WO2021081835A1 - 基于VRDS 4D医学影像的动脉瘤Ai处理方法及产品 - Google Patents

基于VRDS 4D医学影像的动脉瘤Ai处理方法及产品 Download PDF

Info

Publication number
WO2021081835A1
WO2021081835A1 PCT/CN2019/114469 CN2019114469W WO2021081835A1 WO 2021081835 A1 WO2021081835 A1 WO 2021081835A1 CN 2019114469 W CN2019114469 W CN 2019114469W WO 2021081835 A1 WO2021081835 A1 WO 2021081835A1
Authority
WO
WIPO (PCT)
Prior art keywords
aneurysm
target
artery
medical image
image data
Prior art date
Application number
PCT/CN2019/114469
Other languages
English (en)
French (fr)
Inventor
李斯图尔特平
李戴维伟
Original Assignee
未艾医疗技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 未艾医疗技术(深圳)有限公司 filed Critical 未艾医疗技术(深圳)有限公司
Priority to PCT/CN2019/114469 priority Critical patent/WO2021081835A1/zh
Priority to CN201980099774.5A priority patent/CN114340498A/zh
Publication of WO2021081835A1 publication Critical patent/WO2021081835A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • This application relates to the technical field of medical imaging devices, and in particular to a method and product for processing aneurysm Ai based on VRDS 4D medical imaging.
  • CT electronic computer tomography
  • MRI magnetic resonance imaging
  • DTI diffusion tensor imaging
  • PET positron emission computed tomography
  • the embodiments of the present application provide an aneurysm Ai processing method and product based on VRDS 4D medical images, so as to improve the accuracy and efficiency of aneurysm recognition.
  • an embodiment of the present application provides an Ai processing method for tumors and blood vessels based on VRDS 4D medical images, which is applied to a medical imaging device; the method includes:
  • 4D medical imaging is performed according to the target medical image data, and the target position of the aneurysm on the target artery is determined according to the imaging result;
  • the type of the aneurysm and the degree of risk are output.
  • an embodiment of the present application provides an Ai processing device for aneurysm based on VRDS 4D medical image, which is applied to a medical imaging device;
  • the Ai processing device for aneurysm based on VRDS 4D medical image includes a processing unit and a communication unit ,among them,
  • the processing unit is used to obtain target medical image data of a target part of a target user, the target part includes a target artery; and is used to perform 4D medical imaging according to the target medical image data, and determine that the aneurysm is in the place according to the imaging result.
  • the target position on the target artery and used to locate the aneurysm according to the target position, analyze the structural characteristics of the aneurysm, and confirm the type of the aneurysm according to the analysis result; and used to obtain all the aneurysms;
  • the characteristics of the aneurysm are used to determine the degree of risk of the aneurysm according to the characteristics of the aneurysm; and for outputting the type of the aneurysm and the degree of risk through the communication unit.
  • an embodiment of the present application provides a medical imaging device, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and configured by the above Executed by a processor, and the foregoing program includes instructions for executing steps in any method in the first aspect of the embodiments of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the above-mentioned computer-readable storage medium stores a computer program for electronic data exchange, wherein the above-mentioned computer program enables a computer to execute In one aspect, part or all of the steps described in any method.
  • the embodiments of the present application provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute as implemented in this application.
  • the computer program product may be a software installation package.
  • the medical imaging device first obtains target medical image data of the target part of the target user, the target part includes the target artery, and secondly, 4D medical imaging is performed according to the target medical image data, and according to the imaging
  • the target position on the target artery of the aneurysm is determined, and again, the aneurysm is located according to the target position, the structural characteristics of the aneurysm are analyzed, and the type of the aneurysm is confirmed according to the analysis result, and then, Obtain the characteristics of the aneurysm, determine the risk degree of the aneurysm according to the characteristics of the aneurysm, and finally output the type of the aneurysm and the risk degree.
  • the medical imaging device in this application can accurately locate the position of the aneurysm by acquiring 4D medical imaging of the target part of the target user, and further, analyze the structure of the aneurysm to confirm its type, and avoid
  • the two-dimensional slice scan image cannot show the problem of low efficiency of aneurysm recognition caused by the spatial structure characteristics of the target artery, which improves the accuracy of aneurysm recognition.
  • the risk degree of aneurysm can be determined according to the characteristics of the aneurysm. Let users know more about the severity of the disease.
  • FIG. 1 is a schematic structural diagram of a 4D medical image intelligent analysis and processing system based on VRDS provided by an embodiment of the present application;
  • FIG. 2 is a schematic flowchart of an Ai processing method for aneurysm based on VRDS 4D medical imaging according to an embodiment of the present application;
  • Fig. 3 is a schematic diagram of the structure of different types of aneurysms provided in the embodiments of the present application.
  • FIG. 4 is a schematic diagram of the inner diameter of the target artery provided by the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a medical imaging device provided by an embodiment of the present application.
  • Fig. 6 is a block diagram of functional units of an Ai processing device for aneurysm based on VRDS 4D medical image provided by an embodiment of the present application.
  • the medical imaging devices involved in the embodiments of this application refer to various instruments that use various media as information carriers to reproduce the internal structure of the human body as images.
  • the image information and the actual structure of the human body have spatial and temporal distributions.
  • DICOM data refers to the original image file data that reflects the internal structural characteristics of the human body collected by medical equipment, which can include electronic computed tomography CT, magnetic resonance MRI, diffusion tensor imaging DTI, and positron emission computed tomography PET-
  • image source refers to the Texture2D/3D image volume data generated by analyzing the original DICOM data.
  • VRDS refers to the Virtual Reality Doctor system (VRDS for short).
  • FIG. 1 is a schematic structural diagram of a VRDS-based 4D medical image intelligent analysis and processing system 100 provided by an embodiment of the present application.
  • the system 100 includes a medical imaging device 110 and a network database 120.
  • the medical imaging device 110 may include The local medical imaging device 111 and/or the terminal medical imaging device 112, the local medical imaging device 111 or the terminal medical imaging device 112 are used to analyze the tumor and blood vessels based on the VRDS 4D medical imaging based on the original DICOM data.
  • Ai processing method is based on the recognition, positioning and four-dimensional volume rendering of the relationship between human tumors and blood vessels to achieve four-dimensional three-dimensional effects
  • the four-dimensional medical image specifically refers to the medical image including the internal spatial structure characteristics of the displayed tissue and the external Spatial structural characteristics
  • the internal spatial structural characteristics mean that the slice data inside the tissue is not lost, that is, the medical imaging device can present the internal structure of target organs, blood vessels and other tissues
  • the external spatial structural characteristics refer to the environmental characteristics between tissues .
  • the local medical imaging device 111 is still more than the terminal medical imaging device 112 It can be used to edit the image source data to form the transfer function result of the four-dimensional human body image.
  • the transfer function result can include the transfer function result of the surface of the internal organs and the tissue structure in the internal organs of the human body, and the transfer function result of the cube space, For example, the cube edit box and arc edit array quantity, coordinates, color, transparency and other information required by the transfer function.
  • the network database 120 may be, for example, a cloud server.
  • the network database 120 is used to store the image source generated by analyzing the original DICOM data and the transfer function result of the four-dimensional human body image edited by the local medical imaging device 111.
  • the image source may be from multiple sources.
  • a local medical imaging device 111 to realize interactive diagnosis of multiple doctors.
  • HMDS head-mounted Displays Set
  • the operating actions refer to the user’s actions through the medical imaging device.
  • External ingestion equipment such as mouse, keyboard, tablet (portable android device, Pad), iPad (internet portable device), etc., operate and control the four-dimensional human body image to achieve human-computer interaction.
  • the operation action includes at least one of the following Types: (1) Change the color and/or transparency of a specific organ/tissue, (2) Position the zoom view, (3) Rotate the view, realize the multi-view 360-degree observation of the four-dimensional human body image, (4) "Enter” the human body Observe the internal structure of organs, render real-time clipping effects, and (5) move the view up and down.
  • FIG. 2 is a schematic flowchart of an Ai processing method for aneurysm based on VRDS 4D medical imaging according to an embodiment of the present application, which is applied to the medical imaging device described in FIG. 1;
  • Ai processing methods for aneurysms based on VRDS 4D medical images include:
  • the medical imaging device acquires target medical image data of a target part of a target user, where the target part includes a target artery.
  • the target site may be the carotid artery, subclavian artery, axillary artery, brachial artery, radial artery, iliac artery, femoral artery, etc.
  • the target medical image data is obtained after processing the arterial scan image
  • the arterial scan image includes any one of the following: CT image, MRI image, DTI image, PET-CT image.
  • the medical imaging device performs 4D medical imaging according to the target medical image data, and determines the target position of the aneurysm on the target artery according to the imaging result.
  • 4D medical imaging refers to the presentation of four-dimensional medical images.
  • the medical imaging device performs 4D medical imaging according to the target medical image data, including: the medical imaging device selects enhanced data with a quality score greater than a preset score from the target medical image data as VRDS 4D imaging data; performing 4D medical imaging based on the VRDS 4D imaging data Imaging.
  • the quality score can be comprehensively evaluated from the following dimensions: average gradient, information entropy, visual information fidelity, peak signal-to-noise ratio PSNR, structural similarity SSIM, mean square error MSE, etc.
  • average gradient information entropy
  • visual information fidelity visual information fidelity
  • peak signal-to-noise ratio PSNR peak signal-to-noise ratio
  • structural similarity SSIM structural similarity
  • mean square error MSE mean square error
  • the medical imaging device further performs data screening through quality scoring to improve the imaging effect.
  • the imaging results show the structural characteristics of the aneurysm and related arteries. Because the structure of the artery with the aneurysm is quite different from the normal structure of the artery, further judgments can be made on the obvious deformation of the target site to determine the Whether there is an aneurysm at the place.
  • the medical imaging device locates the aneurysm according to the target position, analyzes the structural characteristics of the aneurysm, and confirms the type of the aneurysm according to the analysis result.
  • aneurysms can be divided into three categories in terms of structure: true aneurysms, pseudoaneurysms, and dissecting aneurysms.
  • Figure 3 is a schematic diagram of the structure of different types of aneurysms provided by the embodiments of the present application, where Figure a in Figure 3 is a normal artery. It can be seen that the normal arterial wall is composed of the outer wall, the middle mold and the intima It consists of three layers of membranes connected to each other, no deformation, no breaks, normal blood flow, discontinuous and smooth outer wall; Figures b and c show true aneurysms, the arterial wall bulges out, showing a boat shape or a fusiform shape.
  • the arterial wall has no rupture, and the outer wall of the outward bulge is smooth and continuous.
  • the scaphoid artery only expands to one side, so the thickness of the arteries on both sides is different (the wall of the bulging side is thinner), and the fusiform artery faces both The side is evenly expanded, so the thickness of the arteries on both sides is the same. Therefore, according to whether the thickness of the arterial wall is the same, it can be further confirmed whether it is a true boat-shaped aneurysm; the picture d is a pseudoaneurysm, which is a torn artery wall Or after puncture, the blood flows out from the breach and is wrapped in the hematoma formed by the adjacent tissues of the aorta.
  • the picture e shows a dissecting aneurysm.
  • the formation of a dissecting aneurysm is due to elastic fibrosis or developmental defects in the arterial wall media, and the intima is ruptured.
  • the blood enters the pathologically loose media from the rupture of the intima and follows the blood flow Split the media longitudinally in the direction to form a pseudovascular cavity. From the imaging results, it can be seen that it is a double-lumen artery. Because there is blood between the intima and the middle mold, the intima is concave inward. If the blood in the pseudovascular cavity If there are more, the outer wall will bulge out and deform.
  • the medical imaging device acquires the characteristics of the aneurysm, and determines the degree of risk of the aneurysm according to the characteristics of the aneurysm.
