WO2021080285A1 - Antifouling, low-friction film for ships utilizing ultrafine protrusions and riblet structure, and method for manufacturing same - Google Patents

Antifouling, low-friction film for ships utilizing ultrafine protrusions and riblet structure, and method for manufacturing same Download PDF

Info

Publication number
WO2021080285A1
WO2021080285A1 PCT/KR2020/014319 KR2020014319W WO2021080285A1 WO 2021080285 A1 WO2021080285 A1 WO 2021080285A1 KR 2020014319 W KR2020014319 W KR 2020014319W WO 2021080285 A1 WO2021080285 A1 WO 2021080285A1
Authority
WO
WIPO (PCT)
Prior art keywords
riblet
protrusions
antifouling
film
protrusion
Prior art date
Application number
PCT/KR2020/014319
Other languages
French (fr)
Korean (ko)
Inventor
허남일
Original Assignee
허남일
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 허남일 filed Critical 허남일
Publication of WO2021080285A1 publication Critical patent/WO2021080285A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B59/00Hull protection specially adapted for vessels; Cleaning devices specially adapted for vessels
    • B63B59/04Preventing hull fouling
    • B63B59/045Preventing hull fouling by wrapping the submerged hull or part of the hull with an impermeable sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/002Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/005Surface shaping of articles, e.g. embossing; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to an antifouling and low-friction film for ships using ultrafine protrusions and riblet structures, and a manufacturing method thereof, and in more detail, two types of biomimetic technologies are applied, but the first lotus effect is achieved.
  • the applied superfine protrusions are molded into a film to have an antifouling function to prevent marine organisms from adhering to the hull under the waterline of the ship, and secondly, a riblet type similar to the riblet structure of shark scales ( ⁇ )
  • An antifouling and low-friction film for ships applying ultra-fine protrusions and riblet structure that can reduce the frictional resistance with water when sailing a ship by simultaneously forming micro-protrusions on the film formed with super-fine protrusions and It relates to the manufacturing method.
  • a magnetic wear type (SPC: Selfpolishing Copolymer) is used to prevent fuel loss and protect the hull due to increased frictional resistance with water when sailing a ship due to the attachment of fish and shellfish including barnacles, which are marine organisms, to the hull under the waterline of the ship. type) Antifouling paint is applied.
  • a method of applying low-friction antifouling paint to the ship's hull is also used, but this is a method in which the coating surface is lubricated with low friction so that the attachment slides away. At low speeds, it does not deviate from the hull when sailing at a certain speed or more, so fuel loss occurs when sailing at low speeds of the ship, and there is no reduction in hydrodynamic frictional resistance due to the occurrence of micro vortices, and antifouling due to low friction. There is only a function.
  • the present invention is a biomimetic technique, which is a superfine protrusion applied with the Lotus Effect, physically antifouling and at the same time, generating micro vortices with a riblet-type microprotrusion applying the riblet structure of shark scales. It is manufactured by adding self-lubricating material and antibacterial material as an auxiliary means for antifouling in order to save fuel by reducing frictional resistance and to give lubricity to the surface of a film made of flexible thermoplastic synthetic resin, thermoplastic elastomer or rubber.
  • Riblet-type microprotrusions are formed in a uniform arrangement on the surface of the film, and in the blank space without riblet-type microprotrusions, in order to prevent the adhesion of marine organisms larvae in ⁇ m unit size, a plurality of ultra-fine microprotrusions smaller in size than the riblet-type microprotrusions
  • the purpose is to provide an antifouling and low friction film for ships using an ultra-fine protrusion and riblet structure that can be uniformly molded and adhered to the hull under the ship's waterline by applying an adhesive on the back of the film, and its manufacturing method. There is this.
  • the present invention applies the lotus leaf effect to form ultra-fine protrusions smaller in size than the larvae of marine organisms on the surface of the film, so as not to provide a space for the larvae to conceive.
  • the riblet structure of scales By applying the riblet structure of scales, the riblet-shaped microprotrusions are formed on the surface of the film to reduce the frictional resistance caused by the occurrence of micro vortices in a hydrodynamic manner, and at the same time, the ultrafine protrusions and the riblet structure can save fuel of the ship. It is an object to provide an applied antifouling and low friction film for ships and a method of manufacturing the same.
  • the present invention has an antifouling function by simultaneously molding ultra-fine protrusions and riblet-shaped fine protrusions on a film in the same mold to prevent marine organisms from adhering to the bottom of the ship's waterline, and reduce frictional resistance with water when sailing a ship.
  • an antifouling function by simultaneously molding ultra-fine protrusions and riblet-shaped fine protrusions on a film in the same mold to prevent marine organisms from adhering to the bottom of the ship's waterline, and reduce frictional resistance with water when sailing a ship.
  • the antifouling and low-friction film for ships using ultra-fine protrusions that can improve the antifouling function by attaching a film made of only ultra-fine protrusions to a barge vessel with a slow ship speed or to an offshore structure in a stationary state. Its purpose is to provide a manufacturing method.
  • the antifouling and low-friction film for ships applying the ultrafine protrusion and riblet structure of the present invention includes a film 100 which is adhered to the hull under the waterline of the ship by adding a self-lubricating material and an antibacterial material; A plurality of fine protrusions 200 for upright riblets are projected on the surface of the film 100, and the upper end of the fine protrusions 200 for the upright riblets is formed with shark scales as shown in FIG. It bends in the same direction and transforms into a riblet-shaped structure, and vibration is generated by friction with water due to the characteristics of a material with flexibility and elasticity, increasing the antifouling efficiency through the unstable state of the hull surface and self-cleaning.
  • the ultrafine protrusions 400 and 500 have a certain size and uniform arrangement for antifouling so that larvae of marine organisms cannot be implanted on the surface of the film 100.
  • Fine protrusions 400 and 500 It characterized in that it comprises a.
  • the antifouling and low friction film manufacturing method for ships applying the ultrafine protrusion and riblet structure of the present invention prevents marine organisms from adhering to the ship's hull, and generates micro vortices hydrodynamically, thereby reducing frictional resistance during navigation.
  • it is made of flexible thermoplastic resin, thermoplastic elastomer or rubber as a material and self-lubricating material and antibacterial material are added to the surface of the film 100.
  • grooves 701 for forming fine protrusions for riblets for forming the fine protrusions 200 for riblets are provided at regular intervals, and grooves 701 for forming fine protrusions for riblets and In a uniform size and uniform arrangement by a roll-type mold 700 equipped with a groove 702 for forming ultra-fine protrusions for forming the super-fine protrusions 400 and 500 between the grooves 701 for forming the fine protrusions for the riblet.
  • the erect riblet microprotrusion 200 is transformed into a riblet microprotrusion 300 in which the upper end of the protrusion is bent in the same direction as the shark scale in the softening process, which is a post-molding process.
  • the physical antifouling function by the ultra-fine protrusions 400 and 500 and the function of reducing frictional resistance by the riblet-type fine protrusions 300 are simultaneously performed.
  • the present invention is characterized in that only the ultrafine projections 400 and 500 are molded for antifouling purposes in a barge and a stationary offshore structure that is a non-powered ship.
  • the antifouling ultra-fine protrusions 400 and 500 are selected from the independent columnar ultra-fine protrusions 400 or the rod-shaped ultra-fine protrusions 500 connected in a horizontal and vertical grid shape, the height of the protrusion, the thickness of the column, or The thickness of the rod is 5 ⁇ 40 ⁇ m, and the interval between the ultrafine projections and the ultrafine projections is characterized in that 0.5 ⁇ 20 ⁇ m to prevent the implantation of marine organisms larvae.
  • the fine protrusions 200 for riblets which are upright for reducing the frictional resistance, are formed in a column shape with a thickness of 900 ⁇ m or less and a height of 2.0 mm or less, and are formed to have a height higher than that of the ultrafine protrusions 400 and 500, followed by a softening process.
  • the upper part of the riblet microprotrusion is bent in the same direction as the shark scale, and transformed into a riblet microprotrusion 300 structure, and the protrusion curved to a height of 1000 ⁇ m or less is a characteristic of a material having flexibility and elasticity.
  • Vibration is generated by friction to increase antifouling efficiency through instability of the hull surface and self-cleaning, and micro vortices generated in the gaps between the riblet-type microprotrusions 300 and the protrusions 300 hydrodynamically reduce frictional resistance. It is characterized in that it can be structured.
  • the softening process of the present invention is a process of bending the upper end of the protrusion in an upright state in order to transform the fine protrusion 200 for an upright riblet into a riblet-shaped structure, and heating the protrusion as shown in FIG. 6 within the softening temperature range below the melting point.
  • the upper part of the protrusion is bent to a certain height by passing it through a cooled guider mold 710 having a plate or roll-shaped releasability set to a certain height as shown in FIG. 7 to be bent and cooled to have a riblet-shaped structure. It is characterized by that.
  • the material of the film 100 on which the ultrafine protrusions 400 and 500 and the riblet-type fine protrusions 300 are formed is a flexible thermoplastic resin, an elastic thermoplastic elastomer, a natural rubber or synthetic that can be softened by heat.
