WO2021082781A1 - 高温介电损耗特性测量系统及测量方法 - Google Patents

高温介电损耗特性测量系统及测量方法 Download PDF

Info

Publication number
WO2021082781A1
WO2021082781A1 PCT/CN2020/115443 CN2020115443W WO2021082781A1 WO 2021082781 A1 WO2021082781 A1 WO 2021082781A1 CN 2020115443 W CN2020115443 W CN 2020115443W WO 2021082781 A1 WO2021082781 A1 WO 2021082781A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
temperature
microwave
sample
measurement system
Prior art date
Application number
PCT/CN2020/115443
Other languages
English (en)
French (fr)
Inventor
史楷岐
吴韬
杨刚
罗象
陈艺珮
Original Assignee
宁波诺丁汉新材料研究院有限公司
宁波诺丁汉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波诺丁汉新材料研究院有限公司, 宁波诺丁汉大学 filed Critical 宁波诺丁汉新材料研究院有限公司
Publication of WO2021082781A1 publication Critical patent/WO2021082781A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2617Measuring dielectric properties, e.g. constants
    • G01R27/2623Measuring-systems or electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties

Definitions

  • the invention relates to the technical field of high-temperature dielectric measurement, in particular to a high-temperature dielectric loss characteristic measurement system and measurement method.
  • the method of measuring the dielectric constant of materials can be divided into network parameter method and resonance method.
  • the network parameter method includes transmission reflection method, free space method, terminal short circuit method and terminal open circuit method, etc.
  • resonance method includes cavity perturbation method harmony Vibration cavity method and so on. These methods are not suitable for the measurement of high temperature dielectric loss characteristics of materials.
  • the resonant cavity cavity perturbation method is used to study the changes in the dielectric properties of bituminous coal when heated to 900°C at frequencies of 915 MHz and 2.45 GHz.
  • the dielectric constant of the material is relatively stable; above 500°C, the dielectric loss and dielectric constant increase rapidly, which is mainly due to the increase in the conductivity of the material and the increase in microwave loss.
  • the dielectric constant decreases slowly during the drying and pyrolysis stages, but increases significantly during the carbonization process, mainly due to the large amount of free electrons produced by the structural transformation after carbonization; the resonant cavity perturbation method measured the frequency range of palm in the 397 ⁇ 2986MHz
  • the dielectric properties of heating to 800°C the results show that palm has poor microwave absorption performance below 500°C. Between 500 and 750°C, the dielectric properties of palm have a large increase, while the dielectric loss tangent and microwave penetration depth It has been reduced.
  • the above-mentioned high-temperature dielectric properties are measured under traditional heating conditions, and the accuracy and stability of the measurement of high-temperature dielectric loss characteristics in the current technology are poor.
  • the present invention provides a high-temperature dielectric loss characteristic measurement system and measurement method, and the measurement of the dielectric constant at high temperature becomes more accurate and efficient.
  • the purpose of the present invention is achieved through the following technical solutions.
  • Microwave generating device which generates microwaves
  • a dual directional coupler connected to a first power meter for measuring microwave power, the first power meter measuring the first incident power from the microwave generating device and the reflected power from the microwave heating cavity;
  • the microwave heating cavity is configured to receive microwaves from the microwave generating device to heat the sample to be tested arranged in the cavity, and the microwave heating cavity includes:
  • the input end which is connected to the microwave generating device via the dual directional coupler to receive microwaves
  • the ridge waveguide is arranged in the microwave heating cavity to carry the sample to be tested, the sample to be tested is surrounded by a wave-transmitting insulation material, and the ridge waveguide is provided with a water cooling jacket,
  • a temperature sensor which measures the temperature data of the sample to be tested
  • a single directional coupler connected to a second power meter for measuring microwave power, the second power meter measuring the second incident power from the microwave heating cavity;
  • a processor connected to the first power meter, the second power meter and the temperature sensor,
  • the processor In response to the power data measured by the first power meter and the second power meter, the processor generates the microwave power consumed by the sample under test. Based on the consumed microwave power and temperature data, the processor generates the dielectric properties of the sample under test at different temperatures. constant.
  • the microwave generating device includes a solid source for generating microwaves and a circulator, and the circulator is connected to a water load.
  • the solid-state source includes a power supply and a magnetron, and the rated power of the solid-state source is at least 2000W.
  • the microwave heating cavity includes a rectangular waveguide reactor, which is provided with a single mode of TE10 mode transmission at a working frequency of 2450 MHz.
