WO2021082379A1 - Engrenage magnétique de type disque utilisant un dispositif de réglage de magnétisme de type à collecte de magnétisme - Google Patents

Engrenage magnétique de type disque utilisant un dispositif de réglage de magnétisme de type à collecte de magnétisme Download PDF

Info

Publication number
WO2021082379A1
WO2021082379A1 PCT/CN2020/087976 CN2020087976W WO2021082379A1 WO 2021082379 A1 WO2021082379 A1 WO 2021082379A1 CN 2020087976 W CN2020087976 W CN 2020087976W WO 2021082379 A1 WO2021082379 A1 WO 2021082379A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
block
magnetization
disk
magnetism
Prior art date
Application number
PCT/CN2020/087976
Other languages
English (en)
Chinese (zh)
Inventor
杨超君
朱莉
彭志卓
邰蒋西
高洋
杨凡
王凯
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB2103639.7A priority Critical patent/GB2590863B/en
Publication of WO2021082379A1 publication Critical patent/WO2021082379A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/102Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact

Definitions

  • the invention relates to the technical field of transmission in mechanical engineering, and is a non-contact connected magnetic gear, in particular to a disk-type magnetic gear using a magnetism-gathering type magnetization device. It can be applied to non-contact transmission systems with high torque and high and low speed transmission.
  • Magnetic gears achieve the purpose of transmission through magnetic coupling forces that attract and repel each other. Through the magnetic field coupling in the air gap, the non-contact transmission of force and torque is realized. Compared with traditional mechanical gears, it has non-contact transmission and overload protection. And the advantages of high transmission efficiency.
  • the high-performance magnetic gear introduces a magnetic pole piece.
  • the permanent magnets in the inner and outer rotors are modulated by the magnetic pole pieces.
  • the inner and outer air gaps generate a harmonic magnetic field equal to the number of permanent magnet pole pairs of the rotor, which improves the permanent magnetism.
  • the utilization rate of the magnet greatly increases the transmission efficiency of the magnetic gear.
  • an air gap adjustable magnetic gear using a side sine magnetization device is disclosed.
  • the side sine structure of the magnetization block is applied to the cylindrical magnetic gear.
  • the magnetization block application is 1
  • the sine curve of /2 period changes in the axial direction, and the modulation effect of the sine curve of 1/2 period is different during the air gap adjustment process.
  • the end of the permanent magnet does not adopt a magnetization method, which will generate more magnetic leakage, and does not consider changing the arrangement of the permanent magnets to achieve high torque density transmission of the magnetic gear.
  • IEEE TRANSACTIONS ON MAGNETICS, VOL.51, NO.11, NOVEMBER 2015 in A Novel Magnetic Gear: Toward a Higher Torque Density discloses a theoretical model of a high-density magnetic gear that can concentrate axial magnetism and transverse magnetism.
  • the axial magnetization part is a sector ring with a certain thickness, and the cross section of the transverse magnetization part is also a sector ring, which is easy to be sucked out by the axial force between the permanent disks or thrown out of the magnetic gear by the huge centrifugal force during the working process, and It does not indicate the specific material selection and molding method of the magnetization block and the specific structure used to support the magnetization block.
  • a magnetizing part made of soft magnetic materials is added at the end of the permanent magnet.
  • the side of the magnetization part of the magnetization block adopts a 1/2-period sine curve, and the magnetization part adopts an approximate isosceles trapezoid cross-section.
  • the driven disk assembly includes a driven shaft, a driven shaft sleeve, a driven disk base, a driven disk permanent magnet and a screw, and the left end of the driven shaft passes through the driven shaft sleeve Key connection, the left side of the driven disk sleeve is connected to the driven disk base by screws.
  • the permanent magnets of the driven disk are closely arranged on the driven disk base and mounted on the surface.
  • the driving disk assembly includes a driving shaft, a driving shaft sleeve, The drive plate base body, drive plate permanent magnets and screws are installed in the same way as the driven plate.
  • the number of magnetic tuning blocks is n s , and n s is equal to the sum of the number of pole pairs of the driving disk P 1 and the number of pole pairs of the driven disk P 2 .
  • the axial soft magnetic material part of the magnetic control block in the magnetic control device realizes the effect of magnetic field modulation by concentrating the magnetic lines of induction, and the lateral soft magnetic material part added by the magnetic control block can effectively weaken the end of the permanent magnet by concentrating the magnetic lines of induction.
  • Magnetic flux leakage forms a magnetic flux-concentrating magnetization block, and at the same time achieves the purpose of magnetic field modulation and enhancement of the torque density of the gear.
