WO2021082594A1 - 一种绝缘材料表面的藻类检测方法、装置和设备 - Google Patents

一种绝缘材料表面的藻类检测方法、装置和设备 Download PDF

Info

Publication number
WO2021082594A1
WO2021082594A1 PCT/CN2020/107545 CN2020107545W WO2021082594A1 WO 2021082594 A1 WO2021082594 A1 WO 2021082594A1 CN 2020107545 W CN2020107545 W CN 2020107545W WO 2021082594 A1 WO2021082594 A1 WO 2021082594A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating material
algae
covered
spectral
spectral data
Prior art date
Application number
PCT/CN2020/107545
Other languages
English (en)
French (fr)
Inventor
张福增
王婷婷
徐永生
陈少杰
廖一帆
肖微
覃歆然
王希林
贾志东
Original Assignee
南方电网科学研究院有限责任公司
中国南方电网有限责任公司电网技术研究中心
清华大学深圳国际研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网科学研究院有限责任公司, 中国南方电网有限责任公司电网技术研究中心, 清华大学深圳国际研究生院 filed Critical 南方电网科学研究院有限责任公司
Publication of WO2021082594A1 publication Critical patent/WO2021082594A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited

Definitions

  • the invention relates to the field of spectral analysis methods, in particular to a method, device and equipment for detecting algae on the surface of an insulating material.
  • the insulator plays a dual role of mechanical connection and electrical insulation between the wire and the iron tower.
  • the insulator is affected by emissions from factories, transportation, agriculture, mines, and life, as well as natural dust falling, and the surface of the insulator gradually accumulates dirty materials.
  • the spores are easy to breed on the surface of the insulator and gradually become large areas of algae, moss or lichen.
  • pollution flashover discharges may occur in insulator materials, leading to pollution flashover accidents, and causing huge losses to economic development and people's lives.
  • the method of visual inspection or image capture analysis is usually used to characterize the parameters of the algae coverage area ratio and the growth thickness per unit area, or the traditional detection methods such as the equivalent salt density method and the leakage current method are used to realize the analysis of the algae species and Density detection.
  • the inventor found that the prior art has at least the following problems: because the surface contamination of the insulator is complicated, the image capture analysis method may have certain errors in judging the contamination components by the contamination color; while the traditional detection method has detection Long cycle, consuming manpower and material resources and other shortcomings. Therefore, a technical method that can directly identify the type of algae on the surface of the insulator and characterize its precise distribution is urgently needed.
  • the purpose of the embodiments of the present invention is to provide a method, device and equipment for detecting algae on the surface of an insulating material, which can quickly and accurately detect the type and density of algae covered by the actually measured insulating material by acquiring the spectral data of the actually measured insulating material, which is useful for maintenance
  • the safety and stability of power equipment provide a foundation.
  • an embodiment of the present invention provides a method for detecting algae on the surface of an insulating material, including:
  • the type and density of the algae on the surface of the measured insulating material are analyzed.
  • the establishment of the standard spectrum database includes the following steps:
  • the spectral data of each insulating material is trained to obtain the standard spectral database.
  • the training of the spectral data of each of the insulating materials to obtain the standard spectral database includes:
  • the corresponding relationship between the spectral line data of each characteristic element and the corresponding algae type and density covering the algae insulating material is imported into a preset fitting model for fitting, so as to train to obtain the standard spectral database; wherein, the characteristic
  • the element spectral line data includes the type of characteristic element, the spectral line intensity of the characteristic element, and the spectral line intensity ratio of different characteristic elements.
  • the determination of the characteristic element spectral line data corresponding to each of the covered algae insulating materials based on the NIST database specifically includes:
  • the spectral line information of the elements in the NIST database is matched to determine the characteristic element spectral line data corresponding to each of the algae-covered insulating materials.
  • the preset fitting model includes, but is not limited to, a univariate fitting model, a multivariate fitting model, and a random forest fitting model.
  • the laser pulse with a preset power density is applied to the actually measured insulating material to collect the spectral data of the actually measured insulating material, which specifically includes:
  • the original spectral data is preprocessed to remove the interference of the background spectral data, so as to obtain the measured spectral data of the insulating material.
  • the embodiment of the present invention also provides a device for detecting algae on the surface of an insulating material, which includes a collection module, a judgment module, and an analysis module;
  • the acquisition module is configured to act on the actually measured insulating material with a laser pulse of a preset power density, and collect the spectral data of the measured insulating material;
  • the judgment module is configured to compare the spectrum data of the actually measured insulating material with a preset standard spectrum database to judge whether the surface of the measured insulating material is covered with algae;
  • the analysis module is used to analyze the type and density of algae on the surface of the actually measured insulating material when the measured insulating material is covered with algae.
  • An embodiment of the present invention also provides a device for detecting algae on the surface of an insulating material, which is characterized in that it includes a processor, a memory, and a computer program stored in the memory and configured to be executed by the processor.
  • the computer program is executed by the device, the method for detecting algae on the surface of the insulating material as described in any one of the above is realized.
  • the present invention discloses a method, device and equipment for detecting algae on the surface of an insulating material.
  • the measured spectral data on the surface of the insulating material is obtained, and the preset standard spectral database is used.
  • FIG. 1 is a schematic flowchart of a method for detecting algae on the surface of an insulating material according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of the steps of establishing a standard spectrum database in a method for detecting algae on the surface of an insulating material provided by the first embodiment of the present invention
  • Figures 3(a) and 3(b) are graphs of spectral data of covered algae silicone rubber and uncovered algae silicone rubber at different wavelengths in a method for detecting algae on the surface of an insulating material provided in the first embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a device for detecting algae on the surface of an insulating material according to the second embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a device for detecting algae on the surface of an insulating material according to the third embodiment of the present invention.
  • FIG. 1 it is a schematic flowchart of a method for detecting algae on the surface of an insulating material according to Embodiment 1 of the present invention.
  • the first embodiment of the present invention provides a method for detecting algae on the surface of an insulating material, which is executed through steps S11 to S13:
  • the insulating material is classified according to the manufacturing material, which can be electrical porcelain insulators, glass insulators, composite insulators, etc., and the covered algae status indicates whether the surface of the insulating material is covered with algae, and if it is covered Algae type and density of algae.
  • the manufacturing material can be electrical porcelain insulators, glass insulators, composite insulators, etc.
  • the covered algae status indicates whether the surface of the insulating material is covered with algae, and if it is covered Algae type and density of algae.
  • the plasma is collected Volume spectrum data to obtain the measured spectrum data of the insulating material.
