WO2021082330A1 - 热源塔换热系统及其除霜控制方法 - Google Patents

热源塔换热系统及其除霜控制方法 Download PDF

Info

Publication number
WO2021082330A1
WO2021082330A1 PCT/CN2020/079152 CN2020079152W WO2021082330A1 WO 2021082330 A1 WO2021082330 A1 WO 2021082330A1 CN 2020079152 W CN2020079152 W CN 2020079152W WO 2021082330 A1 WO2021082330 A1 WO 2021082330A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
branch
source tower
heat exchange
heat source
Prior art date
Application number
PCT/CN2020/079152
Other languages
English (en)
French (fr)
Inventor
孟庆超
付松辉
张捷
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021082330A1 publication Critical patent/WO2021082330A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid

Definitions

  • the invention belongs to the field of heat exchange technology, and specifically provides a heat source tower heat exchange system and a defrosting control method thereof.
  • heat exchange equipment With the continuous improvement of people's living standards, heat exchange equipment has become an indispensable equipment in people's lives.
  • the core element of the heat exchange system of the heat source tower is the heat source tower. Its working principle is: absorb the heat in the low temperature air in winter to provide a low temperature heat source for the heat source tower heat pump host; use water in summer The evaporative heat dissipation, the heat is discharged into the air to achieve cooling.
  • the heat source tower In the heating mode, the heat source tower directly collects low-grade outdoor heat, and uses a carrier medium (antifreeze) with a freezing point below 0°C to extract energy from low-temperature air with high relative humidity for heating, which is a heat exchange system for the heat source tower Provide a stable source of heat.
  • a carrier medium antifreeze
  • frosting will also occur during the operation of the heat source tower.
  • the frosting of the heat source tower will reduce the heating efficiency of the entire system, which will affect the heating effect of the heat exchange system of the entire heat source tower, thereby reducing the comfort of the indoor environment. , Affect the user experience. Therefore, when the heat exchange system of the heat source tower is in heating mode, it is necessary to defrost the heat source tower in time and effectively.
  • the heat source tower heat exchange system can control the spray device to spray antifreeze on the heat exchanger.
  • the heat source tower heat exchange system can control the spray device to spray antifreeze on the heat exchanger.
  • this defrosting method can alleviate the frosting on the surface of the heat exchanger to a certain extent; however, it is difficult for this defrosting method to greatly increase the overall temperature of the heat exchanger, which results in the surface of the heat exchanger. Frost will form again in a short time, and this defrosting method is also difficult to effectively remove the frost on all corners of the entire heat exchanger.
  • frost phenomenon is very easy. It reappears in a short period of time, and the repeated occurrence of frost can easily affect the heat exchange efficiency of the heat exchange system of the heat source tower, which in turn causes the user's heat exchange experience to be seriously affected.
  • the art needs a new heat source tower heat exchange system and its defrosting control method to solve the above problems.
  • the present invention provides a heat source tower heat exchange system.
  • the heat source tower heat exchange system includes a heat source tower and a heat exchange system.
  • the heat source tower can be connected to both ends of the heat exchange branch to form a circulation loop, and the heat source tower heat pump host is provided with heat exchange Circuit,
  • the heat exchange branch can exchange heat with the heat exchange circuit, so that the heat source tower can exchange heat with the heat exchange circuit through the heat exchange branch;
  • the heat source tower can also exchange heat with the heat exchange circuit;
  • the two ends of the defrosting branch are connected to form a circulation loop.
  • the defrosting branch can exchange heat with the heating branch.
  • the heating branch The refrigerant in the defrosting branch is heated to defrost the heat source tower.
  • the heat source tower heat exchange system further includes a first three-way valve and a second three-way valve, the first interface of the first three-way valve and the second
  • the first interface of the three-way valve is respectively connected to the inlet and the outlet of the heat source tower, and the second interface of the first three-way valve and the second interface of the second three-way valve are respectively connected to the heat exchange branch.
  • the two ends of the first three-way valve are connected to each other, and the third interface of the first three-way valve and the third interface of the second three-way valve are respectively connected to both ends of the defrosting branch.
  • the heat source tower heat exchange system further includes a defrosting heat exchanger, and at least a part of the defrosting branch and at least a part of the heating branch are arranged in the In the defrosting heat exchanger.
  • the heat source tower heat pump main body is further provided with a first heat exchanger, at least a part of the heat exchange branch and the first heat exchange plate of the heat exchange circuit
  • the tubes are all arranged in the first heat exchanger.
  • the heat source tower heat exchange system further includes a water supply branch, the water supply branch can exchange heat with the heat exchange circuit, and the heating branch communicates with the heat exchange circuit.
  • the water supply branch is connected so as to use the hot water in the water supply branch to heat the refrigerant in the defrosting branch.
  • a heating device is provided on the heating branch.
  • the heat source tower heat pump host is also provided with a second heat exchanger, at least a part of the water supply branch and the second heat exchange coil of the heat exchange loop All are arranged in the second heat exchanger.
  • the number of the heat source towers is multiple.
  • the present invention also provides a defrosting control method for a heat source tower heat exchange system.
  • the heat source tower heat exchange system includes a heat source tower, a heat exchange branch, a heat source tower heat pump host, a defrost branch and a heating branch;
  • a heat exchange fan is arranged near the heat source tower;
  • the heat source tower can be connected to both ends of the heat exchange branch to form a circulation loop;
  • the heat source tower heat pump host is provided with a heat exchange loop, and the heat exchange
  • the branch can exchange heat with the heat exchange circuit, so that the heat source tower can exchange heat with the heat exchange circuit through the heat exchange branch;
  • the heat source tower can also exchange heat with the defrost branch
  • the two ends are connected to form a circulation loop.
  • the defrosting branch can exchange heat with the heating branch.
  • the heating branch can perform heat exchange on the defrosting branch.
  • the refrigerant in the road is heated to defrost the heat source tower;
  • the defrosting control method includes: obtaining the frosting condition of the heat source tower; if the frosting condition of the heat source tower reaches the defrosting standard, Disconnect the heat exchange branch and connect the defrosting branch; control the heat exchange fan to stop rotating.
  • the defrosting control method further includes: controlling the rotation of the heat exchange fan when the heat exchange system of the heat source tower operates in a defrosting mode for a first preset time; After the second preset time, the heat exchange branch is connected and the defrost branch is disconnected.
  • the heat source tower heat exchange system of the present invention includes a heat source tower, a heat exchange branch, a heat source tower heat pump host, a defrost branch and a heating branch;
  • the heat source tower can be connected to both ends of the heat exchange branch to form a circulation loop.
  • the heat source tower heat pump host is provided with a heat exchange loop.
  • the heat exchange The branch can exchange heat with the heat exchange circuit, so that the heat source tower can exchange heat with the heat exchange circuit through the heat exchange branch, so as to achieve the heating effect; the heat source tower can also exchange heat with the heat exchange circuit.
  • the two ends of the defrosting branch are connected to form a circulation loop.
  • the defrosting branch can exchange heat with the heating branch.
  • the heating branch The refrigerant in the defrosting branch is heated to defrost the heat source tower.
  • the present invention can increase the temperature of the refrigerant circulating in the heat source tower only by adding a defrosting branch that can be connected to the heat source tower and a heating branch that can heat the refrigerant in the defrosting branch After the temperature of the refrigerant in the defrost branch is increased, these high-temperature refrigerants can flow into the heat source tower for circulation, so that the temperature of the heat source tower can rise rapidly from the inside to the outside, and then quickly and comprehensively And the frosting phenomenon of the heat source tower can be alleviated for a long time, so as to ensure the heating efficiency of the heat exchange system of the heat source tower to the greatest extent.
  • the present invention realizes arbitrary switching between the heat exchange branch and the defrost branch only by adding the first three-way valve and the second three-way valve.
  • the controllability of the heat exchange system of the heat source tower is also effectively improved.
  • the present invention effectively improves the defrosting heat exchanger by arranging at least a part of the defrosting branch and at least a part of the heating branch in the defrosting heat exchanger.
  • the heat exchange efficiency between the heating branch and the defrosting branch thereby effectively improving the defrosting efficiency.
  • the present invention also provides that at least a part of the heat exchange branch and the first heat exchange coil of the heat exchange loop are both arranged in the first heat exchanger. In this way, the heat exchange efficiency between the heat exchange branch and the heat exchange loop is effectively improved, thereby effectively improving the heating efficiency of the heat exchange system of the heat source tower.
  • the heat source tower heat exchange system of the present invention can directly use the hot water in the water supply branch to heat the refrigerant in the defrosting branch, that is, the heat source tower heat exchanges
  • the system can effectively defrost the heat source tower without adding other heating devices, so as to simplify the overall structure of the heat source tower heat exchange system to the greatest extent.