  • the coupling degree of the dual directional coupler is 40dB.
  • the sample to be tested is placed in a quartz test tube, and the quartz test tube with a vent hole is arranged between two ridges at the center of the ridge waveguide, and the vent hole communicates with a protective atmosphere to protect Sample to be tested.
  • the sample to be tested is solid or liquid, and the sample to be tested includes SiC, activated carbon, coke, coal, transition metals and oxides, molecular sieve, water, alcohol, oil or organic solvent.
  • the temperature sensor includes an infrared thermometer, an optical fiber thermometer or a thermocouple thermometer, and its temperature collection range is from room temperature to 1000°C, and the temperature measurement accuracy is 1°C.
  • the sampling time period of the processor simultaneously collects the temperature data of the sample to be tested, the first microwave incident power, and the microwave reflected power to obtain the temperature rise and consumption of the sample per unit time.
  • the unit is Kg, ⁇ T is the temperature difference, the unit is °C, h is the time, and the unit is minutes.
  • a measurement method of the high-temperature dielectric loss characteristic measurement system includes the following steps:
  • the sample to be tested is carried in the ridge waveguide in the microwave heating cavity to be heated by microwaves, and the provided microwaves are input into the microwave heating cavity through the dual directional coupler;
  • the first power meter measures the first incident power from the microwave generating device and the reflected power from the microwave heating cavity
  • the second power meter measures the second incident power from the microwave heating cavity
  • the temperature sensor measures the sample to be tested Temperature data
  • the processor In response to the power data measured by the first power meter and the second power meter, the processor generates the microwave power consumed by the sample under test. Based on the consumed microwave power and temperature data, the processor generates the dielectric properties of the sample under test at different temperatures. constant.
  • the high-temperature dielectric loss characteristic measurement system can measure the dielectric constant at different high temperatures, and the measurement becomes more accurate, efficient, and stable.
  • Fig. 1 is a schematic structural diagram of a high-temperature dielectric loss characteristic measurement system according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the steps of a measurement method according to an embodiment of the present invention.
  • a high-temperature dielectric loss characteristic measurement system includes:
  • Microwave generating device which generates microwaves
  • the dual directional coupler 1 is connected to a first power meter 2 for measuring microwave power, and the first power meter 2 measures the first incident power from the microwave generating device and the reflected power from the microwave heating cavity 3;
  • the microwave heating cavity 3 is configured to receive microwaves from the microwave generating device to heat the sample to be tested arranged in the cavity, and the microwave heating cavity 3 includes:
  • the input terminal 4 is connected to the microwave generating device via the dual directional coupler 1 to receive microwaves,
  • the ridge waveguide 5 is arranged in the microwave heating cavity 3 to carry the sample to be tested.
  • the ridge waveguide is provided with a water cooling jacket to ensure that the waveguide is not thermally expanded and deformed during the measurement process and avoids affecting the test.
  • the sample is surrounded by wave-transparent insulation materials (ceramics, mullite, corundum, etc.) to minimize the heat loss of materials during microwave heating.
  • a temperature sensor which measures the temperature data of the sample to be tested
  • a single directional coupler 7 connected to a second power meter 8 for measuring microwave power, and the second power meter 8 measures the second incident power from the microwave heating cavity 3;
  • the processor 9 which is connected to the first power meter 2, the second power meter 8 and the temperature sensor 6,
  • the processor 9 In response to the power data measured by the first power meter 2 and the second power meter 8, the processor 9 generates the microwave power consumed by the sample to be tested. Based on the consumed microwave power and temperature data, the processor 9 generates the power data of the sample to be tested at different temperatures. Under the dielectric constant.
  • the change in the complex permittivity of a substance with temperature will affect the interaction between the substance and the microwave.
  • the complex permittivity of the substance is measured through the changes in the incident power, reflected power of the microwave and the temperature of the material.
  • the microwave generating device includes a solid source 10 for generating microwaves and a circulator 11, and the circulator 11 is connected to a water load 12.
  • the solid-state source 10 includes a power supply and a magnetron, and the rated power of the solid-state source 10 is at least 2000W.
