WO2021082000A1 - 开关电源变换器 - Google Patents

开关电源变换器 Download PDF

Info

Publication number
WO2021082000A1
WO2021082000A1 PCT/CN2019/115123 CN2019115123W WO2021082000A1 WO 2021082000 A1 WO2021082000 A1 WO 2021082000A1 CN 2019115123 W CN2019115123 W CN 2019115123W WO 2021082000 A1 WO2021082000 A1 WO 2021082000A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
electrically connected
output
signal
load detection
Prior art date
Application number
PCT/CN2019/115123
Other languages
English (en)
French (fr)
Inventor
王易
衡草飞
巫炜
黄晨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980101505.8A priority Critical patent/CN114556762A/zh
Priority to EP19951036.3A priority patent/EP4040662A4/en
Publication of WO2021082000A1 publication Critical patent/WO2021082000A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0019Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being load current fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation

Definitions

  • This application relates to the field of circuits, and more specifically, to a switching power converter.
  • switching power converters are used in many circuits to improve the conversion efficiency of circuit power.
  • the load of the switching power converter instantly jumps from a light load to a heavy load, the output voltage of the switching power converter will drop rapidly, thereby degrading the performance of the electronic product system.
  • the present application provides a switching power converter, which can improve the transient characteristics of the switching power converter when the output of the switching power converter changes.
  • a switching power supply converter including: a triangle wave generator, the input end of the triangle wave generator is used to receive a clock signal; a load detection circuit, the input end of the load detection circuit is electrically connected to the switching power supply The output terminal of the converter, the first output terminal of the load detection circuit is electrically connected to the control terminal of the triangle wave generator, wherein the load detection circuit is used to control the triangle wave signal output by the triangle wave generator according to the output of the switching power supply converter Amplitude.
  • the amplitude of the triangular wave signal output by the triangular wave generator is controlled according to the output of the switching power converter.
  • the switching power converter provided by the embodiment of the present application can recover the output voltage more quickly.
  • the switching power converter further includes an error amplifier EA, wherein: the second output terminal of the load detection circuit is electrically connected to the control terminal of the EA, and the load detection The circuit is also used to control the response speed of the signal output by the EA according to the output of the switching power converter.
  • EA error amplifier
  • the output of the switching power converter controls the signal output by the EA has a higher response speed.
  • the switching power converter provided by the embodiment of the present application can recover the output voltage faster.
  • the load detection circuit includes a first hysteresis comparator and a second hysteresis comparator, wherein: the first input terminal of the first hysteresis comparator is used to receive the first hysteresis comparator A detection voltage, the second input terminal of the first hysteresis comparator is used to receive a first reference voltage, the output terminal of the first hysteresis comparator is used to output a first signal, wherein the first detection voltage is the load detection
  • the circuit converts the voltage obtained according to the received output current of the switching power converter; the first input terminal of the second hysteresis comparator is used for receiving the second detection voltage, and the second input terminal of the second hysteresis comparator is used for After receiving the second reference voltage, the output terminal of the second hysteresis comparator is used to output a second signal, where the second detection voltage is a filtered voltage of the first detection
  • the load detection circuit further includes a current detection circuit and a logic controller, wherein: the input terminal of the current detection circuit is electrically connected to the output terminal of the switching power converter The output terminal of the current detection circuit is electrically connected to the first hysteresis comparator and the second hysteresis comparator, and the current detection circuit is used to convert the received output current of the switching power converter into the first detection voltage
  • the first input terminal of the logic controller is electrically connected to the output terminal of the first hysteresis comparator, and the second input terminal of the logic controller is electrically connected to the output terminal of the second hysteresis comparator; the logic controller is used for Receiving the first signal, and generating a fast load detection signal according to the first signal, where the fast load detection signal is a signal output by the load detection circuit when the
  • the introduction of the fast load detection signal and the slow load detection signal can improve the accuracy of the load detection circuit in identifying changes in the output of the switching power converter.
  • the above-mentioned switching power converter may include a plurality of first hysteresis comparators and a plurality of second hysteresis comparators, respectively outputting a plurality of fast load detection signals and a plurality of slow load detection signals.
  • the multiple fast load detection signals and the multiple slow load detection signals are used to adjust the amplitude of the triangular wave corresponding to the load interval when the switching power converter is in different load current intervals.
  • the process of switching power converter from light load to heavy load can be divided into 4 load current ranges, and the 4 fast load detection signals and 4 slow load detection signals output by the switching power converter can be in the above 4 respectively.
  • the load current interval adjusts the amplitude of the triangle wave respectively, thereby improving the accuracy of the control of the triangle wave amplitude.
  • the triangle wave generator includes a variable capacitor, a variable resistor, and a triangle wave signal controller, wherein: the first end of the variable resistor is used to receive a clock Signal, the second terminal of the variable resistor is electrically connected to the output terminal of the triangle wave generator, the control terminal of the variable resistor is electrically connected to the output terminal of the triangle wave signal controller; the first terminal of the variable capacitor Electrically connected to the output terminal of the triangle wave generator, the second terminal of the variable capacitor is used to receive the output voltage of the switching power converter, and the control terminal of the variable capacitor is electrically connected to the output terminal of the triangle wave signal controller;
  • the triangle wave signal controller is used for adjusting the resistance value of the variable resistor and the capacitance value of the variable capacitor according to the fast load detection signal and the slow load detection signal received by the control terminal of the triangle wave generator.
  • the triangle wave generator can adjust the amplitude of the triangle wave signal in sections, wherein the section adjustment of the amplitude of the triangle wave signal is completed in one clock cycle, or completed in multiple clock cycles of.
  • the triangle wave generator further includes an operational amplifier, wherein: the first input terminal of the operational amplifier is used to receive a reference voltage, and the second input terminal of the operational amplifier The input terminal is electrically connected to the output terminal of the operational amplifier, and the output terminal of the operational amplifier is electrically connected to the first terminal of the variable capacitor.
  • the triangular wave generator includes an operational amplifier, a variable resistor, a variable current source, a variable current sink, a third switch, a fourth switch, and a triangular wave signal A controller, wherein: the first input terminal of the operational amplifier is used to receive a reference voltage, the second input terminal of the operational amplifier is electrically connected to the output terminal of the operational amplifier, and the output terminal of the operational amplifier is electrically connected to The output terminal of the triangle wave generator; the first terminal of the variable resistor is electrically connected between the third switch and the fourth switch, and the second terminal of the variable resistor is electrically connected to the output of the triangle wave generator The control terminal of the variable resistor is electrically connected to the output terminal of the triangular wave signal controller; the first terminal of the variable current source receives a fixed voltage, and the second terminal of the variable current source is electrically connected to the variable The second terminal of the current sink, the control terminal of the variable current source is electrically connected to the control terminal of the variable current
  • the triangle wave generator further includes a first switch and a second switch, wherein: the first switch is electrically connected between the variable resistor and the fixed capacitor The second switch is electrically connected between the DC voltage input terminal and the output terminal of the triangle wave generator; wherein, the first switch and the second switch are alternately closed.
  • the load detection circuit is further used to: increase the gain of the signal output by the EA; or increase the loop bandwidth of the signal output by the EA.
  • the EA includes an operational amplifier, a bias current source, a compensation network, and an EA signal controller, wherein: the first input terminal of the operational amplifier is used to receive the switch The output voltage of the power converter, the second input terminal of the operational amplifier is used to receive the reference voltage, the output terminal of the operational amplifier is electrically connected to the output terminal of the EA; the first terminal of the compensation network is electrically connected to the operational amplifier The output terminal, the second terminal of the compensation network is grounded; the third input terminal of the operational amplifier is electrically connected to the bias current source; the EA signal controller is used according to the fast load detection signal received by the control terminal of the EA and the The slow load detection signal adjusts the bias current of the bias current source and adjusts the parameters of the compensation network.
  • the parameters of the compensation network include a variable resistor, a first variable capacitor, and a second variable capacitor, wherein: the first terminal of the variable resistor Is electrically connected to the output terminal of the operational amplifier, the second terminal of the variable resistor is electrically connected to the first terminal of the first variable capacitor; the second terminal of the first variable capacitor is grounded; the second variable The first terminal of the capacitor is electrically connected to the output terminal of the operational amplifier, the second terminal of the second variable capacitor is grounded; the control terminal of the variable resistor, the control terminal of the first variable capacitor, and the second The control terminal of the variable capacitor is electrically connected to the output terminal of the EA signal controller; the resistance value of the variable resistor, the capacitance value of the first variable capacitor and the capacitance value of the second variable capacitor are detected by the fast load The signal and the slow load detection signal are adjusted.
  • a switching power supply converter including: a triangular wave generator, the input of the triangular wave generator is used to receive a clock signal; a load detection circuit, the load detection circuit includes a first hysteresis comparator and a second hysteresis The input terminal of the first hysteresis comparator and the input terminal of the second hysteresis comparator are electrically connected to the input terminal of the load detection circuit, and the output terminal of the first hysteresis comparator and the input terminal of the second hysteresis comparator are electrically connected The output terminal is electrically connected to the first output terminal of the load detection circuit, wherein: the first input terminal of the first hysteresis comparator is used for receiving the first detection voltage, and the second input terminal of the first hysteresis comparator is used for receiving The first reference voltage, the first detection voltage is the voltage obtained by the load detection circuit according to the received output current of the switching power converter,
  • the second detection voltage is a filtered voltage of the first detection voltage.
  • the second reference voltage is less than or equal to the first reference voltage. Voltage; wherein the input end of the load detection circuit is electrically connected to the output end of the switching power converter, and the first output end of the load detection circuit is electrically connected to the triangle wave generator.
  • a load detection circuit is introduced, and the output of the switching power converter can be known according to the output of the first hysteresis comparator and the output of the second hysteresis comparator.
  • the output of the switching power converter can be known according to the output of the first hysteresis comparator and the output of the second hysteresis comparator.
  • the response speed of the signal output by the EA can be controlled according to the output of the first hysteresis comparator and the second hysteresis comparator of the load detection circuit.
  • the switching power converter further includes an error amplifier EA, wherein: the second output terminal of the load detection circuit is electrically connected to the control terminal of the EA.
  • a load detection circuit is introduced, and the output of the switching power converter can be known according to the output of the first hysteresis comparator and the output of the second hysteresis comparator.
  • the output of the switching power converter can be known according to the output of the first hysteresis comparator and the output of the second hysteresis comparator.
  • the response speed of the signal output by the EA can be controlled according to the output of the first hysteresis comparator and the second hysteresis comparator of the load detection circuit.
  • the load detection circuit further includes a current detection circuit and a logic controller, wherein: the input end of the current detection circuit is electrically connected to the output end of the switching power converter , The output terminal of the current detection circuit is electrically connected to the first hysteresis comparator and the second hysteresis comparator; the first input terminal of the logic controller is electrically connected to the output terminal of the first hysteresis comparator, and the logic controls The second input terminal of the logic controller is electrically connected to the output terminal of the first hysteresis comparator, the first output terminal of the logic controller is electrically connected to the control terminal of the triangle wave generator, and the second output terminal of the logic controller is electrically connected to To the control end of the EA.
  • the triangle wave generator includes a variable capacitor, a variable resistor, and a triangle wave signal controller, wherein: the first end of the variable resistor is used to receive a clock Signal, the second terminal of the variable resistor is electrically connected to the first terminal of the variable capacitor and the output terminal of the triangle wave generator, and the control terminal of the variable resistor is electrically connected to the output terminal of the triangle wave signal controller
  • the second terminal of the variable capacitor is used to receive the output voltage of the switching power converter, the control terminal of the variable capacitor is electrically connected to the output terminal of the triangle wave signal controller;
  • the triangle wave signal controller is used to generate the triangle wave
  • the fast load detection signal and the slow load detection signal received by the control terminal of the device adjust the resistance value of the variable resistor and the capacitance value of the variable capacitor.
  • the triangle wave generator can adjust the amplitude of the triangle wave signal in sections, wherein the section adjustment of the amplitude of the triangle wave signal is completed in one clock cycle, or completed in multiple clock cycles of.
  • the triangular wave generator further includes an operational amplifier, wherein: the first input terminal of the operational amplifier is used to receive a reference voltage, and the second input terminal of the operational amplifier The input terminal is electrically connected to the output terminal of the operational amplifier, and the output terminal of the operational amplifier is electrically connected to the first terminal of the variable capacitor.
  • the triangular wave generator includes an operational amplifier, a variable resistor, a variable current source, a variable current sink, a third switch, a fourth switch, and a triangular wave signal A controller, wherein: the first input terminal of the operational amplifier is used to receive a reference voltage, the second input terminal of the operational amplifier is electrically connected to the output terminal of the operational amplifier, and the output terminal of the operational amplifier is electrically connected to The output terminal of the triangle wave generator; the first terminal of the variable resistor is electrically connected between the third switch and the fourth switch, and the second terminal of the variable resistor is electrically connected to the output of the triangle wave generator The control terminal of the variable resistor is electrically connected to the output terminal of the triangular wave signal controller; the first terminal of the variable current source is connected to a fixed voltage, and the second terminal of the variable current source is electrically connected to the variable The second terminal of the current sink, the control terminal of the variable current source is electrically connected to the control terminal of the variable
  • the above-mentioned switching power converter may include a plurality of first hysteresis comparators and a plurality of second hysteresis comparators, respectively outputting a plurality of fast load detection signals and a plurality of slow load detection signals.
  • the multiple fast load detection signals and the multiple slow load detection signals are used to adjust the amplitude of the triangular wave corresponding to the load interval when the switching power converter is in different load current intervals.
  • the process of switching power converter from light load to heavy load can be divided into 4 load current ranges, and the 4 fast load detection signals and 4 slow load detection signals output by the switching power converter can be in the above 4 respectively.
  • the load current interval adjusts the amplitude of the triangle wave respectively, thereby improving the accuracy of the control of the triangle wave amplitude.
  • the triangle wave generator further includes a first switch and a second switch, wherein: the first switch is electrically connected between the variable resistor and the fixed capacitor The second switch is electrically connected between the DC voltage input terminal and the output terminal of the triangle wave generator; wherein, the first switch and the second switch are alternately closed.
  • the EA includes an operational amplifier, a bias current source, a compensation network, and an EA signal controller, wherein: the first input terminal of the operational amplifier is used to receive the switch The output voltage of the power converter, the second input terminal of the operational amplifier is used to receive the reference voltage, the output terminal of the operational amplifier is electrically connected to the output terminal of the EA; the first terminal of the compensation network is electrically connected to the operational amplifier The output terminal, the second terminal of the compensation network is grounded; the third input terminal of the operational amplifier is electrically connected to the bias current source; the EA signal controller is used according to the fast load detection signal received by the control terminal of the EA and the The slow load detection signal adjusts the bias current of the bias current source and adjusts the parameters of the compensation network.