  • the axial part of the magnetization block is the magnetization part, and the lateral part is the magnetization part.
  • the side of the magnetization part is a 1/2-period sine curve to improve the magnetization effect. Combined with the approximate isosceles trapezoidal cross-section structure of the magnetization part, it is installed with the magnetization block tray and bracket to enhance the reliability of the magnetization device.
  • the side of the cogging adopts a 1/2-period sine curve matched with the side of the magnetization block.
  • Increase the magnetization part of the disk gear magnetization block the length of the magnetization part is 0 or L.
  • the length of the magnetizing part is 0, and the magnetizing device has only the magnetizing part.
  • the magnetic flux control block bracket adopts a semi-closed form, which can isolate the magnetic induction line to a certain extent and reduce magnetic flux leakage.
  • the magnetic modulation device consists of the magnetic flux block tray, the magnetic flux block bracket and the magnetic flux regulator.
  • the block consists of three parts, the magnetic block tray is connected with the magnetic block bracket, and the magnetic block is fixed.
  • the magnetizing device is composed of the magnetizing block tray, the magnetizing block holder, the end cover and the magnetizing block.
  • the slot of the magnetic block bracket adopts an approximately isosceles trapezoidal cross-section to coordinate with the magnetizing part of the magnetic block.
  • the side of the end cover has a cross section that matches the groove of the magnetic block bracket, which is an approximately isosceles trapezoidal boss. .
  • the base body of the magnetic tuning device includes the magnetic tuning block tray, the magnetic tuning block bracket and the end cover.
  • the same materials are used.
  • the base material is non-magnetic materials such as epoxy resin, nylon material or austenitic stainless steel.
  • the magnetic block tray and the end cover are connected by countersunk rivets or welding.
  • the magnetization block of the present invention has two parts: a magnetization part and a magnetization part, combined with the magnetization arrangement of the permanent magnets, and simultaneously realizes the magnetization and the function accordingly.
  • the side of the axial magnetization part of the magnetization block adopts a 1/2 sine curve, and the transverse part adopts an approximate isosceles trapezoidal section.
  • the magnetic adjustment block bracket adopts a semi-closed type, which can reduce magnetic leakage and improve the utilization efficiency of permanent magnets.
  • the magnetization block with the magnetization part of 0 or L of different materials and connection modes can be selected according to different occasions to meet the requirements of different working conditions with high torque density.
  • Fig. 1 is a schematic diagram of an assembly of a disk-type magnetic gear using a magnetism-concentrating type magnetization device.
  • Fig. 2 is a 1/4 cross-sectional view of the overall three-dimensional structure when the magnetic focusing part of the embodiment is 0.
  • Fig. 3 is a three-dimensional structure diagram of the magnetic tuning block tray of the embodiment.
  • FIG. 4 is a three-dimensional structure diagram of a single magnetization block made of ferrite and other materials with a magnetization part of 0 in the embodiment.
  • Fig. 6 is a three-dimensional structure diagram of the magnetization block holder with the magnetization part being 0 in the embodiment.
  • FIG. 7 is a three-dimensional structure diagram of the magnetization device assembly with the magnetization part being 0 in the embodiment.
  • FIG. 8 is a three-dimensional structure diagram of a single magnetization block with an L magnetization part of the embodiment.
  • Fig. 9 is a three-dimensional structure diagram of an embodiment of the embodiment where the magnetization block with the magnetization part of L is installed in cooperation with the magnetization block tray.
  • FIG. 10 is a three-dimensional structure diagram of the magnetization block holder with the magnetization part of the embodiment L.
  • FIG. 10 is a three-dimensional structure diagram of the magnetization block holder with the magnetization part of the embodiment L.
  • FIG. 11 is a three-dimensional structure diagram of an end cap with an L magnetization part of the embodiment.
  • Fig. 15 is a sine curve of 1/2 cycle of the side of the magnetization part.
  • Fig. 17 is a 1/4 cross-sectional view of the overall three-dimensional structure when the magnetism-concentrating part is L in the embodiment.
  • a disk-type magnetic gear employing a magnetism-gathering type magnetization device is composed of a driving disk assembly I, a magnetization device assembly II and a driven disk assembly III.
  • the driving disc assembly includes a driving shaft 1, a driving shaft sleeve 2, a driving disc base body 3, a permanent magnet 4 and a screw.
  • the right end of the driving shaft is connected with the driving shaft sleeve by a key, and the right side of the driving disc sleeve is connected with the driving disc base by a screw 3.
  • the permanent magnets 4 of the driving disc are arranged tightly, that is, the gap between the permanent magnets is zero. They are mounted on the base 3 of the driving disc.
