  • Step 903 Obtain and store the first value group.
  • the dual power switch switches the load circuit from the second power source back to the first power source
  • the first power contact group is switched from the open state to the closed state, and the computer obtains and stores the first value set.
  • Step 904 Change the value of the first auxiliary parameter group.
  • Step 905 Determine whether the value of the first auxiliary parameter group, the value of the second position parameter, and the state of the first key group meet the conditions.
  • the preset condition is: the value of the first auxiliary parameter group is 2, the value of the second position parameter is 2, and the state of the first key group is the closed state. Specifically, the state of the first key group is in the closed state, indicating that the first power contact group is currently in the closed state; the second position parameter being 2 indicates that the load circuit is currently connected to the first power source; the first auxiliary parameter group’s A value of 2 indicates that the computer has acquired and stored the count value of the counter at the moment when the first key group is closed.
  • Step 906 Calculate the difference between each value in the first value group and one of the values, divide the difference by the device frequency value, and obtain a first difference group composed of multiple time difference values.
  • Step 907 Calculate the difference between each value in the second value group and one of the values, divide the difference by the device frequency value, and obtain a second difference group composed of multiple time difference values.
  • Step 908 Store the obtained first difference group and second difference group.
  • Step 909 Output the obtained first difference group and second difference group.
  • the calculation step is executed when the value of the first auxiliary parameter group, the value of the second position parameter, and the state of the first key group satisfy the preset condition.
  • the first numerical value is used as the reference value in the first numerical value group, the difference between the first numerical value and the first numerical value is calculated, the difference between the second numerical value and the first numerical value is calculated, and the third numerical value is calculated as The difference between the first value, calculate the difference between the fourth value and the first value, divide these differences by the device frequency value to obtain a time value in time unit, and the obtained time value is calibrated corresponding to the corresponding phase.
  • the contact group is earlier or later than the A-phase contact group by the time value of turning on the first power source, so each time value in the first difference group can accurately reflect the connection synchronization of the contact group of each pole of the switch.
  • the fifth value is used as the reference value in the second value group, the difference between the fifth value group and the fifth value group is calculated, the difference between the sixth value group and the fifth value group is calculated, and the seventh value is calculated.
  • the difference between the group and the fifth value group calculate the difference between the eighth value group and the fifth value group, divide these differences by the device frequency value to obtain a time value in time unit, and the obtained time value is calibrated
  • the contact group of the corresponding phase is earlier or later than the contact group of phase A to break the time value of the second power supply, so each time value in the second difference group can accurately reflect the disconnection synchronization of the contact group of each pole of the switch .
  • Store the calculated first difference group and second difference group and display the time value on the screen through the command cout.
  • Step 910 Change the value of the first auxiliary parameter group, the value of the second auxiliary parameter group, the value of the first position parameter, and the value of the second position parameter.
  • One conversion cycle of the dual power supply switch is that the load circuit switches from the first power supply side to the second power supply side and then from the second power supply side back to the first power supply side.
  • the calibration of contact synchronization is the synchronization of each pole contact group disconnecting the first power source and the synchronization of each pole contact group turning on the second power source.
  • the synchronism of the contacts is calibrated by the synchronism of each pole contact group disconnecting the second power source and the synchronism of each pole contact group turning on the first power source.
  • the second auxiliary parameter correctly indicates the power information of the current load circuit.
  • the way of changing the parameter includes but not limited to the way of initializing the parameter.
  • the collection and detection method provided in this embodiment can not only detect the synchronization of contact on and off during the transition of the dual power supply switch from the first power supply side to the second power supply side, but can also detect the connection terminals of the dual power supply switch without changing the connection terminals of the dual power supply switch. In the case of the connection method with the measuring device, continue to measure the synchronization of the contact on and off during the return of the dual power supply switch from the second power supply side to the first power supply side. Therefore, the collection and detection method provided in this embodiment can Continuously and uninterruptedly measure the synchronization of the contacts in multiple switching cycles of the dual power transfer switch, and provide basic data for further judging the influence of frequent operations on the switching time of the contacts.
  • Fig. 2 is a block diagram of a device for detecting synchronization of contacts of a dual power switch according to an exemplary embodiment of the present application.
  • the detecting device includes a corresponding unit, a frequency acquisition unit, a first count acquisition unit, The second count acquisition unit, the first storage unit, the second storage unit, the third storage unit, the fourth storage unit, the fifth storage unit, the calculation unit, and the output unit.
  • the corresponding unit is used to correspond the contact group of the dual power switch to the keys of the keyboard of the computer, the contact group state corresponds to the key state, and the first key group composed of multiple keys corresponds to the first power contact Group, the second key group composed of a plurality of other keys corresponds to the second power contact group.
  • the frequency acquisition unit is used to acquire the device frequency value of the computer.
  • the first counting acquisition unit is used to acquire the first numerical value group of the computer counter when the first key group is in the closed state, and each value in the first numerical value group corresponds to the counter when the corresponding key in the first key group is in the closed state The count value.
  • the second counting acquisition unit is used to acquire the second numerical value group of the computer counter when the second key group is in the closed state, and each value in the second numerical value group corresponds to the counter when the corresponding key in the second key group is in the closed state The count value.
  • the first storage unit is used to store the first value group.
  • the second storage unit is used to store the second value group.
  • the third storage unit is used to store the device frequency value of the computer.
  • the calculation unit is used to calculate the difference between each value in the first value group and one of the values, divide the difference by the device frequency value, and then obtain the first difference group composed of multiple time difference values; Calculate the difference between each value in the second value group and one of the values, divide the difference by the device frequency value, and then obtain a second difference group composed of multiple time difference values.
  • the fourth storage unit is used to store the first difference group.
  • the fifth storage unit is used to store the second difference group.
  • the collection and measurement device further includes an output unit for outputting the first difference group and the second difference group, and the output unit outputs the first difference group and the second difference group on the screen.
  • FIG. 9 is a block diagram of a device for detecting synchronization of contacts of a multi-pole dual power supply switch according to an exemplary embodiment of the present application.
  • the acquisition and measurement device further includes an auxiliary unit, a position unit, and a value changing unit .
  • the auxiliary unit is used to provide auxiliary parameters.
  • the auxiliary parameters include a first auxiliary parameter group consisting of a first auxiliary parameter, a second auxiliary parameter, a third auxiliary parameter, and a fourth auxiliary parameter, and a fifth auxiliary parameter and a sixth auxiliary parameter.
  • a second auxiliary parameter group consisting of parameters, seventh auxiliary parameters, and eighth auxiliary parameters.
  • the location unit is used to provide location parameters, and the location parameters include a first location parameter and a second location parameter.
  • the value changing unit is used to change the value of the parameter, and the value changing unit includes a first value changing unit, a second value changing unit, and a third value changing unit.
  • the first counting unit is used to obtain and store the first value of the first contact group corresponding to the first key when the first contact group is closed according to the value of the first auxiliary parameter, and obtain and store the corresponding value according to the value of the second auxiliary parameter.
  • the second value of the second contact group when the second key is closed is obtained and stored according to the value of the third auxiliary parameter when the third value of the third contact group corresponding to the third key is closed.
  • the value of the auxiliary parameter acquires and stores the fourth value of the fourth contact group corresponding to the fourth key when it is closed.
  • the second counting acquisition unit is configured to: acquire and store the fifth value of the fifth contact group corresponding to the fifth key when the fifth key is closed according to the value of the fifth auxiliary parameter, and acquire and store according to the value of the sixth auxiliary parameter
  • the sixth value of the sixth contact group corresponding to the sixth key when it is closed, the seventh value of the seventh contact group corresponding to the seventh key when it is closed is acquired and stored according to the value of the seventh auxiliary parameter, according to the The value of the eight auxiliary parameter acquires and stores the eighth value corresponding to the eighth key when the eighth contact group is closed.
  • the first value changing unit is used to change the value of the first position parameter or the value of the first auxiliary parameter group after acquiring and storing the first value group
  • the second value changing unit is used to change the first value group after acquiring and storing the second value group.
  • the value of the auxiliary parameter group or the value of the second position parameter, the third value changing unit is used to change the value of the first auxiliary parameter group according to the value of the second auxiliary parameter group, the value of the first position parameter and the state of the second key group Value, the value of the second auxiliary parameter group, and the value of the second position parameter.
  • the calculation unit executes the calculation step when the value of the second auxiliary parameter group, the value of the first position parameter, and the state of the second key group satisfy the preset condition.
  • the third value changing unit is further configured to change the value of the first auxiliary parameter group and the value of the second auxiliary parameter group according to the value of the first auxiliary parameter group, the value of the second position parameter, and the state of the first key group. , The value of the first position parameter and the value of the second position parameter.
  • the calculation unit is further configured to perform the calculation step when the value of the first auxiliary parameter group, the value of the second position parameter, and the state of the first key group satisfy the preset condition.
  • the collection and measurement device further includes an output unit for outputting the time value, and the output unit outputs the time value on a screen, as shown in Table 2-4.
  • Table 2-4 is a dual-power transfer switch contact synchronization detection device provided by an exemplary embodiment of the present application to detect the contact synchronization record table of a dual-power transfer switch.
  • the two records record a total of continuous Synchronization data of the contact group corresponding to 10 conversion cycles.
  • "Power -A- is working! means that the current load circuit is connected to the first power source side
  • "Power -B- is working! means that the current load circuit is connected to the second power source side.
  • “From A to B” means that the load circuit is switched from the first power supply side to the second power supply side
  • “From B to A” means that the load circuit is switched from the second power supply side back to the first power supply side.
  • the values after "1A:”, “1B:”, “1C:” and “1N:” respectively represent the early or delayed disconnection time values of phase A, phase B, phase C, and phase N relative to phase A, positive Number means lag, negative number means advance, the unit is microsecond.
  • the values after "2A:”, “2B:”, “2C:” and “2N:” respectively represent the advanced or delayed closing time value of phase A, phase B, phase C and phase N relative to phase A, positive numbers Represents lag, negative number represents advance, the unit is microseconds.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Keying Circuit Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Input From Keyboards Or The Like (AREA)