  • the heating branch of the present invention is provided with a heating device to increase the temperature of the refrigerant in the heating branch more quickly, thereby effectively improving the defrosting efficiency of the heat exchange system of the heat source tower .
  • the present invention also configures at least a part of the water supply branch and the second heat exchange coil of the heat exchange circuit in the second heat exchanger.
  • the heat exchange efficiency between the water supply branch and the heat exchange circuit is effectively improved, so that the temperature of the water supply branch can be quickly increased.
  • the present invention can control the operation defrosting mode of the heat exchange system of the heat source tower when the frosting condition of the heat source tower reaches the defrost standard.
  • the heat source tower heat exchange system disconnects the heat exchange branch and connects the defrosting branch so that the defrosting branch can be routed to the defrosting branch.
  • the heat source tower delivers high-temperature refrigerant to achieve defrosting; at the same time, the heat source tower heat exchange system can also control the heat exchange fan to stop rotating, thereby effectively slowing down the heat exchange rate between the heat source tower and the external environment, thereby effectively ensuring The heat source tower can achieve defrost more quickly.
  • the heat source tower heat exchange system when the heat source tower heat exchange system operates in the defrost mode for the first preset time, the heat source tower heat exchange system can first control the The heat exchange fan rotates to quickly exhaust the moisture in the heat source tower, thereby effectively prolonging the time required for the heat source tower to re-frost, thereby effectively avoiding the short time after the defrosting of the existing heat source tower is easy
  • the problem of frosting inside again at the same time, after the second preset time, the heat exchange system of the heat source tower can connect the heat exchange branch and disconnect the defrosting branch, so as to effectively ensure the heat source The heating effect of the tower heat exchange system.
  • Figure 1 is a schematic diagram of the overall structure of a preferred embodiment of the heat source tower heat exchange system of the present invention
  • Fig. 2 is a flowchart of specific steps of a preferred embodiment of the defrost control method of the present invention.
  • FIG. 1 is a schematic diagram of the overall structure of a preferred embodiment of the heat source tower heat exchange system of the present invention.
  • the heat exchange system of the heat source tower of the present invention includes a first heat source tower 11, a second heat source tower 12, and a heat source tower heat pump host 14;
  • the outlet an inlet is also provided below the second heat source tower 12, and an outlet is also provided above it.
  • the heat exchange system of the heat source tower described in the preferred embodiment includes two heat source towers
  • the technicians can obviously set the specific number of heat source towers according to actual use requirements, as long as the application is based on the heat source
  • the specific number of towers the number of three-way valves and the connection relationship between the pipelines can be adjusted accordingly, and the present invention does not impose any restrictions on the specific types of heat source towers.
  • the technicians can set the specific heat source towers according to actual needs. Type, this specific type of change does not deviate from the basic principle of the present invention, and belongs to the protection scope of the present invention.
  • a heat exchange circuit (not shown in the figure) is provided in the heat source tower heat pump main engine 14.
  • the heat exchange circuit includes a first heat exchange coil, a compressor, and a first heat exchange coil, which are connected end to end in sequence.
  • Two heat exchange coils and a throttling member the throttling member is used to make the refrigerant flow from the first heat exchange coil to the second heat exchange coil or from the second heat exchange coil to the
  • the refrigerant in the first heat exchange coil flows to the compressor, and the heat exchange loop realizes heat exchange through the first heat exchange coil and the second heat exchange coil;
  • the specific structure of the heat circuit is subject to any restriction, as long as the heat exchange circuit includes at least two heat exchange coils, so that the heat exchange circuit can realize heat exchange, and the technician can set the heat exchange circuit according to actual needs.
  • the specific structure of the heat exchange loop is subject to any restriction, as long as the heat exchange circuit includes at least two heat exchange coils, so that the heat exchange circuit can realize heat exchange, and the technician can set the heat exchange circuit according to actual needs.
  • the specific structure of the heat exchange loop is subject to any restriction,
  • the inlet of the first heat source tower 11 is connected to the first port provided above the first three-way valve 112 of the first heat source tower through the first connecting branch 111 on the lower side, and the outlet of the first heat source tower 11 passes through the upper
  • the first connecting branch 111 on the side is connected to the first port set above the second three-way valve 113 of the first heat source tower; the inlet of the second heat source tower 12 is connected to the first connection set on the second through the second connecting branch 121 on the upper side.
  • the first port under the first three-way valve 122 of the two heat source towers is connected, and the outlet of the second heat source tower 12 is connected to the outlet of the second heat source tower 12 under the second three-way valve 123 through the second connecting branch 121 on the lower side.
  • the first interface is connected.
  • both ends of the heat exchange branch 13 are divided into two refrigerants, so that both the first heat source tower 11 and the second heat source tower 12 can be connected with the heat exchange branch 13 to form a circulation loop:
  • the refrigerant flowing out of the tower 11 enters the first connecting branch 111 on the upper side, and then enters the second three-way valve 113 of the first heat source tower through the first port arranged above the second three-way valve 113 of the first heat source tower.
  • the second interface at the upper right of the second three-way valve 123 of the second heat source tower enters the heat exchange branch 13.
  • the heat exchange branch 13 flows through the refrigerant configuration box 20, and then enters the first three-way valve 122 of the second heat source tower through the second interface set at the upper right of the first three-way valve 122 of the second heat source tower, and then passes through the set
  • the first port below the first three-way valve 122 of the second heat source tower enters the upper second connecting branch 121 and returns to the second heat source tower 12 to complete the cycle.
  • the heat exchange system of the heat source tower can control the total amount of refrigerant in the system through the refrigerant configuration box 20, so as to adjust the total amount of refrigerant according to the use requirements of the system, thereby effectively improving the efficiency of the unit; it should be noted that the present invention does not configure the refrigerant box 20 Any restriction is imposed on the specific structure of the heat source tower, as long as the heat exchange system of the heat source tower can control the total amount of refrigerant in the system through the refrigerant configuration box 20.
  • both ends of the defrost branch 15 are divided into two refrigerants, so that both the first heat source tower 11 and the second heat source tower 12 can be connected with the defrost branch 15 to form a circulation loop: from the first heat source
  • the refrigerant flowing out of the tower 11 enters the first connecting branch 111 on the upper side, and then enters the second three-way valve 113 of the first heat source tower through the first port arranged above the second three-way valve 113 of the first heat source tower.
  • the defrost branch 15 exchanges heat with the heating branch 16 and then passes through the first heat source tower
  • the third port at the bottom left of the first three-way valve 112 enters the first three-way valve 112 of the first heat source tower, and then enters the lower side through the first port set above the first three-way valve 112 of the first heat source tower
  • the refrigerant flowing out of the second heat source tower 12 enters the lower side
  • the second connecting branch 121 then enters the second three-way valve 123 of the second heat source tower through the first port provided under the second three-way valve 123 of the second heat source tower, and then passes through the second three-way valve 123 of the second heat source tower.
  • the third port on the upper left of the two- and three-way valve 123 enters the defrosting branch 15, and the defrosting branch 15 exchanges heat with the heating branch 16 and then passes through the upper left of the first three-way valve 122 arranged in the second heat source tower
  • the third interface enters the first three-way valve 122 of the second heat source tower, and then enters the second connecting branch 121 on the upper side through the first interface arranged below the first three-way valve 122 of the second heat source tower and returns
  • the circulation is completed in the second heat source tower 12, and then the high temperature refrigerant is brought in to defrost the second heat source tower 12.
  • the heat exchange system of the heat source tower in this preferred embodiment adopts a three-way valve to control the heat source tower to selectively communicate with the heat exchange branch 13 or the defrost branch 15, this This setting method is not restrictive.
  • the technical personnel can set the specific connection method according to actual use requirements; for example, the heat exchange branch 13 and the defrost branch 15 can also be connected to the heat source tower respectively, and then respectively through the on-off valve. The on-off state of the heat exchange branch 13 and the defrost branch 15 is controlled.
  • the heat source tower in this preferred embodiment is connected to the three-way valve through the connecting branch, it is obvious that the skilled person can also connect the two ends of the heat exchange branch 13 and the defrost branch 15 directly to the heat source tower.
  • the inlet and the outlet are connected, and these specific structural changes do not deviate from the basic principle of the present invention and belong to the protection scope of the present invention.
  • the heat exchange system of the heat source tower in this preferred embodiment further includes a water supply branch 18, which can exchange heat with the heat exchange circuit provided in the heat source tower heat pump main engine 14 to provide the hot water supply network 25 supplies hot water; it should be noted that the water supply branch 18 is not necessary, and the technician can also directly realize heating through the heat exchange circuit.