  • the microwave heating cavity 3 includes a rectangular waveguide reactor, which is provided with a single mode of TE10 mode transmission at a working frequency of 2450 MHz.
  • the coupling degree of the dual directional coupler 1 is 40 dB.
  • the sample to be tested is placed in a quartz test tube, the quartz test tube with a vent hole is arranged between the two ridges in the center of the ridge waveguide 5, and the communication
  • the pores are connected to the protective atmosphere to protect the sample to be tested.
  • the sample to be tested is solid or liquid, and the sample to be tested includes SiC, activated carbon, coke, coal, transition metals and oxides, molecular sieves, water, alcohol, and oil. Or organic solvents.
  • the temperature sensor 6 includes an infrared thermometer, an optical fiber thermometer or a thermocouple thermometer, and its temperature collection range is from room temperature to 1000°C, and the temperature measurement accuracy is 1°C.
  • the sampling time period of the processor 9 simultaneously collects the temperature data of the sample to be tested, the first microwave incident power, and the microwave reflected power to obtain the sample per unit time.
  • the microwave heating cavity 3 is a rectangular waveguide reactor, and there is only a single mode, ie, TE10 mode transmission at a working frequency of 2450 MHz.
  • the microwave is output from the 1KW microwave source, it is transmitted to the microwave heater through the circulator 11, the directional coupler, and the three-screw adaptor.
  • the shape/quality of each test sample should be the same in the position of the single mold cavity.
  • P Xm( ⁇ T /h)
  • the object to be measured is placed in a quartz tube and placed between the two ridges in the center of the ridge waveguide 5.
  • Two power meters are respectively connected to the dual directional coupler 1 and the single directional coupler 7 to measure the transmission and reflection power of the wave in the system.
  • the first power meter measures the first incident power P1 from the microwave generating device and the reflected power P2 from the microwave heating cavity, and the second power meter measures the second incident power P3 from the microwave heating cavity, and the test sample actually consumes
  • the microwave power P is P1-P2-P3, and the actual microwave power consumption result is input into the processor 9 as input data, and the output result of the program is the dielectric coefficient of the measured object under the corresponding temperature and state.
  • Measure the dielectric properties of materials under different temperature conditions such as dielectric constant, dielectric loss, loss tangent, etc., for the performance of reaction materials to absorb microwaves.
  • the real part, imaginary part, and loss tangent of the dielectric coefficient of the material at the current temperature are measured while the microwave is being heated.
  • the microwave frequency of the microwave is 2405 MHz or 915 MHz.
  • the tested material is solid (powder) and liquid, solids such as SiC, activated carbon, coke, coal, biomass, transition metals and oxides, alumina, molecular sieves, natural minerals, etc.; liquids are water, alcohol , Biological oil, oil, organic solvent, etc.
  • the sample needs to be protected by an atmosphere (the sample is placed in a quartz test tube, and the test tube can have vent holes).
  • the temperature range is from room temperature to 1000°C, and the temperature control/temperature measurement accuracy is 1°C.
  • the heating method is microwave heating, and the microwave frequency is 2450 MHz.
  • test repeatability the error of two measurements of the same sample is ⁇ 8%.
  • parameter setting, control, and data collection are completed by the processing unit.
  • the temperature dependence of the real part, imaginary part and loss tangent of the dielectric coefficient at 2450MHz is output.
  • the single directional coupler is provided with a short-circuit surface.
  • the microwave generating device is provided with a wave co-conversion unit.
  • a measurement method of the high-temperature dielectric loss characteristic measurement system of the claim includes the following steps:
  • the sample to be tested is carried in the ridge waveguide 5 in the microwave heating cavity 3 to be heated by microwaves, and the provided microwaves are input into the microwave heating cavity 3 through the dual directional coupler 1;
  • the first power meter 2 measures the first incident power from the microwave generating device and the reflected power from the microwave heating cavity 3
  • the second power meter 8 measures the second incident power from the microwave heating cavity 3
  • the temperature sensor 6 measures The temperature data of the sample to be tested;
  • the processor 9 In response to the power data measured by the first power meter 2 and the second power meter 8, the processor 9 generates the microwave power consumed by the sample to be tested. Based on the consumed microwave power and temperature data, the processor 9 generates the temperature of the sample to be tested at different temperatures. Under the dielectric constant.
  • the high-temperature dielectric loss characteristic measurement system and measurement method of the present invention can be manufactured and used in the field of dielectric measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