  • the parameters of the compensation network include a variable resistor, a first variable capacitor, and a second variable capacitor, wherein: the first terminal of the variable resistor Is electrically connected to the output terminal of the operational amplifier, the second terminal of the variable resistor is electrically connected to the first terminal of the first variable capacitor; the second terminal of the first variable capacitor is grounded; the second variable The first terminal of the capacitor is electrically connected to the output terminal of the operational amplifier, the second terminal of the second variable capacitor is grounded; the control terminal of the variable resistor, the control terminal of the first variable capacitor, and the second The control terminal of the variable capacitor is electrically connected to the output terminal of the EA signal controller.
  • Fig. 1 is a schematic circuit diagram of a switching power converter provided by an embodiment of the present application.
  • Fig. 2 is a schematic circuit diagram of a load detection circuit provided by an embodiment of the present application.
  • Fig. 3 is a schematic circuit diagram of a triangular wave generator provided by an embodiment of the present application.
  • Fig. 4 is a schematic circuit diagram of another triangular wave generator provided by an embodiment of the present application.
  • Fig. 5 is a schematic circuit diagram of still another triangular wave generator provided by an embodiment of the present application.
  • Fig. 6 is a schematic circuit diagram of an error amplifying circuit EA provided by an embodiment of the present application.
  • FIG. 7 is a schematic circuit diagram of another error amplifying circuit EA provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the relationship among the load output voltage, the signal output by the EA, the triangular wave signal, and the load output current of a switching power converter provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the relationship among the load output voltage, the signal output by the EA, the triangular wave signal, and the load output current of a switching power converter provided by an embodiment of the present application.
  • Switching power supply converter (switch mode power supply, SMPS): Switching power supply converters can be divided into AC-DC and DC-DC two categories; switching power supply converters usually adopt buck buck structure and boost boost structure ; The working mode of the switching power converter can be divided into pulse frequency modulation (pulse frequency modulation, PFM) mode and PWM mode.
  • PFM pulse frequency modulation
  • PFM mode The usual implementation is a constant on-time or constant peak current for each switching cycle, and the power supply operating frequency changes with changes in load or input and output conditions.
  • PWM mode The usual implementation is that the frequency of each switching cycle is fixed, and the switching duty cycle of each cycle changes with changes in load or input and output conditions.
  • Duty ratio refers to the percentage of the time that the circuit is turned on in the entire working cycle of the circuit.
  • Fig. 1 shows a schematic circuit diagram of a switching power converter provided by an embodiment of the present application.
  • the switching power converter includes a load detection circuit 310, a triangle wave generator 320, an error amplifier 330, a comparator 340, a logic control 350, a driving and power output stage 360, and a peripheral inductance capacitor filter network 370.
  • the load detection circuit 310 includes a current detection circuit 311, a first hysteresis comparator 312, a second hysteresis comparator 313, and a logic controller 314.
  • the input terminal of the load detection circuit 310 is electrically connected to the output terminal of the switching power converter, the first output terminal of the load detection circuit is electrically connected to the control terminal of the triangle wave generator, and the second output terminal of the load detection circuit is electrically connected to the control terminal of the EA end.
  • the load detection circuit is used to control the amplitude of the triangle wave signal output by the triangle wave generator according to the output of the switching power converter, and the load detection circuit is also used to control the signal output by the EA according to the output of the switching power converter. Response speed.
  • Fig. 2 shows a schematic circuit diagram of a load detection circuit provided by an embodiment of the present application.
  • the current detection circuit 311 includes a regulator tube 101 and a regulator tube 102, a current mirror tube 103 and a current mirror tube 104, an error op amp 110 and an error op amp 111, a current sampling MOS tube 120 and a current sampling MOS tube 121 , The power MOS field effect tube 130 and the power MOS field effect tube 131, the inductor 140 and the capacitor 150.
  • the input terminal of the current detection circuit is electrically connected to the output terminal of the switching power supply converter, the output terminal of the current detection circuit is electrically connected to the first hysteresis comparator and the second hysteresis comparator, and the current detection circuit is used to convert the received switching power supply The output current of the converter is converted to voltage.
  • the function of the adjusting tube 101 and the adjusting tube 102 is that the adjusting tube is controlled by the loop, so that the voltage at each end of the sampling tube is equal to the voltage at each end of the power tube, ensuring high sampling accuracy.
  • the function of the current mirror tube 103 and the current mirror tube 104 is to mirror the sampling current of the NMOS into a PMOS current output.
  • the power MOS field effect transistors (130 and 131) and the current sampling MOS transistors (120 and 121) are clamped to the same voltage through the error op amps (110 and 111). Ensure that the current sense ratio of the current sampling MOS tube to the power tube is accurate.
  • the input of the current detection circuit is the output current of the switching power converter. The output current is converted into the I_SENSE current of the P and N tube through the power MOS field effect tube and the current sampling MOS tube, and the I_SENSE current of the P and N tube is converted to V_SENSE through the resistance. Voltage.
  • the first hysteresis comparator 312 the first input terminal of the first hysteresis comparator is used for receiving the first detection voltage
  • the second input terminal of the first hysteresis comparator is used for receiving the first reference voltage
  • the output of the first hysteresis comparator The terminal is used to output the first signal
  • the output of the first hysteresis comparator is connected to the logic controller 314, where the first detection voltage is the voltage obtained after the load detection circuit is converted according to the received output current of the switching power converter.
  • the value of the first reference voltage may be one or multiple; the value of the second reference voltage may be one or multiple.
  • the logic controller 314, the first input terminal of the logic controller is electrically connected to the output terminal of the first hysteresis comparator, the second input terminal of the logic controller is electrically connected to the output terminal of the second hysteresis comparator; the logic controller is used for receiving
  • the first signal is used to generate a fast load detection signal according to the first signal.
  • the fast load detection signal is a signal output by the load detection circuit when the output current of the switching power converter rises rapidly; the logic controller is also used to receive the second signal, The slow load detection signal is generated according to the second signal.
  • the slow load detection signal is the signal output by the load detection circuit when the output current of the switching power converter rises slowly; among them, the fast load detection signal and the slow load detection signal It is the input signal of the control terminal of the triangle wave generator, and the fast load detection signal and the slow load detection signal are the input signal of the control terminal of EA.
  • the working process of the load detection circuit in the embodiment of the present application is as follows:
  • the load detection circuit receives the output current from the switching power converter, and the output current is converted into the V_SENSE voltage through the current detection circuit 311;
  • the first terminal of the first hysteresis comparator 312 is used to receive the V_SENSE voltage, and the second terminal of the first hysteresis comparator 312 is used to receive the fast load detection threshold Vth_fast and output the first signal; the first terminal of the second hysteresis comparator 312 The terminal is used to receive the filtered V_SENSE voltage, and the second terminal of the second hysteresis comparator 312 is used to receive the slow load detection threshold Vth_slow and output the second signal;
  • fast load detection threshold Vth_fast in the embodiment of the present application may be one value or multiple values; the slow load detection threshold Vth_slow may be one or multiple values.
  • the logic controller is used to receive the first signal and the second signal, and output a fast load detection signal according to the first signal, and output a slow load detection signal according to the second signal.
  • the first hysteresis comparator 312 when the V_SENSE received by the first terminal of the first hysteresis comparator 312 is greater than the fast load detection threshold Vth_fast received by the second terminal of the first hysteresis comparator 312, the first hysteresis comparator outputs the first signal with a logic value of 1.
  • the logic value of the fast load detection signal output by the logic controller according to the first logic signal is 1; when the filtered V_SENSE voltage received by the first terminal of the second hysteresis comparator 312 is less than the second terminal of the second hysteresis comparator 312 When the slow load detection threshold Vth_slow is received, the second hysteresis comparator outputs a second signal with a logic value of 0, and the logic controller outputs a slow load detection signal with a logic value of 0 according to the second logic signal.
  • the first hysteresis comparator 312 when the V_SENSE received by the first terminal of the first hysteresis comparator 312 is greater than the fast load detection threshold Vth_fast received by the second terminal of the first hysteresis comparator 312, the first hysteresis comparator outputs the first signal with a logic value of 1.
  • the logic value of the fast load detection signal output by the logic controller according to the first logic signal is 1; when the filtered V_SENSE voltage received by the first terminal of the second hysteresis comparator 312 is greater than the second terminal of the second hysteresis comparator 312 When the slow load detection threshold Vth_slow is received, the second hysteresis comparator outputs a second signal with a logic value of 1, and the logic controller outputs a slow load detection signal with a logic value of 1 according to the second logic signal.
  • the first hysteresis comparator when V_SENSE received by the first end of the first hysteresis comparator 312 is less than the fast load detection threshold Vth_fast received by the second end of the first hysteresis comparator 312, the first hysteresis comparator outputs the first signal with a logic value of 0, The logic value of the fast load detection signal output by the logic controller according to the first logic signal is 0; when the filtered V_SENSE voltage received by the first terminal of the second hysteresis comparator 312 is greater than the second terminal of the second hysteresis comparator 312 When the slow load detection threshold Vth_slow is received, the second hysteresis comparator outputs a second signal with a logic value of 1, and the logic controller outputs a slow load detection signal with a logic value of 1 according to the second logic signal.
  • the amplitude of the triangle wave signal output by the triangle wave generator can be controlled, and the EA output can also be controlled The response speed of the signal.
  • the triangular wave generator is triggered to increase the amplitude of the triangular wave signal, and the increased amplitude of the triangular wave signal corresponds to the switching power converter adopts The amplitude of the triangular wave signal required when the loop is stable in the pulse width modulation mode.
  • the response speed of the signal that triggers the EA output is increased.
  • the triangular wave generator is triggered to adjust the amplitude of the triangular wave signal segmentally, wherein the segmental adjustment of the amplitude of the triangular wave signal is completed within one clock cycle, or in multiple stages. Completed within the clock cycle.
  • acceleration of the response speed of the signal that triggers the EA output in the embodiment of the present application includes, but is not limited to, increasing the gain of the EA output signal and increasing the loop bandwidth of the EA.
  • the amplitude of the triangular wave signal is switched or kept to the smaller amplitude of the triangular wave signal in PFM mode, and the EA output signal is switched or kept to the higher value in PFM mode. Fast response speed status.
  • load detection circuit shown in FIG. 2 is only an example and not a limitation.
  • the input end of the triangle wave generator is used to receive a clock signal, and the amplitude of the triangle wave signal generated by the triangle wave generator is controlled according to the output of the load detection circuit 310.
  • the switching power converter works in the pulse frequency modulation mode, and the triangle wave generator 320 outputs the first triangle wave signal.
  • the load detection circuit 310 detects that the output load current of the switching power converter has a transient change and causes the output voltage to drop
  • the triangle wave generator 320 is controlled to output a second triangle wave signal, where the second triangle wave signal corresponds to the pulse width modulation mode, and the amplitude value of the second triangle wave signal is higher than the amplitude value of the first triangle wave signal.
  • Figures 3 to 5 show three types of triangular wave generators provided by embodiments of the present application.
  • Fig. 3 shows a schematic circuit diagram of a triangular wave generator provided by an embodiment of the present application.
  • the triangular wave generator mainly includes a triangular wave signal controller, a variable resistor R1, a variable capacitor C2, a first switch S1, and a second switch S0.
  • the triangle wave signal controller is used to adjust the resistance value of the variable resistor R1 and the capacitance value of the variable capacitor C2 according to the fast load detection signal and the slow load detection signal received by the control terminal of the triangle wave generator to adjust the amplitude of the triangle wave signal.
  • the first terminal of the variable resistor R1 is used to receive the clock signal
  • the second terminal of the variable resistor R1 is electrically connected to the output terminal of the triangle wave generator
  • the control terminal of the variable resistor R1 is electrically connected to the triangle wave signal controller.
  • the first terminal of the variable capacitor C2 is electrically connected to the output terminal of the triangle wave generator, the second terminal of the variable capacitor C2 is used to receive the output voltage of the switching power converter, and the control terminal of the variable capacitor C2 is electrically connected to the triangle wave signal control The output terminal of the device;
  • the first switch S1 is electrically connected between the variable resistor R1 and the fixed capacitor C1; the second switch S0 is electrically connected between the input terminal of the DC voltage V_LINE and the output terminal RAMP_OUT of the triangle wave generator; Only one of the switch S1 and the second switch S0 can be in the closed state.
  • the output of the triangular wave signal controller controls the first switch S1 to be closed, and the second switch S0 to open.
  • the output of the triangular wave signal controller controls the second switch S0 to be closed, and the first switch S1 to be opened.
  • the amplitude value of the triangular wave signal output by the triangular wave generator is not zero.
  • the amplitude of the triangular wave signal output by the triangular wave generator is zero; if the output voltage ripple is considered, the amplitude of the triangular wave at this time is the coupling value of the output ripple through the capacitor.
  • the load of the switching power converter is a light load, the first switch S1 can be opened and the second switch S0 can be closed.
  • the process of outputting a triangular wave signal by the triangular wave generator of the embodiment of the present application is as follows:
  • the center value of the triangular wave signal output by the triangular wave generator is obtained by dividing the output voltage VO of the switching power converter.
  • the amplitude of the triangular wave signal is obtained by the CLK clock through the RC network composed of R1, C1 and C2 Coupled.
  • the signal output by the load detection circuit controls the gear change of the resistor R1 or the capacitor C2, thereby changing the amplitude of the triangular wave signal.
  • the load of the switching power converter is light load
  • switch S0 is closed, S1 is opened, and the DC voltage V_LINE generates a triangular wave signal.
  • the amplitude of the triangular wave signal is 0, that is, the triangular wave generator outputs a straight line; if Considering the output voltage ripple, the amplitude of the triangle wave at this time is the coupling value of the output ripple through the capacitor.
  • Fig. 4 shows a schematic circuit diagram of another triangular wave generator provided by an embodiment of the present application.
  • the triangle wave generator mainly includes a BUF operational amplifier, a triangle wave signal controller, a variable resistor R1, a variable capacitor C2, a first switch S1, and a second switch S0.
  • the first input terminal of the BUF operational amplifier is used to receive the reference voltage VREF_CENTRE; the second input terminal of the BUF operational amplifier is electrically connected to the output terminal of the BUF operational amplifier; the output terminal of the BUF operational amplifier is electrically connected To the first end of the variable capacitor C2.
  • the triangle wave signal controller is used to adjust the resistance value of the variable resistor R1 and the capacitance value of the variable capacitor C2 according to the fast load detection signal and the slow load detection signal received by the control terminal of the triangle wave generator to adjust the amplitude of the triangle wave signal.
  • the first switch S1 is electrically connected between the variable resistor and the fixed capacitor; the second switch S0 is electrically connected between the DC voltage input terminal and the output terminal of the triangle wave generator; wherein, the first switch at the same time Only one of the switch S1 and the second switch S0 can be in the closed state.
  • the amplitude value of the triangular wave signal output by the triangular wave generator is not zero.
  • the amplitude of the triangular wave signal output by the triangular wave generator is zero; if the output voltage ripple is considered, the amplitude of the triangular wave at this time is the coupling value of the output ripple through the capacitor. .
  • the load of the switching power converter is a light load, the first switch S1 can be opened and the second switch S0 can be closed.
  • the process of outputting a triangular wave signal by the triangular wave generator of the embodiment of the present application is as follows:
  • the center value of the triangular wave signal output by the triangular wave generator is obtained by dividing the input voltage VREF_CENTRE of the BUF op amp.
  • the amplitude of the triangular wave signal is obtained by the CLK clock through the RC network composed of R1, C1 and C2 Coupled.
  • the fast load detection signal and the slow load detection signal control the gear change of the resistor R1 or the capacitor C2, thereby changing the amplitude of the triangular wave signal.