  • the heating branch 16 is connected to the water supply branch 18, and the heating branch 16 is also provided with a heating device 19.
  • the heating branch 16 absorbs the hot water in the water supply branch 18 and exchanges heat with the defrost branch 15. When the water temperature in the branch 18 cannot meet the defrosting requirement, the water in the heating branch 16 can be heated twice by the heating device 19.
  • the present invention does not need to impose any restrictions on the specific structure of the heating branch 16, as long as the heating branch 16 can flow high-temperature fluid to continue heating the refrigerant in the defrosting branch 15 to achieve defrosting.
  • the purpose is sufficient.
  • the present invention does not impose any restrictions on the specific structure of the heating device 19, and technicians can set it according to actual use requirements, such as electric heaters.
  • the heat source tower heat exchange system further includes a defrosting heat exchanger 17, a part of the pipelines of the defrosting branch 15 and a part of the heating branch 16 are both arranged in the defrosting heat exchanger 17, So that the defrosting branch 15 and the heating branch 16 can better realize heat exchange.
  • the defrosting heat exchanger 17 can be only a shell structure, and A part of the pipeline of the defrost branch 15 and a part of the pipeline of the heating branch 16 are arranged close to each other in the shell structure to accelerate heat exchange, or the defrost heat exchanger 17 is provided with a liquid heat exchange medium, The liquid heat exchange medium can submerge a part of the pipeline of the defrosting branch 15 and a part of the pipeline of the heating branch 16 to accelerate heat exchange.
  • the heat exchange system of the heat source tower further includes a first heat exchanger 141, the first heat exchanger 141 is arranged in the heat source tower heat pump host 14, a part of the pipeline of the heat exchange branch 13 and the heat exchange circuit
  • the first heat exchange coils are all arranged in the first heat exchanger 141, so that the heat exchange branch 13 and the heat exchange circuit can better realize heat exchange.
  • the present invention does not impose any restriction on the specific structure of the first heat exchanger 141, and technicians can set it according to actual use requirements; for example, the first heat exchanger 141 can be only a shell structure, A part of the pipeline of the heat branch 13 and the first heat exchange coil of the heat exchange circuit are arranged close to each other in the shell structure to accelerate heat exchange, or the first heat exchanger 141 is provided with liquid exchange Heat medium, the liquid heat exchange medium can submerge a part of the pipes of the heat exchange branch 13 and the first heat exchange coil of the heat exchange circuit to accelerate heat exchange.
  • the heat exchange system of the heat source tower further includes a second heat exchanger 142, the second heat exchanger 142 is arranged in the heat source tower heat pump host 14, the second heat exchange coil and the water supply branch of the heat exchange loop A part of the pipelines of 18 are all arranged in the second heat exchanger 142, so that the heat exchange circuit and the water supply branch 18 can better realize heat exchange.
  • the present invention does not impose any restrictions on the specific structure of the second heat exchanger 142, and technicians can set it according to actual use requirements; for example, the second heat exchanger 142 can be only a shell structure, and the The second heat exchange coil of the heat exchange loop and a part of the pipes of the water supply branch 18 are arranged close to each other in the shell structure to accelerate heat exchange, or the second heat exchanger 142 is provided with liquid heat exchange
  • the liquid heat exchange medium can submerge the second heat exchange coil of the heat exchange circuit and a part of the pipes of the water supply branch 18 to accelerate heat exchange.
  • the heating branch 16 is also provided with a defrost pump 21, the defrosting branch 15 is also provided with a defrost pump 22, the heat exchange branch 13 is also provided with a heat source side circulation pump 23, and the water supply branch 18 is also provided with a defrost pump 22.
  • a heating-side circulating pump 24 is provided, and the heat source tower heat exchange system can control the flow of the liquid by means of these pump structures.
  • the technician can also set the power source of the fluid flow by himself according to actual use requirements.
  • each pipeline of the present invention is also provided with a solenoid valve structure.
  • the heat source tower heat exchange system can control the on-off state of each pipeline by controlling the opening and closing states of these solenoid valves, so as to facilitate the maintenance and repair of each pipeline. control.
  • heat exchange fans are provided near the first heat source tower 11 and the second heat source tower 12, and the first heat source tower 11 and the second heat source tower 12 can accelerate the interaction with the external environment through their respective heat exchange fans. Heat exchange rate; of course, this structure setting is not restrictive.
  • the technician can set it according to actual use requirements, and can also choose the specific type of heat exchange fan according to actual use requirements.
  • the heat exchange system of the heat source tower further includes a controller, which can obtain the frosting conditions of the first heat source tower 11 and the second heat source tower 12.
  • the specific obtaining method is not limited, and various methods can be used.
  • the sensor is implemented; and the controller can also control the operation of the heat exchange system of the heat source tower, for example, control the action of the three-way valve, control the operation of the heat exchange fan, and so on.
  • the controller may be the original controller of the heat source tower heat exchange system, or it may be For a controller that is separately provided for implementing the defrosting control method of the present invention, technicians can set the structure and model of the controller by themselves according to actual use requirements.
  • FIG. 2 is a flowchart of specific steps of a preferred embodiment of the defrost control method of the present invention.
  • the preferred embodiment of the defrost control method of the present invention specifically includes the following steps:
  • S103 Disconnect the heat exchange branch and connect the defrost branch to control the heat exchange fan to stop rotating;
  • step S101 the controller can obtain the frosting conditions of the first heat source tower 11 and the second heat source tower 12; it should be noted that the present invention does not impose any limitation on this specific obtaining method, and the technical personnel can Set the acquisition method according to actual needs, for example, by acquiring the surface temperature of the first heat source tower 11 and the second heat source tower 12 to determine the frosting condition, or the picture taken by the camera sensor to determine the frosting condition. can.
  • step S102 the controller can determine whether the frosting conditions of the first heat source tower 11 and the second heat source tower 12 meet the defrosting standard; The defrost standard, the change of this specific standard does not deviate from the basic principle of the present invention, and belongs to the protection scope of the present invention.
  • step S101 is executed again for real-time monitoring; if the frosting condition of the heat source tower reaches the defrosting standard, the controller controls all The defrost mode of the heat exchange system of the heat source tower is described.
  • step S103 is executed, that is, the specific steps of the heat exchange system operating in the defrosting mode of the heat source tower include: disconnecting the heat exchange branch and connecting the defrosting branch, and controlling the heat exchange fan to stop rotating .
  • the controller controls the action of the three-way valve, so that the heat exchange branch 13 is disconnected and the defrosting branch 15 is connected.
  • the controller controls the defrosting
  • the frost pump 21 is turned on, and the refrigerant in the defrost branch 15 is heated by the heating branch 16, so that the refrigerant in the defrost branch 15 can defrost the heat source tower when the refrigerant in the defrost branch 15 flows into the heat source tower; at the same time, the controller also The heat exchange fan corresponding to the heat source tower can be controlled to stop rotating.
  • the controller can also control the heating device 19 to turn on, so as to further increase the temperature of the heating branch 16. It should be noted that the present invention does not impose any restrictions on the specific execution sequence of disconnecting the heat exchange branch, connecting the defrosting branch, and controlling the heat exchange fan to stop rotating. Set the specific execution order of each step.
  • step S104 the controller controls the heat exchange fan to start rotating when the duration of the defrosting mode of the heat exchange system of the heat source tower reaches the first preset time; it should be noted that the present invention is not correct.
  • the specific value of the first preset time is subject to any limitation, and technicians can set it according to actual use requirements. Preferably, the first preset time is 10 minutes.
  • step S105 after a second preset time has elapsed, the controller again controls the action of the three-way valve so that the heat exchange branch is connected and the defrosting branch is disconnected.
  • the controller controls the defrost pump 21 to turn off, and the heat source tower continues to exchange heat with the heat exchange circuit through the heat exchange branch 13 so as to ensure the user's heat exchange demand in time after the defrosting is completed.
  • the present invention does not limit the specific value of the second preset time, and technicians can set it according to actual usage requirements.
  • the second preset time is 1 minute.
  • those skilled in the art can understand that although the length of time is used as the basis for judging when the defrosting mode is exited in the preferred embodiment; however, the skilled person can obviously also use other parameters to determine the exit timing of the defrosting mode, such as a heat source. The degree of frosting of the tower, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明属于换热技术领域,具体提供一种热源塔换热系统及其除霜控制方法。本发明旨在解决现有热源塔的除霜方式不佳的问题。为此,本发明的热源塔换热系统包括热源塔、换热支路、热源塔热泵主机、除霜支路和加热支路;热源塔能够与换热支路的两端相连,热源塔热泵主机中设置有换热回路,换热支路能够与换热回路进行热交换,以便热源塔能够通过换热支路与换热回路进行热交换;热源塔还能够与除霜支路的两端相连,除霜支路能够与加热支路进行热交换,在热源塔换热系统运行除霜模式时,加热支路对除霜支路中的冷媒进行加热,以使热源塔中的冷媒温度得以提升,以使整个热源塔的温度都能得到快速有效的提升,进而快速全面且长效地缓解热源塔的结霜现象。