  • the characteristics of the aneurysm include the size of the aneurysm, the degree of deformation of the target artery, and the blood vessel thickness of the target artery.
  • whether the aneurysm is dangerous can be determined according to the characteristics of the aneurysm.
  • S205 The medical imaging device outputs the type of the aneurysm and the degree of risk.
  • the display screen of the medical imaging device when the display screen of the medical imaging device outputs the type of aneurysm, it can output the image of the aneurysm and the risk of the aneurysm at the same time. If the aneurysm is dangerous, it will also display surgical recommendations and precautions.
  • the medical history information of the target user can be obtained. If the target user has high blood pressure in the medical history information, the operation recommendation is output regardless of whether the aneurysm is dangerous or not.
  • the medical imaging device first obtains target medical image data of the target part of the target user, the target part includes the target artery, and secondly, 4D medical imaging is performed according to the target medical image data, and according to the imaging
  • the target position on the target artery of the aneurysm is determined, and again, the aneurysm is located according to the target position, the structural characteristics of the aneurysm are analyzed, and the type of the aneurysm is confirmed according to the analysis result, and then, Obtain the characteristics of the aneurysm, determine the risk degree of the aneurysm according to the characteristics of the aneurysm, and finally output the type of the aneurysm and the risk degree.
  • the medical imaging device in this application can accurately locate the position of the aneurysm by acquiring 4D medical imaging of the target part of the target user, and further, analyze the structure of the aneurysm to confirm its type, and avoid
  • the two-dimensional slice scan image cannot show the problem of low efficiency of aneurysm recognition caused by the spatial structure characteristics of the target artery, which improves the accuracy of aneurysm recognition.
  • the risk degree of aneurysm can be determined according to the characteristics of the aneurysm. Let users know more about the severity of the disease.
  • the determining the target location of the aneurysm according to the imaging result includes:
  • the medical imaging device determines, according to the imaging result, the place where the target artery is deformed, and the deformation includes that the target artery is deformed into a boat shape or a fusiform shape or appears to be broken;
  • the medical imaging device acquires the edge characteristic of the place where the target artery is deformed, and if the edge characteristic is continuous and smooth, then it is determined that the place where the target artery is deformed is the target position.
  • the aneurysm may be a true aneurysm; if the target artery has a break and the outer wall at the break is continuous and smooth, the The aneurysm may be a pseudoaneurysm or a dissecting aneurysm.
  • the target location of the aneurysm can be preliminarily determined based on the edge characteristics of the abnormal structure of the target artery.
  • the analyzing the structural characteristics of the aneurysm, and confirming the type of the aneurysm according to the analysis result includes:
  • the aneurysm is a true aneurysm
  • the aneurysm is a pseudoaneurysm
  • the aneurysm is a dissecting aneurysm.
  • aneurysm can be judged according to the structural characteristics of the aneurysm, so that corresponding treatments can be taken for different types of aneurysms to avoid misdiagnosis.
  • the feature of the aneurysm includes the size of the aneurysm
  • acquiring the feature of the aneurysm includes:
  • the medical imaging device obtains the area and swelling height of the aneurysm according to the spatial coordinate information, where the swelling height is the shortest distance between the highest point of the aneurysm and the outer wall of the target artery;
  • the medical imaging device determines the size of the aneurysm according to the area and swelling height of the aneurysm.
  • an aneurysm once an aneurysm is formed, the fluid will gradually expand and increase under the impact of arterial blood flow.
  • the rupture of the aneurysm will cause the patient to lose a lot of blood and die, so it is called the "bomb of blood vessels in the body.” Therefore, it is more reliable to obtain the size of the aneurysm and judge whether it is dangerous according to its size.
  • the aneurysm after determining the target position of the aneurysm on the target artery in the target medical image, the aneurysm can be located and the spatial coordinate information of the aneurysm can be obtained.
  • the cross section of the connection between the aneurysm and the target artery is generally circular or fusiform. If it is a circle, determine the center and radius of the circle, calculate the area of the circle, treat the aneurysm as a partial sphere, and determine the distance from the center of the circle to the highest point of the aneurysm, that is, the height of swelling, according to the circle The area and height of the swelling can be calculated to calculate the volume of the aneurysm, that is, the size of the aneurysm. If the cross section is fusiform, the same can be used to calculate the size of the aneurysm.
  • the feature of the aneurysm includes the degree of deformation of the target artery, and acquiring the feature of the aneurysm includes:
  • the medical imaging device determines the degree of deformation of the target artery according to the first inner diameter and the second inner diameter.
  • the first inner diameter includes the distance b from the highest point of the swelling to the other side of the blood vessel and the distance c from the lowest point of the intimal depression to the other side of the blood vessel.
  • the feature of the aneurysm includes the blood vessel thickness of the target artery, and acquiring the feature of the aneurysm includes:
  • the medical imaging device obtains the blood vessel thickness of the target artery at the target position according to the spatial coordinate information.
  • the thickness of the blood vessels on both sides of the target artery is the same; if the target artery is bulged on one side or is a dissecting aneurysm, the thickness of the blood vessels on both sides of the target artery is inconsistent. , For dissecting aneurysms, obtain the thickness of the bulging mid-model and outer wall of the artery.
  • the determining the risk of the aneurysm according to the characteristics of the aneurysm includes:
  • the medical imaging device Acquiring, by the medical imaging device, the normal size range of the aneurysm at the target position, the normal deformation degree range of the target artery, and the normal thickness range of the target artery;
  • the medical imaging device confirms that the hemangioma is dangerous
  • the medical imaging device confirms the blood vessel The tumor is not dangerous.
  • the normal size range of the aneurysm, the normal deformation range of the target artery, and the normal thickness range of the target artery are obtained from the artery database or networked. Different arteries and different positions in the same artery have different requirements for the normal range of the characteristics of aneurysm. Therefore, it is necessary to determine the normal size range, the normal deformation range and the normal thickness range according to the target artery attributes and the target location of the aneurysm. If any of the size of the aneurysm, the degree of deformation, and the thickness of the blood vessel exceeds the normal range, the hemangioma can be determined to be in a dangerous state. If the patient's body allows it, immediate surgery should be recommended.
  • the size of the aneurysm can be divided into a normal size range, a more dangerous size range, and a dangerous size range;
  • the deformation degree range of the blood vessel can be divided into a normal deformation degree range, a more dangerous deformation degree range, and a dangerous deformation degree range;
  • the thickness of the blood vessel is divided into the normal thickness range, the more dangerous thickness range and the dangerous thickness range;
  • the range of confirming the size of the aneurysm, the range of the deformation degree of the target artery, and the range of the blood vessel thickness of the target artery are based on the respective three
  • the scope category comprehensively determines the risk of aneurysm.
  • the risk of aneurysm can be determined according to the size of the aneurysm, the degree of deformation of the target artery, and the blood vessel thickness of the target artery.
  • the judgment method is simple and easy to implement with strong reliability.
  • the acquiring the target medical image data of the target part of the target user includes:
  • the medical imaging device determines a bitmap BMP data source according to the multiple arterial scan images of the target part of the target user;
  • the medical imaging device imports the BMP data source into a preset VRDS medical network model to obtain first medical image data.
  • the first medical image data includes the original data set of the target artery and the original data of the target artery.
  • the data set includes fusion data of the target artery and the aneurysm;
  • the medical imaging device imports the first medical image data into a preset cross blood vessel network model, and performs spatial division processing on the fusion data through the cross blood vessel network model to obtain second medical image data.
  • the medical image data includes the data collection of the target artery and the data collection of the aneurysm;
  • the medical imaging device obtains the target medical image data according to the second medical image data.
  • BMP full name Bitmap
  • DDB device-dependent bitmap
  • DIB device-independent bitmap
  • importing the BMP data source into the preset VRDS medical network model to obtain the first medical image data includes: importing the BMP data source into the preset VRDS medical network model, and calling each of the pre-stored transfer function sets through the VRDS medical network model
  • a transfer function is used to process the BMP data source through a plurality of transfer functions in the transfer function set to obtain the first medical image data.
  • the transfer function set includes the transfer function of the target artery and the transfer function of the aneurysm preset by the reverse editor.
  • the VRDS medical network model is provided with the transfer function of the structural characteristics of the target artery and the transfer function of the structural characteristics of the aneurysm, and the BMP data source obtains the first medical image data through the processing of the transfer function.
  • the cross vascular network model realizes the data separation of the target artery and aneurysm through the following operations: (1) Extract the fusion data of the cross position; (2) Separate the fusion data based on the preset data separation algorithm for each fusion data, and obtain mutually independent data Arterial boundary point data and vein boundary point data; (3) Integrating multiple arterial boundary point data obtained after processing into the first data, and integrating multiple venous boundary point data obtained after processing into the second data.
  • segmentation targets include target arteries and aneurysms.
  • the medical imaging device can process the BMP data source through the VRDS medical network model and the cross blood vessel network model, and combine boundary optimization and data enhancement processing to obtain target image data, which solves the problem that traditional medical imaging cannot achieve segmentation of arteries and arteries.
  • the problem of the overall separation of veins in the medical field improves the authenticity, comprehensiveness and refinement of medical image display.
  • the obtaining the target medical image data according to the second medical image data includes:
  • the medical imaging device performs preset processing on the second medical image data to obtain the target medical image data, and the preset processing includes at least one of the following operations: 2D boundary optimization processing, 3D boundary optimization processing, and data enhancement processing .
  • 2D boundary optimization processing includes: multiple sampling to obtain low-resolution information and high-resolution information.
  • the 3D boundary optimization processing includes: 3D convolution, 3D max pooling, and 3D up-convolution layer.
  • the 3D boundary optimization processing includes the following operations: input the second medical image data into the 3D convolution layer for 3D convolution operation to obtain features Figure; the feature map is input into the 3D pooling layer for pooling and nonlinear activation to obtain the first feature map; the first feature map is cascaded to obtain the prediction result.
  • the data enhancement processing includes any one of the following: data enhancement based on arbitrary angle rotation, data enhancement based on histogram equalization, data enhancement based on white balance, data enhancement based on mirroring operation, data enhancement based on random cut And data enhancement based on simulating different lighting changes.
  • the target medical image data can be obtained after the preset processing is performed, and the obtained target medical image data has high accuracy, strong reliability, and high image quality.
  • FIG. 5 is a schematic structural diagram of a medical imaging apparatus 500 provided by an embodiment of the present application.
  • the medical imaging apparatus 500 includes a processor 510, a memory 520, a communication interface 530, and one or more programs 521, where the one or more programs 521 are stored in the above-mentioned memory 520 and are configured to be executed by the above-mentioned processor 510, and the one or more The program 521 includes instructions for performing the following steps:
  • the target position locates the aneurysm, analyzes the structural characteristics of the aneurysm, confirms the type of the aneurysm according to the analysis result; acquires the characteristics of the aneurysm, and determines the artery according to the characteristics of the aneurysm
  • the degree of risk of aneurysm output the type of the aneurysm and the degree of risk.
  • the medical imaging device first obtains target medical image data of the target part of the target user, the target part includes the target artery, and secondly, 4D medical imaging is performed according to the target medical image data, and according to the imaging