  • the self-lubricating material lubricates the surface of the film 100 to increase antifouling efficiency, and to increase the ship's speed
  • molybdenum disulfide (MoS2), tungsten disulfide (WS2), graphite ( Graphite), a solid lubricant fine powder of hexagonal boron nitride (h-BN) or talc (Talc) is added as an additive
  • the antimicrobial material is silver (Ag), copper (Cu), zinc (Zn) or A fine powder of silver (Ag), copper (Cu), or zinc (Zn) compounds or zeolite contains an antimicrobial agent, is hydrophobic for a water repellent function, and one or two or more of the antimicrobial agents are added. It is done.
  • the arrangement of the riblet-shaped microprotrusions 300 is characterized in that they are arranged in a grid pattern or in a honeycomb pattern in order to make the intervals with neighboring protrusions constant.
  • the film 100 of the present invention is a film that is connected to the hull in a vertical, left and right direction and adhered with an adhesive, and a film adhered to the connection portion of each film 100 to enhance adhesion and increase watertightness due to an increase in adhesive area
  • the boundary surface of the step is in a stepped structure so that the lower ends of the stairs are in close contact with each other, and a connection film 900 having a thickness of 1/2 of the film 100 is adhered to the film connection groove 800, which is an upper space between the boundary surfaces. .
  • the antifouling and low friction film for ships using the ultrafine protrusion and riblet structure according to the present invention and its manufacturing method apply the lotus leaf effect to form the ultrafine protrusions smaller in size than the larvae of marine organisms on the surface of the film to form larvae.
  • it is environmentally friendly and antifouling in a physical way, and at the same time, fuel loss can be prevented due to a reduction in frictional resistance proportional to the antifouling efficiency, and the riblet structure of shark scales is applied.
  • By forming the rat-shaped microprotrusions on the surface of the film there is an effect of reducing the frictional resistance hydrodynamically, thereby further reducing the fuel of the ship.
  • the present invention has an antifouling function by simultaneously molding ultra-fine protrusions and riblet-type fine protrusions on a film in the same mold, thereby preventing marine organisms from adhering to the bottom of the ship's waterline, and reducing frictional resistance with water when sailing a ship. By doing so, it is possible to realize two functions that can save fuel at the same time, and by attaching a film to the hull, there is an effect of eco-friendly antifouling and hydrodynamically reducing frictional resistance.
  • the present invention is an eco-friendly material with high tensile strength and excellent abrasion resistance.
  • a self-lubricating material and an antibacterial material are added to the thermoplastic urethane, which is a thermoplastic elastomer, as an auxiliary means for antifouling, and the film surface is mechanically formed by a mold for antifouling of ships.
  • the ultra-fine protrusion and the riblet-type fine protrusion that reduces the frictional resistance of the ship are simultaneously molded to improve the speed of the ship with an eco-friendly antifouling function and a reduction function of frictional resistance, and an eco-friendly work process compared to the antifouling coating method. As a result, durability is improved and there is an economically useful effect.
  • the material of the film, ultra-fine protrusions and riblet-type fine protrusions is a thermoplastic elastomer synthetic resin or rubber having elasticity, and the vibration effect of the super-fine protrusions and riblet-type fine protrusions is high when sailing a ship, so that the self-cleaning effect is high, and It has the effect of attenuating the vibration caused by the applied turbulence and the shock of harmonics.
  • 1 is an exemplary view showing a riblet structure of shark scales.
  • Figure 2 is a process diagram showing a method of manufacturing an antifouling and low-friction film for ships applying an ultrafine protrusion and a riblet structure according to the present invention.
  • FIG 3 is an exemplary view showing a process of softening the surface by spraying heated air on the surface of the film according to the present invention.
  • Figure 4 is an exemplary view showing a state in which the micro-protrusions and ultra-fine protrusions for an upright riblet are simultaneously molded using a roll-type mold on the surface of the film according to the present invention.
  • FIG. 5 is an exemplary view showing a state in which fine protrusions and ultra-fine protrusions for an upright riblet are molded on the surface of a film according to the present invention.
  • FIG. 6 is an exemplary view showing a state in which the fine protrusions for riblets molded on the surface of the film according to the present invention are heated to be softened to a melting point or lower.
  • FIG. 7 is an exemplary view showing a state of bending and cooling the upper end of the fine protrusions for riblets by passing the film according to the present invention through a roll-type guider mold or a plate-type mold.
  • Figure 8 is an exemplary view showing a state in which the upper end of the curved riblet-shaped microprotrusions and independent columnar ultra-fine protrusions are completed on the surface of the film according to the present invention.
  • FIG. 9 is an exemplary view showing a riblet-shaped microprotrusion with a curved upper end on the surface of the film according to the present invention and a rod-shaped ultrafine protrusion connected in a grid shape.
  • FIG. 10 is an exemplary view showing a state in which micro vortices are generated by riblet-type microprotrusions on the surface of a film according to the present invention.
  • FIG. 11 is an exemplary view showing a state in which riblet-shaped microprotrusions with a bent upper end are arranged in a lattice shape on the surface of a film according to the present invention.
  • FIG. 12 is an exemplary view showing a state in which riblet-type microprotrusions are arranged in a honeycomb shape between independent columnar microprotrusions on the surface of the film according to the present invention.
  • FIG. 13 is an exemplary view showing a state in which riblet-shaped microprotrusions are arranged in a honeycomb shape between rod-shaped microprotrusions connected in a grid shape to the surface of the film according to the present invention.
  • FIG. 14 is an exemplary view showing a connection state of the film according to the present invention.
  • the upright riblet microprotrusion 200 protrudes from the surface of the film 100, and the upper end of the upright riblet microprotrusion 200 is bent in the same direction as the shark scale in the softening process, which is a post-process, to form a riblet structure.
  • ultra-fine protrusions 400, 500
  • the fine protrusions for the upright riblet In the softening process, which is a post-molding process, the upper end of the protrusion is bent in the same direction as the shark scale, and the upper end of the protrusion is transformed into a curved riblet-shaped microprotrusion 300 structure.
  • the physical antifouling function and the frictional resistance reduction function by the riblet-type microprotrusion 300 are simultaneously performed, and only the ultrafine protrusions 400 and 500 are molded for antifouling in the barge, which is a non-powered ship, and the stationary offshore structure.
  • micro-protrusions (400, 500) which are smaller in size than the micro-protrusions (200) for the riblet, so that they cannot be prevented, for the riblet to form the micro-protrusions (200) for the riblet on the outer circumference of the roll-type mold (700).
  • the micro-protrusions forming grooves 701 are provided at regular intervals, and the micro-protrusions 400 and 500 are formed between the grooves 701 for forming the fine protrusions for the riblet and the grooves 701 for forming the micro protrusions for the riblets.
  • the antifouling and low friction film for ships applying the ultrafine protrusion and riblet structure according to the present invention includes a film 100 that is adhered to the hull under the waterline of the ship by adding a self-lubricating material and an antibacterial material, and the film 100 ), the upright riblet microprotrusion 200 protrudes, and the upper end of the upright riblet microprotrusion 200 is bent in the same direction as the shark scale as shown in FIG. 1 to transform it into a riblet-shaped structure.
  • the ultrafine protrusions 400 and 500 are provided that are uniformly arranged and protrude in size.
  • the manufacturing method of the antifouling and low friction film for ships applying the ultrafine protrusion and riblet structure according to the present invention is to prepare a film 100 material to which a self-lubricating material and an antibacterial material are added as shown in FIG. Step (S100), forming the material of the film 100 into a flat film (S200), heating the surface of the flat film 100 to a melting point or less using a heating air sprayer 600 as shown in FIG. 3 to soften it.
  • Step (S300) using a sheet making machine (sheet making M/C, roll mold 700) as shown in FIG.
  • the step of forming the protrusion 200 (S400), the step of heating the upper portion of the molded upright riblet to a melting point below the melting point to soften the upper part (S500), the ultrafine protrusions 400 and 500 and the upright type Step of simultaneously cooling the film 100 in which the portion of the fine protrusions 200 for the riblet is softened through a roll-type guider mold 710 or a plate-shaped mold to bend and simultaneously cool the upper end of the fine protrusions 200 for the riblet (S600), It includes a step (S700) of completing the microprotrusions 400 and 500 and the riblet-shaped microprotrusions 300 on the surface.
  • the present invention prevents the adhering of marine organisms and generates micro vortices hydrodynamically, thereby reducing frictional resistance during navigation to save fuel, using a flexible thermoplastic resin, thermoplastic elastomer, or rubber as a material, and a self-lubricating material and On the surface of the film 100 to which the antimicrobial material is added, as shown in FIG. 4, a groove 702 for forming a columnar ultrafine protrusion and a groove 701 for forming a fine protrusion for an upright riblet are processed as shown in FIG.
  • the softening process which is a post-process
  • the upper end of the upright riblet microprotrusion 200 is heated and softened, and the upper end of the protrusion is transformed into a curved riblet-shaped structure by bending it in the same direction as the shark scale using a roll-type guider mold 710.
  • the physical antifouling function by the independent columnar microprotrusions 400 shown in FIG. 8 or the rod-type microprotrusions 500 connected in a grid shape shown in FIG. 9 and frictional resistance due to the riblet microprotrusions 300 It will perform the reduction function at the same time.
  • the protrusions formed on the film 100 of the present invention are two types of ultra-fine protrusions 400 and 500 and a riblet-type fine protrusion 300 in which the upper part of the protrusion is curved, and each has a constant size and The arrangement is uniform, and it is molded in the same mold to increase the efficiency of antifouling and frictional resistance reduction at the same time.