Description

热源塔换热系统及其除霜控制方法 技术领域
本发明属于换热技术领域,具体提供一种热源塔换热系统及其除霜控制方法。
背景技术
随着人们生活水平的不断提高,换热设备已经成为人们生活中必不可少的一种设备。以热源塔换热系统为例,热源塔换热系统的核心元件是热源塔,其工作原理为:在冬季吸收低温空气中的热量,从而为热源塔热泵主机提供低温位热源;在夏季利用水的蒸发散热,将热量排放到空气中实现制冷。在制热模式下,热源塔直接采集室外低品位热量,利用冰点低于0℃的载体介质(防冻液),从相对湿度较高的低温空气中提取能量进行供热,为热源塔换热系统提供稳定的热量来源。但是,热源塔在运行的过程中也会出现结霜现象,热源塔结霜会导致整个系统的制热效率下降,从而影响整个热源塔换热系统的制热效果,进而导致室内环境的舒适性降低,影响用户体验。因此,在热源塔换热系统处于制热工况时,对热源塔进行及时而有效的除霜十分必要。
为了解决上述问题,现有很多热源塔换热系统都设置有喷淋装置,当热源塔的热交换器出现结霜现象时,热源塔换热系统能够控制喷淋装置向热交换器上喷洒防冻液,以便缓解热交换器表面出现的结霜现象。这种除霜方式虽然能够从一定程度上缓解热交换器表面出现的结霜现象;但是,这种除霜方式很难使得热交换器的整体温度得到较大提升,从而导致热交换器的表面在很短时间内又会再次结霜现象,并且这种除霜方式也很难有效去除整个热交换器上各个角落的霜冻,因而这种除霜方式难以获取长时间的保持,霜冻现象很容易在短时间内再次出现,而霜冻现象的反复出现很容易影响热源塔换热系统的换热效率,进而导致用户的换热体验受到严重影响。
相应地,本领域需要一种新的热源塔换热系统及其除霜控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有热源塔的除霜方式不佳的问题,本发明提供了一种热源塔换热系统,所述热源塔换热系统包括热源塔、换热支路、热源塔热泵主机、除霜支路和加热支路;所述热源塔能够与所述换热支路的两端相连以形成循环回路,所述热源塔热泵主机中设置有换热回路,所述换热支路能够与所述换热回路进行热交换,以便所述热源塔能够通过所述换热支路与所述换热回路进行热交换;所述热源塔还能够与所述除霜支路的两端相连以形成循环回路,所述除霜支路能够与所述加热支路进行热交换,在所述热源塔换热系统运行除霜模式时,所述加热支路对所述除霜支路中的冷媒进行加热,以便对所述热源塔进行除霜。
在上述热源塔换热系统的优选技术方案中,所述热源塔换热系统还包括第一三通阀和第二三通阀,所述第一三通阀的第一接口和所述第二三通阀的第一接口分别与所述热源塔的进口和出口相连,所述第一三通阀的第二接口和所述第二三通阀的第二接口分别与所述换热支路的两端相连,所述第一三通阀的第三接口和所述第二三通阀的第三接口分别与所述除霜支路的两端相连。
在上述热源塔换热系统的优选技术方案中,所述热源塔换热系统还包括除霜换热器,所述除霜支路的至少一部分和所述加热支路的至少一部分均设置在所述除霜换热器中。
在上述热源塔换热系统的优选技术方案中,所述热源塔热泵主机中还设置有第一换热器,所述换热支路的至少一部分和所述换热回路的第一换热盘管均设置在所述第一换热器中。
在上述热源塔换热系统的优选技术方案中,所述热源塔换热系统还包括供水支路,所述供水支路能够与所述换热回路进行热交换,所述加热支路与所述供水支路相连,以便利用所述供水支路中的热水对所述除霜支路中的冷媒进行加热。
在上述热源塔换热系统的优选技术方案中,所述加热支路上设置有加热装置。
在上述热源塔换热系统的优选技术方案中,所述热源塔热泵主机中还设置有第二换热器,所述供水支路的至少一部分和所述换热回路的第二换热盘管均设置在所述第二换热器中。
在上述热源塔换热系统的优选技术方案中,所述热源塔的数量为多个。
本发明还提供了一种用于热源塔换热系统的除霜控制方法,所述热源塔换热系统包括热源塔、换热支路、热源塔热泵主机、除霜支路和加热支路;所述热源塔的附近设置有换热风机;所述热源塔能够与所述换热支路的两端相连以形成循环回路,所述热源塔热泵主机中设置有换热回路,所述换热支路能够与所述换热回路进行热交换,以便所述热源塔能够通过所述换热支路与所述换热回路进行热交换;所述热源塔还能够与所述除霜支路的两端相连以形成循环回路,所述除霜支路能够与所述加热支路进行热交换,在所述热源塔换热系统运行除霜模式时,所述加热支路对所述除霜支路中的冷媒进行加热,以便对所述热源塔进行除霜;所述除霜控制方法包括:获取所述热源塔的结霜情况;如果所述热源塔的结霜情况达到除霜标准,则断开所述换热支路并接通所述除霜支路;控制所述换热风机停止转动。
在上述除霜控制方法的优选技术方案中,所述除霜控制方法还包括:在所述热源塔换热系统运行除霜模式达第一预设时间时,控制所述换热风机转动;经过第二预设时间后,接通所述换热支路且断开所述除霜支路。
本领域技术人员能够理解的是,在本发明的技术方案中,本发明的热源塔换热系统包括热源塔、换热支路、热源塔热泵主机、除霜支路和加热支路;所述热源塔能够与所述换热支路的两端相连以形成循环回路,所述热源塔热泵主机中设置有换热回路,在所述热源塔换热系统运行制热模式时,所述换热支路能够与所述换热回路进行热交换,以便所述热源塔能够通过所述换热支路与所述换热回路进行热交换,从而达到制热效果;所述热源塔还能够与所述除霜支路的两端相连以形成循环回路,所述除霜支路能够与所述加热支路进行热交换,在所述热源塔 换热系统运行除霜模式时,所述加热支路对所述除霜支路中的冷媒进行加热,以便对所述热源塔进行除霜。本发明仅通过增设一条能够与所述热源塔相连的除霜支路以及一条能够对所述除霜支路中的冷媒进行加热的加热支路就能使得所述热源塔中循环的冷媒的温度得到快速提升,当除霜支路中的冷媒的温度得到提升后,这些高温冷媒能够流入所述热源塔中进行循环,从而使得所述热源塔的温度能够由内往外快速升高,进而快速全面且长效地缓解所述热源塔的结霜现象,以便最大程度地保证所述热源塔换热系统的制热效率。
进一步地,在本发明的优选技术方案中,本发明仅通过增设所述第一三通阀和所述第二三通阀就实现了换热支路和除霜支路之间的任意切换,以便在有效保证结构简化的同时,还有效提升了所述热源塔换热系统的可控性。
进一步地,在本发明的优选技术方案中,本发明通过将所述除霜支路的至少一部分和所述加热支路的至少一部分均设置在所述除霜换热器中来有效提升所述加热支路和所述除霜支路之间的换热效率,进而有效提升除霜效率。
更进一步地,在本发明的优选技术方案中,本发明还通过将所述换热支路的至少一部分和所述换热回路的第一换热盘管均设置在所述第一换热器中来有效提升所述换热支路和所述换热回路之间的换热效率,进而有效提升所述热源塔换热系统的制热效率。
进一步地,在本发明的优选技术方案中,本发明的热源塔换热系统能够直接利用供水支路中的热水对所述除霜支路中的冷媒进行加热,即所述热源塔换热系统无需增设其他加热装置就能够对所述热源塔进行有效除霜,以便最大程度地简化所述热源塔换热系统的整体结构。