  • the load of the switching power converter is light load
  • switch S0 is closed, S1 is opened, and the DC voltage V_LINE generates a triangular wave signal.
  • the amplitude of the triangular wave signal is 0, that is, the triangular wave generator outputs a straight line; if Considering the output voltage ripple, the amplitude of the triangle wave at this time is the coupling value of the output ripple through the capacitor.
  • the above-mentioned switching power converter may include a plurality of first hysteresis comparators and a plurality of second hysteresis comparators, which respectively output a plurality of fast load detection signals and a plurality of slow load detection signals.
  • the multiple fast load detection signals and the multiple slow load detection signals are used to adjust the amplitude of the triangular wave corresponding to the load interval when the switching power converter is in different load current intervals.
  • the process of switching power converter from light load to heavy load can be divided into 4 load current ranges, and the 4 fast load detection signals and 4 slow load detection signals output by the switching power converter can be in the above 4 respectively.
  • the load current interval adjusts the amplitude of the triangle wave respectively, thereby improving the accuracy of the control of the triangle wave amplitude.
  • Fig. 5 shows a schematic circuit diagram of still another triangular wave generator provided by an embodiment of the present application.
  • the triangular wave generator mainly includes a BUF operational amplifier, a current source, a current sink, a triangular wave signal controller, a variable resistor R1, a first switch S1, a second switch S0, and a third switch.
  • Fourth switch mainly includes a BUF operational amplifier, a current source, a current sink, a triangular wave signal controller, a variable resistor R1, a first switch S1, a second switch S0, and a third switch.
  • the first input terminal of the operational amplifier is used for receiving the reference voltage
  • the second input terminal of the operational amplifier is electrically connected to the output terminal of the operational amplifier
  • the output terminal of the operational amplifier is electrically connected to the output terminal of the triangle wave generator.
  • the first terminal of the variable current source receives the fixed voltage VDD
  • the second terminal of the variable current source is electrically connected to the second terminal of the variable current sink
  • the control terminal of the variable current source is electrically connected to the control terminal of the variable current sink.
  • the output terminal of the triangular wave signal controller the first terminal of the variable current sink is grounded.
  • the triangle wave signal controller is used to adjust the resistance value of the variable resistor R1, the current value of the variable current source and the current value of the variable current sink according to the fast load detection signal and the slow load detection signal received by the control terminal of the triangle wave generator, To adjust the amplitude of the triangle wave signal.
  • the first end of the variable resistor R1 is electrically connected to the third switch And the fourth switch In between, the second terminal of the variable resistor R1 is electrically connected to the output terminal of the triangle wave generator, and the control terminal of the variable resistor R1 is electrically connected to the output terminal of the triangle wave signal controller.
  • the first switch S1 is electrically connected between the variable resistor and the fixed capacitor; the second switch S0 is electrically connected between the DC voltage input terminal and the output terminal of the triangle wave generator; wherein, the first switch S1 and the second switch at the same time Only one of S0 can be in the closed state.
  • Third switch And the fourth switch It is electrically connected between the second end of the variable current source and the second end of the variable current sink, and switches the third switch according to the clock signal CLK And the fourth switch For example, when the CLK clock signal is high level input to the triangle wave generator, the switch closure, disconnect. Or, when the CLK clock signal is high level input to the triangle wave generator, switch disconnect, closure.
  • the process of outputting a triangular wave signal by the triangular wave generator of the embodiment of the present application is as follows:
  • the center value of the triangle wave signal is provided by a fixed reference voltage VREF_CENTRE.
  • the amplitude of the triangle wave signal is controlled by the CLK clock to control one current source and one current sink to charge and discharge the RC network composed of R1, C1 and C2. produce.
  • the current gear of the current source and the current sink or the gear change of the variable resistor R1 are controlled by the fast detection signal and the slow load detection signal, so that the amplitude of the triangle wave signal output by the triangle wave generator can be changed.
  • a triangular wave signal is generated by the DC voltage V_LINE.
  • the amplitude of the triangular wave signal is 0, that is, the triangular wave generator outputs a straight line; if the output voltage ripple is considered, the triangular wave at this time
  • the amplitude is the coupling value of the output ripple through the capacitor.
  • the first input terminal is used to receive the reference voltage
  • the second input terminal is used to receive the output voltage of the switching power converter, and control the response speed of the signal output by the EA according to the output of the load detection circuit 310.
  • FIGS 6 and 7 show two types of error amplifiers EA provided by embodiments of the present application.
  • Fig. 6 shows a schematic circuit diagram of an error amplifier EA provided in an embodiment of the present application.
  • the error amplifier EA includes an operational amplifier 321 and a compensation network 322.
  • Operational amplifier 321 The first input terminal of the operational amplifier is used to receive the output voltage of the switching power converter, the second input terminal of the operational amplifier is used to receive the reference voltage, and the third input terminal of the operational amplifier is electrically connected to the bias current source, The output terminal of the operational amplifier is electrically connected to the output terminal of the EA.
  • the compensation network 322 includes a variable resistor R1, a variable capacitor C1, and a variable capacitor C2.
  • the first end of the compensation network is electrically connected to the output end of the operational amplifier, and the second end of the compensation network is grounded.
  • the EA also includes an EA signal controller, which is used to adjust the bias current of the bias current source and adjust the parameters of the compensation network according to the fast load detection signal and the slow load detection signal received by the control terminal of the EA.
  • EA signal controller which is used to adjust the bias current of the bias current source and adjust the parameters of the compensation network according to the fast load detection signal and the slow load detection signal received by the control terminal of the EA.
  • FIG. 6 only schematically shows the connection relationship between the operational amplifier 321 and the compensation network 322, where the resistance value of the variable resistor R1, the resistance value of the variable capacitor C1 and the variable
  • the resistance value of the capacitor C2 can be adjusted in whole or in part by the fast load detection signal and the slow load detection signal output by the load detection circuit.
  • the bias current of the bias current source can also be adjusted by the signal output by the load detection circuit to maintain the normal operation of the operational amplifier 321. Among them, the bias current can flow from the bias current source to the inside of the EA, or it can flow from the inside of the EA to the ground.
  • FIG. 7 shows a schematic circuit diagram of another error amplifier EA provided by an embodiment of the present application.
  • the error amplifier EA includes an operational amplifier 321 and a compensation network 322.
  • Operational amplifier 321 The first input terminal of the operational amplifier is used to receive the output voltage of the switching power converter, the second input terminal of the operational amplifier is used to receive the reference voltage, and the third input terminal of the operational amplifier is electrically connected to the bias current source, The output terminal of the operational amplifier is electrically connected to the second terminal of the compensation network.
  • the compensation network 322 includes a variable resistor R2, a variable resistor R3, a variable capacitor C1, a variable capacitor C2, and a variable capacitor C3.
  • the first end of the compensation network is electrically connected to the first input end of the operational amplifier, and the first end of the compensation network is connected to the output end of the operational amplifier.
  • the EA also includes an EA signal controller, which is used to adjust the bias current of the bias current source and adjust the parameters of the compensation network according to the fast load detection signal and the slow load detection signal received by the control terminal of the EA.
  • EA signal controller which is used to adjust the bias current of the bias current source and adjust the parameters of the compensation network according to the fast load detection signal and the slow load detection signal received by the control terminal of the EA.
  • FIG. 7 only schematically shows the connection relationship between the operational amplifier 321 and the compensation network 322, the resistance values of the variable resistors (R2 and R3) and the variable capacitors (C1, C2, and C3) in the compensation network.
  • the capacitance value of) can be adjusted in whole or in part by the signal output by the load detection circuit.
  • the bias current of the EA bias current source can be adjusted by the fast load detection signal and the slow load detection signal output by the load detection circuit to maintain the normal operation of the operational amplifier 321. Among them, the bias current may flow from the bias current source to the inside of the EA, or flow out from the inside of the EA to the ground.
  • the comparator 340 is used to receive the signal output by the error amplifier EA 330 and the triangle wave signal output by the triangle wave generator 320.
  • the comparator 340 compares the signal output by the EA with the triangle wave signal and converts it into a square wave signal with a specific duty cycle, namely
  • the output of the comparator 340 is a PWM control signal.
  • the input includes the PWM control signal output by the comparator 340 and other logic signals required for loop control.
  • other logic signals required for loop control include, but are not limited to, an overcurrent protection control signal, an inductor current zero-crossing detection control signal, and a loop state control signal.
  • the output of the logic controller 350 is a logic signal that controls each power tube separately.
  • the control logic 350 processes the PWM control signal output by the comparator 340. For example, the control logic 350 may expand the pulse width of the PWM control signal output by the comparator 340, or the control logic 350 may reduce the pulse width of the PWM control signal output by the comparator 340.
  • the drive and power output stage 360 includes a drive circuit, a dead zone control circuit, a power tube circuit, and an over-current detection or zero-crossing detection circuit.
  • the input signal of the driving and power output stage 360 is a number of control signals output by the logic control 350 to control the switching state of the power tube.
  • the output signal of the drive and power output stage 360 is a switching signal used to drive the peripheral inductance capacitor filter network.
  • the drive and power output stage 360 processes several control signals output by the logic control 350, converts them into power tube gate drive signals with dead time, and then converts them into switching signals with power drive capability through the power tube.
  • the internal protection circuit It can provide control signals such as over-current detection and inductor current zero-crossing detection.
  • the peripheral inductor-capacitor filter network 370 has an input of a switching signal with power driving capability output by the driving and power output stage 360, and an output of a DC voltage signal with a specific power output capability, a specific frequency, and a specific ripple.
  • the peripheral inductor-capacitor filter network 370 filters the switching signal with power driving capability into a DC voltage signal.
  • the load of the switching power converter is light load at this time, and the triangle wave generator outputs a first triangle wave signal, which is a pulse
  • the frequency modulation mode is determined according to the load of the switching power converter.
  • the switching power converter changes from pulse frequency modulation mode to pulse width modulation mode, and the triangle wave generator outputs a second triangle wave signal, which is a pulse
  • the width modulation mode is determined according to the loop stability of the switching power converter. Wherein, the amplitude value of the first triangular wave signal is lower than the amplitude value of the second triangular wave signal.
  • the switching power converter When the switching power converter jumps from a light load to a heavy load, the output voltage of the switching power converter will drop.
  • the amplitude of the triangular wave signal used in the switching power converter changes with the load of the switching power converter, which can occur at the output voltage. When it is dropped, it quickly cuts out a larger duty cycle, so as to restore the stability of the output voltage more quickly.
  • the load detection circuit when the switching power supply converter works in pulse frequency modulation mode, the load detection circuit outputs a fast load detection signal according to the detected output current of the switching power converter.
  • the value of the fast load detection signal is 0, and the value of the slow load detection signal is also 0.
  • the resistance value of the variable resistor and the capacitance value of the variable capacitor in the triangle wave generator are switched or kept as the output small triangle wave amplitude gear or state.
  • the triangle wave signal output by the triangle wave generator is the first triangle wave signal.
  • the amplitude value of the first triangle wave signal is Vpp0, see Figure 8. It should be understood that the amplitude value of the first triangular wave signal corresponds to the triangular wave signal output by the triangular wave converter when the switching power supply converter is under a light load.
  • the load detection circuit detects that the output voltage of the switching power converter has dropped, it outputs a fast load detection signal.
  • the value is 1, the value of the slow load detection signal is also 0, which triggers the change of the resistance value of the variable resistor and the capacitance value of the variable capacitor in the triangle wave generator.
  • the triangle wave signal output by the triangle wave generator is the second A triangular wave signal, the amplitude value of the second triangular wave signal is Vpp1, see FIG. 8. It should be understood that the second triangular wave signal corresponds to the triangular wave signal required when the switching power supply converter works in the pulse width modulation mode and the loop is stable.
  • variable resistor, variable capacitor, current source, and current sink in the triangle wave generator are adjusted according to the signal output by the load detection circuit, the triangle wave signal output by the triangle wave generator is switched from the first triangle wave signal to the second triangle wave. signal.
  • the amplitude of the triangular wave signal can be adjusted in sections according to the magnitude of the load current of the switching power converter.
  • the switching of the triangular wave signal can be completed in one clock cycle, or can be completed in multiple clock cycles.
  • the advantage of one clock cycle switching method is that the circuit design is simpler but the output voltage jitter caused by switching is slightly larger.
  • the advantage of slow switching in multiple clock cycles is that the circuit design is more complicated but the output jitter caused by switching is smaller.
  • the load detection circuit detects a slow increase in the output load current of the switching power converter
  • the value of the fast load detection signal output by the load detection circuit is 0, and the value of the slow load detection signal is also 1.
  • the load detection circuit detects that the output load current of the switching power converter increases slowly and then rapidly increases, the value of the output fast load detection signal is 1, and the value of the slow load detection signal is also 1.
  • the amplitude of the triangular wave signal used in the switching power converter changes with the load of the switching power converter, which can quickly cut out a larger duty cycle when the output voltage drops, so as to restore the output voltage more quickly. Stable, see Figure 8.
  • FIG. 8 shows a schematic diagram of the relationship among the load output voltage, the signal output by the EA, the triangular wave signal, and the load output current of a switching power supply converter provided by an embodiment of the present application.
  • the switching power converter proposed in the implementation of the application can obtain a larger duty cycle faster when the output voltage drops, so that the output voltage can be restored faster.
  • the switching power converter When the switching power converter jumps from a light load to a heavy load, the output voltage of the switching power converter will drop.
  • the response speed of the signal output by the EA in the switching power converter is high, and it can quickly switch when the output voltage drops.
  • a larger duty cycle can be used to restore the stability of the output voltage more quickly.
  • the load detection circuit when the switching power supply converter works in pulse frequency modulation mode, the load detection circuit outputs a fast load detection signal according to the detected output current of the switching power converter.
  • the value of the fast load detection signal is 0, and the value of the slow load detection signal is also 0, the resistance value of the variable resistor and the capacitance value of the variable capacitor in the EA are switched or maintained in a gear or state with a faster EA response speed.
  • the signal output by the EA is the first EA signal.
  • the load detection circuit detects that the output voltage of the switching power converter has dropped, it outputs a fast load detection signal.
  • the value is 1, the value of the slow load detection signal is also 0, which triggers the change of the resistance value of the variable resistor and the capacitance value of the variable capacitor in the EA.
  • the signal output by the EA is the second EA signal.
  • the response speed of one EA signal is greater than the response speed of the second EA signal
  • the load detection circuit detects a slow increase in the output load current of the switching power converter
  • the value of the fast load detection signal output by the load detection circuit is 0, and the value of the slow load detection signal is also 1.
  • the load detection circuit detects that the output load current of the switching power converter increases slowly and then rapidly increases, the value of the output fast load detection signal is 1, and the value of the slow load detection signal is also 1.
  • the response speed of the signal output by the EA in the switching power converter is high, and a larger duty cycle can be quickly cut out when the output voltage drops, so as to restore the stability of the output voltage more quickly, see figure 9.
  • FIG. 9 shows a schematic diagram of the relationship among the load output voltage, the signal output by the EA, the triangular wave signal, and the load output current of a switching power converter provided by an embodiment of the present application.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请提供了一种开关电源变换器,该开关电源变换器包括三角波发生器,所述三角波发生器的输入端用于接收时钟信号;负载检测电路,所述负载检测电路的输入端电连接至所述开关电源变换器的输出端,所述负载检测电路的第一输出端电连接至所述三角波发生器的控制端,其中所述负载检测电路用于根据所述开关电源变换器的输出控制所述三角波发生器输出的三角波信号的幅度。本申请提供的开关电源变换器能够在开关电源变换器的输出发生变化时,提高开关电源变换器的瞬态特性。