  • the antifouling ultra-fine protrusions 400 and 500 are selected from independent columnar ultra-fine protrusions 400 or rod-shaped ultra-fine protrusions 500 connected in a horizontal and vertical grid shape as shown in FIGS. 8 and 9.
  • the height of the protrusion and the thickness of the column or the thickness of the rod are 5 to 40 ⁇ m
  • the interval between the ultra-fine protrusion and the super-fine protrusion is preferably 0.5 to 20 ⁇ m to prevent implantation of marine organisms larva
  • the ultrafine protrusions 400 and 500 have a small surface area and a gap between the protrusions in the unit of micrometers ( ⁇ m), which are smaller than the size of the larvae of marine organisms, and thus do not provide a space necessary for implantation of the larvae. It can be physically antifouling by preventing the implantation of.
  • a small eddy which is a micro vortex that occurs in a gap between the riblet-type microprotrusions 300, acts like a breakwater between the turbulence of the outer wall of the hull, thereby increasing frictional resistance hydrodynamically. Since the speed of the ship is reduced by reducing it, a certain distance must be maintained between the riblet-shaped microprotrusion 300, which has a curved upper part in a riblet-like shape, and the neighboring riblet-type microprotrusion 300, to increase the speed of the ship.
  • the fine protrusions 200 for riblets which are upright for reducing frictional resistance, have a columnar shape with a thickness of 900 ⁇ m or less and a height of 2.0 mm or less, which is higher than that of the ultra fine protrusions.
  • a columnar shape with a thickness of 900 ⁇ m or less and a height of 2.0 mm or less, which is higher than that of the ultra fine protrusions.
  • the ultra-fine vortex generated even between the ultra-fine protrusions 400 and 500 and the protrusions 400 and 500 has a small vortex effect, but the microscopic vortex generated in a certain gap between the riblet-type fine protrusions 300 and the protrusions 300 It is preferable to implement the eddy current in a structure that can increase the effect of reducing frictional resistance hydrodynamically due to a large eddy effect.
  • the separate riblet-type microprotrusions 300 separated as described above generate micro vortices in the gap and at the same time vibrate due to friction with water, so that the hull surface becomes unstable for the implantation of larvae of marine organisms.
  • the self-cleaning effect can increase the antifouling efficiency.
  • Korean Patent Registration No. 2022443 name: manufacturing method of low friction antifouling lining for ships and offshore structures.
  • the fine protrusions of the low-friction antifouling lining as described above protrude upright from the surface of the film and the upper end is bent due to friction with water, but rather the frictional resistance is increased, and the spacing between the protrusions and the protrusions is wide, so the antifouling efficiency is low. There was a problem.
  • the antifouling function is excellent, but there is little efficiency in reducing frictional resistance due to the riblet structure, and if there are only riblet-type microprotrusions, the frictional resistance reduction function is achieved due to the occurrence of micro vortices. It is excellent, but the antifouling efficiency is lowered because the spacing between the riblet-shaped microprotrusions, which is larger in size than the ultrafine protrusions, is wide.
  • the ultrafine protrusions 400 and 500 and the riblet-type microprotrusion 300 they must be molded in the same mold, and in the blank space between the riblet-type microprotrusions 300
  • the antifouling and frictional resistance reduction functions can be performed at the same time.
  • the riblet-type microprotrusions 300 are thicker and higher in height than the ultra-fine protrusions 400 and 500, and the riblet-type microprotrusions independent from the lower space where the upper part of the riblet-type microprotrusions 300 is curved ( 300) Since the gap is wide and provides a space for larvae to implant, as a constant gap between them is required, the entire surface of the film 100 is uniformly formed by uniformly molding the small-sized microprotrusions 400 and 500 in such a space. It is possible to prevent the occurrence of the antifouling function in the blind spot.
  • the thickness and height of the protrusion are larger than the ultrafine protrusions 400 and 500, so that frictional resistance due to friction with water when sailing a ship is Since it is a factor of increasing, it must be bent in the same direction as the shark scales as shown in Figs. 7, 8, 9, and it is effective to generate micro vortices while reducing frictional resistance as a riblet structure of shark scales as shown in Fig. 1. .
  • the material of the film 100 on which the riblet-type microprotrusions 300 and the ultrafine protrusions 400 and 500 of the present invention are molded is a material having high tensile strength and abrasion resistance, and is flexible nylon (Nylon), polyester ( It is preferable to mold it with one type of material selected from a thermoplastic resin such as polyester), an elastic thermoplastic elastomer such as TPU (Thermo Plastic Urethane), and a natural or synthetic rubber that can be deformed by heat.
  • a thermoplastic resin such as polyester
  • TPU Thermo Plastic Urethane
  • the softening process of the present invention is a process of bending the upper end of the protrusion in an upright state in order to transform the softening process shown in FIG. 3 for forming the protrusion on a flat film and the fine protrusion 200 for an upright riblet into a riblet-shaped structure.
  • a cooled guider mold having a plate or roll-shaped release property set to a certain height ( It passes through 710 and cools at the same time as it is bent, so that the upper end of the protrusion is bent to a certain height, thereby having a structure of a riblet-shaped fine protrusion 300.
  • the self-lubricating material which is a self-lubricating material, is used for low friction. It is preferable to add one of the solid lubricant fine powders of molybdenum disulfide (MoS2), tungsten disulfide (WS2), graphite, hexagonal boron nitride (h-BN) or talc (Talc) as an additive.
  • MoS2 molybdenum disulfide
  • WS2 tungsten disulfide
  • h-BN hexagonal boron nitride
  • Talc talc
  • the antimicrobial material is an auxiliary means in addition to the ultrafine protrusions 400 and 500 physically antifouling for antifouling of marine organisms and the riblet microprotrusion 300, as antibacterial agents silver (Ag), copper (Cu), zinc ( Zn) or silver (Ag), copper (Cu), zinc (Zn) fine powder or zeolite containing an antimicrobial agent, hydrophobicized for water repellency, and added one or two or more of the antimicrobial agents It is desirable to do it.
  • the protrusion part during sailing a ship increases vibration due to friction with water, so that the self-cleaning effect is high, and the turbulence applied to the hull and
  • the elastic material has the effect of attenuating the impact caused by harmonics.
  • Mechanical molding of the film 100 according to the present invention is carried out by a calendar molding machine (Sheet making M/C).
  • calendar M/C, roll-type mold 700), vacuum molding, and heat-compression molding are performed in any one of the methods, and the mold is manufactured by laser, etching, and electric discharge processing.
  • micro-protrusions 400 and 500 and the micro-protrusions 200 for riblets are simultaneously molded in the same mold, and the micro-protrusions for riblets 200, which are formed in an upright state, are bent in a post process so that the upper part of the protrusion is It transforms into a curved riblet-type microprotrusion 300.
  • the post-process is a softening process as described above, and after heating the upright riblet microprotrusions 200 in an upright state to a softening temperature range below the melting point, as shown in FIGS. 6 and 7, there is releasability, and there is a constant cooling state. It is a process in which the upper end of the protrusion is transformed into a riblet-shaped fine protrusion 300 in which the upper end of the protrusion is bent by passing through a plate material or roll-type guider mold 710 set to the height and cooling at the same time. It is higher than the height of the fine protrusions 400 and 500 and can be selectively bent.
  • the softening process for forming the protrusions on the flat film 100 and the heating method of the softening process for bending the upright protrusions as described above are non-contact type by spraying heated air, heating using radiant heat, and a contact type roll type for heat conduction. It is heated by passing it through the heating device of, and it is preferable to select and carry out one of the heating methods.
  • the ultrafine protrusions 400 and 500 of the present invention are separated from each other and are independent columnar 400 or a bar type 500 as a continuous protrusion in a grid type, but the height of the protrusion and the thickness of the column or the bar
  • the thickness is 5 ⁇ 40 ⁇ m
  • the interval between the ultrafine protrusions and the superfine protrusions is 0.5 ⁇ 20 ⁇ m, minimizing the space for larvae of marine organisms to implant, so that the film 100 has a uniform size and uniform arrangement on the entire surface. It is molded with, and chooses either a column shape or a rod shape.
  • the fine protrusions 200 for riblets are in the shape of a column, and the size varies according to the resistance of water for each position of the hull, and the thickness of the column is 900 ⁇ m or less, and the height is 2.0 mm or less, and the upper end of the protrusion is It is preferable to bend and transform into a riblet-shaped microprotrusion 300 having a height of 1000 ⁇ m or less.
  • the riblet-shaped microprotrusions 300 are molded on the entire surface of the film 100 in which the ultrafine protrusions 400 and 500 are uniformly arranged, and the arrangement is as shown in FIGS. Likewise, it is arranged in a grid pattern or in a honeycomb pattern in order to make the gaps with neighboring protrusions constant, and it is preferable to select one of them.
  • the film 100 of the present invention is a plurality of the hull as shown in Fig. 14 are connected and arranged in the vertical, left and right direction to be bonded with an adhesive, and the connection portion of each film 100 is strengthened due to the increase in the adhesive area and
  • the interface of the film 100 that is in close contact with each other is formed in a stepped structure, so that the lower ends of the steps are in close contact with each other, and a film connection groove 800 is provided in the upper space between the interface to have a thickness of 1/2 of the film 100.
