WO2021082445A1 - 一种可实现多波长激光合束和分束的光学系统 - Google Patents

一种可实现多波长激光合束和分束的光学系统 Download PDF

Info

Publication number
WO2021082445A1
WO2021082445A1 PCT/CN2020/094165 CN2020094165W WO2021082445A1 WO 2021082445 A1 WO2021082445 A1 WO 2021082445A1 CN 2020094165 W CN2020094165 W CN 2020094165W WO 2021082445 A1 WO2021082445 A1 WO 2021082445A1
Authority
WO
WIPO (PCT)
Prior art keywords
collimator
lens
optical fiber
splitting
optical system
Prior art date
Application number
PCT/CN2020/094165
Other languages
English (en)
French (fr)
Inventor
倪强
于光龙
任策
Original Assignee
福州高意光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州高意光学有限公司 filed Critical 福州高意光学有限公司
Publication of WO2021082445A1 publication Critical patent/WO2021082445A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29389Bandpass filtering, e.g. 1x1 device rejecting or passing certain wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the invention relates to the technical field of biomedicine and optical applications, in particular to an optical system that can realize beam combining and beam splitting of multi-wavelength lasers.
  • the beam combining/splitting optical system of multi-wavelength lasers generally adopts a free space method.
  • the beam combining or splitting effect is achieved by adding beam splitters and filters in the optical path, but the overall optical system volume Relatively large, not conducive to miniaturization design.
  • the purpose of the present invention is to provide a miniaturized optical system capable of combining and splitting multi-wavelength lasers.
  • An optical system that can realize beam combining and splitting of multi-wavelength lasers includes a mechanical lens barrel.
  • the shaft hole of the mechanical lens barrel is sequentially fixed with an input end collimator, a coated lens and an output end collimator,
  • the input end collimator and the output end collimator both include a sleeve, an optical fiber head and a collimating lens that are sequentially fixed on the sleeve, wherein the optical fiber head of the input end collimator is a double optical fiber head; the input The collimator lenses of the end collimator and the output end collimator are respectively placed inside the mechanical lens barrel and face the coated lens;
  • the coated lens enhances the transmission of light of a specific wavelength, and realizes high reflection to light of other wavelengths.
  • the optical fiber head of the output collimator is a single optical fiber head or a double optical fiber head.
  • the coated lens is one or two.
  • the anti-reflection transmittance of the coated lens to light of a specific wavelength is greater than 90%.
  • the collimating lenses of the input collimator and the output collimator are single spherical lenses, aspheric lenses, combined lenses or grin lenses.
  • the sleeves of the input collimator and the output collimator are both glass sleeves or metal sleeves.
  • the optical fibers in the fiber heads of the input collimator and the output collimator are single-mode fiber and multi-mode fiber.
  • the core diameter of the single-mode fiber ranges from 2-15um, and the core diameter of the multi-mode fiber is 50-300um. .
  • the present invention adopts the above technical solutions, utilizes multi-fiber collimators and optical lenses to realize the beam combining and splitting functions of multi-wavelength lasers, the structure is more compact, and the volume of the entire optical system can be greatly reduced.
  • Figure 1 is a schematic diagram of the present invention
  • Figure 2 is a schematic diagram of another embodiment of the present invention.
  • Figure 3 is a schematic diagram of the present invention after a change
  • Figure 4 is a schematic diagram of an application using multiple cascades of the present invention.
  • an optical system of the present invention that can realize multi-wavelength laser beam combining and beam splitting includes a mechanical lens barrel 1.
  • the shaft hole of the mechanical lens barrel 1 is sequentially fixed with an input end collimator
  • the input end collimator 2 includes a sleeve 21 and an optical fiber head 22 and a collimating lens 23 that are sequentially fixed on the sleeve 21, and the output end collimator 3 also includes a sleeve 31 and is sequentially fixed on the sleeve 31
  • the coated lens 4 is anti-reflection for the light of a specific wavelength, and achieves high reflection for the light of the other wavelengths. Furthermore, the anti-reflection transmittance of the coated lens 4 to light of a specific wavelength is greater than 90%. Among them, the wavelength range of the antireflection light is 350nm-750nm, or 900nm-1700nm.
  • the optical fiber head 31 of the output collimator 3 is a single optical fiber head or a double optical fiber head.
  • the coated lens 4 is one or two.
  • the collimating lenses 23 and 33 of the input collimator 2 and the output collimator 3 may be single spherical lenses, aspheric lenses, combined lenses, grin lens, and the like.
  • the sleeves 21 and 31 of the input collimator 2 and the output collimator 3 are glass sleeves or metal sleeves and other similar structures.
  • the optical fibers in the optical fiber heads 22 and 32 of the input collimator 2 and the output collimator 3 are single-mode fibers and multi-mode fibers, and the core diameters of single-mode fibers range from 2 to 15 um.
  • the core diameter is 50-300um.
  • multi-wavelength light is coupled to an optical fiber of the input end collimator 2, after being collimated, to the middle coated lens 4, the specific wavelength light is transmitted through the collimator lens 33 and coupled to the output end collimation In the optical fiber of the straightener 3, the light reflection of the other wavelengths is also coupled to another optical fiber of the input collimator 2 through the collimating lens 23 to realize light splitting.
  • the multi-wavelength laser beam combining is the reverse process of the above and will not be repeated.
  • the output collimator in the present invention can be replaced with a focusing lens 5 (according to design requirements, or not added) and a photodetector PD (6 or APD) for signal detection.
  • multiple optical systems in the present invention are cascaded to realize multi-wavelength laser Mux and Demux.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种可实现多波长激光合束和分束的系统,包括机械镜筒(1),机械镜筒(1)的轴孔上依序固定有输入端准直器(2),镀膜镜片(4)和输出端准直器(3),输入端准直器(2)和输出端准直器(3)均包括套筒(21,31)和依序固定在套筒(21,31)上的光纤头(22,32)和准直器(23,33),其中输入端准直器(2)的光纤头(22)为双光纤头,输入端准直器(2)和输出端准直器(3)的准直透镜(23,33)分别置于机械镜筒(1)内部并朝向镀膜镜片(4),镀膜镜片(4)对特定波长的光增透,对其余波长的光实现高反射,实现了多波长激光的合束和分束功能,结构更加紧凑,整个光学系统的体积大大缩小。