  • the driven disc assembly includes a driven shaft 7, a driven shaft sleeve 8.
  • the driven disk base 9, the driven disk permanent magnet 6 and the screws, the left end of the driven shaft 7 and the driven shaft sleeve 8 are connected by a key, and the left side of the driven disk sleeve 8 is connected to the driven disk base 9 by screws.
  • the disk permanent magnets 6 are also arranged in a close arrangement, and are mounted on the surface of the driven disk base 9.
  • the magnetizing device assembly includes the magnetizing block 5, the magnetizing block tray 10, the magnetizing block bracket 12 and the rivet 11, so that the side of the magnetizing block 5
  • the 1/2 cycle sine curve coincides with the 1/2 cycle convex sine curve on the side of the card slot of the magnetic block tray 10, so that the magnetic block 5 and the magnetic block tray 10 are installed in cooperation, and the magnetic block bracket 12 is connected to the magnetic block tray 10.
  • the magnetic express tray 10 is connected by rivets 11, which surrounds the magnetization block 5 and is completely fixed.
  • the magnetic field generated by the active disk base 3 is modulated by using the high permeability performance of the magnetic tuning block 5, and the modulated magnetic field has The harmonics interact with the magnetic field generated by the driven disk permanent magnet 6 on the driven disk base 9 to drive the driven disk to rotate.
  • the magnetizing device assembly When the length of the magnetic part is L, the magnetizing device assembly includes the magnetizing block 14, the magnetizing block tray 10, the magnetizing block bracket 13, the end cover 15 and the rivet 16, so that the magnetizing block 14 is the side of the magnetizing part 1
  • the /2-period sine curve coincides with the convex 1/2-period sine curve on the side of the slot of the magnetic block tray 10, and the approximate isosceles trapezoid surface of the magnetization part of the magnetic block 14 is at the bottom of the groove of the magnetic block bracket 13 Approximately isosceles trapezoid surfaces overlap, and the magnetic modulation block bracket 13 and the end cover 15 are connected by rivets 16 to surround the magnetic modulation block 14 and be completely fixed.
  • the base material of the magnetic tuning block is a metal non-magnetic material such as stainless steel
  • a welding method can be used.
  • the active disk base 3 rotates, and the active disk permanent magnet 4 on the active disk base 3 generates a magnetic field.
  • the magnetic tuning part of the magnetic tuning block modulates the magnetic field generated by the active disk substrate 3 ,
  • the harmonics of the modulated magnetic field interact with the magnetic field generated by the driven disk permanent magnet 6 on the driven disk base 9 to drive the driven disk base 9 to rotate.
  • the magnetization part of the magnetization block 14 benefits Due to its higher magnetic permeability, magnetic leakage is suppressed, and the magnetic field density of the base 9 between the driving disc base 3 and the driven disc is enhanced.
  • the side of the axial magnetization part of the magnetization block 5 and the magnetization block 14 in the magnetization device adopts a 1/2-period sine curve structure.
  • the slot gap of the magnetization block tray 10 is adopted with the axial magnetization part.
  • the side-side complementary 1/2-period sine curve increases the contact area between the magnetic control block 5 or the magnetic control block 14 and the magnetic control block tray 10, which greatly overcomes the displacement caused by the axial force, and the smooth curve reduces the connecting bridge.
  • the generation of magnetic field enhances the strength and rigidity of the magnetic modulation device.
  • the magnetization part adopts an approximate isosceles trapezoid cross-section.
  • the difference from the isosceles trapezoid is that the upper and lower bases are arcs, and the sides are approximately isosceles trapezoids.
  • the lower base angle is ⁇ , and the magnetic adjustment block 14 and The contact area between the magnetic modulation block brackets 13 can better overcome the displacement caused by the radial force, and further increase the strength and rigidity of the magnetic modulation device.
  • the magnetic control block 5 can be made of silicon steel sheet or ferrite material, which is processed by sheet stacking or casting.
  • the magnetic control block 14 is made of improved ferrite or iron-based amorphous alloy and other improved soft magnetic materials, which can be processed by casting or 3D
  • the printing technology is processed and formed, which overcomes the obstacle that traditional processing methods cannot process complex-shaped ferrites.
  • the structural design of the magnetization block itself overcomes the shortcomings of insufficient 3D printing strength to a certain extent.
  • the magnetic block bracket, magnetic block tray and end cover are made of non-magnetic materials, such as nylon, plastic, epoxy resin and stainless steel.
  • the magnetic modulation block brackets 12 and 13 and the magnetic modulation block tray 10 form a cup-shaped structure, which reduces magnetic flux leakage, enhances magnetization, and improves the utilization rate of permanent magnets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