  • the antifouling and low-friction film for ships applying the ultrafine protrusions and riblet structure of the present invention and its manufacturing method apply a lotus leaf effect to form ultrafine protrusions smaller in size than the larvae of marine organisms on the surface of the film.
  • the riblet-shaped microprotrusions By forming the riblet-shaped microprotrusions on the surface of the film, you can reduce the frictional resistance hydrodynamically to save fuel on the ship, and by molding the ultra-fine protrusions and the riblet-shaped microprotrusions on the film at the same time in the same mold, they have an antifouling function. It prevents marine organisms from adhering to the bottom of the ship's waterline, reduces the frictional resistance with water when sailing the ship to save fuel, and implements two functions at the same time, and eco-friendly antifouling and fluid by attaching a film to the hull. It is possible to reduce the mechanical frictional resistance.
  • the present invention applies two kinds of biomimetic technologies, but by forming superfine protrusions applying the lotus effect, which is a biomimetic technology, into a film to have a physical antifouling function, At the same time, it prevents marine organisms from adhering to the surface, and simultaneously molds the riblet-type microprotrusions that apply the riblet structure of shark scales to the film formed with ultra-fine protrusions to generate micro vortices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Paints Or Removers (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present invention relates to an antifouling, low-friction film which is for ships and utilizes ultrafine protrusions and a riblet structure, and a method for manufacturing same. Upright protrusions, which are intended to reduce frictional resistance by generating micro vortices in a film obtained by adding a self-lubricating material and an antibacterial material as an auxiliary antifouling means to thermoplastic urethane, which is a type of thermoplastic elastic body having high tensile strength and excellent wear resistance, instead increase frictional resistance due to friction with the water, and thus, in the film of the present invention, riblet-type fine protrusions having upper ends that are bent like shark scales are formed instead of upright protrusions. Also, in the case of riblet-type fine protrusions having thicker and taller protrusions, antifouling efficiency is low because there is space in the gaps between the protrusions for larvae of marine organisms to linger, and thus, in the film of the present invention, ultrafine protrusions thinner and shorter than the riblet-type fine protrusions are formed on the entire surface of the film in empty spaces without riblet-type fine protrusions so as to achieve physical antifouling. Accordingly, an eco-friendly efficient antifouling effect can be achieved while saving fuel due to the reduced frictional resistance provided by the riblet structure.

Description

초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름과 그 제조방법Antifouling and low-friction film for ships applying ultrafine protrusion and riblet structure and its manufacturing method
본 발명은 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름과 그 제조방법에 관한 것으로, 더욱 상세하게는 2종의 생체모방기술을 응용하되, 첫째 연꽃잎 효과(Lotus Effect)를 응용한 초(超)미세돌기를 필름에 성형하여 방오 기능을 갖게 하여 선박의 수선 하부 선체에 해양생물체가 부착되는 것을 방지하고, 둘째 상어 비늘의 리블렛(Riblet) 구조와 유사한 형태의 리블렛형(形) 미세돌기를 초미세돌기가 성형된 필름에 동시에 성형하여 선박 항해시 물과의 마찰저항을 저감시켜 연료를 절감시킬 수 있는 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름과 그 제조방법에 관한 것이다.The present invention relates to an antifouling and low-friction film for ships using ultrafine protrusions and riblet structures, and a manufacturing method thereof, and in more detail, two types of biomimetic technologies are applied, but the first lotus effect is achieved. The applied superfine protrusions are molded into a film to have an antifouling function to prevent marine organisms from adhering to the hull under the waterline of the ship, and secondly, a riblet type similar to the riblet structure of shark scales (形) An antifouling and low-friction film for ships applying ultra-fine protrusions and riblet structure that can reduce the frictional resistance with water when sailing a ship by simultaneously forming micro-protrusions on the film formed with super-fine protrusions and It relates to the manufacturing method.
일반적으로, 선박은 대부분 선체의 하부가 물이 잠긴 상태에서 운항하거나 정박된 상태를 유지하며, 해양 구조물은 일부가 물에 잠긴 상태로 설치된다.In general, most ships operate in a state in which the lower part of the hull is submerged in water or remain moored, and offshore structures are installed in a state in which some of the offshore structures are submerged in water.
그리고, 바다에는 각종 해양생물체가 살고 있으며, 시간이 경과함에 따라 선박 또는 해양 구조물에 각종 해양생물체가 부착되어 서식하게 된다.In addition, various marine organisms live in the sea, and as time passes, various marine organisms are attached to and inhabit a ship or marine structure.
현재는 선박의 수선(waterline) 아래 선체에 해양생물체인 따개비를 포함한 어패류와 해조류의 부착으로 선박 항해시 물과의 마찰저항 증가로 인한 연료 손실방지와 선체 보호를 위해 자기마모형(SPC : Selfpolishing Copolymer type) 방오도료를 도장하고 있다.Currently, a magnetic wear type (SPC: Selfpolishing Copolymer) is used to prevent fuel loss and protect the hull due to increased frictional resistance with water when sailing a ship due to the attachment of fish and shellfish including barnacles, which are marine organisms, to the hull under the waterline of the ship. type) Antifouling paint is applied.
그러나, 이와 같은 자기마모형 방오도료는 마모로 인해서 박리되는 유해 화학물질이 해양 환경에 유해하기 때문에 친환경적인 방오가 필요한 실정이다.However, such a self-wear type antifouling paint requires environmentally friendly antifouling because harmful chemical substances peeled off due to abrasion are harmful to the marine environment.
그리고, 저마찰형 방오도료를 선박의 선체에 도장하는 방법도 이용되고 있으나, 이는 도장 표면이 저마찰로 윤활하여 부착물이 미끄러져 이탈되는 방법으로써 정박 중인 선체 표면에 부착된 해양생물체는 선박이 항해할 때 저속도에서는 이탈되지 않고 일정 속도 이상으로 항해해야만 선체에서 미끄러져 이탈되므로 선박의 저속도 항해시에 연료 손실이 발생하며, 미세와류 발생에 의한 유체역학적인 마찰저항 저감은 없고, 저마찰에 의한 방오 기능만 있다.In addition, a method of applying low-friction antifouling paint to the ship's hull is also used, but this is a method in which the coating surface is lubricated with low friction so that the attachment slides away. At low speeds, it does not deviate from the hull when sailing at a certain speed or more, so fuel loss occurs when sailing at low speeds of the ship, and there is no reduction in hydrodynamic frictional resistance due to the occurrence of micro vortices, and antifouling due to low friction. There is only a function.
본 발명은 생체모방기술인 연꽃잎효과(Lotus Effect)를 응용한 초(超)미세돌기로 물리적인 방오와 동시에 상어 비늘의 리블렛 구조를 응용한 리블렛형 미세돌기로 미세와류를 발생시켜서 유체역학적으로 마찰저항을 저감시켜 연료를 절감하고, 유연성이 있는 열가소성 합성수지, 열가소성탄성체 또는 고무를 소재로 하는 필름의 표면에 윤활성을 부여하기 위하여 자기윤활성물질과 방오를 위한 보조적 수단으로써 항균물질을 첨가하여 제조된 필름의 표면에 리블렛형 미세돌기를 균일한 배열로 성형하며, 리블렛형 미세돌기가 없는 여백 공간에는 ㎛ 단위 크기인 해양생물체 유충의 부착을 방지하기 위해서 리블렛형 미세돌기보다 크기가 작은 복수의 초미세돌기를 균일하게 성형하고, 필름의 뒷면에는 접착제를 도포하여 선박의 수선 아래 선체에 접착할 수 있는 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름과 그 제조방법을 제공하는 데 목적이 있다.The present invention is a biomimetic technique, which is a superfine protrusion applied with the Lotus Effect, physically antifouling and at the same time, generating micro vortices with a riblet-type microprotrusion applying the riblet structure of shark scales. It is manufactured by adding self-lubricating material and antibacterial material as an auxiliary means for antifouling in order to save fuel by reducing frictional resistance and to give lubricity to the surface of a film made of flexible thermoplastic synthetic resin, thermoplastic elastomer or rubber. Riblet-type microprotrusions are formed in a uniform arrangement on the surface of the film, and in the blank space without riblet-type microprotrusions, in order to prevent the adhesion of marine organisms larvae in ㎛ unit size, a plurality of ultra-fine microprotrusions smaller in size than the riblet-type microprotrusions The purpose is to provide an antifouling and low friction film for ships using an ultra-fine protrusion and riblet structure that can be uniformly molded and adhered to the hull under the ship's waterline by applying an adhesive on the back of the film, and its manufacturing method. There is this.
즉, 본 발명은 연꽃잎효과를 응용하여 필름의 표면에 해양생물체의 유충보다 크기가 작은 초미세돌기를 성형하여 유충이 착상할 수 있는 공간을 제공하지 않음으로써 물리적인 방법으로 친환경적인 방오와 상어 비늘의 리블렛 구조를 응용하여 리블렛형 미세돌기를 필름의 표면에 성형하여 유체역학적으로도 미세와류 발생에 의한 마찰저항을 저감시켜 선박의 연료를 절감할 수 있는 초미세돌기 및 리블렛 구조를 동시에 응용한 선박용 방오 겸 저마찰 필름과 그 제조방법을 제공하는 데 목적이 있다.That is, the present invention applies the lotus leaf effect to form ultra-fine protrusions smaller in size than the larvae of marine organisms on the surface of the film, so as not to provide a space for the larvae to conceive. By applying the riblet structure of scales, the riblet-shaped microprotrusions are formed on the surface of the film to reduce the frictional resistance caused by the occurrence of micro vortices in a hydrodynamic manner, and at the same time, the ultrafine protrusions and the riblet structure can save fuel of the ship. It is an object to provide an applied antifouling and low friction film for ships and a method of manufacturing the same.