  • the target position on the target artery of the aneurysm is determined, and again, the aneurysm is located according to the target position, the structural characteristics of the aneurysm are analyzed, and the type of the aneurysm is confirmed according to the analysis result, and then, Obtain the characteristics of the aneurysm, determine the risk degree of the aneurysm according to the characteristics of the aneurysm, and finally output the type of the aneurysm and the risk degree.
  • the medical imaging device in this application can accurately locate the position of the aneurysm by acquiring 4D medical imaging of the target part of the target user, and further, analyze the structure of the aneurysm to confirm its type, and avoid
  • the two-dimensional slice scan image cannot show the problem of low efficiency of aneurysm recognition caused by the spatial structure characteristics of the target artery, which improves the accuracy of the aneurysm recognition.
  • the risk level of the aneurysm can be determined according to the characteristics of the aneurysm. Let users know more about the severity of the disease.
  • the instructions in the program are specifically used to perform the following operations: determining the place where the target artery is deformed according to the imaging result, so The deformation includes the deformation of the target artery into a boat shape or a fusiform shape or a break; acquiring the edge characteristics of the place where the target artery is deformed, and if the edge characteristic is continuous and smooth, then determining the place where the target artery is deformed Is the target location.
  • the program further includes instructions for performing the following operations: if the target If the artery is deformed into a scaphoid or fusiform shape, and the target artery has no rupture, the aneurysm is a true aneurysm; if the target artery has no deformation, has a rupture, and a mass is formed at the rupture, then The aneurysm is a pseudoaneurysm; if the intima of the target artery is deformed inwardly and the intima and the media of the target artery form a vascular cavity, the aneurysm is a dissecting aneurysm.
  • the characteristics of the aneurysm include the size of the aneurysm
  • the program further includes instructions for performing the following operations: acquiring the target The spatial coordinate information of the position; the area and swelling height of the aneurysm are obtained according to the spatial coordinate information, and the swelling height is the shortest distance between the highest point of the aneurysm and the outer wall of the target artery; according to the aneurysm The area and height of the swelling determine the size of the aneurysm.
  • the characteristics of the aneurysm include the degree of deformation of the target artery.
  • the program further includes instructions for performing the following operations: The spatial coordinate information obtains the first inner diameter of the target artery at the target position and the second inner diameter of the target artery that is not deformed near the target position;
  • the degree of deformation of the target artery is determined according to the first inner diameter and the second inner diameter.
  • the feature of the aneurysm includes the blood vessel thickness of the target artery.
  • the program further includes instructions for performing the following operations: The spatial coordinate information obtains the blood vessel thickness of the target artery at the target position.
  • the program further includes instructions for performing the following operations: acquiring the artery at the target position The normal size range of the aneurysm, the normal deformation range of the target blood vessel, and the normal thickness range of the target blood vessel; if the size of the aneurysm is larger than the normal size range, or/and the target position The deformation degree of the target artery is greater than the normal deformation degree range, or/and the blood vessel thickness of the target artery at the target position is less than the normal thickness range, it is confirmed that the hemangioma is dangerous; if the aneurysm is The size, the degree of deformation of the target artery at the target position, and the blood vessel thickness of the target artery at the target position are all within a normal range, confirming that the hemangioma is not dangerous.
  • the program further includes instructions for performing the following operations: according to the multiple arteries of the target part of the target user Scan the image to determine the bitmap BMP data source; import the BMP data source into the preset VRDS medical network model to obtain the first medical image data, the first medical image data includes the original data set of the target artery, the The original data set of the target artery includes the fusion data of the target artery and the aneurysm; the first medical image data is imported into a preset cross-vessel network model, and the fusion data is processed through the cross-vessel network model. Perform spatial segmentation processing to obtain second medical image data, where the second medical image data includes a data set of the target artery and a data set of the aneurysm; the target medical image is obtained according to the second medical image data data.
  • the program further includes instructions for performing the following operations: performing pre-processing on the second medical image data.
  • the preset processing includes at least one of the following operations: 2D boundary optimization processing, 3D boundary optimization processing, and data enhancement processing.
  • the medical imaging apparatus includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the medical imaging device into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 6 is a block diagram of functional units of an Ai processing device 600 for aneurysm based on VRDS 4D medical imaging provided by an embodiment of the present application.
  • the Ai processing device 600 for aneurysm based on VRDS 4D medical image is applied to a medical imaging device, and the Ai processing device 600 for aneurysm based on VRDS 4D medical image includes a processing unit 601 and a communication unit 602, wherein,
  • the processing unit 601 is used to obtain target medical image data of a target part of a target user, the target part including a target artery; and used to perform 4D medical imaging according to the target medical image data, and determine whether the aneurysm is in The target position on the target artery; and used to locate the aneurysm according to the target position, analyze the structural characteristics of the aneurysm, confirm the type of the aneurysm according to the analysis result; and obtain The characteristics of the aneurysm are used to determine the degree of risk of the aneurysm according to the characteristics of the aneurysm; and for outputting the type of the aneurysm and the degree of risk through the communication unit 602.
  • the processing device 600 further includes a storage unit 603, the processing unit 601 may be a processor, the communication unit 602 may be a communication interface, and the storage unit 603 may be a memory.
  • the medical imaging device first obtains target medical image data of the target part of the target user, the target part includes the target artery, and secondly, 4D medical imaging is performed according to the target medical image data, and according to the imaging
  • the target position on the target artery of the aneurysm is determined, and again, the aneurysm is located according to the target position, the structural characteristics of the aneurysm are analyzed, and the type of the aneurysm is confirmed according to the analysis result, and then, Obtain the characteristics of the aneurysm, determine the risk degree of the aneurysm according to the characteristics of the aneurysm, and finally output the type of the aneurysm and the risk degree.
  • the medical imaging device in the present application can accurately locate the position of the aneurysm by acquiring 4D medical imaging of the target part of the target user, and further, analyze the structure of the aneurysm to confirm its type, and avoid
  • the two-dimensional slice scan image cannot show the problem of low efficiency of aneurysm recognition caused by the spatial structure characteristics of the target artery, which improves the accuracy of the aneurysm recognition.
  • the risk level of the aneurysm can be determined according to the characteristics of the aneurysm. Let users know more about the severity of the disease.
  • the processing unit 601 is specifically configured to: determine the place where the target artery is deformed according to the imaging result, where the deformation includes all The target artery is deformed into a boat shape or a fusiform shape or a rupture occurs; the edge characteristic of the place where the target artery is deformed is obtained, and if the edge characteristic is continuous and smooth, the place where the target artery is deformed is determined as the target position.
  • the processing unit 601 is specifically configured to: if the target artery is deformed into a boat shape Or fusiform, and the target artery has no breach, the aneurysm is a true aneurysm; if the target artery has no deformation, has a breach, and a mass is formed at the breach, then the aneurysm It is a pseudoaneurysm; if the intima of the target artery is deformed inwardly, and the intima and the media of the target artery form a vascular cavity, the aneurysm is a dissecting aneurysm.
  • the feature of the aneurysm includes the size of the aneurysm.
  • the processing unit 601 is specifically configured to: obtain the spatial coordinates of the target position Information; obtain the area and swelling height of the aneurysm according to the spatial coordinate information, the swelling height being the shortest distance between the highest point of the aneurysm and the outer wall of the target artery; according to the area and swelling of the aneurysm The height determines the size of the aneurysm.
  • the feature of the aneurysm includes the degree of deformation of the target artery.
  • the processing unit 601 is specifically configured to: obtain according to the spatial coordinate information The first inner diameter of the target artery at the target position and the second inner diameter of the target artery that is not deformed near the target position; the target artery is determined according to the first inner diameter and the second inner diameter The degree of deformation.
  • the feature of the aneurysm includes the thickness of the blood vessel of the target artery.
  • the processing unit 601 is specifically configured to: obtain according to the spatial coordinate information The blood vessel thickness of the target artery at the target position.
  • the processing unit 601 is specifically configured to: obtain the normal size of the aneurysm at the target position Range, the normal deformation degree range of the target blood vessel, and the normal thickness range of the target blood vessel; if the size of the aneurysm is larger than the normal size range, or/and the deformation of the target artery at the target position The degree is greater than the normal deformation degree range, or/and the blood vessel thickness of the target artery at the target position is less than the normal thickness range, confirming that the hemangioma is at risk; if the size of the aneurysm, the The degree of deformation of the target artery at the target position and the blood vessel thickness of the target artery at the target position are both within a normal range, and it is confirmed that the hemangioma is not dangerous.
  • the processing unit 601 is specifically configured to: determine the position according to the multiple arterial scan images of the target part of the target user.
  • Figure BMP data source import the BMP data source into the preset VRDS medical network model to obtain the first medical image data, the first medical image data includes the original data set of the target artery, the original data of the target artery
  • the data set includes the fusion data of the target artery and the aneurysm; the first medical image data is imported into a preset cross-vessel network model, and the fusion data is spatially segmented through the cross-vessel network model
  • Obtain second medical image data where the second medical image data includes a data set of the target artery and a data set of the aneurysm; the target medical image data is obtained according to the second medical image data.
  • the processing unit 601 is specifically configured to: perform preset processing on the second medical image data to obtain all the target medical image data.
  • the preset processing includes at least one of the following operations: 2D boundary optimization processing, 3D boundary optimization processing, and data enhancement processing.
  • An embodiment of the present application also provides a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, and the computer program enables a computer to execute part or all of the steps of any method as recorded in the above method embodiment ,
  • the above-mentioned computer includes a medical imaging device.
  • the embodiments of the present application also provide a computer program product.
  • the above-mentioned computer program product includes a non-transitory computer-readable storage medium storing a computer program.
  • the above-mentioned computer program is operable to cause a computer to execute any of the methods described in the above-mentioned method embodiments. Part or all of the steps of the method.
  • the computer program product may be a software installation package, and the above-mentioned computer includes a medical imaging device.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only illustrative, for example, the division of the above-mentioned units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the above integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable memory.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory.
  • a number of instructions are included to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the foregoing methods of the various embodiments of the present application.
  • the aforementioned memory includes: U disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer-readable memory, and the memory can include: a flash disk , Read-only memory (English: Read-Only Memory, abbreviation: ROM), random access device (English: Random Access Memory, abbreviation: RAM), magnetic disk or optical disk, etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种基于VRDS 4D医学影像的动脉瘤Ai处理方法及产品,应用于医学成像装置(500),方法包括:获取目标用户的目标部位的目标医学影像数据(S201);根据目标医学影像数据进行4D医学成像,根据成像结果确定动脉瘤在目标动脉上的目标位置(S202);根据目标位置定位动脉瘤,对动脉瘤的结构特性进行分析,根据分析结果确认动脉瘤的种类(S203);获取动脉瘤的特征,根据动脉瘤的特征确定动脉瘤的危险程度(S204);输出动脉瘤的种类和危险程度(S205)。