  • step S11 is specifically executed through steps S111 to S113:
  • an area of a certain shape and size is preset as the action area of the laser pulse, for example, a 5cm*5cm square area is selected as the action area on the measured insulating material Area to perform laser pulse-induced breakdown on the active area.
  • the four vertices and midpoint positions of the square area can be selected as the action points, and the preset A laser pulse with a power density is set to bombard the action point to induce plasma to be generated, and plasma spectrum data is collected, that is, the original spectrum data of the actually measured insulating material is obtained.
  • the selection of the action area and action point of the laser pulse mentioned above is only an example.
  • the action area and action point can be set according to the selected measured shape and size of the insulating material and the manufacturing material, for example, A circle with a suitable size, such as a diameter of 5 cm, can be selected as the action area of the laser pulse, or other shapes such as a rectangle with a suitable size as the action area of the laser pulse, without affecting the beneficial effects obtained by the present invention.
  • S113 Perform preprocessing on the original spectral data to remove interference from background spectral data, so as to obtain the measured spectral data of the insulating material.
  • the background spectrum data in the original spectrum data is collected, and the background spectrum data is removed by software such as matlab to obtain the measured spectrum data of the insulating material.
  • a laser-induced breakdown spectroscopy device that is, a remote LIBS device
  • the laser-induced breakdown spectroscopy equipment includes a laser, an optical path system, a controller, a spectrometer, etc., by selecting a suitable laser energy, adjusting a suitable light collection angle and a delay time of the spectrometer, the preset power density that meets the requirements can be generated Laser pulses to obtain spectral data with high signal-to-noise ratio and signal-to-back ratio.
  • the laser energy, the light collection angle, and the delay time of the spectrometer can be specifically set according to the actual conditions of the measured insulating material to obtain the optimal spectral data, which is not specifically limited here.
  • one or more standard spectral databases can be constructed in advance to store the corresponding relationship between the spectral data of several insulating materials covering algae and the types and densities of the algae covered on the surface. Understandably, the standard spectral database also stores the corresponding spectral data of the insulating material without covering algae. Therefore, when the spectral data of the actually measured insulating material is collected, it can be compared with the standard spectral database. It is judged whether the surface of the actually measured insulating material is covered with algae. And when it is determined that the surface of the actually measured insulating material is covered with algae, the standard spectrum database is used to further analyze the type and density of the algae covered on the surface of the measured insulating material.
  • FIG. 2 it is a schematic flow chart of the steps of establishing a standard spectrum database in a method for detecting algae on the surface of an insulating material according to the first embodiment of the present invention.
  • the establishment of the standard spectrum database includes steps S21 to S23:
  • the condition of covering algae indicates whether the surface of the insulating material is covered with algae, and if the algae is covered, the type and density of the algae.
  • the type and density of the algae covered on the surface of the insulating material covering the algae are known.
  • the standard spectral database can be divided according to the specific manufacturing materials of insulating materials, so as to construct multiple standard spectral databases corresponding to different types of insulating materials.
  • the standard spectrum database When analyzing the coverage of algae covered by the actually measured insulating materials, according to You need to select the corresponding standard spectrum database; you can also build a standard spectrum database to store different types of insulating materials, and the corresponding relationship between the insulating material spectral data and the algae coverage on the insulating material surface. The actual measurement of the algae coverage of the insulating material During analysis, different types of insulating materials are automatically analyzed and judged, and the beneficial effects obtained by the present invention are not affected.
  • the action point is bombarded to induce the generation of plasma, the plasma spectrum data is collected, and the background spectrum data is removed and other operations are performed to obtain spectrum data with a high signal-to-noise ratio and signal-to-back ratio of each of the insulating materials.
  • the spectral data of each insulating material is collected, and training is performed to construct the standard spectral database.
  • the step S23 which is to train the spectral data of each of the insulating materials to obtain the standard spectral database, includes steps S231 to S232:
  • the spectral data of each covered algae insulating material is compared with the spectral data of the uncovered algae insulating material, and the spectral data of each covered algae insulating material is determined crest;
  • the spectral line information of the elements in the NIST database is matched to determine the characteristic element spectral line data corresponding to each of the algae-covered insulating materials.
  • the spectral line information of the elements in the database is matched, so that a suitable analysis element is selected as the characteristic element of the insulating material covering the algae.
  • the types of the characteristic elements include, but are not limited to, elements such as magnesium, calcium, aluminum, sodium, copper, and iron.
  • Each of the characteristic elements of the covered algae insulating material may be one or more than one. Specifically, according to the difference between the characteristic element and the uncovered algae insulating material, the corresponding spectral data peaks are determined and selected.
  • Example 1 provides a graph of spectral data at different wavelengths of covered algae silicone rubber and uncovered algae silicone rubber in a method for detecting algae on the surface of an insulating material.
  • the spectral data of the two are superimposed and compared to determine the peaks of the spectral data covering the algae silicone rubber, and then by matching the peaks in the spectral data with the element spectral line information in the NIST database, To determine the characteristic element spectral line data corresponding to the covered algae silicone rubber.
  • the spectral data of the algae-coated silicone rubber is quite different from that of the non-algae-coated silicone rubber.
  • the intensity of the Mg and Fe element spectral lines of the covered part of the algae is higher than that of the uncovered part, so it is determined that the silicone rubber is insulated
  • the characteristic element types in the algae covered on the surface of the material are Mg and Fe.
  • the spectral line intensity of the characteristic element and the spectral line intensity ratio of different characteristic elements can be further determined to serve as the characteristic element spectral line data of the covering algae insulating material, which is convenient for subsequent communication with the said characteristic element. Establish a corresponding relationship between the types and densities of the algae covering the algae insulation material, and establish an accurate and complete standard spectral database.
  • the characteristic element spectral line data is used as an independent variable
  • the corresponding algae type and density of the covering algae insulating material are used as dependent variables
  • the corresponding fitting model is used to perform fitting, thereby training to obtain the standard spectrum database.
  • the preset fitting model includes, but is not limited to, a univariate fitting model, a multivariate fitting model, and a random forest fitting model.
  • the first embodiment of the present invention provides a method for detecting algae on the surface of an insulating material.