L'invention concerne le domaine technique de la transmission en génie mécanique, en particulier un engrenage magnétique de type disque utilisant un dispositif de réglage de magnétisme du type à collecte de magnétisme. L'engrenage magnétique est composé d'un ensemble disque d'entraînement, d'un ensemble disque entraîné et d'un ensemble dispositif de réglage de magnétisme de type à collecte de magnétisme, et est caractérisé en ce que : un bloc de réglage de magnétisme du dispositif de réglage de magnétisme de type à collecte de magnétisme adopte une structure ayant des côtés sinusoïdaux demi-périodiques et une section transversale trapézoïdale isocèle approximative, en combinaison avec une structure mécanique installée de manière correspondante, pour améliorer la fiabilité de l'engrenage magnétique. Différents modes de connexion peuvent être sélectionnés en fonction des différents matériaux de base du bloc de réglage de magnétisme. Afin d'empêcher une fuite magnétique à l'extrémité, un matériau magnétique doux transversal est ajouté, le dispositif de réglage de magnétisme peut simultanément réaliser les effets de réglage et de collecte de magnétisme, ce qui améliore les performances de réglage de magnétisme et la capacité de collecte de magnétisme. Les aimants permanents du disque d'entraînement et du disque entraîné sont tous deux disposés dans un mode d'agencement de Halbach à 90 degrés ou un mode d'agencement compact et similaire avec une densité d'énergie magnétique supérieure. La présente invention améliore la densité de couple de l'engrenage magnétique par la conception de la structure du dispositif de réglage de magnétisme et de l'agencement de l'aimant permanent, de telle sorte que l'engrenage magnétique est largement appliqué à un environnement de travail à couple élevé.
PCT/CN2020/087976 2019-10-31 2020-04-30 Engrenage magnétique de type disque utilisant un dispositif de réglage de magnétisme de type à collecte de magnétisme WO2021082379A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2103639.7A GB2590863B (en) 2019-10-31 2020-04-30 Disc-type magnetic gear using flux-focusing flux modulation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911052924.5A CN110752735B (zh) 2019-10-31 2019-10-31 一种应用聚磁型调磁装置的盘式磁力齿轮
CN201911052924.5 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021082379A1 true WO2021082379A1 (fr) 2021-05-06