Abstract

一种双电源转换开关触头同步性检测方法及其装置,属于电力设备检测领域,方法包括将开关的触头组及状态分别对应于键盘的键及状态,获取计算机的设备频率值,获取并存储第一键组处于闭合状态时计数器的第一数值组,获取并存储第二键组处于闭合状态时计数器的第二数值组,分别计算第一数值组中各个数值与其中一个数值的差值以及分别计算第二数值组中各个数值与其中一个数值的差值。目前普通的计算机的频率可以使测得的精度达到微秒级,触头同步性检测方法及装置测得的同步性精度取决于计算机的设备频率,可以同时采集测定一台转换开关在一个切换周期中的所有触头的接通与分断的同步性。

Description

双电源转换开关触头同步性检测方法及其装置 技术领域
本发明属于电力设备检测领域,具体涉及一种双电源转换开关触头同步性的检测方法。
背景技术
在配电领域,双电源转换开关是一种作为重要用电场所标配的开关设备,当一路电源出现故障时,双电源转换开关将负载电路从当前的故障电源电路切换到另一路正常的电源电路上以确保用电设备正常工作,电路切换是通过双电源转换开关的触头转换完成。双电源转换开关按照极数可以分成三极双电源转换开关和四极双电源转换开关,以四极为例,四极双电源转换开关具有四组联动的触头组用于将负载电路从第一电源侧切换到第二电源侧或者将负载电路从第二电源侧切换回第一电源侧。由于加工制造的误差可能会造成四组联动的触头组不能完全同步动作,即有的极的触头组会先断开,有的极的触头组会后断开,有的极的触头组会先接通,有的极的触头组会后接通,这样的不同步动作可能会造成负载电路在一定时间内缺相运行,缺相运行对有些设备是具有危害性的,因此,触头同步性是反映开关性能的重要参数之一。
技术问题
本发明的目的在于提供一种双电源转换开关触头同步性检测方法,用于采集一台双电源转换开关在一次切换电路时的触头组的通断情况并检测开关的触头同步性。
技术解决方案
为此,本发明提供一种双电源转换开关触头同步性检测方法,其包括:
对应步骤,将双电源转换开关的触头组对应于计算机的键盘的键,将触头组状态对应于键状态,由多个键组成的第一键组对应于由第一电源侧的多个触头组组成的第一电源触头组,由多个其它键组成的第二键组对应于由第二电源侧的多个触头组组成第二电源触头组;
频率获取步骤,获取计算机的设备频率值;
计数值获取步骤,获取并存储第一键组处于闭合状态时的计算机的计数器的第一数值组,第一数值组中的各值对应于第一键组中相应的键处于闭合状态时的计数器的计数值;获取并存储第二键组处于闭合状态时的计算机的计数器的第二数值组,第二数值组中的各值对应于第二键组中相应的键处于闭合状态时的计数器的计数值;
计算步骤,分别计算第一数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第一差值组;分别计算第二数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第二差值组。
本发明的另一个目的在于提供一种双电源转换开关触头同步性检测装置,用于采集一台双电源转换开关在一次切换电路时的触头组的通断情况并检测开关的触头同步性。
为此,本发明提供一种双电源转换开关触头同步性检测装置,其包括:
对应单元,用于将双电源转换开关的触头组对应于计算机的键盘的键,将触头组状态对应于键状态,由多个键组成的第一键组对应于第一电源触头组,由多个其它键组成的第二键组对应于第二电源触头组;
频率获取单元,用于获取计算机的设备频率值;
第一计数获取单元,用于获取第一键组处于闭合状态时的计算机的计数器的第一数值组,第一数值组中的各值对应于第一键组中相应的键处于闭合状态时的计数器的计数值;
第二计数获取单元,用于获取第二键组处于闭合状态时的计算机的计数器的第二数值组,第二数值组中的各值对应于第二键组中相应的键处于闭合状态时的计数器的计数值;
第一存储单元,用于存储第一数值组;
第二存储单元,用于存储第二数值组;
第三存储单元,用于存储计算机的设备频率值;
计算单元,用于分别计算第一数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第一差值组;还用于分别计算第二数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第二差值组;
第四存储单元,用于存储第一差值组;
第五存储单元,用于存储第二差值组。
有益效果
1. 由于将双电源转换开关的触头组对应于计算机的键盘的键以及将触头组状态对应于键状态,而键盘上的键数量少则61个,多则104个,因此,可对应的触头组数量介于61个至104个之间。而开关的一极需要2个按键对应于触头组,一台四极开关就需要8个按键对应,因此,一个键盘可同时采集检测7台至13台四极开关的触头同步性。因而,采用本发明公开的采集检测方法或者采集检测装置来采集检测双电源转换开关的触头同步性的效率显著提高。
2. 由于本发明公开的采集检测方法的检测精度基于计算机的设备频率,而目前主流的计算机的设备频率在1000000hz以上,因此,用本发明公开的采集检测方法或者采集检测装置检测双电源转换开关的触头同步性可获得微秒级的检测精度,检测精度显著提高。
3. 获取并存储第一键组处于闭合状态时的计算机的计数器的第一数值组,使得当触头保持在第一电源侧时,系统一直采集并存储当前的第一数值组,第一数值组包括了第一电源侧各极触头组的计数值。当触头组断开的瞬间,即第一键组断开的瞬间,系统不再采集并存储各极对应的计数值,因此,存储单元里存储的计数值是触头组断开瞬间时的第一数值组,此第一数值组准确反映了第一电源侧各极触头组断开瞬间的计数值。
4. 获取并存储第二键组处于闭合状态时的计算机的计数器的第二数值组,分别计算第一数值组中各个数值与其中一个数值的差值进而获得由多个差值组成的第一差值组以及分别计算第二数值组中各个数值与其中一个数值的差值进而获得由多个差值组成的第二差值组。将计算步骤直接设置于完成采集第二数值组时,使得当触头接触到第二电源侧的瞬间,即第二键组闭合的瞬间,系统即可采集并存储当前计数器的第二数值组,此第二数值组里的每个数值都准确反映了第二电源侧对应极的触头组闭合瞬间的计数值,并分别计算第一数值组中各个数值与其中一个数值的差值进而获得由多个差值组成的第一差值组以及分别计算第二数值组中各个数值与其中一个数值的差值进而获得由多个差值组成的第二差值组。此第一差值组和第二差值组准确反映了双电源转换开关各极的触头同步性。
5. 根据第二辅助参数组的值获取并存储第二键组处于闭合状态时的计数器的第二数值组。由于设置了第二辅助参数组,使得第二数值组的值的获取是基于第二辅助参数组的值,因此,只有在第二辅助参数组的值满足预设条件时,系统才获取并存储触头组闭合状态时的计数器的计数值,保证了参与计算的第二数值组值为各极触头组闭合瞬间或者断开瞬间的计数值。
6. 在获取并存储第二数值组之后,第二辅助参数组的值改变。这样的设置使得当触头组闭合第二电源的瞬间,系统采集到第二数值组后第二辅助参数组的值改变,由于第二数值组的值的获取是基于第二辅助参数组的值,因此,在第二辅助参数组的值变化后,系统不再获取并存储触头组闭合状态时的计数器的计数值,保证了系统获取并存储的第二数值组的值为各极触头组闭合瞬间的计数值。
7. 在第一辅助参数组的值、第二位置参数的值以及第一键组的状态满足预设条件时分别计算第一数值组中各个数值与其中一个数值的差值进而获得由多个差值组成的第一差值组以及分别计算第二数值组中各个数值与其中一个数值的差值进而获得由多个差值组成的第二差值组。使得本发明公开的检测方法或者检测装置不仅可以检测双电源转换开关从第一电源侧转换到第二电源侧过程中的触头同步性,还能在不改变双电源转换开关接线端子与检测装置的接线方法的情况下继续测定双电源转换开关从第二电源侧切换回第一电源侧过程中的触头同步性,因此,本发明公开的检测方法或者检测装置可以连续不间断地检测双电源转换开关多个切换周期中的各极的触头同步性,为进一步判断频繁操作对触头同步性的影响提供基础数据。
附图说明
在下面参照附图对作为非限制性实施例给出的实施方式的说明中,本发明及其优越性将得到更好的理解,附图如下:
图1是根据本申请一示例性实施例公开的一种双电源转换开关触头同步性检测方法的流程图;
图2是根据本申请一示例性实施例公开的一种双电源转换开关触头同步性检测装置的框图;
图3是根据本申请一示例性实施例公开的获取并存储第一数值组的流程图;
图4是根据本申请一示例性实施例公开的获取并存储第二数值组的流程图;
图5是根据本申请一示例性实施例公开的改变第一位置参数的值的流程图;
图6是根据本申请一示例性实施例公开的改变第二辅助参数组的值的流程图;
图7是根据本申请一示例性实施例公开的改变第二位置参数的值的流程图;
图8是根据本申请一示例性实施例公开的改变第一辅助参数组的值的流程图;
图9是根据本申请一示例性实施例公开的一种双电源转换开关触头同步性检测装置的框图;
图10是根据本申请一示例性实施例公开的一种双电源转换开关触头同步性检测方法的流程图;