또한, 본 발명은 필름에 초미세돌기와 리블렛형 미세돌기를 동일한 금형에서 동시에 성형함으로써 방오 기능을 갖게 하여 선박의 수선 하부에 해양생물체가 부착되는 것을 방지하고, 선박 항해시 물과의 마찰저항을 저감시켜 연료를 절감시킬 수 있는 2가지 기능을 동시에 구현할 수 있으며, 필름을 선체에 부착하여 친환경 방오와 유체역학적인 마찰저항을 저감시킬 수 있는 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름의 제조방법을 제공하는 데 그 목적이 있다.In addition, the present invention has an antifouling function by simultaneously molding ultra-fine protrusions and riblet-shaped fine protrusions on a film in the same mold to prevent marine organisms from adhering to the bottom of the ship's waterline, and reduce frictional resistance with water when sailing a ship. By attaching a film to the hull, it is possible to implement two functions at the same time, and an antifouling and low friction for ships using an ultra-fine protrusion and riblet structure that can reduce the eco-friendly antifouling and hydrodynamic frictional resistance by attaching a film to the hull. Its purpose is to provide a method for producing a film.
그리고, 무동력선으로써 선속이 느린 바지(barge)선박이나 정지 상태의 해양 구조물에는 초미세돌기만 성형된 필름을 부착하여 방오기능을 향상시킬 수 있는 초미세돌기를 응용한 선박용 방오 겸 저마찰 필름의 제조방법을 제공하는 데 그 목적이 있다.In addition, as a non-powered ship, the antifouling and low-friction film for ships using ultra-fine protrusions that can improve the antifouling function by attaching a film made of only ultra-fine protrusions to a barge vessel with a slow ship speed or to an offshore structure in a stationary state. Its purpose is to provide a manufacturing method.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the technical problems mentioned above, and other technical problems that are not mentioned can be clearly understood by those of ordinary skill in the technical field to which the present invention belongs from the following description. There will be.
상기와 같은 목적을 달성하기 위하여 본 발명의 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름은 자기윤활성물질 및 항균물질이 첨가되어 선박의 수선 아래 선체에 접착되는 필름(100); 상기 필름(100)에 표면에 복수개의 직립형 리블렛용(用) 미세돌기(200)가 돌출되며, 상기 직립형 리블렛용 미세돌기(200)의 상단부를 후공정인 연화공정에서 도 1과 같이 상어 비늘과 같은 방향으로 휘어지게 하여 리블렛형(形) 구조로 변형하며, 유연성 및 탄성을 가진 소재의 특성으로 물과의 마찰에 의해 진동이 발생하여 선체 표면의 불안정 상태와 자기세정으로 방오 효율을 높이고, 돌기 사이의 틈새에서 발생되는 미세와류는 유체역학적으로 마찰저항을 저감시키는 리블렛형 미세돌기(300); 상기 필름(100) 표면에 해양생물체의 유충이 착상할 수 없도록 방오용으로 초미세돌기(400, 500)가 일정한 크기와 균일한 배열로 리블렛형 미세돌기(300)에 비해 크기가 작게 돌출되는 초미세돌기(400, 500); 를 포함하는 것을 특징으로 한다.In order to achieve the above object, the antifouling and low-friction film for ships applying the ultrafine protrusion and riblet structure of the present invention includes a film 100 which is adhered to the hull under the waterline of the ship by adding a self-lubricating material and an antibacterial material; A plurality of fine protrusions 200 for upright riblets are projected on the surface of the film 100, and the upper end of the fine protrusions 200 for the upright riblets is formed with shark scales as shown in FIG. It bends in the same direction and transforms into a riblet-shaped structure, and vibration is generated by friction with water due to the characteristics of a material with flexibility and elasticity, increasing the antifouling efficiency through the unstable state of the hull surface and self-cleaning. The micro vortex generated in the gap between the riblet-type microprotrusions 300 to reduce the frictional resistance hydrodynamically; The ultrafine protrusions 400 and 500 have a certain size and uniform arrangement for antifouling so that larvae of marine organisms cannot be implanted on the surface of the film 100. Fine protrusions 400 and 500; It characterized in that it comprises a.
그리고, 본 발명의 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름 제조방법은 선박의 선체에 해양생물체가 부착되는 것을 방지하고, 유체역학적으로 미세와류를 발생시켜 항해시 마찰저항을 저감하여 연료를 절감하기 위하여 유연성이 있는 열가소성수지, 열가소성탄성체 또는 고무를 소재로 자기윤활성물질 및 항균물질을 첨가한 필름(100)의 표면에 마찰저항 저감용으로 직립형인 리블렛용(用) 미세돌기(200)와 동시에 리블렛용 미세돌기(200)끼리의 간격이 넓은 공간에는 해양생물체의 유충이 착상할 수 없도록 방오용으로 리블렛용 미세돌기(200)에 비해 크기가 작은 초미세돌기(400, 500)를 롤형 금형(700)의 외주면에 리블렛용 미세돌기(200)를 성형하기 위한 리블렛용 미세돌기 성형용 홈(701)이 일정한 간격으로 구비되며, 상기 리블렛용 미세돌기 성형용 홈(701)과 리블렛용 미세돌기 성형용 홈(701) 사이에 초미세돌기(400, 500)를 성형하기 위한 초미세돌기 성형용 홈(702)이 구비된 롤형 금형(700)에 의해서 일정한 크기와 균일한 배열로 기계적으로 성형하며, 상기 직립형 리블렛용 미세돌기(200)는 성형의 후공정인 연화공정에서 돌기의 상단부를 상어 비늘과 같은 방향으로 굴곡하여 돌기의 상단부가 휘어진 리블렛형 미세돌기(300) 구조로 변형시킴으로써 초미세돌기(400, 500)에 의한 물리적 방오 기능과 리블렛형 미세돌기(300)에 의한 마찰저항 저감 기능을 동시에 수행하는 것을 특징으로 한다.In addition, the antifouling and low friction film manufacturing method for ships applying the ultrafine protrusion and riblet structure of the present invention prevents marine organisms from adhering to the ship's hull, and generates micro vortices hydrodynamically, thereby reducing frictional resistance during navigation. In order to save fuel by reducing, it is made of flexible thermoplastic resin, thermoplastic elastomer or rubber as a material and self-lubricating material and antibacterial material are added to the surface of the film 100. At the same time as (200), the microprotrusions (400, 500), which are smaller in size compared to the microprotrusions (200) for the riblet, for antifouling purposes, so that larvae of marine organisms cannot implant in the space where the gap between the microprotrusions (200) for the riblet (200) is wide. ) On the outer circumferential surface of the roll-type mold 700, grooves 701 for forming fine protrusions for riblets for forming the fine protrusions 200 for riblets are provided at regular intervals, and grooves 701 for forming fine protrusions for riblets and In a uniform size and uniform arrangement by a roll-type mold 700 equipped with a groove 702 for forming ultra-fine protrusions for forming the super-fine protrusions 400 and 500 between the grooves 701 for forming the fine protrusions for the riblet. Mechanically molded, the erect riblet microprotrusion 200 is transformed into a riblet microprotrusion 300 in which the upper end of the protrusion is bent in the same direction as the shark scale in the softening process, which is a post-molding process. By doing so, it is characterized in that the physical antifouling function by the ultra-fine protrusions 400 and 500 and the function of reducing frictional resistance by the riblet-type fine protrusions 300 are simultaneously performed.
그리고, 본 발명은 무동력선으로 선속이 빠르지 않은 바지선(barge)과 정지된 해양구조물에는 방오용으로 초미세돌기(400, 500)만 성형하는 것을 특징으로 한다.In addition, the present invention is characterized in that only the ultrafine projections 400 and 500 are molded for antifouling purposes in a barge and a stationary offshore structure that is a non-powered ship.
또한, 상기 방오용 초미세돌기(400, 500)는 독립된 기둥형 초미세돌기(400) 또는 가로 세로 격자 형상으로 연결된 막대형 초미세돌기(500) 중 선택된 어느 하나로 돌기의 높이, 기둥의 굵기 또는 막대의 두께는 5~40㎛이며, 초미세돌기와 초미세돌기 사이의 간격은 해양생물 유충의 착상을 방지하기 위해 0.5~20㎛인 것을 특징으로 한다.In addition, the antifouling ultra-fine protrusions 400 and 500 are selected from the independent columnar ultra-fine protrusions 400 or the rod-shaped ultra-fine protrusions 500 connected in a horizontal and vertical grid shape, the height of the protrusion, the thickness of the column, or The thickness of the rod is 5 ~ 40㎛, and the interval between the ultrafine projections and the ultrafine projections is characterized in that 0.5 ~ 20㎛ to prevent the implantation of marine organisms larvae.