进一步地,在本发明的优选技术方案中,本发明的加热支路上设置有加热装置,以便更加快速地提升加热支路中的冷媒温度,进而有效提升所述热源塔换热系统的除霜效率。
进一步地,在本发明的优选技术方案中,本发明还通过将所述供水支路的至少一部分和所述换热回路的第二换热盘管均设置在所述第二换热器中来有效提升所述供水支路和所述换热回路之间的换热效率,以便所述供水支路的温度能够得以快速提升。
更进一步地,在本发明的除霜控制方法的优选技术方案中,本发明能够在所述热源塔的结霜情况达到除霜标准控制所述热源塔换热系统运行除霜模式。在所述热源塔换热系统运行除霜模式时,所述热源塔换热系统通过断开所述换热支路并接通所述除霜支路使所述除霜支路能够向所述热源塔输送高温冷媒来实现除霜;同时,所述热源塔换热系统还能够控制所述换热风机停止转动,从而有效减缓所述热源塔与外界环境进行热交换的速率,进而有效保证所述热源塔能够更加快速地实现除霜。
更进一步地,在本发明的除霜控制方法的优选技术方案中,在所述热源塔换热系统运行除霜模式达第一预设时间时,所述热源塔换热系统能够先控制所述换热风机转动,以便将所述热源塔中的湿气快速排出,进而有效延长所述热源塔再次结霜所需的时间,从而有效避免现有热源塔很容易在除霜结束后的短时间内又再次结霜的问题;同时,经过第二预设时间后,所述热源塔换热系统能够接通所述换热支路且断开所述除霜支路,以便有效保证所述热源塔换热系统的制热效果。
附图说明
图1是本发明的热源塔换热系统的优选实施例的整体结构示意图;
图2是本发明的除霜控制方法的优选实施例的具体步骤流程图。
附图标记:11、第一热源塔;111、第一连接支路;112、第一热源塔的第一三通阀;113、第一热源塔的第二三通阀;12、第二热源塔;121、第二连接支路;122、第二热源塔的第一三通阀;123、第二热源塔的第二三通阀;13、换热支路;14、热源塔热泵主机;141、第一换热器;142、第二换热器;15、除霜支路;16、加热支路;17、除霜换热器;18、供水支路;19、加热装置;20、冷媒配置箱;201、第三连接支路;21、融霜泵;22、除霜泵;23、热源侧循环泵;24、供热侧循环泵;25、热水供应网。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,尽管本申请中按照特定顺序描述了本发明的方法的各个步骤,但是这些顺序并不是限制性的,在不偏离本发明的基本原理的前提下,本领域技术人员可以按照不同的顺序来执行所述步骤。
需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。同时,术语“相连”、“连接”、“连通”也应做广义理解,例如,可以是机械连通,也可以是电连通;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通。对于本领域技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。此外,术语“第一”、“第二”和“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
首先参阅图1,该图是本发明的热源塔换热系统的优选实施例的整体结构示意图。如图1所示,本发明的热源塔换热系统包括第一热源塔11、第二热源塔12和热源塔热泵主机14;其中,第一热源塔11的下方设置有进口,其上方设置有出口,第二热源塔12的下方也设置有进口,其上方也设置有出口。需要说明的是,虽然本优选实施例中所述的热源塔换热系统包括两个热源塔,但是,技术人员显然可以根据实际使用需求自行设定热源塔的具体数量,只要在应用中根据热源塔的具体数量相应调整三通阀的数量以及管路之间的连接关系即可,并且本发明也不对热源塔的具体类型作任何限制,技术人员可以根据实际使用需求自行设定热源塔的具体类型,这种具体类型的改变并不偏离本发明的基本原理,属于本发明的保护范围。具体地,热源塔热泵主机14中设置有换热回路(图中未示出),作为一种实施例,所述换热回路包括依次首尾相接的第一换热盘管、压缩机、第二换热盘管和节流构件,所述节流构件用于使从所述第一换热盘管流向所述第二换热盘管的冷媒或者从所 述第二换热盘管流向所述第一换热盘管的冷媒流向所述压缩机,所述换热回路通过所述第一换热盘管和所述第二换热盘管实现换热;当然,本发明不对所述换热回路的具体结构作任何限制,只要所述换热回路中包括至少两个换热盘管,以便所述换热回路能够实现换热即可,技术人员可以根据实际使用需求自行设定所述换热回路的具体结构。
进一步地,第一热源塔11的入口通过下侧的第一连接支路111与设置在第一热源塔的第一三通阀112上方的第一接口相连,第一热源塔11的出口通过上侧的第一连接支路111与设置在第一热源塔的第二三通阀113上方的第一接口相连;第二热源塔12的入口通过上侧的第二连接支路121与设置在第二热源塔的第一三通阀122下方的第一接口相连,第二热源塔12的出口通过下侧的第二连接支路121与设置在第二热源塔的第二三通阀123下方的第一接口相连。
更进一步地,换热支路13的两端均分流为两股冷媒,以使第一热源塔11和第二热源塔12均能够与换热支路13相连以形成循环回路:从第一热源塔11中流出的冷媒进入上侧的第一连接支路111再通过设置在第一热源塔的第二三通阀113上方的第一接口进入第一热源塔的第二三通阀113中,接着通过设置在第一热源塔的第二三通阀113右下方的第二接口进入换热支路13,换热支路13在热源塔热泵主机14中与所述换热回路进行换热后,继续通过换热支路13并流经冷媒配置箱20再通过设置在第一热源塔的第一三通阀112右下方的第二接口进入第一热源塔的第一三通阀112中,再通过设置在第一热源塔的第一三通阀112上方的第一接口进入下侧的第一连接支路111中并回流至第一热源塔11中完成循环;从第二热源塔12中流出的冷媒进入下侧的第二连接支路121再通过设置在第二热源塔的第二三通阀123下方的第一接口进入第二热源塔的第二三通阀123中,接着通过设置在第二热源塔的第二三通阀123右上方的第二接口进入换热支路13,换热支路13在热源塔热泵主机14中与所述换热回路进行换热后,继续通过换热支路13并流经冷媒配置箱20再通过设置在第二热源塔的第一三通阀122右上方的第二接口进入第二热源塔的第一三通阀122中,再通过设置在第二热源塔的第一三通阀122下方的第一接口进入上侧的第二连接支路121中并回流至第二热源塔12中完成循环。所述热源塔换热系统能够通过冷媒配置箱20控制系统中 的冷媒总量,以便根据系统的使用需求调整冷媒总量,进而有效提升机组效率;需要说明的是,本发明不对冷媒配置箱20的具体结构作任何限制,只要所述热源塔换热系统能够通过冷媒配置箱20控制系统中的冷媒总量即可。