图11是根据本申请一示例性实施例公开的一种双电源转换开关触头同步性检测方法的流程图;
图12是双电源转换开关动触头转换到第一电源侧的示意图;
图13是双电源转换开关动触头转换过程中的示意图;
图14是双电源转换开关动触头转换到第二电源侧的示意图;
图15是双电源转换开关动触头组示意图;
图16是计算机键盘的电路板示意图;
图17是根据本申请一示例性实施例公开的采集装置的示意图。
本发明的实施方式
图12-14是双电源转换开关其中一极的触头动作示意图,A为用于联接第一电源的第一接线端,B为用于联接第二电源的第二接线端,L为用于联接负载的第三接线端。如图12所示,当前动触头位于第一电源侧,负载电路与第一电源的电气联接状态为接通状态,负载电路与第二电源的电气联接状态为分断状态,当前负载电路由第一电源供电。如图13所示,当前动触头位于第一电源侧和第二电源侧之间,负载电路与第一电源的电气联接状态为分断状态,负载电路与第二电源的电气联接状态为分断状态,当前负载电路无供电电源。如图14所示,当前动触头位于第二电源侧,负载电路与第一电源的电气联接状态为分断状态,负载电路与第二电源的电气联接状态为接通状态,当前负载电路由第二电源供电。在此,将电气接通或分断第一电源与负载电路的触头组定义为第一电源触头组,将电气接通或分断第二电源与负载电路的触头组定义为第二电源触头组。
如图15所示的触头组示意图,负载电路的切换过程为动触头从第一电源的静触头断开至动触头接触到第二电源,在这个切换过程中包括了一个分断动作和一个接通动作,因此,一台四极双电源转换开关的一次切换过程就包括4个分断动作和4个接通动作,具体为第一电源侧的A相、B相、C相及N相的分断动作和第二电源的A相、B相、C相及N相接通动作。如图15所示,四极双电源转换开关具有4个联动的用于接通与分断第一电源或第二电源的触头组,因此,在一次切换过程中包括了分断同步性和接通同步性。而一个分断同步性的检测需要同时采集4个电路的通断情况,分别为A相、B相、C相及N相的触头组由原先的闭合状态转换为断开状态,同样地,一个接通同步性的检测需要同时采集4个电路的通断情况,分别为A相、B相、C相及N相的触头组由原先的断开状态转换为闭合状态。所以,在负载电路从第一电源侧切换到第二电源侧的过程中需要同时采集8个电路的通断情况。双电源转换开关的一个转换周期为负载电路从第一电源侧切换到第二电源侧再从第二电源侧切换回第一电源侧。
图16是计算机键盘的电路板示意图,其包括用于联接计算机的USB接口或者PS2接口、用于获取闭合信号的信号输入端以及处理输入与输出信号的电子电路处理单元,其中信号输入端包括多个平行排列的触点,电气接通其中的两个触点,计算机会获取到键盘上的某个键对应的字符。目前,键盘上的键数量少则61个,多则104个,因此,可对应的字符数量介于61个至104个之间。
图17是根据本申请一示例性实施例提供的采集装置的示意图,其包括计算机键盘的电路板以及与电路板电气联接的采样端,采样端包括多个采样线,采样线用于电气联接双电源转换开关的接线端。如图17所示,该装置用于联接计算机与双电源转换开关,以一台四极双电源转换开关为例,采样装置的采样端包括9个采样线,标号分别为1-7、14、19。用19号采样线去分别接通1-7及14号采样线计算机会分别获得不同的字符,如表1所示。其中,1、3、5、7号采样线分别用于电气联接第一电源的A相、B相、C相及N相,2、4、6、14号采样线分别用于电气联接第二电源的A相、B相、C相及N相,19号采样线用于电气联接负载,19号采样线为共用线,所以可以不区分ABCN相,将负载端的各相电气联接一起后再与19号采样线电气联接。如表1所示的线号、字符、相序及电源对照关系。
图1是根据本申请一示例性实施例提供的一种双电源转换开关触头同步性检测方法的流程图,如图1所示,该方法运用于双电源转换开关触头同步性的测定,以一台双电源转换开关为例,该测定方法包括以下步骤:
步骤101,对应步骤,将双电源转换开关的触头组对应于计算机的键盘的键,将触头组状态对应于键状态,由多个键组成的第一键组对应于由第一电源侧的多个触头组组成的第一电源触头组,由多个其它键组成的第二键组对应于由第二电源侧的多个触头组组成第二电源触头组。
作为一示例性实施例,第一键组包括第一键q、第二键e、第三键u及第四键o,第二键组包括第五键w、第六键r、第七键i及第八键p。第一电源触头组包括第一触头组、第二触头组、第三触头组及第四触头组,第二电源触头组包括第五触头组、第六触头组、第七触头组及第八触头组。第一电源侧的A相、B相、C相及N相分别对应于第一触头组、第二触头组、第三触头组及第四触头组,第一键q、第二键e、第三键u及第四键o分别对应于第一触头组、第二触头组、第三触头组及第四触头组。第二电源侧的A相、B相、C相及N相分别对应于第五触头组、第六触头组、第七触头组及第八触头组,计算机键盘的第五键w、第六键r、第七键i及第八键p分别对应于第五触头组、第六触头组、第七触头组及第八触头组。因此,第一触头组和第五触头组对应于同一极,第二触头组和第六触头组对应于同一极,第三触头组和第七触头组对应于同一极,第四触头组和第八触头组对应于同一极。触头组的断开状态对应的计算机的键盘的键状态为复位状态,触头组的闭合状态对应的计算机的键盘的键状态为闭合状态。因此,以开关的其中一极为例,当第一触头组闭合时,计算机获取到的字符是q;当第一触头组断开时,计算机不再获取到字符q。当第五触头组闭合,计算机获取到的字符是w;当第五触头组断开时,计算机不再获取到字符w。
步骤102,频率获取步骤,获取计算机的设备频率值。
以编程语言C++为例,通过指令QueryPerformanceFrequency ( ) 可以获得当前计算机的设备频率值。
步骤103,计数值获取步骤,获取并存储第一键组处于闭合状态时的计算机的计数器的第一数值组,第一数值组中的各值对应于第一键组中相应的键处于闭合状态时的计数器的计数值;获取并存储第二键组处于闭合状态时的计算机的计数器的第二数值组,第二数值组中的各值对应于第二键组中相应的键处于闭合状态时的计数器的计数值。
通过获取计数器的计数值并存储当前计数值,可以标定当前事件发生时对应的计数值。具体而言,
获取第一键q处于闭合状态时的计算机的计数器的第一数值,并存储第一数值;
获取第二键e处于闭合状态时的计算机的计数器的第二数值,并存储第二数值;
获取第三键u处于闭合状态时的计算机的计数器的第一数值,并存储第三数值;
获取第四键o处于闭合状态时的计算机的计数器的第二数值,并存储第四数值;
将由第一数值、第二数值、第三数值及第四数值组成的数值组表示为第一数值组。
获取第五键w处于闭合状态时的计算机的计数器的第五数值,并存储第五数值;
获取第六键r处于闭合状态时的计算机的计数器的第六数值,并存储第六数值;
获取第七键i处于闭合状态时的计算机的计数器的第七数值,并存储第七数值;
获取第八键p处于闭合状态时的计算机的计数器的第八数值,并存储第八数值;
将由第五数值、第六数值、第七数值及第八数值组成的数值组表示为第二数值组。
当双电源转换开关将负载电路从从第一电源侧切换到第二电源侧的过程中,第一电源触头组由原先的闭合状态转变为断开状态,第二电源触头组由原先的断开状态转变为闭合状态。就对应于同一极的两个键而言,第一键q由闭合状态转变为断开状态后第五键w由断开状态转变为闭合状态,第二键e由闭合状态转变为断开状态后第六键r由断开状态转变为闭合状态,第三键u由闭合状态转变为断开状态后第七键i由断开状态转变为闭合状态,第四键o由闭合状态转变为断开状态后第八键p由断开状态转变为闭合状态。
以编程语言C++为例,通过指令GetAsyncKeyState( )可以判断当前按键是否被按下,即判断第一键q、第二键e、第三键u、第四键o、第五键w、第六键r、第七键i、或者第八键p是否闭合。通过指令QueryPerformanceCounter( )可以获得当前计数器的计数值并存储计数值。因此,可以通过指令if (GetAsyncKeyState( )<0) { QueryPerformanceCounter( )}来获取第一键组中各个键处于闭合状态时的计数器的计数值以及获取第二键组中各个键处于闭合状态时的计数器的计数值,即可以获得由第一电源触头组中各个触头组处于闭合状态时的计数器的计数值组成的第一数值组以及获得由第二电源触头组中各个触头组处于闭合状态时的计数器的计数值组成的第二数值组。
由于程序是按指令来执行的,每个参数所存储的数值都是用当前获取到的数值覆盖现有的值,因此,第一触头组处于闭合状态时,计算机用当前获取到的计数值覆盖之前存储的计数值,所以第一数值是实时更新的。当第一触头组由闭合状态转变为断开状态,计算机不再获取并存储计数值,因此,所存储的第一数值为第一触头组由闭合转变为断开的瞬间时计算机获得的计数值,所以第一数值真实有效。同样的道理,第二数值、第三数值及第四数值也是真实有效的,即第一数值组是真实有效的。当第五触头组处于闭合状态时,获取并存储计算机的计数器的第五数值。因此,当第五触头组闭合的瞬间,计算机就获取到计数器当前的计数值并存储在第五数值里。由于第五触头组闭合后就保持在闭合状态,为了避免第五数值被更新造成第五数值存储的不是第五触头组闭合瞬间的计数值,将计算步骤直接设置于获取并存储第五数值之后。这样的设置确保了获取并存储第五数值的指令只执行一次,而且是在第五触头组闭合的瞬间执行的,所以第五数值真实有效。同样的道理,第六数值、第七数值及第八数值也是真实有效的,即第二数值组是真实有效的。