公开了材料微波原位加热高温介电损耗特性测量系统及测量方法,高温介电损耗特性测量系统中,双定向耦合器连接用于测量微波功率的第一功率计,第一功率计测量来自微波发生装置的第一入射功率和来自微波加热腔体的反射功率;微波加热腔体配置成接收来自微波发生装置的微波以加热设在腔体内的待测样品,微波加热腔体包括,脊波导,其布置在微波加热腔体内以承载待测样品,温度传感器,其测量待测样品温度数据;第二功率计测量来自微波加热腔体的第二入射功率;响应于第一功率计和第二功率计测量的功率数据,处理器生成待测样品消耗的微波功率,基于消耗的微波功率和温度数据,处理器生成待测样品的在不同温度下的介电损耗。

Description

高温介电损耗特性测量系统及测量方法 技术领域
本发明涉及高温介电测量技术领域,特别是一种高温介电损耗特性测量系统及测量方法。
背景技术
材料介电常数测量的方法可主要分为网络参数法和谐振法,其中网络参数法又包括传输反射法,自由空间法,终端短路法及终端开路法等,谐振法包括腔体微扰法和谐振腔法等。这些方法均不适于材料的高温介电损耗特性测量。
技术问题
现有技术中,利用谐振腔腔体微扰法研究烟煤在915MHz和2.45GHz的频率下加热至900℃的过程中介电性能的变化。500℃以下,物料介电常数较为稳定;500℃以上,介电损耗及介电常数迅速增大,这主要是由于物料导电性增大和微波损耗增大所致。介电常数在干燥和热解阶段缓慢降低,但在碳化过程显著增大,主要因为碳化后结构转变产生大量自由电子所致;谐振腔腔体微扰法测定了棕榈在397~2986MHz的频率范围加热至800℃的介电性能,结果表明棕榈在500℃以下吸收微波的性能很差,在500~750℃之间,棕榈的介电性能有较大增加,而介电损耗正切和微波渗透深度却有所降低。上述高温介电性能均在传统加热条件下测定,现在技术中对高温介电损耗特性测量的精度和稳定性较差。
在背景技术部分中公开的上述信息仅仅用于增强对本发明背景的理解,因此可能包含不构成本领域普通技术人员公知的现有技术的信息。
技术解决方案
为了上述问题,本发明提供了高温介电损耗特性测量系统及测量方法,高温下介电常数的测定变得更加精准和高效。本发明的目的是通过以下技术方案予以实现。
一种高温介电损耗特性测量系统包括,
微波发生装置,其生成微波;
双定向耦合器,其连接用于测量微波功率的第一功率计,所述第一功率计测量来自微波发生装置的第一入射功率和来自微波加热腔体的反射功率;
微波加热腔体,其配置成接收来自微波发生装置的微波以加热设在腔体内的待测样品,微波加热腔体包括,
输入端,其经由所述双定向耦合器连通微波发生装置以接收微波,
脊波导,其布置在所述微波加热腔体内以承载待测样品,待测样品由透波的保温材料包围,脊波导设有水冷套,
温度传感器,其测量所述待测样品温度数据;
单定向耦合器,其连接用于测量微波功率的第二功率计,所述第二功率计测量来自微波加热腔体的第二入射功率;
处理器,其连接所述第一功率计、第二功率计和温度传感器,
响应于第一功率计和第二功率计测量的功率数据 ,处理器生成待测样品消耗的微波功率,基于消耗的微波功率和温度数据,处理器生成待测样品的在不同温度下的介电常数。
所述的高温介电损耗特性测量系统中,所述微波发生装置包括用于产生微波的固态源和环形器,所述环形器连接水负载。
所述的高温介电损耗特性测量系统中,所述固态源包括电源和磁控管,所述固态源的额定功率至少2000W。
所述的高温介电损耗特性测量系统中,所述微波加热腔体包括矩形波导反应器,其在2450MHz工作频率下设有TE10模传输的单一模式。
所述的高温介电损耗特性测量系统中,双定向耦合器的耦合度40dB。
所述的高温介电损耗特性测量系统中,待测样品置于石英试管内,带有通气孔的石英试管布置在所述脊波导中心的两脊之间,所述通气孔连通保护气氛以保护待测样品。
所述的高温介电损耗特性测量系统中,,待测样品为固体或液体,待测样品包括SiC、活性炭、焦炭、煤、过渡金属及氧化物、分子筛、水、醇、油或有机溶剂。
所述的高温介电损耗特性测量系统中,温度传感器包括红外温枪、光纤测温仪或热电偶测温仪,其温度采集范围为室温至1000℃,测温精度为1℃。
所述的高温介电损耗特性测量系统中,所述处理器的采样时间周期同时采集待测样品的温度数据、第一微波入射功率和微波反射功率以得到单位时间内样品的温升及消耗的微波入射功率,处理器经由公式:P=Xm(ΣT /h)计算生成待测样品的介电常数,其中, P为微波功率,其单位为W, X为介电常数,m 为质量,其单位为Kg,ΣT 为温差,其单位为℃,h为时间,其单位为分钟。
根据本发明的另一方面,一种所述高温介电损耗特性测量系统的测量方法包括以下步骤,
待测样品承载在微波加热腔体内的脊波导以微波加热,提供的微波经由双定向耦合器输入到微波加热腔体;