更进一步地,除霜支路15的两端均分流为两股冷媒,以使第一热源塔11和第二热源塔12均能够与除霜支路15相连以形成循环回路:从第一热源塔11中流出的冷媒进入上侧的第一连接支路111再通过设置在第一热源塔的第二三通阀113上方的第一接口进入第一热源塔的第二三通阀113中,接着通过设置在第一热源塔的第二三通阀113左下方的第三接口进入除霜支路15,除霜支路15与加热支路16进行热交换后再通过设置在第一热源塔的第一三通阀112左下方的第三接口进入第一热源塔的第一三通阀112中,再通过设置在第一热源塔的第一三通阀112上方的第一接口进入下侧的第一连接支路111中并回流至第一热源塔11中完成循环,进而带入高温冷媒以对第一热源塔11进行除霜;从第二热源塔12中流出的冷媒进入下侧的第二连接支路121再通过设置在第二热源塔的第二三通阀123下方的第一接口进入第二热源塔的第二三通阀123中,接着通过设置在第二热源塔的第二三通阀123左上方的第三接口进入除霜支路15,除霜支路15与加热支路16进行热交换后再通过设置在第二热源塔的第一三通阀122左上方的第三接口进入第二热源塔的第一三通阀122中,再通过设置在第二热源塔的第一三通阀122下方的第一接口进入上侧的第二连接支路121中并回流至第二热源塔12中完成循环,进而带入高温冷媒以对第二热源塔12进行除霜。
本领域技术人员能够理解的是,虽然本优选实施例中的热源塔换热系统通过采用三通阀来控制热源塔选择性地与换热支路13或除霜支路15连通,但是,这种设置方式并不是限制性的,技术人员可以根据实际使用需求自行设定其具体连接方式;例如,换热支路13和除霜支路15还可以分别与热源塔相连,然后通过开关阀分别控制换热支路13和除霜支路15的通断状态。此外,虽然本优选实施例中的热源塔是通过连接支路与三通阀相连的,但是,技术人员显然还可以把换热支路13和除霜支路15的两端直接与热源塔的入口和出口相连,这些具体结构的改变都不偏离本发明的基本原理,属于本发明的保护范围。
更进一步地,本优选实施例中的热源塔换热系统还包括供水支路18,供水支路18能够与设置在热源塔热泵主机14中的换热回路进行热交换,以便向热水供应网25供应热水;需要说明的是,供水支路18并不是必须的,技术人员也可以直接通过所述换热回路实现制热。加热支路16与供水支路18相连,并且加热支路16上还设置有加热装置19,加热支路16吸取供水支路18中的热水并与除霜支路15进行换热,在供水支路18中的水温无法满足除霜需求时,通过加热装置19对加热支路16中的水进行二次升温即可。本领域技术人员能够理解的是,本发明无需对加热支路16的具体结构形式作任何限制,只要加热支路16中能够流动高温流体对除霜支路15中的冷媒继续加热以达到除霜目的即可。此外,本发明也不对加热装置19的具体结构作任何限制,技术人员可以根据实际使用需求自行设定,例如电加热器等。
接着参阅图1,所述热源塔换热系统还包括除霜换热器17,除霜支路15的一部分管路和加热支路16的一部分管路均设置在除霜换热器17中,以便除霜支路15和加热支路16能够更好地实现换热。需要说明的是,本发明不对除霜换热器17的具体结构作任何限制,技术人员可以根据实际使用需求自行设定;例如,除霜换热器17既可以仅是一个壳体结构,将除霜支路15的一部分管路和加热支路16的一部分管路彼此靠近地设置在该壳体结构中以加速换热,也可以是除霜换热器17中设置有液体换热介质,该液体换热介质能够将除霜支路15的一部分管路和加热支路16的一部分管路淹没以加速换热。
进一步地,所述热源塔换热系统还包括第一换热器141,第一换热器141设置在热源塔热泵主机14中,换热支路13的一部分管路和所述换热回路的第一换热盘管均设置在第一换热器141中,以便换热支路13和所述换热回路能够更好地实现换热。需要说明的是,本发明不对第一换热器141的具体结构作任何限制,技术人员可以根据实际使用需求自行设定;例如第一换热器141既可以仅是一个壳体结构,将换热支路13的一部分管路和所述换热回路的第一换热盘管彼此靠近地设置在该壳体结构中以加速换热,也可以是第一换热器141中设置有液体换热介质,该液体换热介质能够将换热支路13的一部分管路和所述换热回路的第一换热盘管淹没以加速换热。
进一步地,所述热源塔换热系统还包括第二换热器142,第二换热器142设置在热源塔热泵主机14中,所述换热回路的第二换热盘管和供水支路18的一部分管路均设置在第二换热器142中,以便所述换热回路和供水支路18能够更好地实现换热。需要说明的是,本发明不对第二换热器142的具体结构作任何限制,技术人员可以根据实际使用需求自行设定;例如第二换热器142既可以仅是一个壳体结构,将所述换热回路的第二换热盘管和供水支路18的一部分管路彼此靠近地设置在该壳体结构中以加速换热,也可以是第二换热器142中设置有液体换热介质,该液体换热介质能够将所述换热回路的第二换热盘管和供水支路18的一部分管路淹没以加速换热。
此外,加热支路16上还设置有融霜泵21,除霜支路15上还设置有除霜泵22,换热支路13上还设置有热源侧循环泵23,供水支路18上还设置有供热侧循环泵24,所述热源塔换热系统能够借助这些泵结构控制液体的流动情况,当然,技术人员也可以根据实际使用需求自行设定流体流动的动力源。同时,本发明的各个管路上还设置有电磁阀结构,所述热源塔换热系统能够通过控制这些电磁阀的开闭状态来控制各个管路的通断状态,以便于各个管路的维修和控制。作为一种优选实施例,第一热源塔11和第二热源塔12的附近均设置有换热风机,第一热源塔11和第二热源塔12能够通过各自的换热风机加速与外界环境的换热速率;当然,这种结构设置并不是限制性的,技术人员可以根据实际使用需求自行设定,并且还可以根据实际使用需求自行选定换热风机的具体类型。
进一步地,所述热源塔换热系统还包括控制器,所述控制器能够获取第一热源塔11和第二热源塔12的结霜情况,具体获取方式并不是限制性的,可以借助各种传感器实现;并且所述控制器还能够控制所述热源塔换热系统的运行情况,例如,控制三通阀的动作,控制换热风机的运转等。此外,本领域技术人员能够理解的是,本发明不对所述控制器的具体结构和型号作任何限制,并且所述控制器可以是所述热源塔换热系统原有的控制器,也可以是为执行本发明的除霜控制方法而单独设置的控制器,技术人员可以根据实际使用需求自行设定所述控制器的结构和型号。
下面参阅图2,该图是本发明的除霜控制方法的优选实施例的具体步骤流程图。如图2所示,基于上述优选实施例中所述的热源塔换热系统,本发明的除霜控制方法的优选实施例具体包括下列步骤:
S101:获取热源塔的结霜情况;
S102:判断热源塔的结霜情况是否达到除霜标准;如果是,则执行步骤S103;如果否,则再次执行步骤S101;
S103:断开换热支路并接通除霜支路,控制换热风机停止转动;
S104:经过第一预设时间后,控制换热风机转动;
S105:经过第二预设时间后,接通换热支路且断开除霜支路。