步骤104,计算步骤,分别计算第一数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第一差值组;分别计算第二数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第二差值组。存储第一差值组和第二差值组,第一差值组准确反映了双电源转换开关各极触头组分断第一电源的同步性,第二差值组准确反映了双电源转换开关各极触头组接通第二电源的同步性。
作为一示例性实施例,将第一数值作为第一数值组中的基准值,计算第一数值与第一数值的差值,计算第二数值与第一数值的差值,计算第三数值与第一数值的差值,计算第四数值与第一数值的差值,将这些差值分别除以设备频率值可以获得一个以时间为单位的时间值,所得的时间值标定的是对应相的触头组比A相的触头组提前或者滞后分断第一电源的时间值,所以第一差值组内的各个时间值可以准确反映开关各极触头组的分断同步性。同样的道理,将第五数值作为第二数值组中的基准值,计算第五数值组与第五数值组的差值,计算第六数值组与第五数值组的差值,计算第七数值组与第五数值组的差值,计算第八值组与第五数值组的差值,将这些差值分别除以设备频率值可以获得一个以时间为单位的时间值,所得的时间值标定的是对应相的触头组比A相的触头组提前或者滞后接通第二电源的时间值,所以第二差值组内的各个时间值可以准确反映开关各极触头组的接通同步性。
由于本实施例公开的检测方法的检测精度基于计算机的设备频率,而目前主流的计算机的设备频率在1000000hz以上,因此,用本发明公开的采集检测方法测定双电源转换开关的触头同步性可获得微秒级的检测精度,检测精度显著提高。由于将双电源转换开关的触头组对应于计算机的键盘的键以及将触头组状态对应于键状态,而键盘上的键数量少则61个,多则104个,因此,可对应的触头组数量介于61个至104个之间。而开关的一极需要2个按键对应于触头组,一台四极开关就需要8个按键对应,因此,一个键盘可同时采集检测7台至13台四极开关的触头同步性。因而,采用本发明公开的采集检测方法测定双电源转换开关的触头同步性的效率显著提高。
图3是根据本申请一示例性实施例提供的一种获取并存储第一数值组的流程图,该方法用于根据第一辅助参数组的值获取并存储第一键组处于闭合状态时的计算机的计数器的第一数值组。如图3所示,该方法包括以下步骤:
步骤201,提供第一辅助参数组。
作为一示例性实施例,双电源开关将负载电路从第一电源侧切换到第二电源侧。第一辅助参数组包括第一辅助参数、第二辅助参数、第三辅助参数及第四辅助参数。在采集测定程序运行前期将第一辅助参数组中所有辅助参数的值均初始化为0,第一辅助参数组用于辅助执行第一数值组获取指令,第一数值组获取的预设条件为第一辅助参数组的值为0。具体地,当第一辅助参数的值为0时执行获取第一数值指令,当第二辅助参数的值为0时执行获取第二数值指令,当第三辅助参数的值为0时执行获取第三数值指令,当第四辅助参数的值为0时执行获取第四数值指令。
步骤202,检测到第一键组处于闭合状态。
步骤203,判断第一辅助参数组的值是否满足预设条件。
步骤204,若第一辅助参数组的值满足预设条件,计算机获取并存储第一数值组。若第一辅助参数组的值不满足预设条件,计算机放弃获取第一数值组。
当双电源开关的第一电源触头组闭合后,即第一键q、第二键e、第三键u及第四键o均处于闭合状态,判断第一辅助参数组是否满足预设条件,由于第一辅助参数组中各辅助参数的值均已被初始化为0,因此,第一辅助参数组满足条件,计算机获取计数器此时的计数值,并将获取到的计数值存储于第一数值组。具体地,根据第一辅助参数的值获取并存储对应于第一键q的第一触头组在闭合时的第一数值,根据第二辅助参数的值获取并存储对应于第二键e的第二触头组在闭合时的第二数值,根据第三辅助参数的值获取并存储对应于第三键u的第三触头组在闭合时的第三数值,根据第四辅助参数的值获取并存储对应于第四键o的第四触头组在闭合时的第四数值。
由于双电源开关在切换前,第一电源触头组和第二电源触头组保持当前位置,因此,第一电源触头组保持在闭合状态,所以计算机持续获取计数器当前的计数值并存储于第一数值组,因而,第一电源触头组闭合后在第一辅助参数组中个的各个辅助参数的值为0的条件下,第一数值组中的各个数值持续处于实时更新状态。
当第一电源触头组保持在闭合状态,而第一辅助参数组中的各个辅助参数的值为非0的其它数,即第一辅助参数组中的各个辅助参数的值不满足预设条件,则计算机放弃获取计数器当前的计数值。可以通过指令
if (GetAsyncKeyState(‘q’)<0 && (na==0)) { QueryPerformanceCounter( )}
if (GetAsyncKeyState(‘e’)<0 && (nb==0)) { QueryPerformanceCounter( )}
if (GetAsyncKeyState(‘u’)<0 && (nc==0)) { QueryPerformanceCounter( )}
if (GetAsyncKeyState(‘o’)<0 && (nn==0)) { QueryPerformanceCounter( )}
来获取第一键组处于闭合状态时的计数器的计数值,即可以获得第一电源触头组处于闭合状态时的计数器的计数值,其中na、nb、nc、nn分别为第一辅助参数、第二辅助参数、第三辅助参数及第四辅助参数。
图4是根据本申请一示例性实施例提供的一种获取并存储第二数值组的流程图,该方法用于根据第二辅助参数组的值获取并存储第二键组处于闭合状态时的计算机的计数器的第二数值组。如图4所示,该方法包括以下步骤:
步骤301,提供第二辅助参数组。
作为一示例性实施例,双电源开关将负载电路从第一电源侧切换到第二电源侧。第二辅助参数组包括第五辅助参数、第六辅助参数、第七辅助参数及第八辅助参数。在采集测定程序运行前期将第二辅助参数组中所有辅助参数的值均初始化为0,第二辅助参数组用于辅助执行第二数值组获取指令,第二数值组获取的预设条件为第二辅助参数组的值为0。具体地,当第五辅助参数的值为0时执行获取第五数值获取指令,当第六辅助参数的值为0时执行获取第六数值获取指令,当第七辅助参数的值为0时执行获取第七数值获取指令,当第八辅助参数的值为0时执行获取第八数值获取指令。
步骤302,检测到第二键组处于闭合状态。
步骤303,判断第二辅助参数组的值是否满足预设条件。
步骤304,若第二辅助参数组的值满足预设条件,计算机获取并存储第二数值组。若第二辅助参数组的值不满足预设条件,计算机放弃获取第二数值组。
当双电源开关的第二电源触头组闭合后,即第五键w、第六键r、第七键i及第八键p均处于闭合状态,判断第二辅助参数组是否满足预设条件,由于第二辅助参数组中的各辅助参数的值均已被初始化为0,因此,第二辅助参数组满足条件,计算机获取计数器此时的计数值,并将获取到的计数值存储于第二数值组,再将第二辅助参数组的值由0改变为1。具体地,根据第五辅助参数的值获取并存储对应于第五键w的第五触头组在闭合时的第五数值,再将第五辅助参数的值由0改变为1;根据第六辅助参数的值获取并存储对应于第五键r的第六触头组在闭合时的第六数值,再将第六辅助参数的值由0改变为1;根据第七辅助参数的值获取并存储对应于第六键i的第七触头组在闭合时的第七数值,再将第七辅助参数的值由0改变为1;根据第八辅助参数的值获取并存储对应于第七键p的第八触头组在闭合时的第八数值,再将第八辅助参数的值由0改变为1。由于第二辅助参数组的值更新为1不再满足第二数值组获取的预设条件,所以计算机不再获取并存储第二数值组,因此,当前的第二数值组为第二电源触头组闭合瞬间计算机所获取的计数器的计数值。
虽然第二键组继续处于闭合状态,但由于第二辅助参数组的值不满足获取并存储第二数值组的预设条件,所以计算机放弃获取第二数值组。可以通过指令
if (GetAsyncKeyState(‘w’)<0 && (ra==0)) { QueryPerformanceCounter( ); ra++;}
if (GetAsyncKeyState(‘r’)<0 && (rb==0)) { QueryPerformanceCounter( ) ; rb++;}
if (GetAsyncKeyState(‘i’)<0 && (rc==0)) { QueryPerformanceCounter( ) ; rc++;}