Description

开关电源变换器 技术领域
本申请涉及电路领域,并且更具体地,涉及一种开关电源变换器。
背景技术
目前,在许多电路中通过采用开关电源变换器以提高电路电源的转换效率。然而在开关电源变换器电路中,当开关电源变换器的负载由轻负载瞬间跳变为重负载时,开关电源变换器的输出电压会发生快速跌落,从而降低电子产品系统的性能。
传统技术中提升开关电源变换器瞬态特性的方式,例如,开关电源变换器的负载为轻负载时,强制开关电源变换器工作在脉冲宽度调制(pulse width modulation,PWM)模式和增加输出电容数量,以恢复和维持开关电源变换器的输出电压稳定。或者,通过对开关电源变换器的输出电压进行非线性检测控制,以恢复和维持开关电源变换器的输出电压稳定。但采用上述方法提升开关电源变换器瞬态特性的效果较差,引起转换效率下降或电容成本增加。
发明内容
本申请提供一种开关电源变换器,能够在开关电源变换器的输出发生变化时,提高开关电源变换器的瞬态特性。
第一方面,提供了一种开关电源变换器,包括:三角波发生器,该三角波发生器的输入端用于接收时钟信号;负载检测电路,该该载检测电路的输入端电连接至该开关电源变换器的输出端,该负载检测电路的第一输出端电连接至该三角波发生器的控制端,其中该负载检测电路用于根据该开关电源变换器的输出控制该三角波发生器输出的三角波信号的幅度。
与传统开关电源变换器中采用固定三角波信号的幅度相比,在本申请实施例中,根据开关电源变换器的输出控制三角波发生器输出的三角波信号的幅度,当开关电源变换器的输出电压发生跌落时,本申请实施例提供的开关电源变换器能够更快地恢复输出电压。
结合第一方面,在第一方面的某些实现方式中,该开关电源变换器还包括误差放大器EA,其中:该负载检测电路的第二输出端电连接至该EA的控制端,该负载检测电路还用于根据该开关电源变换器的输出控制该EA输出的信号的响应速度。
与传统开关电源变换器中EA输出的信号相比,在本申请实施例中,开关电源变换器的输出控制EA输出的信号具有较高的响应速度,当开关电源变换器的输出电压发生跌落时,本申请实施例提供的开关电源变换器能够更快地恢复输出电压。
结合第一方面,在第一方面的某些实现方式中,该负载检测电路包括第一迟滞比较器和第二迟滞比较器,其中:该第一迟滞比较器的第一输入端用于接收第一检测电压,该第一迟滞比较器的第二输入端用于接收第一参考电压,该第一迟滞比较器的输出端用于输出第一 信号,其中,该第一检测电压是该负载检测电路根据接收到的该开关电源变换器的输出电流转换后获得的电压;该第二迟滞比较器的第一输入端用于接收第二检测电压,该第二迟滞比较器的第二输入端用于接收第二参考电压,该第二迟滞比较器的输出端用于输出第二信号,其中,该第二检测电压为该第一检测电压经过滤波后的电压,该第二参考电压小于或等于该第一参考电压,该第一信号和该第二信号为控制该三角波发生器输出的三角波幅度的信号和控制该EA输出的信号。
在本申请实施例中,第一参考电压的值可以为一个,也可以为多个;第二参考电压的值可以为一个,也可以为多个。结合第一方面,在第一方面的某些实现方式中,该负载检测电路还包括电流检测电路和逻辑控制器,其中:该电流检测电路的输入端电连接至该开关电源变换器的输出端,该电流检测电路的输出端电连接至该第一迟滞比较器和该第二迟滞比较器,该电流检测电路用于将接收到的该开关电源变换器的输出电流转换为该第一检测电压;该逻辑控制器的第一输入端电连接至该第一迟滞比较器的输出端,该逻辑控制器的第二输入端电连接至该第二迟滞比较器的输出端;该逻辑控制器用于接收该第一信号,并根据该第一信号生成快速负载检测信号,该快速负载检测信号是该开关电源变换器的输出电流发生快速升高时该负载检测电路输出的信号;该逻辑控制器还用于接收该第二信号,并根据该第二信号生成慢速负载检测信号,该慢速负载检测信号是该开关电源变换器的输出电流发生慢速升高时该负载检测电路输出的信号;其中,该快速负载检测信号和该慢速负载检测信号为该三角波发生器的控制端的输入信号,该快速负载检测信号和该慢速负载检测信号为该EA的控制端的输入信号。
在本申请实施例中,引入快速负载检测信号和慢速负载检测信号能够提高负载检测电路识别开关电源变换器的输出发生变化的准确度。
在一种可能的实施方式中,上述开关电源变换器可以包括多个第一迟滞比较器和多个第二迟滞比较器,分别输出多个快速负载检测信号和多个慢速负载检测信号。上述多个快速负载检测信号和多个慢速负载检测信号用于分别在开关电源变换器处于不同的负载电流区间时调整对应负载区间的三角波幅度的大小。例如,开关电源变换器从轻负载到重负载的过程可以分为4个负载电流区间,则开关电源变换器输出的4个快速负载检测信号和4个慢速负载检测信号可以分别在上述4个负载电流区间分别调整三角波幅度的大小,从而提升三角波幅度的控制的精确度。
结合第一方面,在第一方面的某些实现方式中,该三角波发生器包括可变电容器、可变电阻器和三角波信号控制器,其中:该可变电阻器的第一端用于接收时钟信号,该可变电阻器的第二端电连接至该三角波发生器的输出端,该可变电阻器的控制端电连接至该三角波信号控制器的输出端;该可变电容器的第一端电连接至该三角波发生器的输出端,该可变电容器的第二端用于接收该开关电源变换器的输出电压,该可变电容器的控制端电连接至该三角波信号控制器的输出端;该三角波信号控制器用于根据该三角波发生器的控制端接收的该快速负载检测信号和该慢速负载检测信号调节该可变电阻器的电阻值和该可变电容器的电容值。
本申请实施例中,该三角波发生器可以分段调整该三角波信号的幅度,其中,对该三角波信号幅度的分段调整是在一个时钟周期内完成的,或者是在多个该时钟周期内完成的。
结合第一方面,在第一方面的某些实现方式中,该三角波发生器还包括运放器,其中:该运放器的第一输入端用于接收基准电压,该运放器的第二输入端电连接至该运放器的输出端,该运放器的输出端电连接至该可变电容器的第一端。
结合第一方面,在第一方面的某些实现方式中,该三角波发生器包括运放器、可变电阻器、可变电流源、可变电流沉、第三开关、第四开关和三角波信号控制器,其中:该运放器的第一输入端用于接收基准电压,该运放器的第二输入端电连接至该运放器的输出端,该运放器的输出端电连接至该三角波发生器的输出端;该可变电阻器的第一端电连接至该第三开关和该第四开关之间,该可变电阻器的第二端电连接至该三角波发生器的输出端,该可变电阻器的控制端电连接至该三角波信号控制器的输出端;该可变电流源的第一端接收固定电压,该可变电流源的第二端电连接至该可变电流沉的第二端,该可变电流源的控制端电连接至该可变电流沉的控制端和该三角波信号控制器的输出端;该可变电流沉的第一端接地;该第三开关和该第四开关电连接在该可变电流源的第二端和该可变电流沉的第二端之间,并根据时钟信号切换该第三开关和该第四开关;该三角波信号控制器用于根据该三角波发生器的控制端接收的该快速负载检测信号和该慢速负载检测信号调节该可变电阻器的电阻值、该可变电流源的电流值、该可变电流沉的电流值。
结合第一方面,在第一方面的某些实现方式中,该三角波发生器还包括第一开关和第二开关,其中:该第一开关电连接在该可变电阻器和该固定电容器之间;该第二开关电连接在直流电压输入端和该三角波发生器的输出端之间;其中,该第一开关和该第二开关交替闭合。
结合第一方面,在第一方面的某些实现方式中,该负载检测电路进一步用于:增加该EA输出的信号的增益;或者增加该EA输出的信号的环路带宽。
结合第一方面,在第一方面的某些实现方式中,该EA包括运算放大器、偏置电流源、补偿网络和EA信号控制器,其中:该运算放大器的第一输入端用于接收该开关电源变换器的输出电压,该运算放大器的第二输入端用于接收参考电压,该运算放大器的输出端电连接至该EA的输出端;该补偿网络的第一端电连接至该运算放大器的输出端,该补偿网络的第二端接地;该运算放大器的第三输入端电连接至该偏置电流源;该EA信号控制器用于根据该EA的控制端接收的该快速负载检测信号和该慢速负载检测信号调节该偏置电流源的偏置电流和调节该补偿网络的参数。
结合第一方面,在第一方面的某些实现方式中,该补偿网络的参数包括可变电阻器、第一可变电容器和第二可变电容器,其中:该可变电阻器的第一端电连接至该运算放大器的输出端,该可变电阻器的第二端电连接至该第一可变电容器的第一端;该第一可变电容器的第二端接地;该第二可变电容器的第一端电连接至该运算放大器的输出端,该第二可变电容器的第二端接地;该可变电阻器的控制端、该第一可变电容器的控制端和该第二可变电容器的控制端电连接至该EA信号控制器的输出端;该可变电阻器的电阻值、该第一可变电容器的电容值和该第二可变电容器的电容值由该快速负载检测信号和该慢速负载检测信号进行调节。
第二方面,提供了一种开关电源变换器,包括:三角波发生器,该三角波发生器的输入端用于接收时钟信号;负载检测电路,该负载检测电路包括第一迟滞比较器和第二迟滞比较器,该第一迟滞比较器的输入端和该第二迟滞比较器的输入端与该负载检测电路的输 入端电连接,该第一迟滞比较器的输出端和该第二迟滞比较器的输出端与该负载检测电路的第一输出端电连接,其中:该第一迟滞比较器的第一输入端用于接收第一检测电压,该第一迟滞比较器的第二输入端用于接收第一参考电压,该第一检测电压是该负载检测电路根据接收到的该开关电源变换器的输出电流转换后获得的电压,该第二迟滞比较器的第一输入端用于接收第二检测电压,该第二迟滞比较器的第二输入端用于接收第二参考电压,该第二检测电压为该第一检测电压经过滤波后的电压,该第二参考电压小于或等于该第一参考电压;其中,该负载检测电路的输入端电连接至该开关电源变换器的输出端,该负载检测电路的第一输出端电连接至该三角波发生器。
与传统开关电源变换器相比,在本申请实施例中,引入了负载检测电路,根据第一迟滞比较器的输出和第二迟滞比较器的输出能够获知开关电源变换器输出变化的快慢情况,应理解,根据第一迟滞比较器的输出能够获知开关电源变换器的输出发生快速变化,根据第二迟滞比较器的输出能够获知开关电源变换器的输出发生慢速变化。此外,根据负载检测电路第一迟滞比较器和第二迟滞比较器的输出能够控制EA输出的信号的响应速度。
结合第二方面,在第二方面的某些实现方式中,该开关电源变换器还包括误差放大器EA,其中:该负载检测电路的第二输出端电连接至该EA的控制端。
与传统开关电源变换器相比,在本申请实施例中,引入了负载检测电路,根据第一迟滞比较器的输出和第二迟滞比较器的输出能够获知开关电源变换器输出变化的快慢情况,应理解,根据第一迟滞比较器的输出能够获知开关电源变换器的输出发生快速变化,根据第二迟滞比较器的输出能够获知开关电源变换器的输出发生慢速变化。此外,根据负载检测电路第一迟滞比较器和第二迟滞比较器的输出能够控制EA输出的信号的响应速度。
结合第二方面,在第二方面的某些实现方式中,该负载检测电路还包括电流检测电路和逻辑控制器,其中:该电流检测电路的输入端电连接至该开关电源变换器的输出端,该电流检测电路的输出端电连接至该第一迟滞比较器和该第二迟滞比较器;该逻辑控制器的第一输入端电连接至该第一迟滞比较器的输出端,该逻辑控制器的第二输入端电连接至该第一迟滞比较器的输出端,该逻辑控制器的第一输出端电连接至该三角波发生器的控制端,该逻辑控制器的第二输出端电连接至该EA的控制端。
结合第二方面,在第二方面的某些实现方式中,该三角波发生器包括可变电容器、可变电阻器和三角波信号控制器,其中:该可变电阻器的第一端用于接收时钟信号,该可变电阻器的第二端电连接至该可变电容器的第一端和该三角波发生器的输出端,该可变电阻器的控制端电连接至该三角波信号控制器的输出端;该可变电容器的第二端用于接收该开关电源变换器的输出电压,该可变电容器的控制端电连接至该三角波信号控制器的输出端;该三角波信号控制器用于根据该三角波发生器的控制端接收的该快速负载检测信号和该慢速负载检测信号调节该可变电阻器的电阻值和该可变电容器的电容值。
本申请实施例中,该三角波发生器可以分段调整该三角波信号的幅度,其中,对该三角波信号幅度的分段调整是在一个时钟周期内完成的,或者是在多个该时钟周期内完成的。
结合第二方面,在第二方面的某些实现方式中,该三角波发生器还包括运放器,其中:该运放器的第一输入端用于接收基准电压,该运放器的第二输入端电连接至该运放器的输出端,该运放器的输出端电连接至该可变电容器的第一端。
结合第二方面,在第二方面的某些实现方式中,该三角波发生器包括运放器、可变电 阻器、可变电流源、可变电流沉、第三开关、第四开关和三角波信号控制器,其中:该运放器的第一输入端用于接收基准电压,该运放器的第二输入端电连接至该运放器的输出端,该运放器的输出端电连接至该三角波发生器的输出端;该可变电阻器的第一端电连接至该第三开关和该第四开关之间,该可变电阻器的第二端电连接至该三角波发生器的输出端,该可变电阻器的控制端电连接至该三角波信号控制器的输出端;该可变电流源的第一端接固定电压,该可变电流源的第二端电连接至该可变电流沉的第二端,该可变电流源的控制端电连接至该可变电流沉的控制端和该三角波信号控制器的输出端;该可变电流沉的第一端接地;该第三开关和该第四开关电连接在该可变电流源的第二端和该可变电流沉的第二端之间,并根据该时钟信号切换该第三开关和该第四开关;该三角波信号控制器用于根据该三角波发生器的控制端接收的该快速负载检测信号和该慢速负载检测信号调节该可变电阻器的电阻值、该可变电流源的电流值、该可变电流沉的电流值。
在一种可能的实施方式中,上述开关电源变换器可以包括多个第一迟滞比较器和多个第二迟滞比较器,分别输出多个快速负载检测信号和多个慢速负载检测信号。上述多个快速负载检测信号和多个慢速负载检测信号用于分别在开关电源变换器处于不同的负载电流区间时调整对应负载区间的三角波幅度的大小。例如,开关电源变换器从轻负载到重负载的过程可以分为4个负载电流区间,则开关电源变换器输出的4个快速负载检测信号和4个慢速负载检测信号可以分别在上述4个负载电流区间分别调整三角波幅度的大小,从而提升三角波幅度的控制的精确度。
结合第二方面,在第二方面的某些实现方式中,该三角波发生器还包括第一开关、第二开关,其中:该第一开关电连接在该可变电阻器和该固定电容器之间;该第二开关电连接在直流电压输入端和该三角波发生器的输出端之间;其中,该第一开关和该第二开关交替闭合。