  • the measured spectrum data of the surface of the insulating material is obtained through laser-induced breakdown spectroscopy technology, and analyzed through a preset standard spectral database to determine the actual measurement. Whether the surface of the insulating material is covered with algae, and obtain the type and density of the covered algae. It can improve the efficiency of analysis of the algae covered by the insulating material, quickly and accurately detect the type and density of the algae covered by the actually measured insulating material, and provide a basis for maintaining the safety and stability of power equipment.
  • FIG. 4 is a schematic structural diagram of a device for detecting algae on the surface of an insulating material provided in the second embodiment of the present invention.
  • the second embodiment of the present invention provides a device 20 for detecting algae on the surface of an insulating material, which includes a collection module 21, a judgment module 22, and an analysis module 23;
  • the acquisition module 21 is configured to act on the measured insulating material with a laser pulse of a preset power density, and collect the spectral data of the measured insulating material;
  • the judgment module 22 is configured to compare the spectral data of the actually measured insulating material with a preset standard spectral database to judge whether the surface of the measured insulating material is covered with algae;
  • the analysis module 23 is used to analyze the type and density of algae on the surface of the actually measured insulating material when the measured insulating material is covered with algae.
  • the device for detecting algae on the surface of an insulating material provided in the second embodiment of the present invention is used to perform all the process steps of the method for detecting algae on the surface of an insulating material provided by the above-mentioned embodiment 1. There is a one-to-one correspondence between the beneficial effects, and therefore will not be repeated.
  • the second embodiment of the present invention provides a device for detecting algae on the surface of an insulating material.
  • the acquisition module obtains the measured spectral data on the surface of the insulating material, and the judgment module compares the spectral data with the preset
  • the standard spectral database is compared to determine whether the surface of the actually measured insulating material is covered with algae, and the analysis module 23 outputs the type and density of the covered algae on the surface of the measured insulating material.
  • the device can improve the analysis efficiency of the algae covered by the insulating material, quickly and accurately detect the type and density of the algae covered by the actually measured insulating material, and provide a basis for maintaining the safety and stability of power equipment.
  • FIG. 5 it is a schematic structural diagram of a device for detecting algae on the surface of an insulating material provided in the third embodiment of the present invention.
  • the device 30 for detecting algae on the surface of an insulating material provided in the third embodiment of the present invention includes a processor 31, a memory 32, and a computer program stored in the memory and configured to be executed by the processor, such as constructing the standard spectrum Database method.
  • the processor executes the computer program
  • the steps in the embodiment of the method for constructing the standard spectrum database are implemented, for example, step S21 to step S23 shown in FIG. 2.
  • the function of each module in the above device embodiments is realized, for example, the device for detecting algae on the surface of an insulating material described in Embodiment 2.
  • the computer program may be divided into one or more modules, and the one or more modules are stored in the memory 32 and executed by the processor 31 to complete the present invention.
  • the one or more modules may be a series of computer program instruction segments capable of completing specific functions, and the instruction segments are used to describe the execution process of the computer program in the detection device 30 for algae on the surface of the insulating material.
  • the computer program can be divided into an acquisition module 21, a judgment module 22, and an analysis module 23. The specific functions of each module are as follows:
  • the acquisition module 21 is configured to act on the measured insulating material with a laser pulse of a preset power density, and collect the spectral data of the measured insulating material;
  • the judgment module 22 is configured to compare the spectral data of the actually measured insulating material with a preset standard spectral database to judge whether the surface of the measured insulating material is covered with algae;
  • the analysis module 23 is used to analyze the type and density of algae on the surface of the actually measured insulating material when the measured insulating material is covered with algae.
  • the detection device 30 for algae on the surface of the insulating material may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the detection device 30 for algae on the surface of the insulating material may include, but is not limited to, a processor 31 and a memory 32.
  • a processor 31 and a memory 32 may be included in the schematic diagram.
  • the schematic diagram is only an example of the detection device 30 for algae on the surface of the insulating material, and does not constitute a limitation on the detection device 30 for algae on the surface of the insulating material, and may include more or less components than shown in the figure.
  • the detection device 30 for algae on the surface of the insulating material may also include input and output devices, network access devices, buses, and the like.
  • the so-called processor 31 may be a central processing unit (Central Processing Unit, CPU), other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the processor 31 is the control center of the algae detection equipment 30 on the surface of the insulating material, and connects the whole with various interfaces and lines. Algae on the surface of the insulating material is the various parts of the device 30 for detecting algae.
  • the memory 32 may be used to store the computer program and/or module.
  • the processor executes or executes the computer program and/or module stored in the memory and calls data stored in the memory to implement the Various functions of the detection device 30 for algae on the surface of the insulating material.
  • the memory 32 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Store the data (such as audio data, phone book, etc.) created based on the use of the mobile phone.
  • the memory 32 may include a high-speed random access memory, and may also include a non-volatile memory, such as a hard disk, a memory, a plug-in hard disk, a Smart Media Card (SMC), and a Secure Digital (SD) Card, Flash Card, at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • a non-volatile memory such as a hard disk, a memory, a plug-in hard disk, a Smart Media Card (SMC), and a Secure Digital (SD) Card, Flash Card, at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the integrated module of the algae detection device 30 on the surface of the insulating material is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the present invention implements all or part of the processes in the above-mentioned embodiments and methods, and can also be completed by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium. When the program is executed by the processor, it can implement the steps of the foregoing method embodiments.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunications signal, and software distribution media, etc.
  • the above-described embodiments of the detection device for algae on the surface of the insulating material are only illustrative, and the units described as separate parts may or may not be physically separated, and the parts displayed as the units may be Yes or it may not be a physical unit, that is, it may be located in one place, or it may be distributed on multiple network units.
  • Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the connection relationship between the modules indicates that they have a communication connection between them, which can be specifically implemented as one or more communication buses or signal lines. Those of ordinary skill in the art can understand and implement it without creative work.