第一功率计测量来自微波发生装置的第一入射功率和来自微波加热腔体的反射功率,所述第二功率计测量来自微波加热腔体的第二入射功率,温度传感器测量所述待测样品温度数据;
响应于第一功率计和第二功率计测量的功率数据,处理器生成待测样品消耗的微波功率,基于消耗的微波功率和温度数据,处理器生成待测样品的在不同温度下的介电常数。
有益效果
与现有技术相比,本发明的有益效果是:
本高温介电损耗特性测量系统能够测量不同的高温下的介电常数,且测定变得更加精准和高效、稳定性强。
上述说明仅是本发明技术方案的概述,为了能够使得本发明的技术手段更加清楚明白,达到本领域技术人员可依照说明书的内容予以实施的程度,并且为了能够让本发明的上述和其它目的、特征和优点能够更明显易懂,下面以本发明的具体实施方式进行举例说明。
附图说明
通过阅读下文优选的具体实施方式中的详细描述,本发明各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。说明书附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。显而易见地,下面描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。而且在整个附图中,用相同的附图标记表示相同的部件。
在附图中:
图1是根据本发明一个实施例的高温介电损耗特性测量系统的结构示意图;
图2根据本发明一个实施例的测量方法的步骤示意图。
以下结合附图和实施例对本发明作进一步的解释。
本发明的实施方式
下面将参照附图更详细地描述本发明的具体实施例。虽然附图中显示了本发明的具体实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
需要说明的是,在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可以理解,技术人员可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名词的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”或“包括”为一开放式用语,故应解释成“包含但不限定于”。说明书后续描述为实施本发明的较佳实施方式,然所述描述乃以说明书的一般原则为目的,并非用以限定本发明的范围。本发明的保护范围当视所附权利要求所界定者为准。
为便于对本发明实施例的理解,下面将结合附图以具体实施例为例做进一步的解释说明,且各个附图并不构成对本发明实施例的限定。
为了更好地理解,如图1所示,一种高温介电损耗特性测量系统包括,
微波发生装置,其生成微波;
双定向耦合器1,其连接用于测量微波功率的第一功率计2,所述第一功率计2测量来自微波发生装置的第一入射功率和来自微波加热腔体3的反射功率;
微波加热腔体3,其配置成接收来自微波发生装置的微波以加热设在腔体内的待测样品,微波加热腔体3包括,
输入端4,其经由所述双定向耦合器1连通微波发生装置以接收微波,
脊波导5,其布置在所述微波加热腔体3内以承载待测样品,脊波导设有水冷套,确保测量过程波导没有热膨胀变形,避免影响测试。样品由透波的保温材料(陶瓷、莫来石、刚玉等)包围,最大程度减小微波加热过程物料的热损失。
温度传感器,其测量所述待测样品温度数据;
温度传感器6,其测量所述待测样品温度数据;
单定向耦合器7,其连接用于测量微波功率的第二功率计8,所述第二功率计8测量来自微波加热腔体3的第二入射功率;
处理器9,其连接所述第一功率计2、第二功率计8和温度传感器6,
响应于第一功率计2和第二功率计8测量的功率数据 ,处理器9生成待测样品消耗的微波功率,基于消耗的微波功率和温度数据,处理器9生成待测样品的在不同温度下的介电常数。
基于微波加热特性,物质的复介电系数随温度的变化会影响物质与微波之间的相互,通过微波的入射功率、反射功率和物料温度的变化,对物质的复介电系数进行测量。
在所述的高温介电损耗特性测量系统的优选实施例中,所述微波发生装置包括用于产生微波的固态源10和环形器11,所述环形器11连接水负载12。
在所述的高温介电损耗特性测量系统的优选实施例中,所述固态源10包括电源和磁控管,所述固态源10的额定功率至少2000W。
在所述的高温介电损耗特性测量系统的优选实施例中,所述微波加热腔体3包括矩形波导反应器,其在2450MHz工作频率下设有TE10模传输的单一模式。
在所述的高温介电损耗特性测量系统的优选实施例中,双定向耦合器1的耦合度40dB。
在所述的高温介电损耗特性测量系统的优选实施例中,待测样品置于石英试管内,带有通气孔的石英试管布置在所述脊波导5中心的两脊之间,所述通气孔连通保护气氛以保护待测样品。