结合第二方面,在第二方面的某些实现方式中,该EA包括运算放大器、偏置电流源、补偿网络和EA信号控制器,其中:该运算放大器的第一输入端用于接收该开关电源变换器的输出电压,该运算放大器的第二输入端用于接收参考电压,该运算放大器的输出端电连接至该EA的输出端;该补偿网络的第一端电连接至该运算放大器的输出端,该补偿网络的第二端接地;该运算放大器的第三输入端电连接至该偏置电流源;该EA信号控制器用于根据该EA的控制端接收的该快速负载检测信号和该慢速负载检测信号调节该偏置电流源的偏置电流和调节该补偿网络的参数。
结合第二方面,在第二方面的某些实现方式中,该补偿网络的参数包括可变电阻器、第一可变电容器和第二可变电容器,其中:该可变电阻器的第一端电连接至该运算放大器的输出端,该可变电阻器的第二端电连接至该第一可变电容器的第一端;该第一可变电容器的第二端接地;该第二可变电容器的第一端电连接至该运算放大器的输出端,该第二可变电容器的第二端接地;该可变电阻器的控制端、该第一可变电容器的控制端和该第二可变电容器的控制端电连接至该EA信号控制器的输出端。
附图说明
图1是本申请实施例提供的开关电源变换器的示意性电路图。
图2是本申请实施例提供的一个负载检测电路的示意性电路图。
图3是本申请实施例提供的一个三角波发生器的示意性电路图。
图4是本申请实施例提供的另一个三角波发生器的示意性电路图。
图5是本申请实施例提供的再一个三角波发生器的示意性电路图。
图6是本申请实施例提供的一个误差放大电路EA的示意性电路图。
图7是本申请实施例提供的另一个误差放大电路EA的示意性电路图。
图8是本申请实施例提供的一个开关电源变换器的负载输出电压、EA输出的信号、三角波信号、负载输出电流之间的关系示意图。
图9是本申请实施例提供的一个开关电源变换器的负载输出电压、EA输出的信号、三角波信号、负载输出电流之间的关系示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为便于理解本申请,在介绍本申请实施例之前,先对本申请中涉及到的与开关电源变换器相关的概念做简单介绍。
开关电源变换器(switch mode power supply,SMPS):开关电源变换器可分为AC-DC和DC-DC两大类;开关电源变换器通常采用buck降压式的结构和boost升压式的结构;开关电源变换器的工作模式可分为脉冲频率调制(pulse frequency modulation,PFM)模式和PWM模式。
PFM模式:通常实现方式是每个开关周期恒定导通时间或恒定峰值电流,电源工作频率随负载或输入输出条件变化而变化。
PWM模式:通常实现方式是每个开关周期频率固定,每个周期的开关占空比随负载或输入输出条件变化而变化。
占空比(Duty Ratio):是指电路被接通的时间占整个电路工作周期的百分比。
为便于理解,下面以开关电源变换器采用buck降压式的结构为例,对本申请实施例中的开关电源变换器进行描述。本领域技术人员可以理解,下述实施例中的描述仅为示例而非限定。
图1示出了本申请实施例提供的开关电源变换器的示意性电路图。
如图1所示,该开关电源变换器包括负载检测电路310、三角波发生器320、误差放大器330、比较器340、逻辑控制350、驱动和功率输出级360、外围电感电容滤波网络370。负载检测电路310,包括电流检测电路311、第一迟滞比较器312、第二迟滞比较器313和逻辑控制器314。负载检测电路310的输入端电连接至开关电源变换器的输出端,负载检测电路的第一输出端电连接至三角波发生器的控制端,负载检测电路的第二输出端电连接至EA的控制端。
在本申请实施例中,负载检测电路用于根据开关电源变换器的输出控制三角波发生器输出的三角波信号的幅度,所述负载检测电路还用于根据开关电源变换器的输出控制EA输出的信号的响应速度。
图2中示出了本申请实施例提供的负载检测电路的示意性电路图。
如图2所示,电流检测电路311包括调整管101和调整管102,电流镜像管103和电流镜像管104,误差运放110和误差运放111,电流采样MOS管120和电流采样MOS管 121,功率MOS场效应管130和功率MOS场效应管131,电感器140和电容器150。电流检测电路的输入端电连接至开关电源变换器的输出端,电流检测电路的输出端电连接至第一迟滞比较器和第二迟滞比较器,电流检测电路用于将接收到的开关电源变换器的输出电流转换为电压。
应理解,调整管101和调整管102的作用是,调整管受环路控制,使得采样管各端电压与功率管各端电压相等,保证较高的采样精度。电流镜像管103和电流镜像管104的作用是将NMOS的采样电流镜像为PMOS电流输出。
作为一个示例,在电流检测电路311中,通过误差运放器(110和111)将功率MOS场效应管(130和131)和电流采样MOS管(120和121)端电压钳位为相同电压,保证电流采样MOS管对功率管的电流sense比例准确。电流检测电路的输入为开关电源变换器的输出电流,该输出电流经过功率MOS场效应管和电流采样MOS管转换为P和N管的I_SENSE电流,P和N管的I_SENSE电流经过电阻转换为V_SENSE电压。
第一迟滞比较器312,第一迟滞比较器的第一输入端用于接收第一检测电压,第一迟滞比较器的第二输入端用于接收第一参考电压,第一迟滞比较器的输出端用于输出第一信号,第一迟滞比较器的输出连接至逻辑控制器314,其中,第一检测电压是负载检测电路根据接收到的开关电源变换器的输出电流转换后获得的电压。
第二迟滞比较器313,第二迟滞比较器的第一输入端用于接收第二检测电压,第二迟滞比较器的第二输入端用于接收第二参考电压,第二迟滞比较器的输出端用于输出第二信号,第二迟滞比较器的输出连接至逻辑控制器314,其中,第二检测电压为第一检测电压经过滤波后的电压,第二参考电压小于或等于第一参考电压。
在本申请实施例中,第一参考电压的值可以为一个,也可以为多个;第二参考电压的值可以为一个,也可以为多个。
逻辑控制器314,逻辑控制器的第一输入端电连接至第一迟滞比较器的输出端,逻辑控制器的第二输入端电连接至第二迟滞比较器的输出端;逻辑控制器用于接收第一信号,并根据第一信号生成快速负载检测信号,快速负载检测信号是开关电源变换器的输出电流发生快速升高时负载检测电路输出的信号;逻辑控制器还用于接收第二信号,并根据第二信号生成慢速负载检测信号,慢速负载检测信号是开关电源变换器的输出电流发生慢速升高时负载检测电路输出的信号;其中,快速负载检测信号和慢速负载检测信号为三角波发生器的控制端的输入信号,快速负载检测信号和慢速负载检测信号为EA的控制端的输入信号。
作为一个示例,本申请实施例中的负载检测电路的工作过程如下:
负载检测电路接收来自开关电源变换器的输出电流,该输出电流经过电流检测电路311被转换为V_SENSE电压;
第一迟滞比较器312的第一端用于接收V_SENSE电压,第一迟滞比较器312的第二端用于接收快速负载检测阈值Vth_fast,并输出第一信号;第二迟滞比较器312的第一端用于接收经过滤波后的V_SENSE电压,第二迟滞比较器312的第二端用于接收慢速负载检测阈值Vth_slow,并输出第二信号;
应理解,本申请实施例中的快速负载检测的阈值Vth_fast可以为一个值,也可以为多 个值;慢速负载检测的阈值Vth_slow可以为一个,也可以为多个值。
逻辑控制器用于接收第一信号和第二信号,并根据第一信号输出快速负载检测信号,并根据第二信号输出慢速负载检测信号。
例如,当第一迟滞比较器312的第一端接收的V_SENSE大于第一迟滞比较器312的第二端接收的快速负载检测阈值Vth_fast时,第一迟滞比较器输出第一信号逻辑值为1,逻辑控制器根据该第一逻辑信号输出的快速负载检测信号逻辑值为1;当第二迟滞比较器312的第一端接收的经过滤波后的V_SENSE电压小于第二迟滞比较器312的第二端接收的慢速负载检测阈值Vth_slow时,第二迟滞比较器输出第二信号逻辑值为0,逻辑控制器根据该第二逻辑信号输出的慢速负载检测信号逻辑值为0。
例如,当第一迟滞比较器312的第一端接收的V_SENSE大于第一迟滞比较器312的第二端接收的快速负载检测阈值Vth_fast时,第一迟滞比较器输出第一信号逻辑值为1,逻辑控制器根据该第一逻辑信号输出的快速负载检测信号逻辑值为1;当第二迟滞比较器312的第一端接收的经过滤波后的V_SENSE电压大于第二迟滞比较器312的第二端接收的慢速负载检测阈值Vth_slow时,第二迟滞比较器输出第二信号逻辑值为1,逻辑控制器根据该第二逻辑信号输出的慢速负载检测信号逻辑值为1。
例如,当第一迟滞比较器312的第一端接收的V_SENSE小于第一迟滞比较器312的第二端接收的快速负载检测阈值Vth_fast时,第一迟滞比较器输出第一信号逻辑值为0,逻辑控制器根据该第一逻辑信号输出的快速负载检测信号逻辑值为0;当第二迟滞比较器312的第一端接收的经过滤波后的V_SENSE电压大于第二迟滞比较器312的第二端接收的慢速负载检测阈值Vth_slow时,第二迟滞比较器输出第二信号逻辑值为1,逻辑控制器根据该第二逻辑信号输出的慢速负载检测信号逻辑值为1。
当快速负载检测信号逻辑值和慢速负载检测信号逻辑值均不为0时,根据快速负载检测信号和慢速负载检测信号,可以控制三角波发生器输出的三角波信号的幅度,也可以控制EA输出的信号的响应速度。例如,当快速负载检测信号逻辑值为1,且慢速负载检测信号逻辑值为0时,触发三角波发生器增加三角波信号的幅度,增加后的所述三角波信号的幅度对应于开关电源变换器采用脉冲宽度调制模式工作下环路稳定时所需的三角波信号的幅度。或者,当快速负载检测信号逻辑值为1,且慢速负载检测信号逻辑值为0时,触发EA输出的信号的响应速度加快。
应理解,本申请实施例中触发所述三角波发生器分段调整所述三角波信号的幅度,其中,对所述三角波信号幅度的分段调整是在一个时钟周期内完成的,或者是在多个所述时钟周期内完成的。
应理解,本申请实施例中触发EA输出的信号的响应速度加快包括但不限于,增加EA输出信号的增益和增加EA的环路带宽。
当快速负载检测信号逻辑值和慢速负载检测信号逻辑值均为0时,三角波信号的幅度切换或保持为PFM模式下的较小的三角波信号幅度,EA输出信号切换或保持为PFM模式下较快的响应速度状态。
应理解,图2中示出的负载检测电路仅是示例而非限定。
三角波发生器320,三角波发生器的输入端用于接收时钟信号,并根据负载检测电路310的输出控制三角波发生器生成三角波信号的幅度。
作为一个示例,开关电源变换器工作在脉冲频率调制模式下,三角波发生器320输出第一三角波信号,当负载检测电路310检测到开关电源变换器的输出负载电流发生瞬态变化并引起输出电压跌落时,控制三角波发生器320输出第二三角波信号,其中,第二三角波信号对应于脉冲宽度调制模式,第二三角波信号的幅度值高于第一三角波信号的幅度值。
图3-图5示出了本申请实施例提供的三种类型的三角波发生器。
图3示出了本申请实施例提供的一个三角波发生器的示意性电路图。
如图3所示,三角波发生器主要包括三角波信号控制器、可变电阻器R1、可变电容器C2、第一开关S1、第二开关S0。
三角波信号控制器用于根据三角波发生器的控制端接收的快速负载检测信号和慢速负载检测信号调节可变电阻器R1的电阻值和可变电容器C2的电容值,以调整三角波信号的幅度。
可变电阻器R1的第一端用于接收时钟信号,可变电阻器R1的第二端电连接至三角波发生器的输出端,可变电阻器R1的控制端电连接至三角波信号控制器的输出端;
可变电容器C2的第一端电连接至三角波发生器的输出端,可变电容器C2的第二端用于接收开关电源变换器的输出电压,可变电容器C2的控制端电连接至三角波信号控制器的输出端;
第一开关S1电连接在可变电阻器R1和固定电容器C1之间;第二开关S0电连接在直流电压V_LINE输入端和三角波发生器的输出端RAMP_OUT之间;其中,同一时刻所述第一开关S1和第二开关S0仅能有一个处于闭合状态。例如,三角波信号控制器的输出控制第一开关S1闭合,第二开关S0断开。或者,三角波信号控制器的输出控制第二开关S0闭合,第一开关S1断开。
应理解,闭合第一开关S1,断开第二开关S0,三角波发生器输出的三角波信号的幅度值不为零。断开第一开关S1,闭合第二开关S0,三角波发生器输出的三角波信号的幅度值为零;若考虑输出电压纹波,此时的三角波幅度为输出纹波经过电容的耦合值。当开关电源变换器的负载为轻负载时,可以断开第一开关S1,闭合第二开关S0。
作为一个示例,本申请实施例的三角波发生器输出三角波信号的过程如下:
当开关S1闭合,S0断开,三角波发生器输出的三角波信号的中心值由开关电源变换器的输出电压VO分压得到,三角波信号的幅度由CLK时钟经过由R1、C1和C2组成的RC网络耦合产生。通过负载检测电路输出的信号控制电阻R1或电容C2的档位变化,从而改变三角波信号的幅度。
作为另一个示例,当开关电源变换器的负载为轻负载时,闭合开关S0,断开S1,由直流电压V_LINE产生三角波信号,此时三角波信号的幅度为0,即三角波发生器输出直线;若考虑输出电压纹波,此时的三角波幅度为输出纹波经过电容的耦合值。
图4示出了本申请实施例提供的另一个三角波发生器的示意性电路图。
如图4所示,三角波发生器主要包括BUF运放器、三角波信号控制器、可变电阻器R1、可变电容器C2、第一开关S1、第二开关S0。
BUF运放器,BUF运放器的第一输入端用于接收基准电压VREF_CENTRE;BUF运放器的第二输入端电连接至BUF运放器的输出端;BUF运放器的输出端电连接至所述可变电容器C2的第一端。
三角波信号控制器用于根据三角波发生器的控制端接收的快速负载检测信号和慢速负载检测信号调节可变电阻器R1的电阻值和可变电容器C2的电容值,以调整三角波信号的幅度。
第一开关S1电连接在所述可变电阻器和所述固定电容器之间;第二开关S0电连接在直流电压输入端和所述三角波发生器的输出端之间;其中,同一时刻第一开关S1和第二开关S0仅能有一个处于闭合状态。
应理解,闭合第一开关S1,断开第二开关S0,三角波发生器输出的三角波信号的幅度值不为零。断开第一开关S1,闭合第二开关S0,三角波发生器输出的三角波信号的幅度值为零;若考虑输出电压纹波,此时的三角波幅度为输出纹波经过电容的耦合值。。当开关电源变换器的负载为轻负载时,可以断开第一开关S1,闭合第二开关S0。
作为一个示例,本申请实施例的三角波发生器输出三角波信号的过程如下:
当开关S1闭合,S0断开,三角波发生器输出的三角波信号的中心值由BUF运放器的输入电压VREF_CENTRE分压得到,三角波信号的幅度由CLK时钟经过由R1、C1和C2组成的RC网络耦合产生。通过快速负载检测信号和慢速负载检测信号控制电阻R1或电容C2的档位变化,从而改变三角波信号的幅度。
作为另一个示例,当开关电源变换器的负载为轻负载时,闭合开关S0,断开S1,由直流电压V_LINE产生三角波信号,此时三角波信号的幅度为0,即三角波发生器输出直线;若考虑输出电压纹波,此时的三角波幅度为输出纹波经过电容的耦合值。
在一种实施方式中,上述开关电源变换器可以包括多个第一迟滞比较器和多个第二迟滞比较器,分别输出多个快速负载检测信号和多个慢速负载检测信号。上述多个快速负载检测信号和多个慢速负载检测信号用于分别在开关电源变换器处于不同的负载电流区间时调整对应负载区间的三角波幅度的大小。例如,开关电源变换器从轻负载到重负载的过程可以分为4个负载电流区间,则开关电源变换器输出的4个快速负载检测信号和4个慢速负载检测信号可以分别在上述4个负载电流区间分别调整三角波幅度的大小,从而提升三角波幅度的控制的精确度。
图5示出了本申请实施例提供的再一个三角波发生器的示意性电路图。
如图5所示,三角波发生器主要包括BUF运放器、电流源、电流沉、三角波信号控制器、可变电阻器R1、第一开关S1、第二开关S0、第三开关
Figure PCTCN2019115123-appb-000001
第四开关
Figure PCTCN2019115123-appb-000002
运放器的第一输入端用于接收基准电压,运放器的第二输入端电连接至运放器的输出端,运放器的输出端电连接至三角波发生器的输出端。
可变电流源的第一端接收固定电压VDD,可变电流源的第二端电连接至可变电流沉的第二端,可变电流源的控制端电连接至可变电流沉的控制端和三角波信号控制器的输出端;可变电流沉的第一端接地。
三角波信号控制器用于根据三角波发生器的控制端接收的快速负载检测信号和慢速负载检测信号调节可变电阻器R1的电阻值、可变电流源的电流值和可变电流沉的电流值,以调整三角波信号的幅度。
可变电阻器R1的第一端电连接至第三开关
Figure PCTCN2019115123-appb-000003
和第四开关
Figure PCTCN2019115123-appb-000004
之间,可变电阻器R1的第二端电连接至三角波发生器的输出端,可变电阻器R1的控制端电连接至三角波信号控制器的输出端。
第一开关S1电连接在可变电阻器和固定电容器之间;第二开关S0电连接在直流电压输入端和三角波发生器的输出端之间;其中,同一时刻第一开关S1和第二开关S0仅能有一个处于闭合状态。
第三开关
Figure PCTCN2019115123-appb-000005
和第四开关
Figure PCTCN2019115123-appb-000006
电连接在可变电流源的第二端和可变电流沉的第二端之间,并根据时钟信号CLK切换第三开关
Figure PCTCN2019115123-appb-000007
和第四开关
Figure PCTCN2019115123-appb-000008
例如,当CLK时钟信号为高电平输入至三角波发生器,开关
Figure PCTCN2019115123-appb-000009
闭合,
Figure PCTCN2019115123-appb-000010
断开。或者,当CLK时钟信号为高电平输入至三角波发生器,开关
Figure PCTCN2019115123-appb-000011
断开,
Figure PCTCN2019115123-appb-000012
闭合。
作为一个示例,本申请实施例的三角波发生器输出三角波信号的过程如下:
闭合开关S1,断开开关S0,三角波信号的中心值由一个固定基准电压VREF_CENTRE提供,三角波信号的幅度由CLK时钟控制一路电流源和一路电流沉循环对R1、C1和C2组成的RC网络充放电产生。通过快速检测信号和慢速负载检测信号控制电流源和电流沉的电流档位或可变电阻器R1的档位变化,从而可以改变三角波发生器输出的三角波信号的幅度。
作为另一个示例,当闭合开关S0,断开开关S1,由直流电压V_LINE产生三角波信号,此时三角波信号的幅度为0,即三角波发生器输出直线;若考虑输出电压纹波,此时的三角波幅度为输出纹波经过电容的耦合值。
应理解,图3-图5中示出的三角波发生器仅是示例而非限定。
误差放大器EA 330,第一输入端用于接收参考电压,第二输入端用于接收开关电源变换器的输出电压,并根据负载检测电路310的输出控制EA输出的信号的响应速度。
图6和图7示出了本申请实施例提供的两种类型的误差放大器EA。
图6示出了本申请实施例提供的一个误差放大器EA的示意性电路图。
如图6所示,误差放大器EA包括运算放大器321、补偿网络322。
运算放大器321,运算放大器的第一输入端用于接收开关电源变换器的输出电压,运算放大器的第二输入端用于接收参考电压,运算放大器的第三输入端电连接至偏置电流源,运算放大器的输出端电连接至EA的输出端。
补偿网络322,包括可变电阻器R1、可变电容器C1和可变电容器C2。补偿网络的第一端电连接至运算放大器的输出端,补偿网络的第二端接地。
应理解,EA还包括EA信号控制器,EA信号控制器用于根据EA的控制端接收的快速负载检测信号和慢速负载检测信号调节偏置电流源的偏置电流和调节补偿网络的参数。
应理解,图6中仅示意性的画出了运算放大器321和补偿网络322的连接关系,其中,补偿网络322中的可变电阻器R1的电阻值、可变电容器C1的电阻值和可变电容器C2的电阻值可以全部或者部分地受负载检测电路输出的快速负载检测信号和慢速负载检测信号进行调节。偏置电流源的偏置电流也可以受负载检测电路输出的信号调节,以维持运算放大器321正常工作。其中,偏置电流可以是从偏置电流源流入到EA内部,也可以是从EA内部流出到地。
图7示出了本申请实施例提供的另一个误差放大器EA的示意性电路图。
如图7所示,误差放大器EA包括运算放大器321和补偿网络322。
运算放大器321,运算放大器的第一输入端用于接收开关电源变换器的输出电压,运算放大器的第二输入端用于接收参考电压,运算放大器的第三输入端电连接至偏置电流源, 运算放大器的输出端电连接至补偿网络的第二端。
补偿网络322,包括可变电阻器R2、可变电阻器R3、可变电容器C1、可变电容器C2和可变电容器C3。补偿网络的第一端电连接至运算放大器的第一输入端,补偿网络的连接至运算放大器的输出端。
应理解,EA还包括EA信号控制器,EA信号控制器用于根据EA的控制端接收的快速负载检测信号和慢速负载检测信号调节偏置电流源的偏置电流和调节补偿网络的参数。
应理解,图7中仅示意性的画出了运算放大器321和补偿网络322的连接关系,补偿网络中的可变电阻器(R2和R3)的电阻值和可变电容器(C1、C2和C3)的电容值可以全部或者部分地受负载检测电路输出的信号调节。EA偏置电流源的偏置电流可以受负载检测电路输出的快速负载检测信号和慢速负载检测信号进行调节,以维持运算放大器321正常工作。其中,偏置电流可以是从偏置电流源流入到EA内部,也可以是从EA内部流出到地。
应理解,图6和图7中示出的误差放大器EA仅是示例而非限定。
比较器340,用于接收误差放大器EA 330输出的信号以及三角波发生器320输出的三角波信号,比较器340将EA输出的信号和三角波信号做比较转换为具有特定占空比的方波信号,即比较器340的输出为PWM控制信号。
逻辑控制350,输入包括比较器340输出的PWM控制信号,以及环路控制所需的其它逻辑信号。其中,环路控制所需的其它逻辑信号包括但不限于过流保护控制信号、电感电流过零检测控制信号以及环路状态控制信号。逻辑控制器350的输出是分别控制各个功率管的逻辑信号。控制逻辑350对比较器340输出的PWM控制信号进行处理。例如,控制逻辑350可以对比较器340输出的PWM控制信号的脉宽进行扩展,或者控制逻辑350可以对比较器340输出的PWM控制信号的脉宽进行缩小。
驱动和功率输出级360,包含驱动电路、死区控制电路、功率管电路以及过流检测或过零检测电路等。驱动和功率输出级360的输入信号是逻辑控制350输出的若干控制功率管开关状态的控制信号。驱动和功率输出级360的输出信号是用于驱动外围电感电容滤波网络的开关信号。
驱动和功率输出级360将逻辑控制350输出的若干控制信号进行处理,转换成具有死区时间的功率管栅驱动信号,再经过功率管转换为具有功率驱动能力的开关信号,同时内部的保护电路可以提供过流检测和电感电流过零检测等控制信号。
外围电感电容滤波网络370,输入是驱动和功率输出级360输出的具有功率驱动能力的开关信号,输出是具有特定功率输出能力、特定频率和特定纹波的DC电压信号。外围电感电容滤波网络370将具有功率驱动能力的开关信号进行滤波,变成直流电压信号。
下面结合具体实施例,以及图1-图9,对本申请实施例中提到的开关电源变换器的工作原理进行详细介绍。
在一种可能的实现方式中,当开关电源变换器工作在脉冲频率调制模式下,此时开关电源变换器的负载为轻负载,三角波发生器输出第一三角波信号,该第一三角波信号为脉冲频率调制模式下根据开关电源变换器的负载确定的。当开关电源变换器的负载由轻负载跳变为重负载,此时开关电源变换器由脉冲频率调制模式变为脉冲宽度调制模式,三角波发生器输出第二三角波信号,该第二三角波信号为脉冲宽度调制模式下根据开关电源变换 器的环路稳定性确定的。其中,第一三角波信号的幅度值低于第二三角波信号的幅度值。
当开关电源变换器由轻负载跳变为重负载时,开关电源变换器的输出电压会发生跌落,开关电源变换器中采用三角波信号的幅度随开关电源变换器的负载变化,可以在输出电压发生跌落时快速切出更大的占空比,从而更快速恢复输出电压的稳定。
作为一个示例,当开关电源变换器工作在脉冲频率调制模式下,负载检测电路根据检测到的开关电源变换器的输出电流输出快速负载检测信号的值为0,慢速负载检测信号的值也为0,三角波发生器中可变电阻器的电阻值和可变电容器的电容值切换或保持为输出小三角波幅度档位或状态,此时,三角波发生器输出的三角波信号为第一三角波信号,该第一三角波信号的幅度值为Vpp0,参见图8。应理解,该第一三角波信号的幅度值对应于开关电源变换器为轻负载时三角波变换器输出的三角波信号。
当开关电源变换器的负载由轻负载变为重负载时,即开关电源变换器的输出电压发生跌落,当负载检测电路检测到开关电源变换器的输出电压发生跌落时,输出快速负载检测信号的值为1,慢速负载检测信号的值也为0,触发三角波发生器中的可变电阻器的电阻值和可变电容器的电容值改变,此时,三角波发生器输出的三角波信号为第二三角波信号,该第二三角波信号的幅度值为Vpp1,参见图8。应理解,该第二三角波信号对应于开关电源变换器工作在脉冲宽度调制模式下,环路稳定时所需的三角波信号。
应理解,由于根据负载检测电路输出的信号调节三角波发生器中的可变电阻器、可变电容器、电流源、电流沉,使得三角波发生器输出的三角波信号由第一三角波信号切换为第二三角波信号。
应理解,在本申请实施例中由第一三角波信号切换为第二三角波信号时,可以根据开关电源变换器的负载电流的大小,对三角波信号的幅度进行分段调整。其中,对三角波信号的切换可以是在一个时钟周期内完成的,也可以是在多个时钟周期内完成的。一个时钟周期的切换方式的优点是电路设计较简单但切换时引起的输出电压抖动稍大,分多个时钟周期缓慢切换的优点是电路设计较复杂但切换引起的输出抖动较小。
可选地,当负载检测电路检测到开关电源变换器的输出负载电流发生慢速增加时,负载检测电路输出快速负载检测信号的值为0,慢速负载检测信号的值也为1。
可选地,当负载检测电路检测到开关电源变换器的输出负载电流发生慢速增加再发生快速增加时,输出快速负载检测信号的值为1,慢速负载检测信号的值也为1。
在本申请实施例中,开关电源变换器中采用三角波信号的幅度随开关电源变换器的负载变化,可以在输出电压发生跌落时快速切出更大的占空比,从而更快速恢复输出电压的稳定,参见图8。
图8示出了本申请实施例提供的一个开关电源变换器的负载输出电压、EA输出的信号、三角波信号、负载输出电流之间的关系示意图。
如图8所示,开关电源变换器的输出电压发生跌落时,在EA输出的信号的响应速度相同的情况下,由于三角波信号的幅度随开关电源变换器的负载发生变化,即三角波信号的幅度由Vpp0切换为Vpp1,本申请实施提出的开关电源变换器在输出电压发生跌落时能够更快的获得更大的占空比,从而可以更快地恢复输出电压。
在一种可能的实施例中,本申请实施例中的开关电源变换器的负载由轻负载跳变为重负载时,即开关电源变换器的输出电压发生跌落时,EA输出具有较快响应速度的信号, 参见图9。
当开关电源变换器由轻负载跳变为重负载时,开关电源变换器的输出电压会发生跌落,开关电源变换器中EA输出的信号的响应速度较高,可以在输出电压发生跌落时快速切出更大的占空比,从而更快速恢复输出电压的稳定。
作为一个示例,当开关电源变换器工作在脉冲频率调制模式下,负载检测电路根据检测到的开关电源变换器的输出电流输出快速负载检测信号的值为0,慢速负载检测信号的值也为0,则EA中的可变电阻器的电阻值和可变电容器的电容值切换或保持为EA响应速度较快的档位或状态,此时,EA输出的信号为第一EA信号。
当开关电源变换器的负载由轻负载变为重负载时,即开关电源变换器的输出电压发生跌落,当负载检测电路检测到开关电源变换器的输出电压发生跌落时,输出快速负载检测信号的值为1,慢速负载检测信号的值也为0,触发EA中的可变电阻器的电阻值和可变电容器的电容值改变,此时,EA输出的信号为第二EA信号,该第一EA信号的响应速度大于第二EA信号的响应速度,
可选地,当负载检测电路检测到开关电源变换器的输出负载电流发生慢速增加时,负载检测电路输出快速负载检测信号的值为0,慢速负载检测信号的值也为1。
可选地,当负载检测电路检测到开关电源变换器的输出负载电流发生慢速增加再发生快速增加,输出快速负载检测信号的值为1,慢速负载检测信号的值也为1。
在本申请实施例中,开关电源变换器中EA输出的信号的响应速度较高,可以在输出电压发生跌落时快速切出更大的占空比,从而更快速恢复输出电压的稳定,参见图9。
图9示出了本申请实施例提供的一个开关电源变换器的负载输出电压、EA输出的信号、三角波信号、负载输出电流之间的关系示意图。