그리고, 상기 마찰저항 저감용으로 직립형인 리블렛용 미세돌기(200)는 기둥형상으로 굵기는 900㎛ 이하, 높이는 2.0mm 이하로 초미세돌기(400, 500)보다 높이가 높도록 성형 후, 연화공정에서 리블렛용 미세돌기의 상단부를 상어 비늘과 같은 방향으로 휘어지게 하여 리블렛형 미세돌기(300) 구조로 변형하며, 높이가 1000㎛ 이하로 휘어진 돌기는 유연성 및 탄성을 가진 소재의 특성으로 물과의 마찰에 의해 진동이 발생하여 선체 표면의 불안정 상태와 자기세정으로 방오 효율을 높이고, 리블렛형 미세돌기(300)와 돌기(300) 사이의 틈새에서 발생되는 미세와류는 유체역학적으로 마찰저항을 저감할 수 있는 구조인 것을 특징으로 한다.In addition, the fine protrusions 200 for riblets, which are upright for reducing the frictional resistance, are formed in a column shape with a thickness of 900 μm or less and a height of 2.0 mm or less, and are formed to have a height higher than that of the ultrafine protrusions 400 and 500, followed by a softening process. The upper part of the riblet microprotrusion is bent in the same direction as the shark scale, and transformed into a riblet microprotrusion 300 structure, and the protrusion curved to a height of 1000㎛ or less is a characteristic of a material having flexibility and elasticity. Vibration is generated by friction to increase antifouling efficiency through instability of the hull surface and self-cleaning, and micro vortices generated in the gaps between the riblet-type microprotrusions 300 and the protrusions 300 hydrodynamically reduce frictional resistance. It is characterized in that it can be structured.
한편, 본 발명의 연화공정은 직립형 리블렛용 미세돌기(200)를 리블렛형 구조로 변형하기 위해서 직립 상태의 돌기 상단부를 휘어지게 하는 공정으로 용융점 이하 연화온도 범위 내에서 도 6과 같이 돌기를 가열하여 연화한 후, 도 7과 같이 일정한 높이로 설정된 판 또는 롤형의 이형성이 있는 냉각된 가이더(guider) 금형(710)을 통과시켜서 굴곡과 동시에 냉각하여 일정한 높이로 돌기의 상단부가 휘어져 리블렛형 구조를 갖는 것을 특징으로 한다.On the other hand, the softening process of the present invention is a process of bending the upper end of the protrusion in an upright state in order to transform the fine protrusion 200 for an upright riblet into a riblet-shaped structure, and heating the protrusion as shown in FIG. 6 within the softening temperature range below the melting point. After softening, the upper part of the protrusion is bent to a certain height by passing it through a cooled guider mold 710 having a plate or roll-shaped releasability set to a certain height as shown in FIG. 7 to be bent and cooled to have a riblet-shaped structure. It is characterized by that.
그리고, 상기 초미세돌기(400, 500) 및 리블렛형 미세돌기(300)가 성형되는 필름(100)의 소재는 유연성이 있는 열가소성수지, 탄성이 있는 열가소성 탄성체, 열에 의해 연화가 가능한 천연고무 또는 합성고무 중에서 선택되는 어느 하나의 소재이며, 상기 자기윤활성물질은 필름(100)의 표면을 윤활하게 하여 방오 효율을 높이고, 선박의 선속을 높이기 위하여 이황화몰리브덴(MoS2), 이황화텅스텐(WS2), 흑연(Graphite), 육방정계질화붕소(h-BN) 또는 탈크(Talc)의 고체 윤활제 미분말 중 하나의 종을 첨가제로 첨가하며, 상기 항균물질은 은(Ag), 구리(Cu), 아연(Zn) 또는 은(Ag), 구리(Cu), 아연(Zn) 화합물의 미분말 또는 제올라이트(Zeolite)에 항균제를 포함하고, 발수 기능을 위해 소수성화하며, 상기 항균제 중 1종 또는 2종 이상을 첨가하는 것을 특징으로 한다.In addition, the material of the film 100 on which the ultrafine protrusions 400 and 500 and the riblet-type fine protrusions 300 are formed is a flexible thermoplastic resin, an elastic thermoplastic elastomer, a natural rubber or synthetic that can be softened by heat. It is any one material selected from rubber, and the self-lubricating material lubricates the surface of the film 100 to increase antifouling efficiency, and to increase the ship's speed, molybdenum disulfide (MoS2), tungsten disulfide (WS2), graphite ( Graphite), a solid lubricant fine powder of hexagonal boron nitride (h-BN) or talc (Talc) is added as an additive, and the antimicrobial material is silver (Ag), copper (Cu), zinc (Zn) or A fine powder of silver (Ag), copper (Cu), or zinc (Zn) compounds or zeolite contains an antimicrobial agent, is hydrophobic for a water repellent function, and one or two or more of the antimicrobial agents are added. It is done.
또한, 상기 리블렛형 미세돌기(300)의 배열은 격자형(grid pattern) 또는 이웃하는 돌기와 간격을 일정하게 하기 위하여 벌집형(honey comb pattern) 구조로 배치한 것을 특징으로 한다.In addition, the arrangement of the riblet-shaped microprotrusions 300 is characterized in that they are arranged in a grid pattern or in a honeycomb pattern in order to make the intervals with neighboring protrusions constant.
그리고, 본 발명의 필름(100)은 선체에 복수개가 상하좌우 방향으로 연결 배치되어 접착제로 접착되되, 각 필름(100)의 연결부위에는 접착면적 증대로 인한 접착력 강화와 수밀성을 높이기 위해 밀착되는 필름의 경계면을 계단식 구조로 하여 계단의 하단부는 서로 밀착되며 경계면 사이의 상부 공간인 필름연결홈부(800)에는 필름(100)의 1/2 두께의 연결용 필름(900)을 접착하는 것을 특징으로 한다.In addition, the film 100 of the present invention is a film that is connected to the hull in a vertical, left and right direction and adhered with an adhesive, and a film adhered to the connection portion of each film 100 to enhance adhesion and increase watertightness due to an increase in adhesive area The boundary surface of the step is in a stepped structure so that the lower ends of the stairs are in close contact with each other, and a connection film 900 having a thickness of 1/2 of the film 100 is adhered to the film connection groove 800, which is an upper space between the boundary surfaces. .
본 발명에 따른 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름과 그 제조방법은 연꽃잎효과를 응용하여 필름의 표면에 해양생물체의 유충보다 크기가 작은 초미세돌기를 성형하여 유충이 착상할 수 있는 공간을 제공하지 않음으로써 물리적인 방법으로 친환경 방오함과 동시에 방오 효율에 비례하는 만큼의 마찰저항 감소로 인해 연료 손실을 방지할 수 있으며, 상어 비늘의 리블렛 구조를 응용한 리블렛형 미세돌기를 필름의 표면에 성형하여 유체역학적으로도 마찰저항을 저감시켜 선박의 연료를 더욱 절감할 수 있는 효과가 있다.The antifouling and low friction film for ships using the ultrafine protrusion and riblet structure according to the present invention and its manufacturing method apply the lotus leaf effect to form the ultrafine protrusions smaller in size than the larvae of marine organisms on the surface of the film to form larvae. By not providing a space for this conception, it is environmentally friendly and antifouling in a physical way, and at the same time, fuel loss can be prevented due to a reduction in frictional resistance proportional to the antifouling efficiency, and the riblet structure of shark scales is applied. By forming the rat-shaped microprotrusions on the surface of the film, there is an effect of reducing the frictional resistance hydrodynamically, thereby further reducing the fuel of the ship.
그리고, 본 발명은 필름에 초미세돌기와 리블렛형 미세돌기를 동일한 금형에서 동시에 성형함으로써 방오 기능을 갖게 하여 선박의 수선 하부에 해양생물체가 부착되는 것을 방지하고, 선박 항해시 물과의 마찰저항을 저감시켜 연료를 절감시킬 수 있는 2가지 기능을 동시에 구현할 수 있으며, 필름을 선체에 부착하여 친환경 방오와 유체역학적으로 마찰저항을 저감시킬 수 있는 효과가 있다.In addition, the present invention has an antifouling function by simultaneously molding ultra-fine protrusions and riblet-type fine protrusions on a film in the same mold, thereby preventing marine organisms from adhering to the bottom of the ship's waterline, and reducing frictional resistance with water when sailing a ship. By doing so, it is possible to realize two functions that can save fuel at the same time, and by attaching a film to the hull, there is an effect of eco-friendly antifouling and hydrodynamically reducing frictional resistance.
또한, 본 발명은 높은 인장강도와 내마모성이 우수한 친환경 소재로써, 열가소성 탄성체인 열가소성우레탄에 자기윤활성물질과 방오의 보조적 수단으로 향균물질을 첨가하고, 금형에 의한 기계적 성형으로 필름 표면에 선박의 방오용 초미세돌기와 선박의 유체역학적으로 마찰저항을 줄이는 리블렛형 미세돌기를 동시에 성형하여 친환경 방오기능과 동시에 마찰저항의 저감 기능으로 선속을 향상시켜 연료를 절감할 수 있으며, 방오도장 공법 대비 친환경적인 작업 공정으로써 내구성이 향상되어 경제적으로 유용한 효과가 있다.In addition, the present invention is an eco-friendly material with high tensile strength and excellent abrasion resistance. A self-lubricating material and an antibacterial material are added to the thermoplastic urethane, which is a thermoplastic elastomer, as an auxiliary means for antifouling, and the film surface is mechanically formed by a mold for antifouling of ships. The ultra-fine protrusion and the riblet-type fine protrusion that reduces the frictional resistance of the ship are simultaneously molded to improve the speed of the ship with an eco-friendly antifouling function and a reduction function of frictional resistance, and an eco-friendly work process compared to the antifouling coating method. As a result, durability is improved and there is an economically useful effect.