进一步地,在步骤S101中,所述控制器能够获取第一热源塔11和第二热源塔12的结霜情况;需要说明的是,本发明不对这种具体获取方式作任何限制,技术人员可以根据实际使用需求自行设定其获取方式,例如,通过获取第一热源塔11和第二热源塔12的表面温度来判断其结霜情况,或者通过摄像传感器拍摄的图片来判断其结霜情况均可。接着,在步骤S102中,所述控制器能够判断第一热源塔11和第二热源塔12的结霜情况是否达到除霜标准;需要说明的是,技术人员需要根据实际使用需求自行设定该除霜标准,这种具体标准的改变并不偏离本发明的基本原理,属于本发明的保护范围。基于步骤S102的判断结果,如果热源塔的结霜情况未达到除霜标准,则再次执行步骤S101,以便进行实时监测;如果热源塔的结霜情况达到除霜标准,则所述控制器控制所述热源塔换热系统运行除霜模式。
具体地,执行步骤S103,即所述热源塔换热系统运行除霜模式的具体步骤包括:断开所述换热支路并接通所述除霜支路,控制所述换热风机停止转动。在热源塔的结霜情况达到除霜标准时,所述控制器控制三通阀动作,以使换热支路13断开并使除霜支路15接通,此时,所述控制器控制融霜泵21开启,除霜支路15中的冷媒被加热支路16加热,以便除霜支路15中的冷媒流入热源塔中时能够对热源塔进行除霜处理;同时,所述控制器还能够控制该热源塔对应的换热风机停止转动,必要时,所述控制器还能够控制加热装置19开启,以便 进一步提升加热支路16的温度。需要说明的是,本发明不对断开所述换热支路、接通所述除霜支路以及控制所述换热风机停止转动的具体执行顺序作任何限制,技术人员可以根据实际使用需求自行设定各个步骤的具体执行顺序。
进一步地,在步骤S104中,在所述热源塔换热系统运行除霜模式的时长达到第一预设时间时,所述控制器控制换热风机开始转动;需要说明的是,本发明不对所述第一预设时间的具体数值作任何限制,技术人员可以根据实际使用需求自行设定,优选地,所述第一预设时间为10分钟。接着,在步骤S105中,再经过第二预设时间后,所述控制器再次控制三通阀动作,以使所述换热支路接通且所述除霜支路断开,此时,所述控制器控制融霜泵21关闭,热源塔继续通过换热支路13与所述换热回路进行换热,从而在除霜结束后及时保证用户的换热需求。需要说明的是,本发明不对所述第二预设时间的具体数值作任何限定,技术人员可以根据实际使用需求自行设定,优选地,所述第二预设时间为1分钟。此外,本领域技术人员能够理解的是,虽然本优选实施例中采用时长作为判断除霜模式何时退出的依据;但是,技术人员显然还可以采用其他参数判断除霜模式的退出时机,例如热源塔的结霜程度等。
最后需要说明的是,上述实施例均是本发明的优选实施方案,并不作为对本发明保护范围的限制。本领域技术人员在实际使用本发明时,可以根据需要适当添加或删减一部分步骤,或者调换不同步骤之间的顺序。这种改变并没有超出本发明的基本原理,属于本发明的保护范围。
至此,已经结合附图描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种热源塔换热系统,其特征在于,所述热源塔换热系统包括热源塔、换热支路、热源塔热泵主机、除霜支路和加热支路;
    所述热源塔能够与所述换热支路的两端相连以形成循环回路,所述热源塔热泵主机中设置有换热回路,所述换热支路能够与所述换热回路进行热交换,以便所述热源塔能够通过所述换热支路与所述换热回路进行热交换;
    所述热源塔还能够与所述除霜支路的两端相连以形成循环回路,所述除霜支路能够与所述加热支路进行热交换,在所述热源塔换热系统运行除霜模式时,所述加热支路对所述除霜支路中的冷媒进行加热,以便对所述热源塔进行除霜。
  2. 根据权利要求1所述的热源塔换热系统,其特征在于,所述热源塔换热系统还包括第一三通阀和第二三通阀,
    所述第一三通阀的第一接口和所述第二三通阀的第一接口分别与所述热源塔的进口和出口相连,
    所述第一三通阀的第二接口和所述第二三通阀的第二接口分别与所述换热支路的两端相连,
    所述第一三通阀的第三接口和所述第二三通阀的第三接口分别与所述除霜支路的两端相连。
  3. 根据权利要求2所述的热源塔换热系统,其特征在于,所述热源塔换热系统还包括除霜换热器,
    所述除霜支路的至少一部分和所述加热支路的至少一部分均设置在所述除霜换热器中。
  4. 根据权利要求3所述的热源塔换热系统,其特征在于,所述热源塔热泵主机中还设置有第一换热器,
    所述换热支路的至少一部分和所述换热回路的第一换热盘管均设置 在所述第一换热器中。
  5. 根据权利要求1至4中任一项所述的热源塔换热系统,其特征在于,所述热源塔换热系统还包括供水支路,
    所述供水支路能够与所述换热回路进行热交换,所述加热支路与所述供水支路相连,以便利用所述供水支路中的热水对所述除霜支路中的冷媒进行加热。
  6. 根据权利要求5所述的热源塔换热系统,其特征在于,所述加热支路上设置有加热装置。
  7. 根据权利要求5所述的热源塔换热系统,其特征在于,所述热源塔热泵主机中还设置有第二换热器,
    所述供水支路的至少一部分和所述换热回路的第二换热盘管均设置在所述第二换热器中。
  8. 根据权利要求1至4中任一项所述的热源塔换热系统,其特征在于,所述热源塔的数量为多个。
  9. 一种用于热源塔换热系统的除霜控制方法,其特征在于,所述热源塔换热系统包括热源塔、换热支路、热源塔热泵主机、除霜支路和加热支路;所述热源塔的附近设置有换热风机;所述热源塔能够与所述换热支路的两端相连以形成循环回路,所述热源塔热泵主机中设置有换热回路,所述换热支路能够与所述换热回路进行热交换,以便所述热源塔能够通过所述换热支路与所述换热回路进行热交换;所述热源塔还能够与所述除霜支路的两端相连以形成循环回路,所述除霜支路能够与所述加热支路进行热交换,在所述热源塔换热系统运行除霜模式时,所述加热支路对所述除霜支路中的冷媒进行加热,以便对所述热源塔进行除霜;所述除霜控制方法包括:
    获取所述热源塔的结霜情况;
    如果所述热源塔的结霜情况达到除霜标准,则断开所述换热支路并 接通所述除霜支路,控制所述换热风机停止转动。
  10. 根据权利要求9所述的除霜控制方法,其特征在于,所述除霜控制方法还包括:
    在所述热源塔换热系统运行除霜模式达第一预设时间时,控制所述换热风机转动;
    经过第二预设时间后,接通所述换热支路且断开所述除霜支路。
PCT/CN2020/079152 2019-10-30 2020-03-13 热源塔换热系统及其除霜控制方法 WO2021082330A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911047787.6 2019-10-30
CN201911047787.6A CN112747513A (zh) 2019-10-30 2019-10-30 热源塔换热系统及其除霜控制方法