Description

一种可实现多波长激光合束和分束的光学系统 技术领域
本发明涉及生物医疗及光学应用技术领域,尤其涉及一种可实现多波长激光合束和分束的光学系统。
背景技术
在生物医疗领域,多波长激光的合束/分束光学系统一般采用自由空间方式,通过光路中增加分束镜和滤光片的方式达到激光合束或者分束的效果,但是整个光学系统体积相对较大,不利于小型化设计。
发明内容
本发明的目的在于提供一种小型化的可实现多波长激光合束和分束的光学系统。
为实现上述目的,本发明采用以下技术方案:
一种可实现多波长激光合束和分束的光学系统,其包括机械镜筒,机械镜筒的轴孔上依序固定有输入端准直器、镀膜镜片和输出端准直器,
所述输入端准直器和输出端准直器均包括套管和依序固定在套管上的光纤头和准直透镜,其中输入端准直器的光纤头为双光纤头;所述输入端准直器和输出端准直器的准直透镜分别置于机械镜筒内部并朝向镀膜镜片;
所述镀膜镜片对特定波长的光增透,对其余波长的光实现高反射。
所述输出端准直器的光纤头为单光纤头或双光纤头。
所述镀膜镜片为一片或两片。
所述镀膜镜片对特定波长光的增透透过率大于90%。
所述输入端准直器和输出端准直器的准直透镜均为单球面透镜、非球面透镜、组合透镜或Grin lens。
所述输入端准直器和输出端准直器的套管均为玻璃套管或金属套管。
所述输入端准直器和输出端准直器的光纤头中的光纤为单模光纤和多模光纤,单模光 纤的纤芯直径范围2-15um,多模光纤的纤芯直径50-300um。
本发明采用以上技术方案,利用多光纤准直器和光学镜片,来实现多波长激光的合束和分束功能,结构更加紧凑,整个光学系统的体积可以大大缩小。
附图说明
以下结合附图和具体实施方式对本发明做进一步详细说明;
图1为本发明的示意图;
图2为本发明实另一种实施方式的示意图;
图3为本发明变化后的示意图;
图4为采用本发明多个级联的应用示意图。
具体实施方式
如图1或图2所示,本发明一种可实现多波长激光合束和分束的光学系统,其包括机械镜筒1,机械镜筒1的轴孔上依序固定有输入端准直器2、镀膜镜片4(可以是滤光片)和输出端准直器3。
所述输入端准直器2包括套管21和依序固定在套管21上的光纤头22和准直透镜23,输出端准直器3也包括套管31和依序固定在套管31上的光纤头32和准直透镜33,其中输入端准直器2的光纤头21为双光纤头;所述输入端准直器2和输出端准直器3的准直透镜23、33分别置于机械镜筒1内部并朝向镀膜镜片4;
所述镀膜镜片4对特定波长的光增透,对其余波长的光实现高反射。进一步的,镀膜镜片4对特定波长光的增透透过率大于90%。其中,增透光的波长范围为350nm-750nm,也可以是900nm-1700nm。
所述输出端准直器3的光纤头31为单光纤头或双光纤头。
所述镀膜镜片4为一片或两片。
所述输入端准直器2和输出端准直器3的准直透镜23、33均可以为单球面透镜、非球面透镜、组合透镜或Grin lens等。
所述输入端准直器2和输出端准直器3的套管21、31均为玻璃套管或金属套管等其他类似的结构。
所述输入端准直器2和输出端准直器3的光纤头22、32中的光纤为单模光纤和多模光纤,单模光纤的纤芯直径范围2-15um,多模光纤的纤芯直径50-300um。
本发明的工作原理:多波长的光耦合到输入端准直器2的一个光纤中,经过准直后到中间的镀膜镜片4,特定波长的光透射后经过准直透镜33耦合到输出端准直器3的光纤中,其余波长的光反射同样经过准直透镜23耦合到输入端准直器2的另外一根光纤中实现分光,多波长激光合束是以上的逆过程,不做赘述。
作为变化,如图3所示,本发明中的输出端准直器可以替换为聚焦透镜5(根据设计要求,也可以不加)和光电探测器PD(6或者APD),用于探测信号。
此外,如图4所示,采用多个本发明中的光学系统进行级联实现多波长激光Mux和Demux。
上面结合附图对本发明的实施加以描述,但是本发明不局限于上述的具体实施方式,上述的具体实施方式是示意性而不是加以局限本发明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