在所述的高温介电损耗特性测量系统的优选实施例中,待测样品为固体或液体,待测样品包括SiC、活性炭、焦炭、煤、过渡金属及氧化物、分子筛、水、醇、油或有机溶剂。
在所述的高温介电损耗特性测量系统的优选实施例中,温度传感器6包括红外温枪、光纤测温仪或热电偶测温仪,其温度采集范围为室温至1000℃,测温精度为1℃。
在所述的高温介电损耗特性测量系统的优选实施例中,所述处理器9的采样时间周期同时采集待测样品的温度数据、第一微波入射功率和微波反射功率以得到单位时间内样品的温升及消耗的微波入射功率,处理器9经由公式:P=Xm(ΣT /h)计算生成待测样品的介电常数,其中, P为微波功率,其单位为W, X为介电常数,m 为质量,其单位为Kg,ΣT 为温差,其单位为℃,h为时间,其单位为分钟。
为了进一步理解本发明,在一个实施例中,微波加热腔体3为矩形波导反应器,在2450MHz工作频率下只有单一模式即TE10模传输。微波由1KW微波源输出后经过环形器11,定向耦合器,三螺钉调配器传输到微波加热器。证每一个测试样品的形状/质量,放在单模腔的位置要一致。设置好采样时间/微波功率/或温度点。每一个采样时间周期,要同时采集样品的温度/微波入射功率/微波反射功率/环流器二端水温。得到一个单位时间内样品的温升,及实际微波入射功率。通过质量/时间/温升/微波功率以及公式:P=Xm(ΣT /h),
式中:P=微波功率 W
      X=常数
      m =质量    Kg
      ΣT =温差   ℃
      h= 时间    min
我们可以与已知介电常数的样品比较X的值,并建库,随着库里数据的累计,测试数据得出的不同温度材料的介电常数也越准确。
在一个实施例中,被测物放在石英管中,置于脊波导5中心两脊之间。两个功率计分别连接双定向耦合器1和单定向耦合器7以测量波在系统中的传输与反射功率。,所述第一功率计测量来自微波发生装置的第一入射功率P1和来自微波加热腔体的反射功率P2,第二功率计测量来自微波加热腔体的第二入射功率P3,测试样品实际消耗的微波功率P为P1-P2-P3,将实际消耗的微波功率结果作为输入数据输入到处理器9中,程序的输出结果即为相应温度和状态下被测物的介电系数。测定材料在不同温度条件下的介电常数、介质损耗、损耗角正切等介电性质,用于反应材料吸收微波的性能。
在一个实施例中,微波加热的同时测量材料在当下温度的介电系数实部、虚部及损耗角正切值。
在一个实施例中,微波的微波频率2405MHz或915MHz。
在一个实施例中,所测材料为固体(粉末)和液体,固体如SiC、活性炭、焦炭、煤、生物质、过渡金属及氧化物、氧化铝、分子筛、天然矿物等;液体为水、醇、生物油、油品、有机溶剂等。
在一个实施例中,样品需要有气氛保护(样品置于石英试管内,试管可留通气孔)。
在一个实施例中,温度范围:室温-1000℃,控温/测温精度1℃。
在一个实施例中,加热方式:微波加热,微波频率为2450MHz。
在一个实施例中,测试重复性:同一样品2次测量的误差<8%。
在一个实施例中,参数设置、控制及数据采集通过处理单元完成。
在一个实施例中,输出在2450MHz下介电系数实部、虚部和损耗角正切值与温度的关系曲线。
在一个实施例中,单定向耦合器设有短路面。
在一个实施例中,微波发生装置设有波同转换单元。
如图2所示,一种权利要求所述高温介电损耗特性测量系统的测量方法包括以下步骤,
待测样品承载在微波加热腔体3内的脊波导5以微波加热,提供的微波经由双定向耦合器1输入到微波加热腔体3;
第一功率计2测量来自微波发生装置的第一入射功率和来自微波加热腔体3的反射功率,所述第二功率计8测量来自微波加热腔体3的第二入射功率,温度传感器6测量所述待测样品温度数据;
响应于第一功率计2和第二功率计8测量的功率数据,处理器9生成待测样品消耗的微波功率,基于消耗的微波功率和温度数据,处理器9生成待测样品的在不同温度下的介电常数。
工业实用性
本发明所述的高温介电损耗特性测量系统及测量方法可以在介电测量领域制造并使用。
以上结合具体实施例描述了本申请的基本原理,但是,需要指出的是,在本申请中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本申请的各个实施例必须具备的。另外,上述公开的具体细节仅是为了示例的作用和便于理解的作用,而非限制,上述细节并不限制本申请为必须采用上述具体的细节来实现。
为了例示和描述的目的已经给出了以上描述。此外,此描述不意图将本申请的实施例限制到在此公开的形式。尽管以上已经讨论了多个示例方面和实施例,但是本领域技术人员将认识到其某些变型、修改、改变、添加和子组合。