Family

ID=69281536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087976 WO2021082379A1 (fr) 2019-10-31 2020-04-30 Engrenage magnétique de type disque utilisant un dispositif de réglage de magnétisme de type à collecte de magnétisme

Country Status (2)

Country Link
CN (1) CN110752735B (fr)
WO (1) WO2021082379A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110752735B (zh) * 2019-10-31 2021-10-08 江苏大学 一种应用聚磁型调磁装置的盘式磁力齿轮
GB2590863B (en) * 2019-10-31 2022-03-09 Univ Jiangsu Disc-type magnetic gear using flux-focusing flux modulation apparatus
GB2596237B (en) * 2020-09-28 2023-01-04 Univ Jiangsu Magnetic coupler with double-layer permanent magnet rotor in 90° Halbach arrangement
CN113098230A (zh) * 2021-04-04 2021-07-09 合肥工业大学 一种盘式聚磁筒式涡流传动装置
CN113726123B (zh) * 2021-08-04 2022-06-21 浙江工业大学 基于永磁式弧形气隙的推力转力矩式磁性联轴节

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201478987U (zh) * 2009-04-19 2010-05-19 李志伟 一种无接触磁力缓冲联轴器
CN102808919A (zh) * 2011-05-30 2012-12-05 余虹锦 一种新型横向磁场的磁性传动齿轮副
CN102931805A (zh) * 2012-11-02 2013-02-13 江苏大学 一种工字型复合式调磁装置
CN104753313A (zh) * 2015-03-11 2015-07-01 江苏大学 一种不锈钢调磁装置
CN110752735A (zh) * 2019-10-31 2020-02-04 江苏大学 一种应用聚磁型调磁装置的盘式磁力齿轮

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841280B (zh) * 2010-05-04 2012-06-20 江苏大学 一种应用鼠笼式调磁装置的同心磁力齿轮
CN104578690B (zh) * 2015-01-16 2017-01-04 浙江大学 一种具有变宽度调磁齿的磁性齿轮

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201478987U (zh) * 2009-04-19 2010-05-19 李志伟 一种无接触磁力缓冲联轴器
CN102808919A (zh) * 2011-05-30 2012-12-05 余虹锦 一种新型横向磁场的磁性传动齿轮副
CN102931805A (zh) * 2012-11-02 2013-02-13 江苏大学 一种工字型复合式调磁装置
CN104753313A (zh) * 2015-03-11 2015-07-01 江苏大学 一种不锈钢调磁装置
CN110752735A (zh) * 2019-10-31 2020-02-04 江苏大学 一种应用聚磁型调磁装置的盘式磁力齿轮

Also Published As

Publication number Publication date
CN110752735B (zh) 2021-10-08
CN110752735A (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
WO2021082379A1 (fr) Engrenage magnétique de type disque utilisant un dispositif de réglage de magnétisme de type à collecte de magnétisme
CN103715848B (zh) 一种轴向磁场定子分割式磁通切换型记忆电机
WO2019029109A9 (fr) Moteur tangentiel, rotor de moteur tangentiel et noyau de fer de rotor associé
CN206807260U (zh) 一种新型磁齿轮装置
CN201918876U (zh) 一种盘式车轮电机
CN103904950B (zh) 高转矩盘式永磁减速装置
CN201797389U (zh) 永磁同步电机转子
CN110677011A (zh) 一种新型的开槽盘式永磁涡流联轴器
CN110707900A (zh) 一种扭矩波动小的盘式永磁涡流联轴器
CN207588685U (zh) 一种改进Halbach型磁性齿轮装置
CN110649784B (zh) 一种盘式永磁涡流联轴器
CN201466930U (zh) 数字阀用旋转电磁铁
WO2021145334A1 (fr) Dispositif de génération de champ magnétique et engrenage magnétique
CN111509883A (zh) 一种转子组件以及轴向磁场电机
CN116260305A (zh) 一种基于Halbach聚磁式转子的模块化轴向磁通混合励磁电机
CN206389221U (zh) 一种双定子单转子的自减震电机
RU2545166C1 (ru) Магнитный редуктор
GB2590863A (en) Disc-type magnetic gear using flux-focusing flux modulation apparatus
CN203457031U (zh) 一种用于永磁涡流传动装置的平盘型聚磁式磁路结构
CN102005830B (zh) 转盘永磁发电机
CN203466647U (zh) 一种车用永磁同步电机转子
CN211321044U (zh) 一种磁钢内置转子结构
CN104343873B (zh) 永磁柔性阻尼组件
CN115765384A (zh) 一种永磁体嵌入式的聚磁型调磁装置的同轴式磁力齿轮
CN206237286U (zh) 一种外转子直流无刷电机

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202103639

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200430

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881494

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20881494

Country of ref document: EP

Kind code of ref document: A1