그리고, 본 발명은 필름과 초미세돌기 및 리블렛형 미세돌기의 소재가 열가소성 탄성체 합성수지 또는 탄성을 가진 고무로써 선박 항해시 초미세돌기와 리블렛형 미세돌기의 진동 효과가 커서 자기세정 효과가 높고, 선체에 가해지는 난류와 조파의 충격으로 인한 진동을 감쇄할 수 있는 효과가 있다,In addition, in the present invention, the material of the film, ultra-fine protrusions and riblet-type fine protrusions is a thermoplastic elastomer synthetic resin or rubber having elasticity, and the vibration effect of the super-fine protrusions and riblet-type fine protrusions is high when sailing a ship, so that the self-cleaning effect is high, and It has the effect of attenuating the vibration caused by the applied turbulence and the shock of harmonics.
도 1은 상어 비늘의 리블렛 구조를 나타낸 예시도.1 is an exemplary view showing a riblet structure of shark scales.
도 2는 본 발명에 따른 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름의 제조방법을 나타낸 공정도.Figure 2 is a process diagram showing a method of manufacturing an antifouling and low-friction film for ships applying an ultrafine protrusion and a riblet structure according to the present invention.
도 3은 본 발명에 따른 필름의 표면에 가열된 에어를 분사하여 표면을 연화시키는 공정을 나타낸 예시도.3 is an exemplary view showing a process of softening the surface by spraying heated air on the surface of the film according to the present invention.
도 4는 본 발명에 따른 필름의 표면에 롤형 금형을 이용하여 직립형 리블렛용 미세돌기와 초미세돌기를 동시에 성형하는 상태를 나타낸 예시도.Figure 4 is an exemplary view showing a state in which the micro-protrusions and ultra-fine protrusions for an upright riblet are simultaneously molded using a roll-type mold on the surface of the film according to the present invention.
도 5는 본 발명에 따른 필름의 표면에 직립형 리블렛용 미세돌기와 초미세돌기가 성형된 상태를 나타낸 예시도.5 is an exemplary view showing a state in which fine protrusions and ultra-fine protrusions for an upright riblet are molded on the surface of a film according to the present invention.
도 6은 본 발명에 따른 필름의 표면에 성형된 리블렛용 미세돌기 부분을 가열하여 용융점 이하로 연화시키는 상태를 나타낸 예시도.6 is an exemplary view showing a state in which the fine protrusions for riblets molded on the surface of the film according to the present invention are heated to be softened to a melting point or lower.
도 7은 본 발명에 따른 필름을 롤형 가이더 금형 또는 판형 금형으로 통과시켜 리블렛용 미세돌기의 상단을 굴곡 및 냉각시키는 상태를 나타낸 예시도.7 is an exemplary view showing a state of bending and cooling the upper end of the fine protrusions for riblets by passing the film according to the present invention through a roll-type guider mold or a plate-type mold.
도 8은 본 발명에 따른 필름의 표면에 상단부가 휘어진 리블렛형 미세돌기와 독립된 기둥형 초미세돌기가 완성된 상태를 나타낸 예시도.Figure 8 is an exemplary view showing a state in which the upper end of the curved riblet-shaped microprotrusions and independent columnar ultra-fine protrusions are completed on the surface of the film according to the present invention.
도 9는 본 발명에 따른 필름의 표면에 상단부가 휘어진 리블렛형 미세돌기와 격자형상으로 연결된 막대형 초미세돌기를 나타낸 예시도.9 is an exemplary view showing a riblet-shaped microprotrusion with a curved upper end on the surface of the film according to the present invention and a rod-shaped ultrafine protrusion connected in a grid shape.
도 10은 본 발명에 따른 필름의 표면에 리블렛형 미세돌기에 의해 미세와류가 발생되는 상태를 나타낸 예시도.10 is an exemplary view showing a state in which micro vortices are generated by riblet-type microprotrusions on the surface of a film according to the present invention.
도 11은 본 발명에 따른 필름의 표면에 상단부가 휘어진 리블렛형 미세돌기가 격자형으로 배치된 상태를 나타낸 예시도.11 is an exemplary view showing a state in which riblet-shaped microprotrusions with a bent upper end are arranged in a lattice shape on the surface of a film according to the present invention.
도 12는 본 발명에 따른 필름의 표면에 독립된 기둥형 초미세돌기 사이에 리블렛형 미세돌기가 벌집형으로 배치된 상태를 나타낸 예시도.12 is an exemplary view showing a state in which riblet-type microprotrusions are arranged in a honeycomb shape between independent columnar microprotrusions on the surface of the film according to the present invention.
도 13은 본 발명에 따른 필름의 표면에 격자형상으로 연결된 막대형 초미세돌기 사이에 리블렛형 미세돌기가 벌집형으로 배치된 상태를 나타낸 예시도.13 is an exemplary view showing a state in which riblet-shaped microprotrusions are arranged in a honeycomb shape between rod-shaped microprotrusions connected in a grid shape to the surface of the film according to the present invention.
도 14는 본 발명에 따른 필름의 연결상태를 나타낸 예시도.14 is an exemplary view showing a connection state of the film according to the present invention.
<부호의 설명><Explanation of code>
100 : 필름100: film
200 : 리블렛용 미세돌기200: fine protrusion for riblet
300 : 리블렛형 미세돌기300: Riblet-type fine protrusion
400 : 독립된 기둥형 초미세돌기400: independent columnar ultrafine protrusion
500 : 격자형상으로 연결된 막대형 초미세돌기500: rod-shaped ultra-fine protrusions connected in a grid shape
600 : 가열 에어분사기600: heating air injector
700 : 롤형 금형700: roll mold
701 : 리블렛용 미세돌기 성형용 홈701: Groove for forming fine protrusions for riblets
702 : 기둥형 초미세돌기 성형용 홈702: groove for forming columnar ultrafine protrusions
710 : 롤형 가이더 금형710: Roll type guider mold
800 : 필름연결홈부800: film connection groove
900 : 연결용필름900: connection film
자기윤활성물질 및 항균물질이 첨가되어 선박의 수선 아래 선체에 접착되는 필름(100); 상기 필름(100)의 표면에 직립형 리블렛용 미세돌기(200)가 돌출되며, 상기 직립형 리블렛용 미세돌기(200)의 상단부를 후공정인 연화공정에서 상어 비늘과 같은 방향으로 휘어지게 하여 리블렛형 구조로 변형하며, 유연성 및 탄성을 가진 소재의 특성으로 물과의 마찰에 의해 진동이 발생하여 선체 표면의 불안정 상태와 자기세정으로 방오 효율을 높이고, 돌기 사이의 틈새에서 발생되는 미세와류는 유체역학적으로 마찰저항을 저감시키는 리블렛형 미세돌기(300); 상기 필름(100) 표면의 리블렛형 미세돌기(300)끼리의 간격이 넓은 공간에는 해양생물체의 유충이 착상할 수 없도록 방오용으로 일정한 크기와 균일한 배열로 리블렛형 미세돌기(300)에 비해 크기가 작게 돌출되는 초미세돌기(400, 500); 를 포함한다.A film 100 to which a self-lubricating material and an antibacterial material are added and adhered to the hull under the waterline of the ship; The upright riblet microprotrusion 200 protrudes from the surface of the film 100, and the upper end of the upright riblet microprotrusion 200 is bent in the same direction as the shark scale in the softening process, which is a post-process, to form a riblet structure. As a characteristic of a material with flexibility and elasticity, vibration is generated due to friction with water, which increases the antifouling efficiency by self-cleaning and instability of the hull surface, and micro vortices generated in the gaps between the protrusions are hydrodynamically Riblet-shaped fine protrusions 300 to reduce frictional resistance; Compared to the riblet-type microprotrusions 300 in a space with a large gap between the riblet-type microprotrusions 300 on the surface of the film 100, a uniform size and uniform arrangement for antifouling so that larvae of marine organisms cannot be implanted. Ultrafine protrusions 400 and 500 protruding small; Includes.