Claims (7)

  1. 一种可实现多波长激光合束和分束的光学系统,其特征在于:其包括机械镜筒,机械镜筒的轴孔上依序固定有输入端准直器、镀膜镜片和输出端准直器,
    所述输入端准直器和输出端准直器均包括套管和依序固定在套管上的光纤头和准直透镜,其中输入端准直器的光纤头为双光纤头;所述输入端准直器和输出端准直器的准直透镜分别置于机械镜筒内部并朝向镀膜镜片;
    所述镀膜镜片对特定波长的光增透,对其余波长的光实现高反射。
  2. 根据权利要求1所述的一种可实现多波长激光合束和分束的光学系统,其特征在于:所述输出端准直器的光纤头为单光纤头或双光纤头。
  3. 根据权利要求1所述的一种可实现多波长激光合束和分束的光学系统,其特征在于:所述镀膜镜片为一片或两片。
  4. 根据权利要求1所述的一种可实现多波长激光合束和分束的光学系统,其特征在于:所述镀膜镜片对特定波长光的增透透过率大于90%。
  5. 根据权利要求1所述的一种可实现多波长激光合束和分束的光学系统,其特征在于:所述输入端准直器和输出端准直器的准直透镜均为单球面透镜、非球面透镜、组合透镜或Grin lens。
  6. 根据权利要求1所述的一种可实现多波长激光合束和分束的光学系统,其特征在于:所述输入端准直器和输出端准直器的套管均为玻璃套管或金属套管。
  7. 根据权利要求1所述的一种可实现多波长激光合束和分束的光学系统,其特征在于:所述输入端准直器和输出端准直器的光纤头中的光纤为单模光纤和多模光纤,单模光纤的纤芯直径范围2-15um,多模光纤的纤芯直径50-300um。
PCT/CN2020/094165 2019-10-31 2020-06-03 一种可实现多波长激光合束和分束的光学系统 WO2021082445A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911058868.6A CN112748497A (zh) 2019-10-31 2019-10-31 一种可实现多波长激光合束和分束的光学系统
CN201911058868.6 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021082445A1 true WO2021082445A1 (zh) 2021-05-06

Family

ID=75644989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094165 WO2021082445A1 (zh) 2019-10-31 2020-06-03 一种可实现多波长激光合束和分束的光学系统

Country Status (2)