Abstract

一种绝缘材料表面藻类的检测方法,包括:以预设的功率密度的激光脉冲作用于实测绝缘材料上,采集实测绝缘材料的光谱数据;将实测绝缘材料的光谱数据通过预设的标准光谱数据库进行对比,判断实测绝缘材料表面是否覆盖藻类;当实测绝缘材料表面覆盖藻类时,分析实测绝缘材料表面的藻类的种类和密度。一种绝缘材料表面藻类的检测装置和设备,通过获取实测绝缘材料的光谱数据,快速精准地检测实测绝缘材料覆盖藻类的种类和密度,为维护电力设备的安全稳定提供基础。

Description

一种绝缘材料表面的藻类检测方法、装置和设备 技术领域
本发明涉及光谱分析方法领域,尤其涉及一种绝缘材料表面的藻类检测方法、装置和设备。
背景技术
在输电线路中,绝缘子在导线和铁塔之间起着机械连接和电气绝缘的双重作用。在实际应用中,绝缘子在运行中由于受到工厂、交通、农业、矿山和生活等的排放物,以及自然灰尘飘落等的影响,绝缘子表面逐渐积累污秽物质。尤其在温湿地带的森林和山地,大气中漂浮着微生物孢子,当环境适宜,孢子易滋生在绝缘子表面,逐渐成为大面积的藻类、青苔或地衣。藻类等微生物生长于作为输变电设备的复合绝缘材料表面,会对复合绝缘材料的电气性能、机械性能、憎水性能和物化性能造成影响,从而对电力系统稳定、安全、可靠运行造成威胁。在潮湿环境中,绝缘子材料可能发生污闪放电,导致发生污闪事故,给经济发展和人们生活带来巨大损失。
在现有技术中,通常利用目测或者图像拍摄分析的方法,表征藻类覆盖面积比例和单位面积生长厚度的参数,或利用传统检测方法如等值盐密法、泄漏电流法等实现对藻类种类和密度的检测。然而,在实施本发明过程中,发明人发现现有技术至少存在如下问题:因为绝缘子表面污秽情况复杂,图像拍摄分析法通过污秽颜色对污秽成分进行判断可能存在一定误差;而传统检测方法存在检测周期长,耗费人力物力等不足。因此急需能够直接鉴定绝缘子表面的藻类类型,表征其精确分布的技术方法。
发明内容
本发明实施例的目的是提供一种绝缘材料表面的藻类检测方法、装置和设备,能通过获取实测绝缘材料的光谱数据,快速精准地检测所述实测绝缘材料覆盖藻类的种类和密度,为维护电力设备的安全稳定提供基础。
为实现上述目的,本发明实施例提供了一种绝缘材料表面的藻类检测方法,包括:
以预设的功率密度的激光脉冲作用于实测绝缘材料上,采集所述实测绝缘材料的光谱数据;
将所述实测绝缘材料的光谱数据通过预设的标准光谱数据库进行对比,判断所述实测绝缘材料表面是否覆盖藻类;
当所述实测绝缘材料表面覆盖藻类时,分析所述实测绝缘材料表面的藻类的种类和密度。
作为上述方案的改进,建立所述标准光谱数据库包括步骤:
获取无覆盖藻类绝缘材料和若干个覆盖藻类绝缘材料;其中,每一所述覆盖藻类绝缘材料的表面覆盖的藻类的种类和密度已知,且互不相同;
以所述预设的功率密度的激光脉冲作用于每一所述绝缘材料上,采集每一所述绝缘材料的光谱数据;
将每一所述绝缘材料的光谱数据进行训练,得到所述标准光谱数据库。
作为上述方案的改进,所述将每一所述绝缘材料的光谱数据进行训练,得到所述标准光谱数据库,包括:
基于NIST数据库,确定每一所述覆盖藻类绝缘材料对应的特征元素谱线数据;
将每一所述特征元素谱线数据与对应的覆盖藻类绝缘材料的藻类种类和密度的对应关系导入预设的拟合模型进行拟合,以训练得到所述标准光谱数据库;其中,所述特征元素谱线数据包括特征元素种类、特征元素的谱线强度、不同特征元素的谱线强度比。
作为上述方案的改进,所述基于NIST数据库,确定每一所述覆盖藻类绝缘材料对应的特征元素谱线数据具体包括:
针对同一种类的绝缘材料,将每一所述覆盖藻类绝缘材料的光谱数据与所述无覆盖藻类绝缘材料的光谱数据进行对比,确定所述覆盖藻类绝缘材料的光谱数据中的波峰;
根据所述光谱数据中的波峰,与所述NIST数据库中的元素谱线信息相匹配,以确定每一所述覆盖藻类绝缘材料对应的特征元素谱线数据。
作为上述方案的改进,所述预设的拟合模型包括但不限于单变量拟合模型、多元拟合模型和随机森林拟合模型。
作为上述方案的改进,所述以预设的功率密度的激光脉冲作用于实测绝缘材料上,采集所述实测绝缘材料的光谱数据,具体包括:
获取所述实测绝缘材料的表面预设形状和预设大小的区域,作为激光脉冲的作用区域;
利用所述预设功率密度的激光脉冲,对所述作用区域中若干个均匀分布的作用点进行轰击,得到所述实测绝缘材料的原始光谱数据;
对所述原始光谱数据进行预处理,去除背景光谱数据的干扰,以得到所述实测绝缘材料的光谱数据。
本发明实施例还提供了一种绝缘材料表面藻类的检测装置,包括采集模块、判断模块和分析模块;
所述采集模块,用于以预设的功率密度的激光脉冲作用于实测绝缘材料上,采集所述实测绝缘材料的光谱数据;
所述判断模块,用于将所述实测绝缘材料的光谱数据通过预设的标准光谱数据库进行对比,判断所述实测绝缘材料表面是否覆盖藻类;
所述分析模块,用于当所述实测绝缘材料的覆盖藻类时,分析所述实测绝缘材料的表面藻类的种类和密度。
本发明实施例还提供了一种绝缘材料表面藻类的检测设备,其特征在于,包括处理器、存储器以及存储在所述存储器中且被配置为由所述处理器执行的计算机程序,所述处理器执行所述计算机程序时实现如上任意一项所述的绝缘材料表面藻类的检测方法。
与现有技术相比,本发明公开的一种绝缘材料表面藻类的检测方法、装置和设备,通过激光诱导击穿光谱技术,获取实测绝缘材料表面的光谱数据,并通过预设的标准光谱数据库进行分析,从而判断所述实测绝缘材料表面是否覆盖有藻类,并得到覆盖藻类的种类和密度。能够提高对绝缘材料覆盖藻类情况的分析效率,快速精准地检测到所述实测绝缘材料覆盖藻类的种类和密度,为维护电力设备的安全稳定提供基础。
附图说明
图1是本发明实施例一提供的一种绝缘材料表面藻类的检测方法的流程示意图;
图2是本发明实施例一提供的一种绝缘材料表面藻类的检测方法中建立标准光谱数据库的步骤流程示意图;
图3(a)和图3(b)是本发明实施例一提供的一种绝缘材料表面藻类的检测方法中覆盖藻类硅橡胶和未覆盖藻类硅橡胶在不同波长下的光谱数据图;
图4是本发明实施例二提供的一种绝缘材料表面藻类的检测装置的结构示意图;
图5是本发明实施例三提供的一种绝缘材料表面藻类的检测设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、 完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
参见图1,是本发明实施例一提供的一种绝缘材料表面藻类的检测方法的流程示意图。本发明实施例一提供的一种绝缘材料表面藻类的检测方法,通过步骤S11至S13执行:
S11、以预设的功率密度的激光脉冲作用于实测绝缘材料上,采集所述实测绝缘材料的光谱数据;