Description

基于VRDS 4D医学影像的动脉瘤Ai处理方法及产品 技术领域
本申请涉及医学成像装置技术领域,具体涉及一种基于VRDS 4D医学影像的动脉瘤Ai处理方法及产品。
背景技术
目前,医生仍然采用观看阅读连续的二维切片扫描图像,例如,CT(电子计算机断层扫描)、MRI(磁共振成像)、DTI(弥散张量成像)、PET(正电子发射型计算机断层显像)等,以此对患者的病变组织如肿瘤进行判断分析。然而,仅仅通过直接观看两维切片数据无法确定动脉的空间结构特性,严重影响到医生对疾病的诊断。
发明内容
本申请实施例提供了一种基于VRDS 4D医学影像的动脉瘤Ai处理方法及产品,以提高动脉瘤识别的准确度和效率。
第一方面,本申请实施例提供一种基于VRDS 4D医学影像的肿瘤与血管的Ai处理方法,应用于医学成像装置;所述方法包括:
获取目标用户的目标部位的目标医学影像数据,所述目标部位包括目标动脉;
根据所述目标医学影像数据进行4D医学成像,根据成像结果确定动脉瘤在所述目标动脉上的目标位置;
根据所述目标位置定位所述动脉瘤,对所述动脉瘤的结构特性进行分析,根据分析结果确认所述动脉瘤的种类;
获取所述动脉瘤的特征,根据所述动脉瘤的特征确定所述动脉瘤的危险程度;
输出所述动脉瘤的种类和所述危险程度。
第二方面,本申请实施例提供一种基于VRDS 4D医学影像的动脉瘤的Ai处理装置,应用于医学成像装置;所述基于VRDS 4D医学影像的动脉瘤的Ai处理装置包括处理单元和通信单元,其中,
所述处理单元,用于获取目标用户的目标部位的目标医学影像数据,所述目标部位包括目标动脉;以及用于根据所述目标医学影像数据进行4D医学成像,根据成像结果确定动脉瘤在所述目标动脉上的的目标位置;以及用于根据所述目标位置定位所述动脉瘤,对所述动脉瘤的结构特性进行分析,根据分析结果确认所述动脉瘤的种类;以及用于获取所述动脉瘤的特征,根据所述动脉瘤的特征确定所述动脉瘤的危险程度;以及用于通过所述通信单元输出所述动脉瘤的种类和所述危险程度。
第三方面,本申请实施例提供一种医学成像装置,包括处理器、存储器、通信接口以及一个或多个程序,其中,上述一个或多个程序被存储在上述存储器中,并且被配置由上述处理器执行,上述程序包括用于执行本申请实施例第一方面任一方法中的步骤的指令。
第四方面,本申请实施例提供了一种计算机可读存储介质,其中,上述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,上述计算机程序使得计算机执行如本申请实施例第一方面任一方法中所描述的部分或全部步骤。
第五方面,本申请实施例提供了一种计算机程序产品,其中,上述计算机程序产品包 括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如本申请实施例第一方面任一方法中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
可以看出,本申请实施例中,医学成像装置首先获取目标用户的目标部位的目标医学影像数据,所述目标部位包括目标动脉,其次,根据所述目标医学影像数据进行4D医学成像,根据成像结果确定动脉瘤所述目标动脉上的目标位置,再次,根据所述目标位置定位所述动脉瘤,对所述动脉瘤的结构特性进行分析,根据分析结果确认所述动脉瘤的种类,之后,获取所述动脉瘤的特征,根据所述动脉瘤的特征确定所述动脉瘤的危险程度,最后,输出所述动脉瘤的种类和所述危险程度。可见,本申请中的医学成像装置能够通过获取目标用户的目标部位的4D医学成像,从而可准确的定位出动脉瘤的位置,进一步的,对动脉瘤的结构进行分析从而确认其种类,避免了由于二维切片扫描图像无法呈现出目标动脉的空间结构特性导致的动脉瘤识别效率低的问题,提高了动脉瘤识别的准确度,更进一步的,可根据动脉瘤的特征确定其危险程度,从而让用户更加了解该疾病的严重程度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种基于VRDS 4D医学影像智能分析处理系统的结构示意图;
图2是本申请实施例提供的一种基于VRDS 4D医学影像的动脉瘤的Ai处理方法的流程示意图;
图3是本申请实施例提供的不同类型的动脉瘤的结构示意图;
图4是本申请实施例提供的目标动脉的内径示意图;
图5是本申请实施例提供的一种医学成像装置的结构示意图;
图6是本申请实施例提供的一种基于VRDS 4D医学影像的动脉瘤的Ai处理装置的功能单元组成框图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例所涉及到的医学成像装置是指利用各种不同媒介作为信息载体,将人体内部的结构重现为影像的各种仪器,其影像信息与人体实际结构有着空间和时间分布上的对应关系。“DICOM数据”是指通过医疗设备采集的反映人体内部结构特征的原始图像文件数据,可以包括电子计算机断层扫描CT、核磁共振MRI、弥散张量成像DTI、正电子发射型计算机断层显像PET-CT等信息,“图源”是指解析原始DICOM数据生成的Texture2D/3D图像体数据。“VRDS”是指虚拟现实医用系统(Virtual Reality Doctor system,简称为VRDS)。
请参阅图1,图1是本申请实施例提供的一种基于VRDS 4D医学影像智能分析处理系统100的结构示意图,该系统100包括医学成像装置110和网络数据库120,其中医学成像装置110可以包括本地医学成像装置111和/或终端医学成像装置112,本地医学成像装置111或终端医学成像装置112用于基于原始DICOM数据,以本申请实施例所呈现的基于VRDS 4D医学影像的肿瘤与血管的Ai处理方法为基础,进行人体肿瘤与血管之间的关联关系的识别、定位和四维体绘制,实现四维立体效果(该四维医学影像具体是指医学影像包括所显示组织的内部空间结构特征及外部空间结构特征,所述内部空间结构特征是指组织内部的切片数据未丢失,即医学成像装置可以呈现目标器官、血管等组织的内部构造,外部空间结构特性是指组织与组织之间的环境特征,包括组织与组织之间的空间位置特性(包括交叉、间隔、融合)等,如肾脏与动脉之间的交叉位置的边缘结构特性等),本地医学成像装置111相对于终端医学成像装置112还可以用于对图源数据进行编辑,形成四维人体图像的传递函数结果,该传递函数结果可以包括人体内脏器官表面和人体内脏器官内的组织结构的传递函数结果,以及立方体空间的传递函数结果,如传递函数所需的立方编辑框与弧线编辑的数组数量、坐标、颜色、透明度等信息。网络数据库120例如可以是云服务器等,该网络数据库120用于存储解析原始DICOM数据生成的图源,以及本地医学成像装置111编辑得到的四维人体图像的传递函数结果,图源可以是来自于多个本地医学成像装置111以实现多个医生的交互诊断。
用户通过上述医学成像装置110进行具体的图像显示时,可以选择显示器或者虚拟现实VR的头戴式显示器(Head mounted Displays Set,HMDS)结合操作动作进行显示,操作动作是指用户通过医学成像装置的外部摄入设备,如鼠标、键盘、平板电脑(portable android device,Pad)、iPad(internet portable device)等,对四维人体图像进行的操作控制,以实现人机交互,该操作动作包括以下至少一种:(1)改变某个具体器官/组织的颜色和/或透明度,(2)定位缩放视图,(3)旋转视图,实现四维人体图像的多视角360度观察,(4)“进入”人体器官内部观察内部构造,实时剪切效果渲染,(5)上下移动视图。
下面对本申请实施例涉及到的基于VRDS 4D医学影像的动脉瘤的Ai处理方法进行详细介绍。
请参阅图2,图2是本申请实施例提供的一种基于VRDS 4D医学影像的动脉瘤的Ai处理方法的流程示意图,应用于如图1所述的医学成像装置;如图所示,本基于VRDS 4D医学影像的动脉瘤的Ai处理方法包括:
S201,医学成像装置获取目标用户的目标部位的目标医学影像数据,所述目标部位包括目标动脉。
其中,目标部位可以是颈动脉、锁骨下动脉、腋动脉、肱动脉、桡动脉、髂动脉、股动脉等部位。
其中,所述目标医学影像数据由动脉扫描图像经处理后得到,动脉扫描图像包括以下任意一种:CT图像、MRI图像、DTI图像、PET-CT图像。
S202,所述医学成像装置根据所述目标医学影像数据进行4D医学成像,根据成像结果确定动脉瘤在所述目标动脉上的目标位置。
其中,4D医学成像是指呈现四维医学影像。医学成像装置根据所述目标医学影像数据进行4D医学成像,包括:医学成像装置从目标医学影像数据中筛选质量评分大于预设评分的增强数据作为VRDS 4D成像数据;根据VRDS 4D成像数据进行4D医学成像。
其中,质量评分可以从以下维度进行综合评价,平均梯度、信息熵、视觉信息保真度、峰值信噪比PSNR、结构相似性SSIM、均方误差MSE等,具体可以参考图像领域的常见图像质量评分算法,此处不再赘述。
可见,医学成像装置通过质量评分进一步进行数据筛选,提高成像效果。
其中,成像结果显示了动脉瘤以及相关动脉的结构特性,因为有动脉瘤的动脉的结构和正常的动脉结构差异较大,因此可对目标部位中明显形变的地方做进一步的判断,从而确定该处是否存在动脉瘤。
S203,所述医学成像装置根据所述目标位置定位所述动脉瘤,对所述动脉瘤的结构特性进行分析,根据分析结果确认所述动脉瘤的种类。
其中,动脉瘤从结构上可以分为三类:真性动脉瘤、假性动脉瘤、夹层动脉瘤。如图3所示,图3是本申请实施例提供的不同类型的动脉瘤的结构示意图,其中,图3中a图为正常的动脉,可见,正常的动脉壁由外壁、中模和内膜构成,三层膜彼此相连,无形变,无破口,血液正常流动,外壁不连续光滑;b图和c图为真性动脉瘤,动脉壁全层向外膨出,呈现为舟形或梭形,动脉壁无破口,向外膨出处的外壁光滑连续,其中,舟形动脉只向一侧扩张,因此两侧的动脉血管厚度不同(膨出侧的血管壁更薄),而梭形动脉向两侧均匀扩张,因此两侧的动脉血管厚度相同,故此,可根据动脉壁厚度是否一致进一步确认是否为舟形的真性动脉瘤;d图为假性动脉瘤,假性动脉瘤是动脉壁被撕裂或穿破后,血液自此破口流出被主动脉临近组织包裹形成的血肿,因此动脉壁有破口,无形变,且在破口处形成肿块,若肿块较大,可能会压迫临近神经,造成危害;e图为夹层动脉瘤,夹层动脉瘤的形成是由于动脉壁中膜弹力纤维病变或发育缺陷,且内膜破裂,血液从内膜破裂处进入病理性疏松的中膜,沿血流方向将中膜纵行劈开,形成一个假血管腔,从成像结果中可见为双腔动脉,因为内膜和中模间有血液,因此,内膜向内凹陷,若假血管腔中的血液较多,外壁也会向外膨出形变。
S204,所述医学成像装置获取所述动脉瘤的特征,根据所述动脉瘤的特征确定所述动脉瘤的危险程度。
其中,动脉瘤的特征包括动脉瘤的大小、目标动脉的形变程度和目标动脉的血管厚度。在本申请实施例中可根据动脉瘤的特征确定动脉瘤是否危险。
其中,若目标动脉属于主动脉,则动脉瘤为危险。