如图9所示,开关电源变换器的输出电压发生跌落时,在三角波信号不变的情况下,由于EA输出的信号具有更快的响应速度,本申请实施提出的开关电源变换器在输出电压发生跌落时能够更快的获得更大的占空比,从而可以更快地恢复输出电压。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种开关电源变换器,其特征在于,包括:
    三角波发生器,所述三角波发生器的输入端用于接收时钟信号;
    负载检测电路,所述负载检测电路的输入端电连接至所述开关电源变换器的输出端,所述负载检测电路的第一输出端电连接至所述三角波发生器的控制端,其中所述负载检测电路用于根据所述开关电源变换器的输出控制所述三角波发生器输出的三角波信号的幅度。
  2. 根据权利要求1所述的开关电源变换器,其特征在于,所述开关电源变换器还包括误差放大器EA,其中:
    所述负载检测电路的第二输出端电连接至所述EA的控制端,所述负载检测电路还用于根据所述开关电源变换器的输出控制所述EA输出的信号的响应速度。
  3. 根据权利要求2所述的开关电源变换器,其特征在于,所述负载检测电路包括第一迟滞比较器和第二迟滞比较器,其中:
    所述第一迟滞比较器的第一输入端用于接收输入第一检测电压,所述第一迟滞比较器的第二输入端用于接收第一参考电压,所述第一迟滞比较器的输出端用于输出第一信号,其中,所述第一检测电压是所述负载检测电路根据接收到的所述开关电源变换器的输出电流转换后获得的电压;
    所述第二迟滞比较器的第一输入端用于接收第二检测电压,所述第二迟滞比较器的第二输入端用于接收第二参考电压,所述第二迟滞比较器的输出端用于输出第二信号,其中,所述第二检测电压为所述第一检测电压经过滤波后的电压,所述第二参考电压小于或等于所述第一参考电压,所述第一信号和所述第二信号为控制所述三角波发生器输出的三角波幅度的信号和控制所述EA输出的信号。
  4. 根据权利要求3所述的开关电源变换器,其特征在于,所述负载检测电路还包括电流检测电路和逻辑控制器,其中:
    所述电流检测电路的输入端电连接至所述开关电源变换器的输出端,所述电流检测电路的输出端电连接至所述第一迟滞比较器和所述第二迟滞比较器,所述电流检测电路用于将接收到的所述开关电源变换器的输出电流转换为电压;
    所述逻辑控制器的第一输入端电连接至所述第一迟滞比较器的输出端,所述逻辑控制器的第二输入端电连接至所述第二迟滞比较器的输出端;
    所述逻辑控制器用于接收所述第一信号,并根据所述第一信号生成快速负载检测信号,所述快速负载检测信号是所述开关电源变换器的输出电流发生快速升高时所述负载检测电路输出的信号;
    所述逻辑控制器还用于接收所述第二信号,并根据所述第二信号生成慢速负载检测信号,所述慢速负载检测信号是所述开关电源变换器的输出电流发生慢速升高时所述负载检测电路输出的信号;
    其中,所述快速负载检测信号和所述慢速负载检测信号为所述三角波发生器的控制端的输入信号,所述快速负载检测信号和所述慢速负载检测信号为所述EA的控制端的输入信号。
  5. 根据权利要求4所述的开关电源变换器,其特征在于,所述三角波发生器包括可 变电容器、可变电阻器和三角波信号控制器,其中:
    所述可变电阻器的第一端用于接收时钟信号,所述可变电阻器的第二端电连接至所述三角波发生器的输出端,所述可变电阻器的控制端电连接至所述三角波信号控制器的输出端;
    所述可变电容器的第一端电连接至所述三角波发生器的输出端,所述可变电容器的第二端用于接收所述开关电源变换器的输出电压,所述可变电容器的控制端电连接至所述三角波信号控制器的输出端;
    所述三角波信号控制器用于根据所述三角波发生器的控制端接收的所述快速负载检测信号和所述慢速负载检测信号调节所述可变电阻器的电阻值和所述可变电容器的电容值。
  6. 根据权利要求5所述的开关电源变换器,其特征在于,所述三角波发生器还包括运放器,其中:
    所述运放器的第一输入端用于接收基准电压,所述运放器的第二输入端电连接至所述运放器的输出端,所述运放器的输出端电连接至所述可变电容器的第一端。
  7. 根据权利要求4所述的开关电源变换器,其特征在于,所述三角波发生器包括运放器、可变电阻器、可变电流源、可变电流沉、第三开关、第四开关和三角波信号控制器,其中:
    所述运放器的第一输入端用于接收基准电压,所述运放器的第二输入端电连接至所述运放器的输出端,所述运放器的输出端电连接至所述三角波发生器的输出端;
    所述可变电阻器的第一端电连接至所述第三开关和所述第四开关之间,所述可变电阻器的第二端电连接至所述三角波发生器的输出端,所述可变电阻器的控制端电连接至所述三角波信号控制器的输出端;
    所述可变电流源的第一端接收固定电压,所述可变电流源的第二端电连接至所述可变电流沉的第二端,所述可变电流源的控制端电连接至所述可变电流沉的控制端和所述三角波信号控制器的输出端;
    所述可变电流沉的第一端接地;
    所述第三开关和所述第四开关电连接在所述可变电流源的第二端和所述可变电流沉的第二端之间,并根据时钟信号切换所述第三开关和所述第四开关;
    所述三角波信号控制器用于根据所述三角波发生器的控制端接收的所述快速负载检测信号和所述慢速负载检测信号调节所述可变电阻器的电阻值、所述可变电流源的电流值、所述可变电流沉的电流值。
  8. 根据权利要求5-7中任一项所述的开关电源变换器,其特征在于,所述三角波发生器还包括第一开关和第二开关,其中:
    所述第一开关电连接在所述可变电阻器和所述固定电容器之间;
    所述第二开关电连接在直流电压输入端和所述三角波发生器的输出端之间;
    其中,所述第一开关和所述第二开关交替闭合。
  9. 根据权利要求1-4中任一项所述的开关电源变换器,其特征在于,所述负载检测电路进一步用于:
    增加所述EA输出的信号的增益;或者
    增加所述EA输出的信号的环路带宽。
  10. 根据权利要求4所述的开关电源变换器,其特征在于,所述EA包括运算放大器、偏置电流源、补偿网络和EA信号控制器,其中:
    所述运算放大器的第一输入端用于接收所述开关电源变换器的输出电压,所述运算放大器的第二输入端用于接收参考电压,所述运算放大器的输出端电连接至所述EA的输出端;
    所述补偿网络的第一端电连接至所述运算放大器的输出端,所述补偿网络的第二端接地;
    所述运算放大器的第三输入端电连接至所述偏置电流源;
    所述EA信号控制器用于根据所述EA的控制端接收的所述快速负载检测信号和所述慢速负载检测信号调节所述偏置电流源的偏置电流和调节所述补偿网络的参数。
  11. 根据权利要求10所述的开关电源变换器,其特征在于,所述补偿网络的参数包括可变电阻器、第一可变电容器和第二可变电容器,其中:
    所述可变电阻器的第一端电连接至所述运算放大器的输出端,所述可变电阻器的第二端电连接至所述第一可变电容器的第一端;
    所述第一可变电容器的第二端接地;
    所述第二可变电容器的第一端电连接至所述运算放大器的输出端,所述第二可变电容器的第二端接地;
    所述可变电阻器的控制端、所述第一可变电容器的控制端和所述第二可变电容器的控制端电连接至所述EA信号控制器的输出端。
  12. 一种开关电源变换器,其特征在于,包括:
    三角波发生器,所述三角波发生器的输入端用于接收时钟信号;
    负载检测电路,所述负载检测电路包括第一迟滞比较器和第二迟滞比较器,所述第一迟滞比较器的输入端和所述第二迟滞比较器的输入端与所述负载检测电路的输入端电连接,所述第一迟滞比较器的输出端和所述第二迟滞比较器的输出端与所述负载检测电路的第一输出端电连接,其中:
    所述第一迟滞比较器的第一输入端用于接收第一检测电压,所述第一迟滞比较器的第二输入端用于接收第一参考电压,所述第一检测电压是所述负载检测电路根据接收到的所述开关电源变换器的输出电流转换后获得的电压,
    所述第二迟滞比较器的第一输入端用于接收第二检测电压,所述第二迟滞比较器的第二输入端用于接收第二参考电压,所述第二检测电压为所述第一检测电压经过滤波后的电压,所述第二参考电压小于或等于所述第一参考电压;
    其中,所述负载检测电路的输入端电连接至所述开关电源变换器的输出端,所述负载检测电路的第一输出端电连接至所述三角波发生器。
  13. 根据权利要求12所述的开关电源变换器,其特征在于,所述开关电源变换器还包括误差放大器EA,其中:
    所述负载检测电路的第二输出端电连接至所述EA的控制端。
  14. 根据权利要求12或13所述的开关电源变换器,其特征在于,所述负载检测电路还包括电流检测电路和逻辑控制器,其中:
    所述电流检测电路的输入端电连接至所述开关电源变换器的输出端,所述电流检测电路的输出端电连接至所述第一迟滞比较器和所述第二迟滞比较器;
    所述逻辑控制器的第一输入端电连接至所述第一迟滞比较器的输出端,所述逻辑控制器的第二输入端电连接至所述第二迟滞比较器的输出端,所述逻辑控制器的第一输出端电连接至所述三角波发生器的控制端,所述逻辑控制器的第二输出端电连接至所述EA的控制端。
  15. 根据权利要求14所述的开关电源变换器,其特征在于,所述三角波发生器包括可变电容器、可变电阻器和三角波信号控制器,其中:
    所述可变电阻器的第一端用于接收时钟信号,所述可变电阻器的第二端电连接至所述三角波发生器的输出端,所述可变电阻器的控制端电连接至所述三角板信号控制器的输出端;
    所述可变电容器的第一端电连接至所述三角波发生器的输出端,所述可变电容器的第二端用于接收所述开关电源变换器的输出电压,所述可变电容器的控制端电连接至所述三角波信号控制器的输出端;
    所述三角波信号控制器用于根据所述三角波发生器的控制端接收的所述快速负载检测信号和所述慢速负载检测信号调节所述可变电阻器的电阻值和所述可变电容器的电容值。
  16. 根据权利要求15所述的开关电源变换器,其特征在于,所述三角波发生器还包括运放器,其中:
    所述运放器的第一输入端用于接收基准电压,所述运放器的第二输入端电连接至所述运放器的输出端,所述运放器的输出端电连接至所述可变电容器的第一端。
  17. 根据权利要求14所述的开关电源变换器,其特征在于,所述三角波发生器包括运放器、可变电阻器、可变电流源、可变电流沉、第三开关、第四开关和三角波信号控制器,其中:
    所述运放器的第一输入端用于接收基准电压,所述运放器的第二输入端电连接至所述运放器的输出端,所述运放器的输出端电连接至所述三角波发生器的输出端;
    所述可变电阻器的第一端电连接至所述第三开关和所述第四开关之间,所述可变电阻器的第二端电连接至所述三角波发生器的输出端,所述可变电阻器的控制端电连接至所述三角波信号控制器的输出端;
    所述可变电流源的第一端接固定电压,所述可变电流源的第二端电连接至所述可变电流沉的第二端,所述可变电流源的控制端电连接至所述可变电流沉的控制端和所述三角波信号控制器的输出端;
    所述可变电流沉的第一端接地;
    所述第三开关和所述第四开关电连接在所述可变电流源的第二端和所述可变电流沉的第二端之间,并根据所述时钟信号切换所述第三开关和所述第四开关;
    所述三角波信号控制器用于根据所述三角波发生器的控制端接收的所述快速负载检测信号和所述慢速负载检测信号调节所述可变电阻器的电阻值、所述可变电流源的电流值和所述可变电流沉的电流值。
  18. 根据权利要求15-17中任一项所述的开关电源变换器,其特征在于,所述三角波发生器还包括第一开关和第二开关,其中:
    所述第一开关电连接在所述可变电阻器和所述固定电容器之间;
    所述第二开关电连接在直流电压输入端和所述三角波发生器的输出端之间;
    其中,所述第一开关和所述第二开关交替闭合。
  19. 根据权利要求13所述的开关电源变换器,其特征在于,所述EA包括运算放大器、偏置电流源、补偿网络和EA信号控制器,其中:
    所述运算放大器的第一输入端用于接收所述开关电源变换器的输出电压,所述运算放大器的第二输入端用于接收参考电压,所述运算放大器的输出端电连接至所述EA的输出端;
    所述补偿网络的第一端电连接至所述运算放大器的输出端,所述补偿网络的第二端接地;
    所述运算放大器的第三输入端电连接至所述偏置电流源;
    所述EA信号控制器用于根据所述EA的控制端接收的所述快速负载检测信号和所述慢速负载检测信号调节所述偏置电流源的偏置电流和调节所述补偿网络的参数。
  20. 根据权利要求19所述的开关电源变换器,其特征在于,所述补偿网络的参数包括可变电阻器、第一可变电容器和第二可变电容器,其中:
    所述可变电阻器的第一端电连接至所述运算放大器的输出端,所述可变电阻器的第二端电连接至所述第一可变电容器的第一端;
    所述第一可变电容器的第二端接地;
    所述第二可变电容器的第一端电连接至所述运算放大器的输出端,所述第二可变电容器的第二端接地;
    所述可变电阻器的控制端、所述第一可变电容器的控制端和所述第二可变电容器的控制端电连接至所述EA信号控制器的输出端。
PCT/CN2019/115123 2019-10-31 2019-11-01 开关电源变换器 WO2021082000A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980101505.8A CN114556762A (zh) 2019-10-31 2019-11-01 开关电源变换器
EP19951036.3A EP4040662A4 (en) 2019-10-31 2019-11-01 SWITCHING MODE POWER CONVERTER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019114773 2019-10-31
CNPCT/CN2019/114773 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021082000A1 true WO2021082000A1 (zh) 2021-05-06