获取需要进行覆盖藻类情况检测的实测绝缘材料,所述绝缘材料根据制造材料分类,可以是电瓷绝缘子、玻璃绝缘子和复合绝缘子等等,所述覆盖藻类情况表示绝缘材料表面是否覆盖藻类、以及若覆盖藻类时藻类的种类和密度。利用激光诱导击穿光谱技术,通过产生功率密度极高的激光脉冲,并将所述激光脉冲作用于所述实测绝缘材料上,通过在所述实测绝缘材料表面诱导产生等离子体,收集所述等离子体光谱数据,得到所述实测绝缘材料的光谱数据。
作为优选,步骤S11具体通过步骤S111至S113执行:
S111、获取所述实测绝缘材料的表面预设形状和预设大小的区域,作为激光脉冲的作用区域;
具体地,在所述实测绝缘材料上,预先设定一定形状和大小的区域作为所述激光脉冲的作用区域,例如,在所述实测绝缘材料上选取一个5cm*5cm的正方形区域作为所述作用区域,以在所述作用区域上进行激光脉冲诱导击穿。
S112、利用所述预设功率密度的激光脉冲,对所述作用区域中若干个均匀分布的作用点进行轰击,得到所述实测绝缘材料的原始光谱数据。
作为举例,当在所述实测绝缘材料上选取一个5cm*5cm的正方形区域作为所述作用区域时,可以选取所述正方形区域的四个顶点以及中点位置作为所述作用 点,利用所述预设功率密度的激光脉冲,对所述作用点进行轰击,诱导产生等离子体,采集等离子体光谱数据,也即得到所述实测绝缘材料的原始光谱数据。
可以理解地,上述激光脉冲的作用区域和作用点的选取仅作为举例,在实际应用中,可以根据选取的实测绝缘材料的形状大小和制造材料等因素,对作用区域和作用点进行设置,例如,可以选取适合大小如直径为5cm的圆形作为激光脉冲的作用区域,或适合大小的长方形等其他形状作为激光脉冲的作用区域,均不影响本发明取得的有益效果。
S113、对所述原始光谱数据进行预处理,去除背景光谱数据的干扰,以得到所述实测绝缘材料的光谱数据。
收集所述原始光谱数据中的背景光谱数据,通过例如matlab等软件对背景光谱数据进行去除,以得到所述实测绝缘材料的光谱数据。
作为优选地,可以通过预先搭建激光诱导击穿光谱设备,即远程LIBS设备,以实现对所述实测绝缘材料的光谱数据的采集。所述激光诱导击穿光谱设备包括激光器、光路系统、控制器和光谱仪等,通过选取合适的激光能量,调整合适的收光角度和光谱仪延迟时间,可以产生符合要求的所述预设功率密度的激光脉冲,进而获得信噪比和信背比较高的光谱数据。在实际应用中,可以根据实测绝缘材料的实际情况对所述激光能量、收光角度和光谱仪延迟时间进行具体设置,以得到最优的光谱数据,在此不做具体限定。
S12、将所述实测绝缘材料的光谱数据通过预设的标准光谱数据库进行对比,判断所述实测绝缘材料表面是否覆盖藻类;
S13、当所述实测绝缘材料表面覆盖藻类时,分析所述实测绝缘材料表面的藻类的种类和密度。
可以根据不同绝缘材料,预先构建一个或多个标准光谱数据库,以存储若干个覆盖藻类的绝缘材料的光谱数据与其表面覆盖的藻类的种类和密度之间的对应关系。可以理解地,所述标准光谱数据库中还存储有对应的无覆盖藻类的绝缘 材料的光谱数据,因此,当采集到实测绝缘材料的光谱数据时,通过与所述标准光谱数据库的比对,可以判断所述实测绝缘材料表面是否覆盖藻类。并在判定所述实测绝缘材料的表面覆盖有藻类时,通过所述标准光谱数据库,进一步分析得到所述实测绝缘材料的表面覆盖的藻类的种类和密度。
进一步地,参见图2,是本发明实施例一提供的一种绝缘材料表面藻类的检测方法中建立标准光谱数据库的步骤流程示意图建立所述标准光谱数据库包括步骤S21至S23:
S21、获取无覆盖藻类绝缘材料和若干个覆盖藻类绝缘材料;其中,每一所述覆盖藻类绝缘材料的表面覆盖的藻类的种类和密度已知,且互不相同;
为构建所述标准光谱数据,需要通过大量已知覆盖藻类情况绝缘材料作为训练数据组进行训练,从而建立所述标准光谱数据库。其中,所述覆盖藻类情况表示绝缘材料表面是否覆盖藻类、以及若覆盖藻类时,藻类的种类和密度,所述训练数据组中,覆盖藻类的绝缘材料表面覆盖的藻类的种类和密度已知,从而进行标准数据库的建立。
需要说明的是,所述标准光谱数据库可以是根据绝缘材料的具体制造材料进行划分,从而构建多个不同种类绝缘材料对应的标准光谱数据库,在进行实测绝缘材料的覆盖藻类情况的分析时,根据需要选择对应的标准光谱数据库;也可以构建一个标准光谱数据库,存储有不同种类的绝缘材料下,绝缘材料光谱数据和绝缘材料表面覆盖藻类情况的对应关系,在进行实测绝缘材料的覆盖藻类情况的分析时,自动对应不同种类的绝缘材料进行分析和判断,均不影响本发明取得的有益效果。
S22、以所述预设的功率密度的激光脉冲作用于每一所述绝缘材料上,采集每一所述绝缘材料的光谱数据;
同理,与对实测绝缘材料的覆盖藻类情况进行分析检测的过程相同,在建立所述标准光谱数据库时,仍需利用激光诱导击穿光谱技术,搭建所述激光诱导击 穿光谱设备,通过选取合适的激光能量,调整合适的收光角度和光谱仪延迟时间,以产生所述功率密度极高的预设功率密度的激光脉冲。并在每一所述绝缘材料表面上选取预设形状和预设大小的区域,作为激光脉冲的作用区域;利用所述预设功率密度的激光脉冲,对所述作用区域中若干个均匀分布的作用点进行轰击,诱导产生等离子体,收集所述等离子体光谱数据,并通过去除背景光谱数据等操作,得到每一所述绝缘材料的信噪比和信背比较高的光谱数据。
S23、将每一所述绝缘材料的光谱数据进行训练,得到所述标准光谱数据库。
具体地,通过获取无覆盖藻类绝缘材料和若干个已知种类和密度的藻类的覆盖藻类绝缘材料,采集每一所述绝缘材料的光谱数据,并进行训练以构建所述标准光谱数据库。
优选地,所述步骤S23,即将每一所述绝缘材料的光谱数据进行训练,得到所述标准光谱数据库,包括步骤S231至S232:
S231、基于NIST数据库,确定每一所述覆盖藻类绝缘材料对应的特征元素谱线数据;其中,所述特征元素谱线数据包括特征元素种类、特征元素的谱线强度、不同特征元素的谱线强度比。
优选地,针对同一种类的绝缘材料,将每一所述覆盖藻类绝缘材料的光谱数据与所述无覆盖藻类绝缘材料的光谱数据进行对比,确定每一所述覆盖藻类绝缘材料的光谱数据中的波峰;
根据所述光谱数据中的波峰,与所述NIST数据库中的元素谱线信息相匹配,以确定每一所述覆盖藻类绝缘材料对应的特征元素谱线数据。
具体地,通过将每一所述覆盖藻类绝缘材料的光谱数据与所述无覆盖藻类绝缘材料的光谱数据进行对比,确定每一所述覆盖藻类绝缘材料的光谱数据中的波峰,与所述NIST数据库中的元素谱线信息相匹配,从而选取合适的分析元素作为所述覆盖藻类绝缘材料的特征元素。需要说明的是,所述特征元素种类包括但不限于镁、钙、铝、钠、铜和铁等元素。每一所述覆盖藻类绝缘材料的特征元素 可以是一个,也可以是多个,具体根据其与所述无覆盖藻类绝缘材料的差别,确定相应的光谱数据波峰而进行选取。