S205,所述医学成像装置输出所述动脉瘤的种类和所述危险程度。
其中,医学成像装置的显示屏在输出动脉瘤的种类时,可同时输出动脉瘤的影像以及动脉瘤的危险程度,若动脉瘤为危险,将同时显示手术建议以及手术注意事项。可选的,可获取目标用户的病史信息,若病史信息中目标用户同时患有高血压,则不论动脉瘤是否危险,都输出手术建议。
可以看出,本申请实施例中,医学成像装置首先获取目标用户的目标部位的目标医学影像数据,所述目标部位包括目标动脉,其次,根据所述目标医学影像数据进行4D医学成像,根据成像结果确定动脉瘤所述目标动脉上的目标位置,再次,根据所述目标位置定位所述动脉瘤,对所述动脉瘤的结构特性进行分析,根据分析结果确认所述动脉瘤的种类,之后,获取所述动脉瘤的特征,根据所述动脉瘤的特征确定所述动脉瘤的危险程度,最后,输出所述动脉瘤的种类和所述危险程度。可见,本申请中的医学成像装置能够通过获取目标用户的目标部位的4D医学成像,从而可准确的定位出动脉瘤的位置,进一步的,对动 脉瘤的结构进行分析从而确认其种类,避免了由于二维切片扫描图像无法呈现出目标动脉的空间结构特性导致的动脉瘤识别效率低的问题,提高了动脉瘤识别的准确度,更进一步的,可根据动脉瘤的特征确定其危险程度,从而让用户更加了解该疾病的严重程度。
在一个可能的示例中,所述根据成像结果确定动脉瘤的目标位置包括:
所述医学成像装置根据所述成像结果确定所述目标动脉发生形变的地方,所述形变包括所述目标动脉变形为舟形或梭形或出现破口;
所述医学成像装置获取所述目标动脉发生形变的地方的边缘特性,若所述边缘特性为连续光滑,则确定所述目标动脉发生形变的地方为所述目标位置。
其中,若目标动脉发生形变,无破口,且形变处的外壁连续且光滑,则该动脉瘤可能为真性动脉瘤;若目标动脉出现破口,且破口处的外壁连续且光滑,则该动脉瘤可能为假性动脉瘤或夹层动脉瘤。
可见,根据目标动脉结构异常处的边缘特性可初步确定动脉瘤的目标位置。
在一个可能的示例中,所述对所述动脉瘤的结构特性进行分析,根据分析结果确认所述动脉瘤的种类包括:
若所述目标动脉变形为舟形或梭形,且所述目标动脉无破口,则所述动脉瘤为真性动脉瘤;
若所述目标动脉无形变,有破口,且在所述破口处形成肿块,则所述动脉瘤为假性动脉瘤;
若所述目标动脉的内膜向内凹陷形变,所述内膜与所述目标动脉的中膜形成血管腔,则所述动脉瘤为夹层动脉瘤。
可见,根据动脉瘤的结构特性可以判断出动脉瘤的种类,从而对不同种类的动脉瘤采取对应的治疗手段,以免误诊。
在一个可能的示例中,所述动脉瘤的特征包括所述动脉瘤的大小,所述获取所述动脉瘤的特征包括:
所述医学成像装置获取所述目标位置的空间坐标信息;
所述医学成像装置根据所述空间坐标信息得到所述动脉瘤的面积和肿胀高度,所述肿胀高度为所述动脉瘤的最高点与所述目标动脉外壁的最短距离;
所述医学成像装置根据所述动脉瘤的面积和肿胀高度确定所述动脉瘤的大小。
其中,动脉瘤一旦形成,在动脉血流的冲击下,流体会逐渐扩张增大,动脉瘤的直径越大其瘤壁受到的压力也越大,直径大于5cm的动脉瘤破裂的机率将大大增加,动脉瘤的破裂将导致患者因大量失血而死亡,因此被称为是“体内血管炸弹”。因此获取动脉瘤的大小,并根据其大小来判断是否危险较为可靠。
其中,在目标医学影像中确定动脉瘤在目标动脉上的目标位置之后,可对动脉瘤进行定位,获取动脉瘤的空间坐标信息,动脉瘤与目标动脉连接处的截面一般为圆形或梭形,若为圆形,确定该圆形的中心以及半径,计算该圆形面积,将动脉瘤作为部分球体处理,确定该圆形中心到动脉瘤的最高点的距离,即肿胀高度,根据圆形面积和肿胀高度可计算出动脉瘤的体积,即动脉瘤的大小,若截面为梭形,同理,可计算得到动脉瘤的大小。
在一个可能的示例中,所述动脉瘤的特征包括所述目标动脉的形变程度,所述获取所述动脉瘤的特征包括:
所述医学成像装置根据所述空间坐标信息得到所述目标位置处的所述目标动脉的第一内径以及所述目标位置附近未发生形变的所述目标动脉的第二内径;
所述医学成像装置根据所述第一内径和所述第二内径确定所述目标动脉的形变程度。
其中,如图4所示,图4是本申请实施例提供的目标动脉的内径示意图,若形变为向 外膨出,如图4中A图所示,第一内径为膨起最高点到血管另一侧的距离b,第二内径为a,则形变程度c=(b-a)/a×100%,当形变为两侧对称膨出时,第一内径为血管左右两侧的膨起最高点之间的距离。若动脉瘤类型为夹层动脉瘤,如图4中B图所示,第一内径包括膨起最高点到血管另一侧的距离b以及血管内膜凹陷最低处到血管另一侧的距离c,形变程度c1=(b-a)/a×100%,c2=(a-c)/a×100%,取c1和c2中的较大者作为目标动脉的的形变程度。
在一个可能的示例中,所述动脉瘤的特征包括所述目标动脉的血管厚度,所述获取所述动脉瘤的特征包括:
所述医学成像装置根据所述空间坐标信息得到所述目标位置处的所述目标动脉的血管厚度。
其中,若目标动脉为梭形,则目标动脉两侧的血管厚度一致;若目标动脉仅一侧膨出或为夹层动脉瘤,则目标动脉两侧的血管厚度不一致,获取膨出侧的血管厚度,对于夹层动脉瘤,则获取膨出的动脉中模和外壁的厚度。
在一个可能的示例中,所述根据所述动脉瘤的特征确定所述动脉瘤的危险程度包括:
所述医学成像装置获取所述目标位置处的所述动脉瘤的正常大小范围、所述目标动脉的正常形变程度范围以及所述目标动脉的正常厚度范围;
若所述动脉瘤的大小大于所述正常大小范围,或/且所述目标位置处的所述目标动脉的形变程度大于所述正常形变程度范围,或/且所述目标位置处的所述目标动脉的血管厚度小于所述正常厚度范围,所述医学成像装置确认所述血管瘤为危险;
若所述动脉瘤的大小、所述目标位置处的所述目标动脉的形变程度以及所述目标位置处的所述目标动脉的血管厚度均在正常范围内,所述医学成像装置确认所述血管瘤不危险。
其中,从动脉数据库中获取或联网获取动脉瘤的正常大小范围、目标动脉的正常形变程度范围以及目标动脉的正常厚度范围。不同的动脉、同一动脉中的不同位置对动脉瘤的特征的正常范围要求不同,因此,需要根据目标动脉属性和动脉瘤的目标位置来确定正常大小范围、正常形变程度范围和正常厚度范围。在动脉瘤大小、形变程度和血管厚度中任意一项超出正常范围,即可确定血管瘤为危险状态,若病人身体允许,则应建议立即手术,若上述三者均在正常范围内,则可确定短期内(下一次复查前)血管瘤破裂的可能性较小,应提醒患者及时复查,以免血管瘤扩大,失去控制。
可选的,可将动脉瘤的大小分为正常大小范围、较危险大小范围和危险大小范围;将血管的形变程度范围分为正常形变程度范围、较危险形变程度范围和危险形变程度范围;将血管厚度分为正常厚度范围、较危险厚度范围和危险厚度范围;确认动脉瘤的大小所在的范围、目标动脉的形变程度所在的范围和目标动脉的血管厚度所在的范围,根据上述三者各自的范围类别综合确定动脉瘤的危险程度。
可见,根据动脉瘤的大小、目标动脉的形变程度以及目标动脉的血管厚度可确定动脉瘤的危险程度,判断方法简单易行,可靠性强。
在一个可能的示例中,所述获取目标用户的目标部位的目标医学影像数据,包括:
所述医学成像装置根据所述目标用户的所述目标部位的多张动脉扫描图像确定位图BMP数据源;
所述医学成像装置将所述BMP数据源导入预设的VRDS医学网络模型,得到第一医学影像数据,所述第一医学影像数据包括所述目标动脉的原始数据集合,所述目标动脉的原始数据集合中包括所述目标动脉与所述动脉瘤的融合数据;
所述医学成像装置将所述第一医学影像数据导入预设的交叉血管网络模型,通过所述交叉血管网络模型对所述融合数据进行空间分割处理,得到第二医学影像数据,所述第二 医学影像数据包括所述目标动脉的数据集合和所述动脉瘤的数据集合;
所述医学成像装置根据所述第二医学影像数据得到所述目标医学影像数据。
其中,BMP(全称Bitmap)是Windows操作系统中的标准图像文件格式,可以分成两类:设备相关位图(DDB)和设备无关位图(DIB)。扫描图像包括以下任意一种:CT图像、MRI图像、DTI图像、PET-CT图像。
其中,将BMP数据源导入预设的VRDS医学网络模型,得到第一医学影像数据包括:将BMP数据源导入预设的VRDS医学网络模型,通过VRDS医学网络模型调用预存的传递函数集合中的每个传递函数,通过传递函数集合中的多个传递函数处理BMP数据源,得到第一医学影像数据,传递函数集合包括通过反向编辑器预先设置的目标动脉的传递函数和动脉瘤的传递函数。VRDS医学网络模型设置有目标动脉的结构特性的传递函数和动脉瘤的结构特性的传递函数,BMP数据源通过传递函数的处理得到第一医学影像数据。
交叉血管网络模型通过以下操作实现目标动脉和动脉瘤的数据分离:(1)提取交叉位置的融合数据;(2)针对每个融合数据基于预设数据分离算法分离该融合数据,得到相互独立的动脉边界点数据和静脉边界点数据;(3)将处理后得到的多个动脉边界点数据整合为第一数据,将处理后得到的多个静脉边界点数据整合为第二数据。其中,分割目标包括目标动脉和动脉瘤。
可见,本示例中,医学成像装置能够通过VRDS医学网络模型、交叉血管网络模型对BMP数据源进行处理,结合边界优化和数据增强处理得到目标影像数据,解决了传统的医学影像无法实现分割动脉和静脉的整体分离的医学领域的问题,提高医学影像显示的真实性、全面性和精细化程度。
在一个可能的示例中,所述根据所述第二医学影像数据得到所述目标医学影像数据包括:
所述医学成像装置对所述第二医学影像数据执行预设处理得到所述目标医学影像数据,所述预设处理包括以下至少一种操作:2D边界优化处理、3D边界优化处理、数据增强处理。
2D边界优化处理包括:多次采样获取低分辨率信息和高分辨率信息。
3D边界优化处理包括:3D卷积、3D最大池化和3D向上卷积层,3D边界优化处理包括以下操作:将第二医学影像数据输入3D卷积层中进行3D卷积操作,以得到特征图;将特征图输入3D池化层进行池化和非线性激活,以得到第一特征图;对第一特征图进行级联操作以得到预测结果。
其中,所述数据增强处理包括以下任意一种:基于任意角度旋转的数据增强、基于直方图均衡的数据增强、基于白平衡的数据增强、基于镜像操作的数据增强、基于随机剪切的数据增强和基于模拟不同光照变化的数据增强。
可见,本示例中在执行预设处理后可得到目标医学影像数据,所得到的目标医学影像数据准确性高,可靠性强,影像质量高。
与上述图2所示的实施例一致的,请参阅图5,图5是本申请实施例提供的一种医学成像装置500的结构示意图,如图所示,所述医学成像装置500包括处理器510、存储器520、通信接口530以及一个或多个程序521,其中,所述一个或多个程序521被存储在上述存储器520中,并且被配置由上述处理器510执行,所述一个或多个程序521包括用于执行以下步骤的指令:
获取目标用户的目标部位的目标医学影像数据,所述目标部位包括目标动脉;根据所述目标医学影像数据进行4D医学成像,根据成像结果确定动脉瘤在所述目标动脉上的目 标位置;根据所述目标位置定位所述动脉瘤,对所述动脉瘤的结构特性进行分析,根据分析结果确认所述动脉瘤的种类;获取所述动脉瘤的特征,根据所述动脉瘤的特征确定所述动脉瘤的危险程度;输出所述动脉瘤的种类和所述危险程度。