if (GetAsyncKeyState(‘p’)<0 && (rn==0)) { QueryPerformanceCounter( ) ; rn++;}
来获取第二键组在闭合瞬间的计数器的计数值,即可以获得第二电源触头组在闭合状态瞬间的计数器的计数值,其中na、nb、nc、nn分别为第五辅助参数、第六辅助参数、第七辅助参数及第八辅助参数。
图5是根据本申请一示例性实施例提供的一种改变第一位置参数的值的流程图,该方法用于在计算机获取第一数值组之后改变第一位置参数的值。如图5所示,该方法包括以下步骤:
步骤401,提供第一位置参数。
作为一示例性实施例,在采集测定程序运行前期将第一位置参数的值初始化为0。第一位置参数用于辅助指示当前负载电路所接入的电源信息。
步骤402,获取第一数值组。
步骤403,改变第一位置参数的值。
获取到第一数值组说明第一电源触头组处于闭合状态,即表示当前负载电路由第一电源供电,可以通过指令cout 将当前的工作电源显示于屏幕。而显示指令的执行条件是第一键组处于闭合状态且第一位置参数的值为0,由于第一位置参数已被初始化为0,因此,在第一键组中的所有键均闭合后,即计算机获取到第一数值组中的所有数值后,计算机屏幕上即可显示出当前的负载电路所接入的电源为第一电源,然后第一位置参数的值由0改变为1。由于此时的第一位置参数的值不是0,因此显示指令不再执行,确保了电源指示信息在一次切换中只显示一条,避免了电源指示信息以刷屏的方式出现。
图6是根据本申请一示例性实施例提供的一种改变第二辅助参数组的值的流程图,该方法用于在计算机获取并存储第二数值组之后改变第二辅助参数组的值。如图6所示,该方法包括以下步骤:
步骤501,提供第二辅助参数组。
第二辅助参数组用于在双电源开关从第一电源侧切换到第二电源侧的过程中判断是否获取并存储第二数值组的依据。
步骤502,获取并存储第二数值组。
在双电源开关从第一电源侧切换到第二电源侧后,第二电源触头组由断开状态转变为闭合状态,即第二键组处于闭合状态,计算机获取并存储第一数值组。
步骤503,改变第二辅助参数组的值。
在获取并存储第二数值组之后改变第二辅助参数组的值。由于双电源开关是将负载电路从第一电源侧切换到第二电源侧,因此,获取并存储第二数值组的时刻为第二键组闭合的瞬间,所以在获取并存储第二数值组后将第二辅助参数组的值改变以使获取第二数值组的预设条件不满足,从而避免当前已存储的第二数值组被更新,进而保证第二数值组的真实有效性。
图7是根据本申请一示例性实施例提供的一种改变第二位置参数的值的流程图,该方法用于在获取并存储第二数值组之后改变第二位置参数的值。如图7所示,该方法包括以下步骤:
步骤601,提供第二位置参数。
作为一示例性实施例,在采集测定程序运行前期将第二位置参数的值初始化为0。第二位置参数用于辅助指示当前负载电路所接入的电源信息。
步骤602,获取第二数值组。
步骤603,改变第二位置参数的值。
获取到第二数值组说明第二电源触头组处于闭合状态,即表示当前负载电路由第二电源供电,可以通过指令cout 将当前的工作电源显示于屏幕。由于第二位置参数的初始值为0,在双电源转换开关从第一电源转换到第二电源后,即在计算机获取到第二数值组后,第二位置参数的值由0改变为1。所以,显示指令的执行条件是第二键组处于闭合状态且第二位置参数的值为1,因此,在第二键组闭合后,即计算机获取到第二数值组后,计算机屏幕上即可显示出当前的负载电路所接入的电源为第二电源,然后第二位置参数的值由1改变为2。由于此时的第二位置参数的值不是1,因此显示指令不再执行,确保了电源指示信息在一次切换中只显示一条,避免了电源指示信息以刷屏的方式出现。
图8是根据本申请一示例性实施例提供的一种改变第一辅助参数组的值的流程图,该方法用于在获取并存储第一数值组之后改变第一辅助参数组的值,作为一示例性实施例,双电源开关将负载电路从第二电源侧切换回第一电源侧。如图8所示,该方法包括以下步骤:
步骤701,提供第一辅助参数组。
第一辅助参数组用于在双电源开关从第一电源侧切换到第二电源侧后再从第二电源侧切换回第一电源侧的过程中判断是否获取并存储第一数值组的依据。
步骤702,获取并存储第一数值组。
在双电源开关从第二电源侧切换回第一电源侧后,第一电源触头组由断开状态转变为闭合状态,即第一键组处于闭合状态,计算机获取并存储第一数值组。
步骤703,改变第一辅助参数组的值。
在获取并存储第一数值组之后改变第一辅助参数组的值。由于双电源开关是将负载电路从第二电源侧切换回第一电源侧,因此,获取并存储第一数值组的时刻为第一键组闭合的瞬间,所以在获取并存储第一数值组后改变第一参数组的值以使获取第一数值组的预设条件不满足,从而避免当前已存储的第一数值组被更新,进而保证第一数值组的真实有效性。
图10是根据本申请一示例性实施例提供的一种双电源转换开关触头同步性检测方法的流程图,如图10所示,该方法运用于双电源转换开关触头同步性的检测,以一台双电源转换开关为例,检测双电源开关在前半个转换周期即从第一电源侧切换到第二电源侧过程中的各极触头分断第一电源的同步性,该检测方法包括以下步骤:
步骤801,获取并存储第一数值组。
双电源开关将负载电路从第一电源切换到第二电源的过程中,第一电源触头组由闭合状态切换到断开状态,计算机存储的第一数值组为第一电源触头组断开的瞬间计数器的计数值。
步骤802,改变第一位置参数组的值。
在存储第一数值组之后改变第一位置参数的值以避免提示信息以刷屏的方式呈现。
步骤803,获取并存储第二数值组。
双电源开关将负载电路从第一电源切换到第二电源的过程中,第二电源触头组由断开状态切换到闭合状态,计算机获取并存储第二数值。
步骤804,改变第二辅助参数组的值。
在存储第二数值组之后改变第二辅助参数组的值以使第二辅助参数组的值不满足获取第二数值组的预设条件,从而使存储的第二数值组为第二电源触头组闭合的瞬间计数器的计数值。
步骤805,判断第二辅助参数的值、第一位置参数的值以及第二键组的状态是否满足条件。
预设条件为:第二辅助参数组中的所有辅助参数的值均为1,第一位置参数的值为1,第二键组的状态为闭合状态。具体地,第二键组的状态为闭合状态表明第二电源触头组当前处于闭合状态;第一位置参数为1表明屏幕上已显示负载电路当前接入第二电源;第二辅助参数组的值为1表明计算机已获取并存储第二键组闭合瞬间计数器的计数值。
步骤806,分别计算第一数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第一差值组。
步骤807,分别计算第二数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第二差值组。
步骤808,储存所得到的第一差值组和第二差值组。
步骤809,输出所得到的第一差值组和第二差值组。
在第二辅助参数组的值、第一位置参数的值以及第二键组的状态满足预设条件下执行计算步骤。
作为一示例性实施例,将第一数值作为第一数值组中的基准值,计算第一数值与第一数值的差值,计算第二数值与第一数值的差值,计算第三数值与第一数值的差值,计算第四数值与第一数值的差值,将这些差值分别除以设备频率值可以获得一个以时间为单位的时间值,所得的时间值标定的是对应相的触头组比A相的触头组提前或者滞后分断第一电源的时间值,所以第一差值组内的各个时间值可以准确反映开关各极触头组的分断同步性。同样的道理,将第五数值作为第二数值组中的基准值,计算第五数值组与第五数值组的差值,计算第六数值组与第五数值组的差值,计算第七数值组与第五数值组的差值,计算第八值组与第五数值组的差值,将这些差值分别除以设备频率值可以获得一个以时间为单位的时间值,所得的时间值标定的是对应相的触头组比A相的触头组提前或者滞后接通第二电源的时间值,所以第二差值组内的各个时间值可以准确反映开关各极触头组的接通同步性。存储计算所得到的第一差值组和第二差值组,可以通过指令cout 将时间值显示于屏幕。
步骤810,改变第一辅助参数组的值、第二辅助参数组的值以及第二位置参数的值。
双电源转换开关的一个转换周期为负载电路从第一电源侧切换到第二电源侧再从第二电源侧切换回第一电源侧。在前半个转换周期中,触头同步性标定是各极触头组断开第一电源的同步性以及各极触头组接通第二电源的同步性。而在后半个转换周期中,触头同步性标定的是各极触头组断开第二电源的同步性以及各极触头组接通第一电源的同步性。因此,在进入下个半个转换周期前需要将获取并存储第一数值组和第二数值组的辅助参数组进行变更以满足获取第一数值组和第二数值组的预设条件,以及变更第二位置参数以正确指示当前负载电路所接入的电源信息。
图11是根据本申请一示例性实施例提供的一种双电源转换开关触头同步性检测方法的流程图,如图11所示,该方法运用于双电源转换开关的触头同步性的检测,以一台双电源转换开关为例,采集测定双电源开关在后半个转换周期即从第二电源侧切换回第一电源侧过程中的触头同步性,该检测方法包括以下步骤:
步骤901,获取并存储第二数值组。