以硅橡胶绝缘材料作为举例,通过上述方法在同一条件下获取覆盖藻类硅橡胶和未覆盖藻类硅橡胶的绝缘材料的光谱数据,参见图3(a)和图3(b),是本发明实施例一提供的一种绝缘材料表面藻类的检测方法中覆盖藻类硅橡胶和未覆盖藻类硅橡胶在不同波长下的光谱数据图。将两者的光谱数据进行叠加比对,以确定所述覆盖藻类硅橡胶的光谱数据的波峰,再通过将所述光谱数据中的波峰,与所述NIST数据库中的元素谱线信息相匹配,以确定所述覆盖藻类硅橡胶对应的特征元素谱线数据。参见图3,可以看出覆藻硅橡胶与未覆藻硅橡胶的光谱数据差别较大,其中覆盖藻类部分的Mg、Fe元素谱线强度高于未覆盖藻类部分,因此确定所述硅橡胶绝缘材料表面覆盖藻类中的特征元素种类为Mg、Fe。
在确定所述特征元素后,还可以进一步确定所述特征元素的谱线强度、不同特征元素的谱线强度比,以作为所述覆盖藻类绝缘材料的特征元素谱线数据,便于后续与所述覆盖藻类绝缘材料的藻类种类和密度建立相应的关系,建立精准完善的标准光谱数据库。
可以理解的,以上仅以硅橡胶绝缘材料作为举例,在实际应用中,上述方法还适用于其他类型的绝缘材料,如玻璃绝缘材料、电瓷绝缘材料等等,均不影响本发明取得的有益效果。
S232、将每一所述特征元素谱线数据与对应的覆盖藻类绝缘材料的藻类种类和密度的对应关系导入预设的拟合模型进行拟合,以训练得到所述标准光谱数据库。
具体地,以所述特征元素谱线数据作为自变量,以对应的覆盖藻类绝缘材料的藻类种类和密度作为因变量,通过相应的拟合模型进行拟合,从而训练得到所述标准光谱数据库。其中,所述预设的拟合模型包括但不限于单变量拟合模型、多元拟合模型和随机森林拟合模型。
本发明实施例一提供了一种绝缘材料表面藻类的检测方法,通过激光诱导击穿光谱技术,获取实测绝缘材料表面的光谱数据,并通过预设的标准光谱数据库进行分析,从而判断所述实测绝缘材料表面是否覆盖有藻类,并得到覆盖藻类的种类和密度。能够提高对绝缘材料覆盖藻类情况的分析效率,快速精准地检测到所述实测绝缘材料覆盖藻类的种类和密度,为维护电力设备的安全稳定提供基础。
实施例二
参见图4,是本发明实施例二提供的一种绝缘材料表面藻类的检测装置的结构示意图。本发明实施例二提供的一种绝缘材料表面藻类的检测装置20,包括采集模块21、判断模块22和分析模块23;
所述采集模块21,用于以预设的功率密度的激光脉冲作用于实测绝缘材料上,采集所述实测绝缘材料的光谱数据;
所述判断模块22,用于将所述实测绝缘材料的光谱数据通过预设的标准光谱数据库进行对比,判断所述实测绝缘材料表面是否覆盖藻类;
所述分析模块23,用于当所述实测绝缘材料的覆盖藻类时,分析所述实测绝缘材料的表面藻类的种类和密度。
需要说明的是,本发明实施例二提供的一种绝缘材料表面藻类的检测装置用于执行上述实施例一提供的一种绝缘材料表面藻类的检测方法的所有流程步骤,两者的工作原理和有益效果一一对应,因而不再赘述。
本发明实施例二提供了一种绝缘材料表面藻类的检测装置,通过激光诱导击穿光谱技术,由采集模块获取实测绝缘材料表面的光谱数据,并通过判断模块对所述光谱数据与预设的标准光谱数据库进行对比,从而判断所述实测绝缘材料表面是否覆盖有藻类,由分析模块23输出所述实测绝缘材料表面的覆盖藻类的种类和密度。该装置能够提高对绝缘材料覆盖藻类情况的分析效率,快速精准地检测到所述实测绝缘材料覆盖藻类的种类和密度,为维护电力设备的安全稳定提供 基础。
实施例三
参见图5,是本发明实施例三提供的一种绝缘材料表面藻类的检测设备的结构示意图。本发明实施例三提供的绝缘材料表面藻类的检测设备30,包括处理器31、存储器32以及存储在所述存储器中且被配置为由所述处理器执行的计算机程序,例如构建所述标准光谱数据库的方法。所述处理器执行所述计算机程序时实现上述构建所述标准光谱数据库的方法实施例中的步骤,例如图2所示的步骤S21至步骤S23。或者,所述处理器执行所述计算机程序时实现上述各装置实施例中各模块的功能,例如实施例二所述的绝缘材料表面藻类的检测装置。
示例性的,所述计算机程序可以被分割成一个或多个模块,所述一个或者多个模块被存储在所述存储器32中,并由所述处理器31执行,以完成本发明。所述一个或多个模块可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序在所述绝缘材料表面藻类的检测设备30中的执行过程。例如,所述计算机程序可以被分割成采集模块21、判断模块22和分析模块23,各模块具体功能如下:
所述采集模块21,用于以预设的功率密度的激光脉冲作用于实测绝缘材料上,采集所述实测绝缘材料的光谱数据;
所述判断模块22,用于将所述实测绝缘材料的光谱数据通过预设的标准光谱数据库进行对比,判断所述实测绝缘材料表面是否覆盖藻类;
所述分析模块23,用于当所述实测绝缘材料的覆盖藻类时,分析所述实测绝缘材料的表面藻类的种类和密度。
所述绝缘材料表面藻类的检测设备30可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述绝缘材料表面藻类的检测设备30可包括,但不仅限于,处理器31、存储器32。本领域技术人员可以理解,所述示意图仅 仅是绝缘材料表面藻类的检测设备30的示例,并不构成对绝缘材料表面藻类的检测设备30的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述绝缘材料表面藻类的检测设备30还可以包括输入输出设备、网络接入设备、总线等。
所称处理器31可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器31是所述绝缘材料表面藻类的检测设备30的控制中心,利用各种接口和线路连接整个绝缘材料表面藻类的检测设备30的各个部分。
所述存储器32可用于存储所述计算机程序和/或模块,所述处理器通过运行或执行存储在所述存储器内的计算机程序和/或模块,以及调用存储在存储器内的数据,实现所述绝缘材料表面藻类的检测设备30的各种功能。所述存储器32可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器32可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其中,所述绝缘材料表面藻类的检测设备30集成的模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程, 也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。
需说明的是,以上所描述的绝缘材料表面藻类的检测设备实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (8)