可以看出,本申请实施例中,医学成像装置首先获取目标用户的目标部位的目标医学影像数据,所述目标部位包括目标动脉,其次,根据所述目标医学影像数据进行4D医学成像,根据成像结果确定动脉瘤所述目标动脉上的目标位置,再次,根据所述目标位置定位所述动脉瘤,对所述动脉瘤的结构特性进行分析,根据分析结果确认所述动脉瘤的种类,之后,获取所述动脉瘤的特征,根据所述动脉瘤的特征确定所述动脉瘤的危险程度,最后,输出所述动脉瘤的种类和所述危险程度。可见,本申请中的医学成像装置能够通过获取目标用户的目标部位的4D医学成像,从而可准确的定位出动脉瘤的位置,进一步的,对动脉瘤的结构进行分析从而确认其种类,避免了由于二维切片扫描图像无法呈现出目标动脉的空间结构特性导致的动脉瘤识别效率低的问题,提高了动脉瘤识别的准确度,更进一步的,可根据动脉瘤的特征确定其危险程度,从而让用户更加了解该疾病的严重程度。
在一个可能的示例中,在所述根据成像结果确定动脉瘤的目标位置方面,所述程序中的指令具体用于执行以下操作:根据所述成像结果确定所述目标动脉发生形变的地方,所述形变包括所述目标动脉变形为舟形或梭形或出现破口;获取所述目标动脉发生形变的地方的边缘特性,若所述边缘特性为连续光滑,则确定所述目标动脉发生形变的地方为所述目标位置。
在一个可能的示例中,在所述对所述动脉瘤的结构特性进行分析,根据分析结果确认所述动脉瘤的种类方面,所述程序还包括用于执行以下操作的指令:若所述目标动脉变形为舟形或梭形,且所述目标动脉无破口,则所述动脉瘤为真性动脉瘤;若所述目标动脉无形变,有破口,且在所述破口处形成肿块,则所述动脉瘤为假性动脉瘤;若所述目标动脉的内膜向内凹陷形变,所述内膜与所述目标动脉的中膜形成血管腔,则所述动脉瘤为夹层动脉瘤。
在一个可能的示例中,所述动脉瘤的特征包括所述动脉瘤的大小,在所述获取所述动脉瘤的特征方面,所述程序还包括用于执行以下操作的指令:获取所述目标位置的空间坐标信息;根据所述空间坐标信息得到所述动脉瘤的面积和肿胀高度,所述肿胀高度为所述动脉瘤的最高点与所述目标动脉外壁的最短距离;根据所述动脉瘤的面积和肿胀高度确定所述动脉瘤的大小。
在一个可能的示例中,所述动脉瘤的特征包括所述目标动脉的形变程度,在所述获取所述动脉瘤的特征方面,所述程序还包括用于执行以下操作的指令:根据所述空间坐标信息得到所述目标位置处的所述目标动脉的第一内径以及所述目标位置附近未发生形变的所述目标动脉的第二内径;
根据所述第一内径和所述第二内径确定所述目标动脉的形变程度。
在一个可能的示例中,所述动脉瘤的特征包括所述目标动脉的血管厚度,在所述获取所述动脉瘤的特征方面,所述程序还包括用于执行以下操作的指令:根据所述空间坐标信息得到所述目标位置处的所述目标动脉的血管厚度。
在一个可能的示例中,在所述根据所述动脉瘤的特征确定所述动脉瘤的危险程度方面,所述程序还包括用于执行以下操作的指令:获取所述目标位置处的所述动脉瘤的正常大小范围、所述目标血管的正常形变程度范围以及所述目标血管的正常厚度范围;若所述动脉瘤的大小大于所述正常大小范围,或/且所述目标位置处的所述目标动脉的形变程度大于所述正常形变程度范围,或/且所述目标位置处的所述目标动脉的血管厚度小于所述正常厚度范围,确认所述血管瘤为危险;若所述动脉瘤的大小、所述目标位置处的所述目标动 脉的形变程度以及所述目标位置处的所述目标动脉的血管厚度均在正常范围内,确认所述血管瘤不危险。
在一个可能的示例中,在所述获取目标用户的目标部位的目标医学影像数据方面,所述程序还包括用于执行以下操作的指令:根据所述目标用户的所述目标部位的多张动脉扫描图像确定位图BMP数据源;将所述BMP数据源导入预设的VRDS医学网络模型,得到第一医学影像数据,所述第一医学影像数据包括所述目标动脉的原始数据集合,所述目标动脉的原始数据集合中包括所述目标动脉与所述动脉瘤的融合数据;将所述第一医学影像数据导入预设的交叉血管网络模型,通过所述交叉血管网络模型对所述融合数据进行空间分割处理,得到第二医学影像数据,所述第二医学影像数据包括所述目标动脉的数据集合和所述动脉瘤的数据集合;根据所述第二医学影像数据得到所述目标医学影像数据。
在一个可能的示例中,在所述根据所述第二医学影像数据得到所述目标医学影像数据方面,所述程序还包括用于执行以下操作的指令:对所述第二医学影像数据执行预设处理得到所述目标医学影像数据,所述预设处理包括以下至少一种操作:2D边界优化处理、3D边界优化处理、数据增强处理。
上述主要从方法侧执行过程的角度对本申请实施例的方案进行了介绍。可以理解的是,医学成像装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所提供的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对医学成像装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图6是本申请实施例提供的一种基于VRDS 4D医学影像的动脉瘤的Ai处理装置600的功能单元组成框图。该基于VRDS 4D医学影像的动脉瘤的Ai处理装置600应用于医学成像装置,该基于VRDS 4D医学影像的动脉瘤的Ai处理装置600包括处理单元601和通信单元602,其中,
所述处理单元601,用于获取目标用户的目标部位的目标医学影像数据,所述目标部位包括目标动脉;以及用于根据所述目标医学影像数据进行4D医学成像,根据成像结果确定动脉瘤在所述目标动脉上的目标位置;以及用于根据所述目标位置定位所述动脉瘤,对所述动脉瘤的结构特性进行分析,根据分析结果确认所述动脉瘤的种类;以及用于获取所述动脉瘤的特征,根据所述动脉瘤的特征确定所述动脉瘤的危险程度;以及用于通过所述通信单元602输出所述动脉瘤的种类和所述危险程度。
其中,所述处理装置600还包括存储单元603,所述处理单元601可以是处理器,所述通信单元602可以是通信接口,所述存储单元603可以是存储器。
可以看出,本申请实施例中,医学成像装置首先获取目标用户的目标部位的目标医学影像数据,所述目标部位包括目标动脉,其次,根据所述目标医学影像数据进行4D医学成像,根据成像结果确定动脉瘤所述目标动脉上的目标位置,再次,根据所述目标位置定位所述动脉瘤,对所述动脉瘤的结构特性进行分析,根据分析结果确认所述动脉瘤的种类, 之后,获取所述动脉瘤的特征,根据所述动脉瘤的特征确定所述动脉瘤的危险程度,最后,输出所述动脉瘤的种类和所述危险程度。可见,本申请中的医学成像装置能够通过获取目标用户的目标部位的4D医学成像,从而可准确的定位出动脉瘤的位置,进一步的,对动脉瘤的结构进行分析从而确认其种类,避免了由于二维切片扫描图像无法呈现出目标动脉的空间结构特性导致的动脉瘤识别效率低的问题,提高了动脉瘤识别的准确度,更进一步的,可根据动脉瘤的特征确定其危险程度,从而让用户更加了解该疾病的严重程度。
在一个可能的示例中,在所述根据成像结果确定动脉瘤的目标位置方面,所述处理单元601具体用于:根据所述成像结果确定所述目标动脉发生形变的地方,所述形变包括所述目标动脉变形为舟形或梭形或出现破口;获取所述目标动脉发生形变的地方的边缘特性,若所述边缘特性为连续光滑,则确定所述目标动脉发生形变的地方为所述目标位置。
在一个可能的示例中,在所述对所述动脉瘤的结构特性进行分析,根据分析结果确认所述动脉瘤的种类方面,所述处理单元601具体用于:若所述目标动脉变形为舟形或梭形,且所述目标动脉无破口,则所述动脉瘤为真性动脉瘤;若所述目标动脉无形变,有破口,且在所述破口处形成肿块,则所述动脉瘤为假性动脉瘤;若所述目标动脉的内膜向内凹陷形变,所述内膜与所述目标动脉的中膜形成血管腔,则所述动脉瘤为夹层动脉瘤。
在一个可能的示例中,所述动脉瘤的特征包括所述动脉瘤的大小,在所述获取所述动脉瘤的特征方面,所述处理单元601具体用于:获取所述目标位置的空间坐标信息;根据所述空间坐标信息得到所述动脉瘤的面积和肿胀高度,所述肿胀高度为所述动脉瘤的最高点与所述目标动脉外壁的最短距离;根据所述动脉瘤的面积和肿胀高度确定所述动脉瘤的大小。
在一个可能的示例中,所述动脉瘤的特征包括所述目标动脉的形变程度,在所述获取所述动脉瘤的特征方面,所述处理单元601具体用于:根据所述空间坐标信息得到所述目标位置处的所述目标动脉的第一内径以及所述目标位置附近未发生形变的所述目标动脉的第二内径;根据所述第一内径和所述第二内径确定所述目标动脉的形变程度。
在一个可能的示例中,所述动脉瘤的特征包括所述目标动脉的血管厚度,在所述获取所述动脉瘤的特征方面,所述处理单元601具体用于:根据所述空间坐标信息得到所述目标位置处的所述目标动脉的血管厚度。
在一个可能的示例中,在所述根据所述动脉瘤的特征确定所述动脉瘤的危险程度方面,所述处理单元601具体用于:获取所述目标位置处的所述动脉瘤的正常大小范围、所述目标血管的正常形变程度范围以及所述目标血管的正常厚度范围;若所述动脉瘤的大小大于所述正常大小范围,或/且所述目标位置处的所述目标动脉的形变程度大于所述正常形变程度范围,或/且所述目标位置处的所述目标动脉的血管厚度小于所述正常厚度范围,确认所述血管瘤为危险;若所述动脉瘤的大小、所述目标位置处的所述目标动脉的形变程度以及所述目标位置处的所述目标动脉的血管厚度均在正常范围内,确认所述血管瘤不危险。
在一个可能的示例中,在所述获取目标用户的目标部位的目标医学影像数据方面,所述处理单元601具体用于:根据所述目标用户的所述目标部位的多张动脉扫描图像确定位图BMP数据源;将所述BMP数据源导入预设的VRDS医学网络模型,得到第一医学影像数据,所述第一医学影像数据包括所述目标动脉的原始数据集合,所述目标动脉的原始数据集合中包括所述目标动脉与所述动脉瘤的融合数据;将所述第一医学影像数据导入预设的交叉血管网络模型,通过所述交叉血管网络模型对所述融合数据进行空间分割处理,得到第二医学影像数据,所述第二医学影像数据包括所述目标动脉的数据集合和所述动脉瘤的数据集合;根据所述第二医学影像数据得到所述目标医学影像数据。
在一个可能的示例中,在所述根据所述第二医学影像数据得到所述目标医学影像数据 方面,所述处理单元601具体用于:对所述第二医学影像数据执行预设处理得到所述目标医学影像数据,所述预设处理包括以下至少一种操作:2D边界优化处理、3D边界优化处理、数据增强处理。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任一方法的部分或全部步骤,上述计算机包括医学成像装置。