双电源开关将负载电路从第二电源切换回第一电源的过程中,第二电源触头组由闭合状态切换到断开状态,计算机存储的第二数值组为第二电源触头组断开的瞬间计数器的计数值。
步骤902,改变第二位置参数的值。
在存储第二数值组之后改变第二位置参数以避免提示信息以刷屏的方式呈现。
步骤903,获取并存储第一数值组。
双电源开关将负载电路从第二电源切换回第一电源的过程中,第一电源触头组由断开状态切换到闭合状态,计算机获取并存储第一数值组。
步骤904,改变第一辅助参数组的值。
在存储第一数值组之后改变第一辅助参数组的值以使第一辅助参数组的值不满足获取第一数值组的预设条件,从而使存储的第一数值组为第一电源触头组闭合的瞬间计数器的计数值。
步骤905,判断第一辅助参数组的值、第二位置参数的值以及第一键组的状态是否满足条件。
预设条件为:第一辅助参数组的值为2,第二位置参数的值为2,第一键组的状态为闭合状态。具体地,第一键组的状态为闭合状态表明第一电源触头组当前处于闭合状态;第二位置参数为2表明屏幕上已显示负载电路当前接入第一电源;第一辅助参数组的值为2表明计算机已获取并存储第一键组闭合瞬间计数器的计数值。
步骤906,分别计算第一数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第一差值组。
步骤907,分别计算第二数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第二差值组。
步骤908,储存所得到的第一差值组和第二差值组。
步骤909,输出所得到的第一差值组和第二差值组。
在第一辅助参数组的值、第二位置参数的值以及第一键组的状态满足预设条件下执行计算步骤。
作为一示例性实施例,将第一数值作为第一数值组中的基准值,计算第一数值与第一数值的差值,计算第二数值与第一数值的差值,计算第三数值与第一数值的差值,计算第四数值与第一数值的差值,将这些差值分别除以设备频率值可以获得一个以时间为单位的时间值,所得的时间值标定的是对应相的触头组比A相的触头组提前或者滞后接通第一电源的时间值,所以第一差值组内的各个时间值可以准确反映开关各极触头组的接通同步性。同样的道理,将第五数值作为第二数值组中的基准值,计算第五数值组与第五数值组的差值,计算第六数值组与第五数值组的差值,计算第七数值组与第五数值组的差值,计算第八值组与第五数值组的差值,将这些差值分别除以设备频率值可以获得一个以时间为单位的时间值,所得的时间值标定的是对应相的触头组比A相的触头组提前或者滞后分断第二电源的时间值,所以第二差值组内的各个时间值可以准确反映开关各极触头组的分断同步性。存储计算所得到的第一差值组和第二差值组,可以通过指令cout 将时间值显示于屏幕。
步骤910,改变第一辅助参数组的值、第二辅助参数组的值、第一位置参数的值以及第二位置参数的值。
双电源转换开关的一个转换周期为负载电路从第一电源侧切换到第二电源侧再从第二电源侧切换回第一电源侧。在前半个转换周期中,触头同步性标定是各极触头组断开第一电源的同步性以及各极触头组接通第二电源的同步性。而在后半个转换周期中,触头同步性标定的是各极触头组断开第二电源的同步性以及各极触头组接通第一电源的同步性。因此,在进入下个半个转换周期前需要将获取并存储第一数值组和第二数值组的辅助参数进行变更以满足获取第一数值组和第二数值组的预设条件,以及变更第一、第二辅助参数以正确指示当前负载电路所接入的电源信息。参数的变更方式包括但不限于通过将参数初始化的方式。
本实施例提供的采集检测方法不仅可以检测双电源转换开关从第一电源侧转换到第二电源侧过程中的触头接通与分断的同步性,还能在不改变双电源转换开关接线端子与测定装置的接线方法的情况下继续测定双电源转换开关从第二电源侧返回到第一电源侧过程中的触头接通与分断的 同步性,因此,本实施例提供的采集检测方法可以连续不间断地测定双电源转换开关多个切换周期中的触头同步性,为进一步判断频繁操作对触头转换时间的影响提供基础数据。
图2是根据本申请一示例性实施例提供的一种双电源转换开关触头同步性检测装置的框图,如图所示,该检测装置包括对应单元、频率获取单元、第一计数获取单元、第二计数获取单元、第一存储单元、第二存储单元、第三存储单元、第四存储单元、第五存储单元、计算单元以及输出单元。
其中,对应单元用于将双电源转换开关的触头组对应于计算机的键盘的键,将触头组状态对应于键状态,由多个键组成的第一键组对应于第一电源触头组,由多个其它键组成的第二键组对应于第二电源触头组。
频率获取单元用于获取计算机的设备频率值。
第一计数获取单元用于获取第一键组处于闭合状态时的计算机的计数器的第一数值组,第一数值组中的各值对应于第一键组中相应的键处于闭合状态时的计数器的计数值。
第二计数获取单元用于获取第二键组处于闭合状态时的计算机的计数器的第二数值组,第二数值组中的各值对应于第二键组中相应的键处于闭合状态时的计数器的计数值。
第一存储单元用于存储第一数值组。
第二存储单元用于存储第二数值组。
第三存储单元用于存储计算机的设备频率值。
计算单元用于分别计算第一数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第一差值组;还用于分别计算第二数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第二差值组。
第四存储单元用于存储第一差值组。
第五存储单元用于存储第二差值组。
可选地,所述采集测定装置还包括用于输出第一差值组和第二差值组的输出单元,输出单元将第一差值组和第二差值组输出于屏幕上。
图9是根据本申请一示例性实施例提供的一种多极双电源转换开关触头同步性检测装置的框图,如图所示,该采集测定装置还包括辅助单元、位置单元及数值改变单元。其中,辅助单元用于提供辅助参数,辅助参数包括由第一辅助参数、第二辅助参数、第三辅助参数及第四辅助参数组成的第一辅助参数组和由第五辅助参数、第六辅助参数、第七辅助参数及第八辅助参数组成的第二辅助参数组。位置单元用于提供位置参数,位置参数包括第一位置参数和第二位置参数。数值改变单元用于改变参数的值,数值改变单元包括第一数值改变单元、第二数值改变单元以及第三数值改变单元。
具体地,第一计数单元用于:根据第一辅助参数的值获取并存储对应于第一键的第一触头组在闭合时的第一数值,根据第二辅助参数的值获取并存储对应于第二键的第二触头组在闭合时的第二数值,根据第三辅助参数的值获取并存储对应于第三键的第三触头组在闭合时的第三数值,根据第四辅助参数的值获取并存储对应于第四键的第四触头组在闭合时的第四数值。
具体地,第二计数获取单元用于:根据第五辅助参数的值获取并存储对应于第五键的第五触头组在闭合时的第五数值,根据第六辅助参数的值获取并存储对应于第六键的第六触头组在闭合时的第六数值,根据第七辅助参数的值获取并存储对应于第七键的第七触头组在闭合时的第七数值,根据第八辅助参数的值获取并存储对应于第八键的第八触头组在闭合时的第八数值。
第一数值改变单元用于在获取并存储第一数值组之后改变第一位置参数的值或者第一辅助参数组的值,第二数值改变单元用于在获取并存储第二数值组之后改变第二辅助参数组的值或者第二位置参数的值,第三数值改变单元用于根据第二辅助参数组的值、第一位置参数的值以及第二键组的状态改变第一辅助参数组的值、第二辅助参数组的值以及第二位置参数的值。计算单元在第二辅助参数组的值、第一位置参数的值以及第二键组的状态满足预设条件时执行计算步骤。
可选地,第三数值改变单元还用于根据第一辅助参数组的值、第二位置参数的值以及第一键组的状态改变第一辅助参数组的值、第二辅助参数组的值、第一位置参数的值以及第二位置参数的值。计算单元还用于在第一辅助参数组的值、第二位置参数的值以及第一键组的状态满足预设条件时执行计算步骤。
可选地,所述采集测定装置还包括用于输出所述时间值的输出单元,输出单元将所述时间值输出于屏幕上,如表2-4所示。
表2-4是采用本申请一示例性实施例提供的一种双电源转换开关触头同步性检测装置检测一台双电源转换开关的触头同步性记录表,两张记录表共记录了连续10个转换周期对应的触头组同步性数据。其中“Power -A- is working!”表示当前负载电路联接于第一电源侧,“Power -B- is working!”表示当前负载电路联接于第二电源侧。“From A to B”表示负载电路从第一电源侧切换到第二电源侧,“From B to A”表示负载电路从第二电源侧切换回第一电源侧。“1A:”、“1B:”、“1C:”及“1N:”后面的数值分别表示A相、B相、C相及N相相对于A相的提前或滞后断开的时间值,正数表示滞后,负数表示提前,单位为微秒。“2A:”、“2B:”、“2C:”及“2N:”后面的数值分别表示A相、B相、C相及N相相对于A相的提前或滞后闭合的时间值,正数表示滞后,负数表示提前,单位为微秒。
Figure dest_path_image002
Figure dest_path_image004
Figure dest_path_image006