  1. 一种绝缘材料表面藻类的检测方法,其特征在于,包括:
    以预设的功率密度的激光脉冲作用于实测绝缘材料上,采集所述实测绝缘材料的光谱数据;
    将所述实测绝缘材料的光谱数据通过预设的标准光谱数据库进行对比,判断所述实测绝缘材料表面是否覆盖藻类;
    当所述实测绝缘材料表面覆盖藻类时,分析所述实测绝缘材料表面的藻类的种类和密度。
  2. 如权利要求1所述的绝缘材料表面藻类的检测方法,其特征在于,建立所述标准光谱数据库包括步骤:
    获取无覆盖藻类绝缘材料和若干个覆盖藻类绝缘材料;其中,每一所述覆盖藻类绝缘材料的表面覆盖的藻类的种类和密度已知,且互不相同;
    以所述预设的功率密度的激光脉冲作用于每一所述绝缘材料上,采集每一所述绝缘材料的光谱数据;
    将每一所述绝缘材料的光谱数据进行训练,得到所述标准光谱数据库。
  3. 如权利要求2所述的绝缘材料表面藻类的检测方法,其特征在于,所述将每一所述绝缘材料的光谱数据进行训练,得到所述标准光谱数据库,包括:
    基于NIST数据库,确定每一所述覆盖藻类绝缘材料对应的特征元素谱线数据;其中,所述特征元素谱线数据包括特征元素种类、特征元素的谱线强度、不同特征元素的谱线强度比;
    将每一所述特征元素谱线数据与对应的覆盖藻类绝缘材料的藻类种类和密度的对应关系导入预设的拟合模型进行拟合,以训练得到所述标准光谱数据库。
  4. 如权利要求3所述的绝缘材料表面藻类的检测方法,其特征在于,所述基于NIST数据库,确定每一所述覆盖藻类绝缘材料对应的特征元素谱线数据具体包括:
    针对同一种类的绝缘材料,将每一所述覆盖藻类绝缘材料的光谱数据与所述无覆盖藻类绝缘材料的光谱数据进行对比,确定所述覆盖藻类绝缘材料的光谱数据中的波峰;
    根据所述光谱数据中的波峰,与所述NIST数据库中的元素谱线信息相匹配,以确定每一所述覆盖藻类绝缘材料对应的特征元素谱线数据。
  5. 如权利要求3所述的绝缘材料表面藻类的检测方法,其特征在于,所述预设的拟合模型包括但不限于单变量拟合模型、多元拟合模型和随机森林拟合模型。
  6. 如权利要求1所述的绝缘材料表面藻类的检测方法,其特征在于,所述以预设的功率密度的激光脉冲作用于实测绝缘材料上,采集所述实测绝缘材料的光谱数据,具体包括:
    获取所述实测绝缘材料的表面预设形状和预设大小的区域,作为激光脉冲的作用区域;
    利用所述预设功率密度的激光脉冲,对所述作用区域中若干个均匀分布的作用点进行轰击,得到所述实测绝缘材料的原始光谱数据;
    对所述原始光谱数据进行预处理,去除背景光谱数据的干扰,以得到所述实测绝缘材料的光谱数据。
  7. 一种绝缘材料表面藻类的检测装置,其特征在于,包括采集模块、分析 模块和输出模块;
    所述采集模块,用于以预设的功率密度的激光脉冲作用于实测绝缘材料上,采集所述实测绝缘材料的光谱数据;
    所述判断模块,用于将所述实测绝缘材料的光谱数据通过预设的标准光谱数据库进行对比,判断所述实测绝缘材料表面是否覆盖藻类;
    所述分析模块,用于当所述实测绝缘材料的覆盖藻类时,分析所述实测绝缘材料的表面藻类的种类和密度。
  8. 一种绝缘材料表面藻类的检测设备,其特征在于,包括处理器、存储器以及存储在所述存储器中且被配置为由所述处理器执行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至6中任意一项所述的绝缘材料表面藻类的检测方法。
PCT/CN2020/107545 2019-10-31 2020-08-06 一种绝缘材料表面的藻类检测方法、装置和设备 WO2021082594A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911052804.5A CN110823863A (zh) 2019-10-31 2019-10-31 一种绝缘材料表面的藻类检测方法、装置和设备
CN201911052804.5 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021082594A1 true WO2021082594A1 (zh) 2021-05-06