Publications (1)

Publication Number Publication Date
WO2021082330A1 true WO2021082330A1 (zh) 2021-05-06

Family

ID=75640914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079152 WO2021082330A1 (zh) 2019-10-30 2020-03-13 热源塔换热系统及其除霜控制方法

Country Status (2)

Country Link
CN (1) CN112747513A (zh)
WO (1) WO2021082330A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014375A (ja) * 2008-07-07 2010-01-21 Kansai Electric Power Co Inc:The 加熱塔の除霜方法
CN203132234U (zh) * 2013-03-26 2013-08-14 长沙鹞翔科技有限公司 一种用于闭式热源塔的融霜装置
CN106091076A (zh) * 2016-07-25 2016-11-09 湖南大学 一种采用无盐式外辅热防融霜装置的热源塔热泵
CN207815487U (zh) * 2018-01-16 2018-09-04 辽宁鑫源重工有限公司 一种空气源热源塔热泵系统
CN110030619A (zh) * 2019-02-27 2019-07-19 青岛海尔空调电子有限公司 热源塔控制装置、控制方法及热源塔
CN110044036A (zh) * 2019-02-27 2019-07-23 青岛海尔空调电子有限公司 热源塔控制方法、控制装置及热源塔

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4275570B2 (ja) * 2004-04-15 2009-06-10 中部電力株式会社 ヒーティングタワーの除霜方法および水冷式ヒートポンプシステム
CN101915479B (zh) * 2010-08-04 2012-10-10 江苏辛普森新能源有限公司 一种热源塔制冷供热节能系统
CN103123193B (zh) * 2013-03-26 2014-10-29 长沙鹞翔科技有限公司 一种用于闭式热源塔的融霜装置
CN205909384U (zh) * 2016-07-25 2017-01-25 湖南大学 一种采用无盐式外辅热防融霜装置的热源塔热泵
CN207922639U (zh) * 2018-01-31 2018-09-28 青岛海尔空调电子有限公司 一种热回收型热源塔热泵机组
CN108870511B (zh) * 2018-08-05 2023-12-19 青岛美克热源塔热泵研究有限公司 水汽悬浮冷凝热源塔热泵供热站
CN109186147A (zh) * 2018-08-30 2019-01-11 鲍家邻 伴管喷液除霜热源塔热泵装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014375A (ja) * 2008-07-07 2010-01-21 Kansai Electric Power Co Inc:The 加熱塔の除霜方法
CN203132234U (zh) * 2013-03-26 2013-08-14 长沙鹞翔科技有限公司 一种用于闭式热源塔的融霜装置
CN106091076A (zh) * 2016-07-25 2016-11-09 湖南大学 一种采用无盐式外辅热防融霜装置的热源塔热泵
CN207815487U (zh) * 2018-01-16 2018-09-04 辽宁鑫源重工有限公司 一种空气源热源塔热泵系统
CN110030619A (zh) * 2019-02-27 2019-07-19 青岛海尔空调电子有限公司 热源塔控制装置、控制方法及热源塔
CN110044036A (zh) * 2019-02-27 2019-07-23 青岛海尔空调电子有限公司 热源塔控制方法、控制装置及热源塔

Also Published As

Publication number Publication date
CN112747513A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
CN103574758B (zh) 空调器系统及其除霜方法
WO2021169526A1 (zh) 换热装置、空调器及其控制方法
CN101975422A (zh) 冷暖型空调器及其除霜方法
CN105805904B (zh) 一种机房的制冷控制系统和方法
CN203518373U (zh) 空调系统
CN104251580A (zh) 空调系统
CN104864627A (zh) 一种双供暖制冷热水除湿系统
CN208983657U (zh) 热泵系统
CN111503758A (zh) 换热效率高的电器盒、空调及空调的控制方法
CN204154021U (zh) 一种实用多功能热水空调机
CN210624994U (zh) 一种双末端热泵采暖空调机组的冷媒控制系统
WO2021082330A1 (zh) 热源塔换热系统及其除霜控制方法
CN210569014U (zh) 冬季安全运行的防冻型新风处理机组
CN204141892U (zh) 一种简化型实用多功能热水空调机
CN206739618U (zh) 一种多功能热泵热水机组
CN205980438U (zh) 一种带平衡器的冷热回收热泵
CN213020401U (zh) 一种制热除霜空气源热水泵
CN109945300B (zh) 一种复合式空调系统及室外机除霜控制方法
CN103388851A (zh) 带加热装置和变频泵的制热用地源热泵系统
CN105020933B (zh) 一种实用多功能热水空调机
CN203518099U (zh) 寒冷季室外直接防冻取冷装置
CN103322655B (zh) 新型高效能源阶梯使用闭式循环中央空调系统
CN203478601U (zh) 热泵热水器
CN106871396A (zh) 热能回收设备及热水冷暖气一体机
CN201819468U (zh) 茶叶做青环境控制热回收节能装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881587

Country of ref document: EP

Kind code of ref document: A1