Claims (9)

  1. 一种双电源转换开关触头同步性检测方法,其特征在于,所述检测方法包括:
    对应步骤,将双电源转换开关的触头组对应于计算机的键盘的键,将触头组状态对应于键状态,由多个键组成的第一键组对应于由第一电源侧的多个触头组组成的第一电源触头组,由多个其它键组成的第二键组对应于由第二电源侧的多个触头组组成第二电源触头组;
    频率获取步骤,获取计算机的设备频率值;
    计数值获取步骤,获取并存储第一键组处于闭合状态时的计算机的计数器的第一数值组,第一数值组中的各值对应于第一键组中相应的键处于闭合状态时的计数器的计数值;获取并存储第二键组处于闭合状态时的计算机的计数器的第二数值组,第二数值组中的各值对应于第二键组中相应的键处于闭合状态时的计数器的计数值;
    计算步骤,分别计算第一数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第一差值组;分别计算第二数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第二差值组。
  2. 根据权利要求1所述的一种双电源转换开关触头同步性检测方法,其特征在于,
    提供第一辅助参数组、第二辅助参数组、第一位置参数及第二位置参数;
    根据第一辅助参数组的值获取并存储第一键组处于闭合状态时的计算机的计数器的第一数值组,存储第一数值组之后改变第一位置参数的值或改变第一辅助参数组的值;
    根据第二辅助参数组的值获取并存储第二键组处于闭合状态时的计算机的计数器的第二数值组,存储第二数值组之后改变第二辅助参数组的值或改变第二位置参数的值。
  3. 根据权利要求2所述的一种双电源转换开关触头同步性检测方法,其特征在于,
    在第二辅助参数组的值、第一位置参数的值以及第二键组的状态满足预设条件时执行计算步骤;
    根据第二辅助参数组的值、第一位置参数的值以及第二键组的状态改变第一辅助参数组的值、第二辅助参数组的值以及第二位置参数的值。
  4. 根据权利要求3所述的一种双电源转换开关触头同步性检测方法,其特征在于,
    在第一辅助参数组的值、第二位置参数的值以及第一键组的状态满足预设条件时执行计算步骤;
    根据第一辅助参数组的值、第二位置参数的值以及第一键组的状态改变第一辅助参数组的值、第二辅助参数组的值、第一位置参数的值以及第二位置参数的值。
  5. 根据权利要求4所述的一种双电源转换开关触头同步性检测方法,其特征在于,
    第一键组包括第一键、第二键、第三键及第四键,
    第二键组包括第五键、第六键、第七键及第八键,
    第一电源触头组包括第一触头组、第二触头组、第三触头组及第四触头组,
    第二电源触头组包括第五触头组、第六触头组、第七触头组及第八触头组,
    第一数值组包括第一数值、第二数值、第三数值及第四数值,
    第二数值组包括第五数值、第六数值、第七数值及第八数值,
    第一辅助参数组包括第一辅助参数、第二辅助参数、第三辅助参数及第四辅助参数,
    第二辅助参数组包括第五辅助参数、第六辅助参数、第七辅助参数及第八辅助参数,
    对应关系为:
    根据第一辅助参数的值获取并存储对应于第一键的第一触头组在闭合时的计数值为第一数值,
    根据第二辅助参数的值获取并存储对应于第二键的第二触头组在闭合时的计数值为第二数值,
    根据第三辅助参数的值获取并存储对应于第三键的第三触头组在闭合时的计数值为第三数值,
    根据第四辅助参数的值获取并存储对应于第四键的第四触头组在闭合时的计数值为第四数值,
    根据第五辅助参数的值获取并存储对应于第五键的第五触头组在闭合时的计数值为第五数值,
    根据第六辅助参数的值获取并存储对应于第六键的第六触头组在闭合时的计数值为第六数值,
    根据第七辅助参数的值获取并存储对应于第七键的第七触头组在闭合时的计数值为第七数值,
    根据第八辅助参数的值获取并存储对应于第八键的第八触头组在闭合时的计数值为第八数值;
    其中,第一触头组和第五触头组对应于开关的同一极,第二触头组和第六触头组对应于开关的同一极,第三触头组和第七触头组对应于开关的同一极,第四触头组和第八触头组对应于开关的同一极。
  6. 一种双电源转换开关触头同步性检测装置,其特征在于,所述检测装置包括:
    对应单元,用于将双电源转换开关的触头组对应于计算机的键盘的键,将触头组状态对应于键状态,由多个键组成的第一键组对应于第一电源触头组,由多个其它键组成的第二键组对应于第二电源触头组;
    频率获取单元,用于获取计算机的设备频率值;
    第一计数获取单元,用于获取第一键组处于闭合状态时的计算机的计数器的第一数值组,第一数值组中的各值对应于第一键组中相应的键处于闭合状态时的计数器的计数值;
    第二计数获取单元,用于获取第二键组处于闭合状态时的计算机的计数器的第二数值组,第二数值组中的各值对应于第二键组中相应的键处于闭合状态时的计数器的计数值;
    第一存储单元,用于存储第一数值组;
    第二存储单元,用于存储第二数值组;
    第三存储单元,用于存储计算机的设备频率值;
    计算单元,用于分别计算第一数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第一差值组;还用于分别计算第二数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第二差值组;
    第四存储单元,用于存储第一差值组;
    第五存储单元,用于存储第二差值组。
  7. 根据权利要求6所述的一种双电源转换开关触头同步性检测装置,其特征在于,所述检测装置还包括:
    辅助单元,用于提供第一辅助参数组和第二辅助参数组,第一计数获取单元根据第一辅助参数组的值获取第一键组处于闭合状态时的计算机的计数器的第一数值组,第二计数获取单元根据第二辅助参数组的值获取第二键组处于闭合状态时的计算机的计数器的第二数值组;
    位置单元,用于提供第一位置参数和第二位置参数;
    第一数值改变单元,用于在获取并存储第一数值组之后改变第一位置参数的值或者第一辅助参数组的值;
    第二数值改变单元,用于在获取并存储第二数值组之后改变第二辅助参数组的值或者第二位置参数的值;
    第三数值改变单元,用于根据第二辅助参数组的值、第一位置参数的值以及第二键组的状态改变第一辅助参数组的值、第二辅助参数组的值以及第二位置参数的值;
    计算单元在第二辅助参数组的值、第一位置参数的值以及第二键组的状态满足预设条件时分别计算第一数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第一差值组;还分别计算第二数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第二差值组。
  8. 根据权利要求7所述的一种双电源转换开关触头同步性检测装置,其特征在于,
    第三数值改变单元还用于根据第一辅助参数组的值、第二位置参数的值以及第一键组的状态改变第一辅助参数组的值、第二辅助参数组的值、第一位置参数的值以及第二位置参数的值;
    计算单元还用于在第一辅助参数组的值、第二位置参数的值以及第一键组的状态满足预设条件时分别计算第一数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第一差值组;还分别计算第二数值组中各个数值与其中一个数值的差值,将差值除以设备频率值,进而获得由多个时间差值组成的第二差值组。
  9. 根据权利要求8所述的一种双电源转换开关触头同步性检测装置,其特征在于,
    第一键组包括第一键、第二键、第三键及第四键,
    第二键组包括第五键、第六键、第七键及第八键,
    第一电源触头组包括第一触头组、第二触头组、第三触头组及第四触头组,
    第二电源触头组包括第五触头组、第六触头组、第七触头组及第八触头组,
    其中,第一触头组和第五触头组对应于开关的同一极,
    第二触头组和第六触头组对应于开关的同一极,
    第三触头组和第七触头组对应于开关的同一极,
    第四触头组和第八触头组对应于开关的同一极;
    第一数值组包括第一数值、第二数值、第三数值及第四数值,
    第二数值组包括第五数值、第六数值、第七数值及第八数值,
    第一辅助参数组包括第一辅助参数、第二辅助参数、第三辅助参数及第四辅助参数,
    第二辅助参数组包括第五辅助参数、第六辅助参数、第七辅助参数及第八辅助参数;
    第一计数获取单元用于:根据第一辅助参数的值获取并存储对应于第一键的第一触头组在闭合时的第一数值,根据第二辅助参数的值获取并存储对应于第二键的第二触头组在闭合时的第二数值,根据第三辅助参数的值获取并存储对应于第三键的第三触头组在闭合时的第三数值,根据第四辅助参数的值获取并存储对应于第四键的第四触头组在闭合时的第四数值;
    第二计数获取单元用于:根据第五辅助参数的值获取并存储对应于第五键的第五触头组在闭合时的第五数值,根据第六辅助参数的值获取并存储对应于第六键的第六触头组在闭合时的第六数值,根据第七辅助参数的值获取并存储对应于第七键的第七触头组在闭合时的第七数值,根据第八辅助参数的值获取并存储对应于第八键的第八触头组在闭合时的第八数值。
PCT/CN2020/120604 2020-06-01 2020-10-13 双电源转换开关触头同步性检测方法及其装置 WO2021082906A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2200369.3A GB2599869A (en) 2020-06-01 2020-10-13 Method for measuring synchronicity of contacts of two-power supply transfer switch and apparatus for same
CN202080006936.9A CN113196071B (zh) 2020-06-01 2020-10-13 双电源转换开关触头同步性检测方法及其装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010481773.1 2020-06-01
CN202010481773.1A CN111487529B (zh) 2020-06-01 2020-06-01 双电源转换开关触头同步性检测方法及其装置