Family

ID=69551661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107545 WO2021082594A1 (zh) 2019-10-31 2020-08-06 一种绝缘材料表面的藻类检测方法、装置和设备

Country Status (2)

Country Link
CN (1) CN110823863A (zh)
WO (1) WO2021082594A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117517335A (zh) * 2023-12-27 2024-02-06 国网辽宁省电力有限公司电力科学研究院 变电设备绝缘子污秽监测系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110823863A (zh) * 2019-10-31 2020-02-21 中国南方电网有限责任公司电网技术研究中心 一种绝缘材料表面的藻类检测方法、装置和设备
CN111986201B (zh) * 2020-09-28 2023-12-22 南方电网科学研究院有限责任公司 一种绝缘子的表面藻类密度的测算方法和装置
CN113610768A (zh) * 2021-07-14 2021-11-05 南方电网科学研究院有限责任公司 绝缘子表面藻类覆盖率测算方法、装置及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1995979A (zh) * 2006-12-05 2007-07-11 中国科学院安徽光学精密机械研究所 水体金属污染物激光击穿光谱探测方法与系统
EP2639574A1 (en) * 2012-03-16 2013-09-18 Ricerca Sul Sistema Energetico - RSE S.p.A. Apparatus for monitoring insulators of an overhead electric power line
CN105074437A (zh) * 2013-02-27 2015-11-18 阿雷瓦核废料回收公司 用于通过激光诱导等离子体光谱来分析表面层的成分并进行采样以执行互补分析的系统和方法
CN106770070A (zh) * 2016-11-11 2017-05-31 清华大学深圳研究生院 一种绝缘子表面等值盐密测量方法及装置
US20170234800A1 (en) * 2016-02-12 2017-08-17 Bwt Property, Inc. Laser Induced Breakdown Spectroscopy (LIBS) Apparatus for the Detection of Mineral and Metal Contamination in Liquid Samples
CN109406541A (zh) * 2018-11-22 2019-03-01 深圳供电局有限公司 一种检测外绝缘设备表面金属污秽的装置及方法
CN110823863A (zh) * 2019-10-31 2020-02-21 中国南方电网有限责任公司电网技术研究中心 一种绝缘材料表面的藻类检测方法、装置和设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0211068D0 (en) * 2002-05-14 2002-06-26 Amersham Biosciences Uk Ltd Method for assessing biofilms
JP2017051162A (ja) * 2015-09-11 2017-03-16 国立研究開発法人農業・食品産業技術総合研究機構 検体表面の生菌数推定方法及び装置、その装置に搭載されるプログラム
CN105738364B (zh) * 2015-12-28 2018-08-17 清华大学深圳研究生院 基于图像处理的硅橡胶表面藻类生长程度测量方法及装置
CN106053432A (zh) * 2016-06-01 2016-10-26 清华大学深圳研究生院 一种用于编解码的微球及其编解码方法、解码系统
EP3516374B1 (en) * 2016-09-21 2023-04-12 PreSens Precision Sensing GmbH Method, arrangement, computer program product and sensor foil for detecting microorganisms on a surface
CN109030488B (zh) * 2018-06-25 2021-05-28 中国海洋大学 藻类生物量检测方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1995979A (zh) * 2006-12-05 2007-07-11 中国科学院安徽光学精密机械研究所 水体金属污染物激光击穿光谱探测方法与系统
EP2639574A1 (en) * 2012-03-16 2013-09-18 Ricerca Sul Sistema Energetico - RSE S.p.A. Apparatus for monitoring insulators of an overhead electric power line
CN105074437A (zh) * 2013-02-27 2015-11-18 阿雷瓦核废料回收公司 用于通过激光诱导等离子体光谱来分析表面层的成分并进行采样以执行互补分析的系统和方法
US20170234800A1 (en) * 2016-02-12 2017-08-17 Bwt Property, Inc. Laser Induced Breakdown Spectroscopy (LIBS) Apparatus for the Detection of Mineral and Metal Contamination in Liquid Samples
CN106770070A (zh) * 2016-11-11 2017-05-31 清华大学深圳研究生院 一种绝缘子表面等值盐密测量方法及装置
CN109406541A (zh) * 2018-11-22 2019-03-01 深圳供电局有限公司 一种检测外绝缘设备表面金属污秽的装置及方法
CN110823863A (zh) * 2019-10-31 2020-02-21 中国南方电网有限责任公司电网技术研究中心 一种绝缘材料表面的藻类检测方法、装置和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG NAIXIAO, WANG XILIN, CHEN PING, JIA ZHIDONG, WANG LIMING, HUANG RONGHUI, LV QISHEN: "Metal Contamination Distribution Detection in High-Voltage Transmission Line Insulators by Laser-induced Breakdown Spectroscopy (LIBS)", SENSORS, SHENZHEN POWER SUPPLY CO. LTD, vol. 18, no. 8, 10 August 2018 (2018-08-10), XP055809412, DOI: 10.3390/s18082623 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117517335A (zh) * 2023-12-27 2024-02-06 国网辽宁省电力有限公司电力科学研究院 变电设备绝缘子污秽监测系统及方法
CN117517335B (zh) * 2023-12-27 2024-03-29 国网辽宁省电力有限公司电力科学研究院 变电设备绝缘子污秽监测系统及方法

Also Published As

Publication number Publication date
CN110823863A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2021082594A1 (zh) 一种绝缘材料表面的藻类检测方法、装置和设备
Xu et al. Wheat ear counting using K-means clustering segmentation and convolutional neural network
CN105187395B (zh) 基于接入路由器进行恶意软件网络行为检测的方法及系统
CN108169213B (zh) 一种激光诱导击穿光谱谱峰元素自动识别方法
CN104573155B (zh) 一种近地表pm2.5浓度估算方法及估算系统
CN110969194B (zh) 基于改进型卷积神经网络的电缆早期故障定位方法
CN110971677B (zh) 一种基于对抗强化学习的电力物联网终端设备边信道安全监测方法
CN110488165A (zh) 一种雷击放电综合分析方法、装置、终端设备及存储介质
CN108196164B (zh) 一种用于强背景噪声下电缆故障点放电声音信号提取方法
CN111812096A (zh) 一种绝缘子电弧烧伤的快速定位智能图像检测方法
CN111694827B (zh) 一种电力设备状态监测数据缺失值分类插补方法和系统
WO2023197879A1 (zh) 一种碳排放监测方法、装置、设备及存储介质
CN109214457B (zh) 一种电力线路的分类方法及装置
WO2021082593A1 (zh) 污秽的分类方法、装置、设备、介质及数据获取系统
CN107688431B (zh) 基于雷达定位的人机交互方法
CN113222250A (zh) 基于卷积神经网络的大功率激光装置输出波形预测方法
CN1816164A (zh) 用于多频信号音检测中的抗噪声方法
CN113642629B (zh) 一种基于随机森林提高谱学分析可信度的可视化方法及装置
CN113705001B (zh) 输电线路故障检测方法、系统及嵌入式设备
CN115757369A (zh) 一种激光点云数据的自动检查方法及系统
CN111521568B (zh) 一种基于光谱角的土壤含水量预测方法
CN109669021A (zh) 一种自动气象站土壤湿度数据质量控制方法
CN111160712A (zh) 一种用户的用电参数调节方法及装置
CN109615558B (zh) 一种基于用电参数大数据统计的用户用电习惯分析方法
CN103226470A (zh) 一种确定基于bvs的检查项权重值的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20881845

Country of ref document: EP

Kind code of ref document: A1