Family

ID=75714769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115123 WO2021082000A1 (zh) 2019-10-31 2019-11-01 开关电源变换器

Country Status (3)

Country Link
EP (1) EP4040662A4 (zh)
CN (1) CN114556762A (zh)
WO (1) WO2021082000A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556035A (zh) * 2021-06-18 2021-10-26 华为技术有限公司 一种cot并联电路以及电源设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013820A (zh) * 2010-10-22 2011-04-13 凹凸电子(武汉)有限公司 交流-直流转换器、方法以及控制器
US8330437B1 (en) * 2009-12-04 2012-12-11 National Semiconductor Corporation Pulse width modulator with transient-based asynchronous reset
US8786269B2 (en) * 2011-08-10 2014-07-22 Eta Semiconductor Inc. Constant frequency synthetic ripple power converter
CN103956896A (zh) * 2013-03-29 2014-07-30 成都芯源系统有限公司 一种电压转换电路以及控制方法
CN106533154A (zh) * 2015-09-10 2017-03-22 德克萨斯仪器股份有限公司 改进的dc‑dc转换器的负载瞬变和抖动
CN106612070A (zh) * 2015-10-22 2017-05-03 深圳市中兴微电子技术有限公司 一种电压模降压转换器的负载瞬态响应增强方法及系统
CN109450485A (zh) * 2018-12-07 2019-03-08 中国电子科技集团公司第五十四研究所 一种模拟基带幅相校准及本振泄漏抑制电路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7583138B1 (en) * 2007-11-09 2009-09-01 National Semiconductor Corporation System and method for controlling an error amplifier between control mode changes
CN104022648B (zh) * 2014-04-23 2017-01-11 成都芯源系统有限公司 开关变换器及其控制电路和控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8330437B1 (en) * 2009-12-04 2012-12-11 National Semiconductor Corporation Pulse width modulator with transient-based asynchronous reset
CN102013820A (zh) * 2010-10-22 2011-04-13 凹凸电子(武汉)有限公司 交流-直流转换器、方法以及控制器
US8786269B2 (en) * 2011-08-10 2014-07-22 Eta Semiconductor Inc. Constant frequency synthetic ripple power converter
CN103956896A (zh) * 2013-03-29 2014-07-30 成都芯源系统有限公司 一种电压转换电路以及控制方法
CN106533154A (zh) * 2015-09-10 2017-03-22 德克萨斯仪器股份有限公司 改进的dc‑dc转换器的负载瞬变和抖动
CN106612070A (zh) * 2015-10-22 2017-05-03 深圳市中兴微电子技术有限公司 一种电压模降压转换器的负载瞬态响应增强方法及系统
CN109450485A (zh) * 2018-12-07 2019-03-08 中国电子科技集团公司第五十四研究所 一种模拟基带幅相校准及本振泄漏抑制电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556035A (zh) * 2021-06-18 2021-10-26 华为技术有限公司 一种cot并联电路以及电源设备
CN113556035B (zh) * 2021-06-18 2022-12-30 华为技术有限公司 一种cot并联电路以及电源设备

Also Published As

Publication number Publication date
EP4040662A4 (en) 2022-11-30
EP4040662A1 (en) 2022-08-10
CN114556762A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
US9595869B2 (en) Multi-level switching regulator circuits and methods with finite state machine control
US8207721B2 (en) Switching regulator capable of stable operation and improved frequency characteristics in a broad input and output voltage range and method for controlling operation thereof
JP5063474B2 (ja) 電流モード制御型スイッチングレギュレータ及びその動作制御方法
US8330435B2 (en) Hysteretic controlled buck-boost converter
CN106533135B (zh) 恒定导通时间控制电路及其控制的直流-直流变换器
US8773102B2 (en) Hysteretic CL power converter
US11444537B2 (en) Power converters and compensation circuits thereof
CN103475216B (zh) 功率变换器、时钟模块、控制电路及相关控制方法
US8405368B2 (en) Multiple phase switching regulator with phase current sharing
US20140159689A1 (en) Constant time control method, control circuit and switch regulator using the same
US9755519B1 (en) Switching power converter control
US8174250B2 (en) Fixed frequency ripple regulator
US7274182B2 (en) Spring modulation with fast load-transient response for a voltage regulator
EP3278437B1 (en) Switching regulator circuits and methods with reconfigurable inductance
JP2008161001A (ja) 電流モード制御型スイッチングレギュレータ及びその動作制御方法
CN104617771A (zh) 开关电源转换器系统及其控制方法
KR102151179B1 (ko) 히스테리시스를 갖는 스위칭 레귤레이터
US10348206B2 (en) Control method, control circuit and switching power supply with the same
CN111697828A (zh) Buck变换器及其控制方法
US10404173B1 (en) Buck-boost switching converter
TW201143263A (en) Frequency jitter controller for power converter
CN105207480A (zh) 一种轻载时低输出纹波的同步降压型dc-dc转换器
US20170133919A1 (en) Dual-phase dc-dc converter with phase lock-up and the method thereof
JP5304356B2 (ja) スイッチングレギュレータ
JP2006149107A (ja) 多出力電源回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019951036

Country of ref document: EP

Effective date: 20220505

NENP Non-entry into the national phase

Ref country code: DE