Publications (1)

Publication Number Publication Date
WO2021082906A1 true WO2021082906A1 (zh) 2021-05-06

Family

ID=71796035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120604 WO2021082906A1 (zh) 2020-06-01 2020-10-13 双电源转换开关触头同步性检测方法及其装置

Country Status (5)

Country Link
US (1) US20210373078A1 (zh)
CN (2) CN111487529B (zh)
GB (2) GB2599869A (zh)
IE (1) IE20200269A2 (zh)
WO (1) WO2021082906A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487529B (zh) * 2020-06-01 2021-05-04 泉州睿郎机电技术有限公司 双电源转换开关触头同步性检测方法及其装置
CN113341311A (zh) * 2021-05-31 2021-09-03 格力电器(郑州)有限公司 电源开关的检测系统、方法、装置、设备及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100044621A (ko) * 2008-10-22 2010-04-30 현대중공업 주식회사 이중프로세서 구조를 갖는 전력용 디지털 보호 계전기
CN207114724U (zh) * 2017-08-31 2018-03-16 鄂尔多斯市中北煤化工有限公司 三相同步测试电路、装置及防爆开关测试台
CN207336716U (zh) * 2017-08-07 2018-05-08 龙双 结构小型化的温控开关同步测试板
CN207623476U (zh) * 2017-10-23 2018-07-17 中国南方电网有限责任公司超高压输电公司曲靖局 一种换流变压器分接开关切换智能化同步监测装置
CN209471213U (zh) * 2019-01-09 2019-10-08 中国长江电力股份有限公司 一种多断口串联灭磁开关同步性检测装置
CN111487529A (zh) * 2020-06-01 2020-08-04 泉州睿郎机电技术有限公司 双电源转换开关触头同步性检测方法及其装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127282B (zh) * 2007-06-08 2010-05-19 西安交通大学 基于可变电流控制的智能交流接触器控制单元
KR100998646B1 (ko) * 2009-02-11 2010-12-06 한국철도공사 철도차량용 계전기의 자동시험장치
TWI396959B (zh) * 2009-04-30 2013-05-21 Asustek Comp Inc 電腦裝置、應用程式、系統調整方法和記憶體的控制方法
CN101672891B (zh) * 2009-09-24 2012-05-02 常熟理工学院 低压断路器主触点电接触状态在线检测装置
CN201563003U (zh) * 2009-10-29 2010-08-25 保定天威集团有限公司 大型电力变压器风冷控制箱双电源切换装置
IT1397599B1 (it) * 2009-12-21 2013-01-16 St Microelectronics Srl Convertitore flyback dual mode e metodo di controllo della modalita' di funzionamento.
CN102253333B (zh) * 2011-06-08 2013-05-08 河北工业大学 交流接触器寿命试验装置及其控制方法
CN102355048B (zh) * 2011-09-19 2013-11-13 河北工业大学 智能型双电源自动切换开关及其运行方法
CN103364719A (zh) * 2012-04-10 2013-10-23 招远市东晟橡胶制品有限公司 一种同步检测仪
CN103576537B (zh) * 2013-08-01 2015-01-28 安徽鑫龙电器股份有限公司 一种双电源转换时间的检测装置
CN105954020B (zh) * 2016-05-31 2019-05-03 中车株洲电力机车有限公司 隔离开关的同步性检测方法及装置
CN205986310U (zh) * 2016-07-25 2017-02-22 桐昆集团浙江恒盛化纤有限公司 双电源自动切换系统
CN205984704U (zh) * 2016-08-29 2017-02-22 浙江溯高美电气有限公司 一种双电源自动转换开关
US10534036B2 (en) * 2016-09-23 2020-01-14 Cummins Power Generation Ip, Inc. Automatic transfer switch device health monitoring
CN106410951B (zh) * 2016-10-12 2018-09-07 常熟开关制造有限公司(原常熟开关厂) 一种双电源自动转换装置的转换控制方法
JP2018133924A (ja) * 2017-02-15 2018-08-23 株式会社九州パワーサービス 系統切替方法
US10818445B2 (en) * 2017-06-17 2020-10-27 Gong Zhu Arc quenching plate and arc quenching unit with such arc quenching plate and switching device with such arc quenching unit
CN207396686U (zh) * 2017-09-27 2018-05-22 中国西电电气股份有限公司 一种高压开关触点时序测试设备
CN108398910A (zh) * 2018-05-16 2018-08-14 哈尔滨朗昇电气股份有限公司 双电源切换开关动作状态检测电路及检测方法
CN109633432B (zh) * 2019-01-10 2020-11-24 常熟开关制造有限公司(原常熟开关厂) 自动转换开关故障分类诊断方法、装置及自动转换开关
CN209401513U (zh) * 2019-04-04 2019-09-17 施耐德电器工业公司 用于双电源转换开关的辅助触点模块及双电源转换开关
CN213341735U (zh) * 2020-06-24 2021-06-01 施耐德电器工业公司 双电源转换开关和具有该双电源转换开关的配电柜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100044621A (ko) * 2008-10-22 2010-04-30 현대중공업 주식회사 이중프로세서 구조를 갖는 전력용 디지털 보호 계전기
CN207336716U (zh) * 2017-08-07 2018-05-08 龙双 结构小型化的温控开关同步测试板
CN207114724U (zh) * 2017-08-31 2018-03-16 鄂尔多斯市中北煤化工有限公司 三相同步测试电路、装置及防爆开关测试台
CN207623476U (zh) * 2017-10-23 2018-07-17 中国南方电网有限责任公司超高压输电公司曲靖局 一种换流变压器分接开关切换智能化同步监测装置
CN209471213U (zh) * 2019-01-09 2019-10-08 中国长江电力股份有限公司 一种多断口串联灭磁开关同步性检测装置
CN111487529A (zh) * 2020-06-01 2020-08-04 泉州睿郎机电技术有限公司 双电源转换开关触头同步性检测方法及其装置

Also Published As

Publication number Publication date
GB202018347D0 (en) 2021-01-06
CN113196071B (zh) 2024-07-16
GB2595946A (en) 2021-12-15
US20210373078A1 (en) 2021-12-02
IE20200269A2 (en) 2021-12-08
CN111487529A (zh) 2020-08-04
CN113196071A (zh) 2021-07-30
GB2599869A (en) 2022-04-13
CN111487529B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2021082906A1 (zh) 双电源转换开关触头同步性检测方法及其装置
CN202041623U (zh) 电磁继电器测试仪
CN205844484U (zh) 一种便携式高压断路器机械特性测试仪
CN103091550B (zh) 一种宽电压与大电流同步隔离采样直流功率计
CN103175547A (zh) 一种数据采集装置的参数拟合方法
CN105044622A (zh) 一种测试仪器的供电电源功率自检测装置及其自检测方法
WO2021082905A1 (zh) 双电源转换开关触头转换时间采集测定方法及其装置
CN209879509U (zh) 数字孪生仿真装置和数字孪生仿真系统
US8144828B2 (en) Counter/timer functionality in data acquisition systems
CN101349596B (zh) 热电偶温度数据采集系统及方法
CN205941872U (zh) 一种检测电压互感器二次压降的装置
CN102326333B (zh) 电容输入测试方法
CN113608065B (zh) 一种多直流系统环网故障监测装置及方法
CN113703659B (zh) 状态的检测方法及装置、可穿戴设备、可读存储介质
CN213936886U (zh) 一种中压开关柜
CN212410780U (zh) 机车转换开关的检测装置
CN210015227U (zh) 一种单相互感器信号采集板及其校验仪
CN108444660B (zh) 氮气泄漏故障诊断方法、装置及系统
Song et al. Online monitoring system design of intelligent circuit breaker based on DSP and ARM
CN206879074U (zh) 一种高精度的音频信号分析仪
CN116908612A (zh) 一种故障指示器、故障检测方法、电子设备和存储介质
CN118393257A (zh) 设备检测方法、装置、计算机设备、存储介质和程序产品
JP3207037B2 (ja) レンジ切替回路
Wang et al. Design of cable conduction and cable sequence test system based on LabVIEW platform using sound card
CN205193135U (zh) 自动量测手表电池电压的电压量测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202200369

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20201013

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880827

Country of ref document: EP

Kind code of ref document: A1