Claims (9)

  1. 如权利要求1所述的高温介电损耗特性测量系统,其中,所述微波发生装置包括用于产生微波的固态源和环形器,所述环形器连接水负载。
  2. 如权利要求2所述的高温介电损耗特性测量系统,其中,所述固态源包括电源和磁控管,所述固态源的额定功率至少2000W。
  3. 如权利要求1所述的高温介电损耗特性测量系统,其中,所述微波加热腔体包括矩形波导反应器,其在2450MHz工作频率下设有TE10模传输的单一模式。
  4. 如权利要求1所述的高温介电损耗特性测量系统,其中,双定向耦合器的耦合度40dB。
  5. 如权利要求1所述的高温介电损耗特性测量系统,其中,待测样品置于石英试管内,带有通气孔的石英试管布置在所述脊波导中心的两脊之间,所述通气孔连通保护气氛以保护待测样品。
  6. 如权利要求1所述的高温介电损耗特性测量系统,其中,待测样品为固体或液体,待测样品包括SiC、活性炭、焦炭、煤、过渡金属及氧化物、分子筛、水、醇、油或有机溶剂。
  7. 如权利要求1所述的高温介电损耗特性测量系统,其中,温度传感器包括红外温枪、光纤测温仪或热电偶测温仪,其温度采集范围为室温至1000℃,测温精度为1℃。
  8. 如权利要求1所述的高温介电损耗特性测量系统,其中,所述处理器的采样时间周期同时采集待测样品的温度数据、第一微波入射功率和微波反射功率以得到单位时间内样品的温升及消耗的微波入射功率,处理器经由公式:P=Xm(ΣT /h)计算生成待测样品的介电常数,其中, P为微波功率,其单位为W, X为介电常数,m 为质量,其单位为Kg,ΣT 为温差,其单位为℃,h为时间,其单位为分钟。
  9. 一种权利要求1-9中任一项所述高温介电损耗特性测量系统的测量方法,其包括以下步骤,
    待测样品承载在微波加热腔体内的脊波导以微波加热,提供的微波经由双定向耦合器输入到微波加热腔体;
    第一功率计测量来自微波发生装置的第一入射功率和来自微波加热腔体的反射功率,所述第二功率计测量来自微波加热腔体的第二入射功率,温度传感器测量所述待测样品温度数据;
    响应于第一功率计和第二功率计测量的功率数据,处理器生成待测样品消耗的微波功率,基于消耗的微波功率和温度数据,处理器生成待测样品的在不同温度下的介电常数。
PCT/CN2020/115443 2019-10-29 2020-09-16 高温介电损耗特性测量系统及测量方法 WO2021082781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911036150.7A CN110763921A (zh) 2019-10-29 2019-10-29 高温介电损耗特性测量系统及测量方法
CN201911036150.7 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021082781A1 true WO2021082781A1 (zh) 2021-05-06

Family

ID=69334227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115443 WO2021082781A1 (zh) 2019-10-29 2020-09-16 高温介电损耗特性测量系统及测量方法

Country Status (2)