Country Link
CN (1) CN112748497A (zh)
WO (1) WO2021082445A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2533619Y (zh) * 2001-10-30 2003-01-29 三一光电子有限公司 一种用于dwdm的光波分复用器件
CN2567880Y (zh) * 2002-08-12 2003-08-20 鸿富锦精密工业(深圳)有限公司 波分复用装置
TW566767U (en) * 2002-08-08 2003-12-11 Hon Hai Prec Ind Co Ltd Wavlength division multipexer device
US6882774B2 (en) * 2002-12-04 2005-04-19 Hon Hai Precision Ind. Co., Ltd. Wavelength division multiplexing coupler
JP2005242142A (ja) * 2004-02-27 2005-09-08 Fujikura Ltd 光合分波器
CN206248883U (zh) * 2016-12-01 2017-06-13 上海中科光纤通讯器件有限公司 光波分复用器
CN109212670A (zh) * 2018-10-10 2019-01-15 武汉光迅科技股份有限公司 一种波分复用器件以及相应的光模块
CN109254354A (zh) * 2017-07-13 2019-01-22 福州高意通讯有限公司 一种四端口波分复用器件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084994A (en) * 1998-04-02 2000-07-04 Oplink Communications, Inc. Tunable, low back-reflection wavelength division multiplexer
US6168319B1 (en) * 1999-08-05 2001-01-02 Corning Incorporated System and method for aligning optical fiber collimators
JP3577438B2 (ja) * 2000-02-10 2004-10-13 Fdk株式会社 アド・ドロップ光回路モジュール
US6454465B1 (en) * 2000-03-31 2002-09-24 Corning Incorporated Method of making an optical fiber collimating device
CN105759371B (zh) * 2016-01-07 2018-08-07 武汉电信器件有限公司 一种用于双链路传输的并行收发光模块和制作方法
CN207623567U (zh) * 2017-12-28 2018-07-17 厦门思科图光电科技有限公司 一种高隔离度波分复用器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2533619Y (zh) * 2001-10-30 2003-01-29 三一光电子有限公司 一种用于dwdm的光波分复用器件
TW566767U (en) * 2002-08-08 2003-12-11 Hon Hai Prec Ind Co Ltd Wavlength division multipexer device
CN2567880Y (zh) * 2002-08-12 2003-08-20 鸿富锦精密工业(深圳)有限公司 波分复用装置
US6882774B2 (en) * 2002-12-04 2005-04-19 Hon Hai Precision Ind. Co., Ltd. Wavelength division multiplexing coupler
JP2005242142A (ja) * 2004-02-27 2005-09-08 Fujikura Ltd 光合分波器
CN206248883U (zh) * 2016-12-01 2017-06-13 上海中科光纤通讯器件有限公司 光波分复用器
CN109254354A (zh) * 2017-07-13 2019-01-22 福州高意通讯有限公司 一种四端口波分复用器件
CN109212670A (zh) * 2018-10-10 2019-01-15 武汉光迅科技股份有限公司 一种波分复用器件以及相应的光模块

Also Published As

Publication number Publication date
CN112748497A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
US7920763B1 (en) Mode field expanded fiber collimator
TW200411241A (en) Symmetric, bi-aspheric lens for use in optical fiber collimator assemblies
JP2786322B2 (ja) 反射軽減集成装置
CN101320137A (zh) 一种小直径自聚焦透镜式准直器
CN210982809U (zh) 一种紧凑型光路混合器件
EP3239749A1 (en) Photo coupler and method for optically coupling grin lens-attached optical fibers
US20110299811A1 (en) Low-loss collimators for use in fiber optic rotary joints
CN111722421A (zh) 一种光隔离器和激光器
WO2020177776A2 (zh) 一种光学滤波系统及方法
WO2021082445A1 (zh) 一种可实现多波长激光合束和分束的光学系统
WO2019037362A1 (zh) 一种单方向性tap pd
KR20210029257A (ko) 수직 표면광 레이저 및 다중모드 광섬유를 기반으로 하는 단파장 대역 능동 광학 부품
CN109459824A (zh) 能够提高单模光纤空间光耦合效率的两级空间光耦合装置
CN213365087U (zh) 一种多次滤波的光学滤波系统
TW556010B (en) Wavelength division multiplexer device
CN210982807U (zh) 一种光路混合器件
JPS60181711A (ja) 光学フアイバの接続に用いる光学的要素およびコネクタ
CN108226900B (zh) 一种信号接收系统及臭氧探测激光雷达
JP4275445B2 (ja) 光ファイバー用コリメータレンズおよび光結合器
CN217111151U (zh) 一种紧凑型高回损高方向性分光探测器
CN209803379U (zh) 单模单光纤聚焦器
CN209626642U (zh) 一种集成光纤器件
US20150331196A1 (en) Smart ar coated grin lens design collimator
CN218630268U (zh) 一种光纤-光芯片耦合光学系统
CN103633540B (zh) 一种光纤激光准直系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883607

Country of ref document: EP

Kind code of ref document: A1