本申请实施例还提供一种计算机程序产品,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如上述方法实施例中记载的任一方法的部分或全部步骤。该计算机程序产品可以为一个软件安装包,上述计算机包括医学成像装置。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例上述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时, 对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种基于VRDS 4D医学影像的动脉瘤的Ai处理方法,其特征在于,应用于医学成像装置,所述方法包括:
    获取目标用户的目标部位的目标医学影像数据,所述目标部位包括目标动脉;
    根据所述目标医学影像数据进行4D医学成像,根据成像结果确定动脉瘤在所述目标动脉上的目标位置;
    根据所述目标位置定位所述动脉瘤,对所述动脉瘤的结构特性进行分析,根据分析结果确认所述动脉瘤的种类;
    获取所述动脉瘤的特征,根据所述动脉瘤的特征确定所述动脉瘤的危险程度;
    输出所述动脉瘤的种类和所述危险程度。
  2. 根据利要求1所述的方法,其特征在于,所述根据成像结果确定动脉瘤的目标位置,包括:
    根据所述成像结果确定所述目标动脉发生形变的地方,所述形变包括所述目标动脉变形为舟形或梭形或出现破口;
    获取所述目标动脉发生形变的地方的边缘特性,若所述边缘特性为连续光滑,则确定所述目标动脉发生形变的地方为所述目标位置。
  3. 根据利要求1或2所述的方法,其特征在于,所述对所述动脉瘤的结构特性进行分析,根据分析结果确认所述动脉瘤的种类,包括:
    若所述目标动脉变形为舟形或梭形,且所述目标动脉无破口,则所述动脉瘤为真性动脉瘤;
    若所述目标动脉无形变,有破口,且在所述破口处形成肿块,则所述动脉瘤为假性动脉瘤;
    若所述目标动脉的内膜向内凹陷形变,所述内膜与所述目标动脉的中膜形成血管腔,则所述动脉瘤为夹层动脉瘤。
  4. 根据利要求1所述的方法,其特征在于,所述动脉瘤的特征包括所述动脉瘤的大小,所述获取所述动脉瘤的特征包括:
    获取所述目标位置的空间坐标信息;
    根据所述空间坐标信息得到所述动脉瘤的面积和肿胀高度,所述肿胀高度为所述动脉瘤的最高点与所述目标动脉外壁的最短距离;
    根据所述动脉瘤的面积和肿胀高度确定所述动脉瘤的大小。
  5. 根据利要求4所述的方法,其特征在于,所述动脉瘤的特征包括所述目标动脉的形变程度,所述获取所述动脉瘤的特征包括:
    根据所述空间坐标信息得到所述目标位置处的所述目标动脉的第一内径以及所述目标位置附近未发生形变的所述目标动脉的第二内径;
    根据所述第一内径和所述第二内径确定所述目标动脉的形变程度。
  6. 根据利要求4或5所述的方法,其特征在于,所述动脉瘤的特征包括所述目标动脉的血管厚度,所述获取所述动脉瘤的特征包括:
    根据所述空间坐标信息得到所述目标位置处的所述目标动脉的血管厚度。
  7. 根据利要求4-6任一项所述的方法,其特征在于,所述根据所述动脉瘤的特征确定所述动脉瘤的危险程度包括:
    获取所述目标位置处的所述动脉瘤的正常大小范围、所述目标动脉的正常形变程度范围以及所述目标动脉的正常厚度范围;
    若所述动脉瘤的大小大于所述正常大小范围,或/且所述目标位置处的所述目标动脉的形变程度大于所述正常形变程度范围,或/且所述目标位置处的所述目标动脉的血管厚度小于所述正常厚度范围,确认所述血管瘤为危险;
    若所述动脉瘤的大小、所述目标位置处的所述目标动脉的形变程度以及所述目标位置处的所述目标动脉的血管厚度均在正常范围内,确认所述血管瘤不危险。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述获取目标用户的目标部位的目标医学影像数据,包括:
    根据所述目标用户的所述目标部位的多张动脉扫描图像确定位图BMP数据源;
    将所述BMP数据源导入预设的VRDS医学网络模型,得到第一医学影像数据,所述第一医学影像数据包括所述目标动脉的原始数据集合,所述目标动脉的原始数据集合中包括所述目标动脉与所述动脉瘤的融合数据;
    将所述第一医学影像数据导入预设的交叉血管网络模型,通过所述交叉血管网络模型对所述融合数据进行空间分割处理,得到第二医学影像数据,所述第二医学影像数据包括所述目标动脉的数据集合和所述动脉瘤的数据集合;
    根据所述第二医学影像数据得到所述目标医学影像数据。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述第二医学影像数据得到所述目标医学影像数据,包括:
    对所述第二医学影像数据执行预设处理得到所述目标医学影像数据,所述预设处理包括以下至少一种操作:2D边界优化处理、3D边界优化处理、数据增强处理。
  10. 一种基于VRDS 4D医学影像的动脉瘤的Ai处理装置,其特征在于,应用于医学成像装置;所述基于VRDS 4D医学影像的动脉瘤的Ai处理装置包括处理单元和通信单元,其中,
    所述处理单元,用于获取目标用户的目标部位的目标医学影像数据,所述目标部位包括目标动脉;以及用于根据所述目标医学影像数据进行4D医学成像,根据成像结果确定动脉瘤在所述目标动脉上的的目标位置;以及用于根据所述目标位置定位所述动脉瘤,对所述动脉瘤的结构特性进行分析,根据分析结果确认所述动脉瘤的种类;以及用于获取所述动脉瘤的特征,根据所述动脉瘤的特征确定所述动脉瘤的危险程度;以及用于通过所述通信单元输出所述动脉瘤的种类和所述危险程度。
  11. 根据权利要求10所述的装置,其特征在于,在所述根据成像结果确定动脉瘤的目标位置方面,所述处理单元具体用于:
    根据所述成像结果确定所述目标动脉发生形变的地方,所述形变包括所述目标动脉变形为舟形或梭形或出现破口;
    获取所述目标动脉发生形变的地方的边缘特性,若所述边缘特性为连续光滑,则确定所述目标动脉发生形变的地方为所述目标位置。
  12. 根据权利要求10或11所述的装置,其特征在于,在所述对所述动脉瘤的结构特性进行分析,根据分析结果确认所述动脉瘤的种类方面,所述处理单元具体用于:
    若所述目标动脉变形为舟形或梭形,且所述目标动脉无破口,则所述动脉瘤为真性动脉瘤;
    若所述目标动脉无形变,有破口,且在所述破口处形成肿块,则所述动脉瘤为假性动脉瘤;
    若所述目标动脉的内膜向内凹陷形变,所述内膜与所述目标动脉的中膜形成血管腔,则所述动脉瘤为夹层动脉瘤。
  13. 根据权利要求10所述的装置,其特征在于,所述动脉瘤的特征包括所述动脉瘤的大小,在所述获取所述动脉瘤的特征方面,所述处理单元具体用于:
    获取所述目标位置的空间坐标信息;
    根据所述空间坐标信息得到所述动脉瘤的面积和肿胀高度,所述肿胀高度为所述动脉瘤的最高点与所述目标动脉外壁的最短距离;
    根据所述动脉瘤的面积和肿胀高度确定所述动脉瘤的大小。
  14. 根据权利要求13所述的装置,其特征在于,所述动脉瘤的特征包括所述目标动脉的形变程度,在所述获取所述动脉瘤的特征方面,所述处理单元具体用于:
    根据所述空间坐标信息得到所述目标位置处的所述目标动脉的第一内径以及所述目标位置附近未发生形变的所述目标动脉的第二内径;
    根据所述第一内径和所述第二内径确定所述目标动脉的形变程度。
  15. 根据权利要求13或14所述的装置,其特征在于,所述动脉瘤的特征包括所述目标动脉的血管厚度,在所述获取所述动脉瘤的特征方面,所述处理单元具体用于:
    根据所述空间坐标信息得到所述目标位置处的所述目标动脉的血管厚度。
  16. 根据权利要求13-15任一项所述的装置,其特征在于,在所述根据所述动脉瘤的特征确定所述动脉瘤的危险程度方面,所述处理单元具体用于:
    获取所述目标位置处的所述动脉瘤的正常大小范围、所述目标动脉的正常形变程度范围以及所述目标动脉的正常厚度范围;
    若所述动脉瘤的大小大于所述正常大小范围,或/且所述目标位置处的所述目标动脉的形变程度大于所述正常形变程度范围,或/且所述目标位置处的所述目标动脉的血管厚度小于所述正常厚度范围,确认所述血管瘤为危险;
    若所述动脉瘤的大小、所述目标位置处的所述目标动脉的形变程度以及所述目标位置处的所述目标动脉的血管厚度均在正常范围内,确认所述血管瘤不危险。
  17. 根据权利要求10-16任一项所述的装置,其特征在于,在所述获取目标用户的目标部位的目标医学影像数据方面,所述处理单元具体用于:
    根据所述目标用户的所述目标部位的多张动脉扫描图像确定位图BMP数据源;
    将所述BMP数据源导入预设的VRDS医学网络模型,得到第一医学影像数据,所述第一医学影像数据包括所述目标动脉的原始数据集合,所述目标动脉的原始数据集合中包括所述目标动脉与所述动脉瘤的融合数据;
    将所述第一医学影像数据导入预设的交叉血管网络模型,通过所述交叉血管网络模型对所述融合数据进行空间分割处理,得到第二医学影像数据,所述第二医学影像数据包括所述目标动脉的数据集合和所述动脉瘤的数据集合;
    根据所述第二医学影像数据得到所述目标医学影像数据。
  18. 根据权利要求17所述的装置,其特征在于,在所述根据所述第二医学影像数据得到所述目标医学影像数据方面,所述处理单元具体用于:
    对所述第二医学影像数据执行预设处理得到所述目标医学影像数据,所述预设处理包括以下至少一种操作:2D边界优化处理、3D边界优化处理、数据增强处理。
  19. 一种医学成像装置,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-9任一项所述的方法中的步骤的指令。
  20. 一种计算机可读存储介质,其特征在于,存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-9任一项所述的方法。
PCT/CN2019/114469 2019-10-30 2019-10-30 基于VRDS 4D医学影像的动脉瘤Ai处理方法及产品 WO2021081835A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/114469 WO2021081835A1 (zh) 2019-10-30 2019-10-30 基于VRDS 4D医学影像的动脉瘤Ai处理方法及产品
CN201980099774.5A CN114340498A (zh) 2019-10-30 2019-10-30 基于VRDS 4D医学影像的动脉瘤Ai处理方法及产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114469 WO2021081835A1 (zh) 2019-10-30 2019-10-30 基于VRDS 4D医学影像的动脉瘤Ai处理方法及产品