Country Link
CN (1) CN110763921A (zh)
WO (1) WO2021082781A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763921A (zh) * 2019-10-29 2020-02-07 宁波诺丁汉新材料研究院有限公司 高温介电损耗特性测量系统及测量方法
CN113447500B (zh) * 2021-06-10 2022-08-16 山东大学 一种基于微波诱导定向加热技术的高温测量装置及方法
CN115452882A (zh) * 2022-08-10 2022-12-09 山东大学 一种微波场中样品体相温度测量装置和方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617861B1 (en) * 2000-11-22 2003-09-09 National Research Development Corporation Apparatus and method for measuring and monitoring complexpermittivity of materials
JP2006258451A (ja) * 2005-03-15 2006-09-28 Micro Denshi Kk マイクロ波を利用した誘電率の測定方法とその測定装置
CN101078692A (zh) * 2007-07-03 2007-11-28 四川大学 液体或固体粉末物质介电系数测试装置及其测试与计算方法
CN105388363A (zh) * 2014-12-30 2016-03-09 北京无线电计量测试研究所 高温环境下材料介电常数的获取系统及方法
CN108828380A (zh) * 2018-09-17 2018-11-16 南京航空航天大学 微波加热过程中材料电磁参数测量装置与方法
CN109030517A (zh) * 2018-09-17 2018-12-18 南京航空航天大学 微波加热过程中材料反射率/透射率实时测量装置与方法
CN110161333A (zh) * 2019-05-23 2019-08-23 上海微小卫星工程中心 隔离器反向功率耐受试验系统和方法
CN110763921A (zh) * 2019-10-29 2020-02-07 宁波诺丁汉新材料研究院有限公司 高温介电损耗特性测量系统及测量方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617861B1 (en) * 2000-11-22 2003-09-09 National Research Development Corporation Apparatus and method for measuring and monitoring complexpermittivity of materials
JP2006258451A (ja) * 2005-03-15 2006-09-28 Micro Denshi Kk マイクロ波を利用した誘電率の測定方法とその測定装置
CN101078692A (zh) * 2007-07-03 2007-11-28 四川大学 液体或固体粉末物质介电系数测试装置及其测试与计算方法
CN105388363A (zh) * 2014-12-30 2016-03-09 北京无线电计量测试研究所 高温环境下材料介电常数的获取系统及方法
CN108828380A (zh) * 2018-09-17 2018-11-16 南京航空航天大学 微波加热过程中材料电磁参数测量装置与方法
CN109030517A (zh) * 2018-09-17 2018-12-18 南京航空航天大学 微波加热过程中材料反射率/透射率实时测量装置与方法
CN110161333A (zh) * 2019-05-23 2019-08-23 上海微小卫星工程中心 隔离器反向功率耐受试验系统和方法
CN110763921A (zh) * 2019-10-29 2020-02-07 宁波诺丁汉新材料研究院有限公司 高温介电损耗特性测量系统及测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI WU ET AL.: "An On-Line System for High Temperature Dielectric Property Measurement of Microwave-Assisted Sintering Materials", MATERIALS, vol. 12, no. 4, 22 February 2019 (2019-02-22), XP055809591, ISSN: 1996-1944 *
TAN QIAN, ZHU HUACHENG, MA WEIQUAN, YANG YANG, HUANG KAMA: "High temperature dielectric properties measurement system at 915 MHz based on deep learning", INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, WILEY INTERSCIENCE, vol. 29, no. 11, 1 November 2019 (2019-11-01), XP055809593, ISSN: 1096-4290, DOI: 10.1002/mmce.21948 *

Also Published As

Publication number Publication date
CN110763921A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2021082781A1 (zh) 高温介电损耗特性测量系统及测量方法
Varadan et al. Free-space, broadband measurements of high-temperature, complex dielectric properties at microwave frequencies
CN108828380B (zh) 微波加热过程中材料电磁参数测量装置与方法
Li et al. Broadband measurements of dielectric properties of low-loss materials at high temperatures using circular cavity method
Gui et al. Open resonator system for automatic and precise dielectric measurement at millimeter wavelengths
Nesbitt et al. Development of a microwave calorimeter for simultaneous thermal analysis, infrared spectroscopy and dielectric measurements
Chen et al. High-efficiency microwave heating method based on impedance matching technology
Zhao et al. Sensitive and robust millimeter-wave/terahertz photonic crystal chip for biosensing applications
Polaert et al. Dielectric properties measurement methods for solids of high permittivities under microwave frequencies and between 20 and 250 C
CA2017262C (en) Apparatus for measuring electromagnetic characteristics of a very high temperature material
CN101078700B (zh) 一种测量材料吸收微波能量的方法
Ramopoulos et al. System for in-situ dielectric and calorimetric measurements during microwave curing of resins
Andrade et al. High temperature broadband dielectric properties measurement techniques
Tinga Rapid high temperature measurement of microwave dielectric properties
CN209989625U (zh) 陶瓷长纤维微波连续处理装置
Pohl et al. Correction procedures for the measurement of permittivities with the cavity perturbation method
Dong et al. Design and testing of miniaturized dual-band microstrip antenna sensor for wireless monitoring of high temperatures
Bringhurst et al. High-temperature dielectric properties measurements of ceramics
Ramopoulos et al. Microwave system for in-situ dielectric and calorimetric measurements in a wide temperature range using a TE 111-mode cavity
Zou et al. Characterization of Dielectric Properties of Low Loss Materials at 300° C at Millimeter Wave
Suhm et al. New development for industrial microwave heating
Peng et al. A Wireless Temperature Sensor Applied to Monitor and Measure the High-Temperature of Industrial Devices
Tinga et al. New high temperature multipurpose applicator
CN109881467B (zh) 陶瓷长纤维微波连续处理装置及方法
Qin et al. A procedure and device for determining complex material permittivity using the free-space resonance method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883372

Country of ref document: EP

Kind code of ref document: A1