Publications (1)

Publication Number Publication Date
WO2021081835A1 true WO2021081835A1 (zh) 2021-05-06

Family

ID=75715684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114469 WO2021081835A1 (zh) 2019-10-30 2019-10-30 基于VRDS 4D医学影像的动脉瘤Ai处理方法及产品

Country Status (2)

Country Link
CN (1) CN114340498A (zh)
WO (1) WO2021081835A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102346811A (zh) * 2010-07-21 2012-02-08 西门子公司 用于对心脏进行特定于患者的综合性建模的方法和系统
US20120323547A1 (en) * 2011-06-20 2012-12-20 Siemens Corporation Method for intracranial aneurysm analysis and endovascular intervention planning
CN106170246A (zh) * 2014-01-17 2016-11-30 阿特瑞斯公司 用于四维(4d)流磁共振成像的设备、方法和产品
CN107273658A (zh) * 2017-05-16 2017-10-20 哈尔滨医科大学 对颅内动脉瘤破裂风险进行评估及其图像进行分类的装置
CN109907732A (zh) * 2019-04-09 2019-06-21 广州新脉科技有限公司 一种颅内动脉瘤破裂风险的评估方法及系统
CN109961850A (zh) * 2019-03-19 2019-07-02 肖仁德 一种评估颅内动脉瘤破裂风险的方法、装置、计算机设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102346811A (zh) * 2010-07-21 2012-02-08 西门子公司 用于对心脏进行特定于患者的综合性建模的方法和系统
US20120323547A1 (en) * 2011-06-20 2012-12-20 Siemens Corporation Method for intracranial aneurysm analysis and endovascular intervention planning
CN106170246A (zh) * 2014-01-17 2016-11-30 阿特瑞斯公司 用于四维(4d)流磁共振成像的设备、方法和产品
CN107273658A (zh) * 2017-05-16 2017-10-20 哈尔滨医科大学 对颅内动脉瘤破裂风险进行评估及其图像进行分类的装置
CN109961850A (zh) * 2019-03-19 2019-07-02 肖仁德 一种评估颅内动脉瘤破裂风险的方法、装置、计算机设备
CN109907732A (zh) * 2019-04-09 2019-06-21 广州新脉科技有限公司 一种颅内动脉瘤破裂风险的评估方法及系统

Also Published As

Publication number Publication date
CN114340498A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN110168619B (zh) 在虚拟现实或增强现实环境中渲染复杂数据的系统和方法
AU2019430369B2 (en) VRDS 4D medical image-based vein Ai endoscopic analysis method and product
WO2021081841A1 (zh) 基于vrds 4d医学影像的脾脏肿瘤识别方法及相关装置
WO2021030995A1 (zh) 基于vrds ai下腔静脉影像的分析方法及产品
WO2021081771A1 (zh) 基于vrds ai医学影像的心脏冠脉的分析方法和相关装置
CN113516758A (zh) 图像显示方法及相关装置和电子设备、存储介质
AU2019431568B2 (en) Method and product for processing of vrds 4d medical images
AU2019431324B2 (en) VRDS 4D medical image multi-device Ai interconnected display method and product
WO2021081835A1 (zh) 基于VRDS 4D医学影像的动脉瘤Ai处理方法及产品
CN111613302B (zh) 基于医学影像的肿瘤Ai处理方法及产品
WO2020168697A1 (zh) 基于VRDS 4D医学影像的栓塞的Ai识别方法及产品
WO2021081850A1 (zh) 基于vrds 4d医学影像的脊椎疾病识别方法及相关装置
CN111613300B (zh) 基于VRDS 4D医学影像的肿瘤与血管Ai处理方法及产品
WO2021081772A1 (zh) 基于vrds ai脑部影像的分析方法和相关装置
WO2021081839A1 (zh) 基于vrds 4d的病情分析方法及相关产品
WO2021081842A1 (zh) 基于vrds ai医学影像的肠肿瘤与血管分析方法和相关装置
AU2019430854B2 (en) VRDS 4D medical image-based artery and vein Ai processing method and product
WO2021081836A1 (zh) 基于vrds 4d医学影像的胃肿瘤识别方法及相关产品
WO2021030994A1 (zh) 基于vrds ai静脉影像的识别方法及产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951230

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.10.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19951230

Country of ref document: EP

Kind code of ref document: A1