그리고, 선박의 선체에 해양생물체가 부착되는 것을 방지하고, 유체역학적으로 미세와류를 발생시켜 항해시 마찰저항을 저감하여 연료를 절감하기 위하여 유연성이 있는 열가소성수지, 열가소성탄성체 또는 고무를 소재로 자기윤활성물질 및 항균물질을 첨가한 필름(100)의 표면에 마찰저항 저감용으로 직립형인 리블렛용 미세돌기(200)를 성형하고 동시에 리블렛용 미세돌기(200)끼리의 간격이 넓은 공간에는 해양생물체의 유충이 착상할 수 없도록 방오용으로 리블렛용 미세돌기(200)에 비해 크기가 작은 초미세돌기(400, 500)를 일정한 크기와 균일한 배열로 동일한 금형에서 기계적으로 성형하며, 상기 직립형 리블렛용 미세돌기(200)는 성형의 후공정인 연화공정에서 돌기의 상단부를 상어 비늘과 같은 방향으로 굴곡하여 돌기의 상단부가 휘어진 리블렛형 미세돌기(300) 구조로 변형시킴으로써 초미세돌기(400, 500)에 의한 물리적 방오 기능과 리블렛형 미세돌기(300)에 의한 마찰저항 저감 기능을 동시에 수행하며, 무동력선인 바지선(barge)과 정지된 해양구조물에는 방오용으로 초미세돌기(400, 500)만 성형한다.In order to prevent the adhering of marine organisms to the ship's hull, and to reduce the frictional resistance during voyage by generating a hydrodynamic micro-vortex, self-lubricating flexible thermoplastic resin, thermoplastic elastomer, or rubber as a material is used. A larva of marine organisms is formed on the surface of the film 100 to which a substance and an antibacterial substance is added, to reduce frictional resistance, and at the same time, in the space where the distance between the microprotrusions 200 for the riblet is wide. To prevent this from being implanted, ultra-fine protrusions (400, 500), which are smaller in size than the fine protrusions 200 for riblets, are mechanically molded in the same mold with a certain size and uniform arrangement for antifouling purposes, and the fine protrusions for the upright riblet In the softening process, which is a post-molding process, the upper end of the protrusion is bent in the same direction as the shark scale, and the upper end of the protrusion is transformed into a curved riblet-shaped microprotrusion 300 structure. The physical antifouling function and the frictional resistance reduction function by the riblet-type microprotrusion 300 are simultaneously performed, and only the ultrafine protrusions 400 and 500 are molded for antifouling in the barge, which is a non-powered ship, and the stationary offshore structure.
또한, 선박의 선체에 해양생물체가 부착되는 것을 방지하고, 유체역학적으로 미세와류를 발생시켜 항해시 마찰저항을 저감하여 연료를 절감하기 위하여 유연성이 있는 열가소성수지, 열가소성탄성체 또는 고무를 소재로 자기윤활성물질 및 항균물질을 첨가한 필름(100)의 표면에 마찰저항 저감용으로 직립형인 리블렛용 미세돌기(200)와 동시에 리블렛용 미세돌기(200)끼리의 간격이 넓은 공간에는 해양생물체의 유충이 착상할 수 없도록 방오용으로 리블렛용 미세돌기(200)에 비해 크기가 작은 초미세돌기(400, 500)를 성형하기 위해서 롤형 금형(700) 외주면에 리블렛용 미세돌기(200)를 성형하기 위한 리블렛용 미세돌기 성형용 홈(701)이 일정한 간격으로 구비되며, 상기 리블렛용 미세돌기 성형용 홈(701)과 리블렛용 미세돌기 성형용 홈(701) 사이에 초미세돌기(400, 500)를 성형하기 위한 초미세돌기 성형용 홈(702)이 구비된 롤형 금형(700)에 의해서 일정한 크기와 균일한 배열로 기계적으로 성형하며, 상기 직립형 리블렛용 미세돌기(200)는 성형의 후공정인 연화공정에서 돌기의 상단부를 상어 비늘과 같은 방향으로 굴곡하여 돌기의 상단부가 휘어진 리블렛형 미세돌기(300) 구조로 변형시킴으로써 초미세돌기(400, 500)에 의한 물리적 방오 기능과 리블렛형 미세돌기(300)에 의한 마찰저항 저감 기능을 동시에 수행한다.In addition, in order to prevent the attachment of marine organisms to the ship's hull, and to reduce the frictional resistance during navigation by generating a hydrodynamic micro-vortex, it is self-lubricating with flexible thermoplastic resin, thermoplastic elastomer, or rubber as a material. On the surface of the film 100 to which substances and antibacterial substances are added, larvae of marine organisms are implanted in a space with a large gap between the upright riblet microprotrusions 200 and the riblet microprotrusions 200, which are upright for reducing frictional resistance. For antifouling, for forming the micro-protrusions (400, 500), which are smaller in size than the micro-protrusions (200) for the riblet, so that they cannot be prevented, for the riblet to form the micro-protrusions (200) for the riblet on the outer circumference of the roll-type mold (700). The micro-protrusions forming grooves 701 are provided at regular intervals, and the micro-protrusions 400 and 500 are formed between the grooves 701 for forming the fine protrusions for the riblet and the grooves 701 for forming the micro protrusions for the riblets. It is mechanically molded into a uniform size and uniform arrangement by a roll-type mold 700 equipped with a groove 702 for forming ultra-fine protrusions, and the fine protrusions 200 for the upright riblet are formed in the softening process, which is a post-forming process. By bending the upper end of the protrusion in the same direction as the shark scale and transforming the upper end of the protrusion into a curved riblet-type microprotrusion 300 structure, the physical antifouling function by the ultrafine protrusions 400 and 500 and the riblet-type microprotrusion 300 It simultaneously performs the function of reducing frictional resistance.
본 발명의 바람직한 실시예를 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.The preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명에 따른 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름은 자기윤활성물질 및 항균물질을 첨가하여 선박의 수선 아래 선체에 접착되는 필름(100)이 구비되며, 상기 필름(100)의 표면에 직립형 리블렛용 미세돌기(200)가 돌출되며, 상기 직립형 리블렛용 미세돌기(200)의 상단부를 도 1에 도시된 바와 같이 상어 비늘과 같은 방향으로 휘어지게 하여 리블렛형 구조로 변형하며, 유연성 및 탄성을 가진 소재의 특성으로 물과의 마찰에 의해 진동이 발생하여 선체 표면의 불안정 상태와 자기세정으로 방오 효율을 높이고, 도 10에 도시된 바와 같이 돌기 사이의 틈새에서 발생되는 미세와류는 유체역학적으로 마찰저항을 저감시키는 리블렛형 미세돌기(300)가 구비되고, 상기 리블렛형 미세돌기(300)끼리의 간격이 넓은 공간에는 해양생물체의 유충이 착상할 수 있기 때문에 방오용으로 리블렛형 미세돌기(300)에 비해서 크기가 작고 균일하게 배열되어 돌출되는 초미세돌기(400, 500)가 구비된다.The antifouling and low friction film for ships applying the ultrafine protrusion and riblet structure according to the present invention includes a film 100 that is adhered to the hull under the waterline of the ship by adding a self-lubricating material and an antibacterial material, and the film 100 ), the upright riblet microprotrusion 200 protrudes, and the upper end of the upright riblet microprotrusion 200 is bent in the same direction as the shark scale as shown in FIG. 1 to transform it into a riblet-shaped structure. , As a characteristic of a material having flexibility and elasticity, vibration is generated due to friction with water, thereby increasing the antifouling efficiency through the unstable state of the hull surface and self-cleaning, and micro vortices generated in the gap between the protrusions as shown in FIG. Is provided with a riblet-type microprotrusion 300 that reduces frictional resistance hydrodynamically, and a larva of marine organisms can be implanted in a space where the distance between the riblet-type microprotrusions 300 is wide, so it is a riblet-type for antifouling. Compared to the microprotrusions 300, the ultrafine protrusions 400 and 500 are provided that are uniformly arranged and protrude in size.
그리고, 본 발명에 따른 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름의 제조방법은 도 2에 도시된 바와 같이 자기윤활성물질 및 항균물질이 첨가된 필름(100) 소재를 준비하는 단계(S100), 필름(100) 소재를 평면필름으로 성형하는 단계(S200), 상기 평면필름(100)의 표면을 도 3과 같이 가열 에어분사기(600)를 이용하여 용융점 이하로 가열하여 연화시키는 단계(S300), 도 4와 같이 시트 제조기(sheet making M/C, 롤금형 700)을 이용하여 표면이 연화된 평면필름(100)의 상부에 초미세돌기(400, 500)와 직립형 리블렛용 미세돌기(200)를 성형하는 단계(S400), 성형된 직립형 리블렛용(用) 미세돌기(200) 상단 부분을 용융점 이하로 가열하여 연화시키는 단계(S500), 초미세돌기(400, 500)와 직립형 리블렛용 미세돌기(200) 부분이 연화된 필름(100)을 롤형 가이더 금형(710) 또는 판형 금형으로 통과시켜 리블렛용 미세돌기(200)의 상단을 굴곡시키면서 동시에 냉각시키는 단계(S600), 필름의 표면에 초미세돌기(400, 500) 및 리블렛형(形) 미세돌기(300)를 완성하는 단계(S700)를 포함한다.And, the manufacturing method of the antifouling and low friction film for ships applying the ultrafine protrusion and riblet structure according to the present invention is to prepare a film 100 material to which a self-lubricating material and an antibacterial material are added as shown in FIG. Step (S100), forming the material of the film 100 into a flat film (S200), heating the surface of the flat film 100 to a melting point or less using a heating air sprayer 600 as shown in FIG. 3 to soften it. Step (S300), using a sheet making machine (sheet making M/C, roll mold 700) as shown in FIG. The step of forming the protrusion 200 (S400), the step of heating the upper portion of the molded upright riblet to a melting point below the melting point to soften the upper part (S500), the ultrafine protrusions 400 and 500 and the upright type Step of simultaneously cooling the film 100 in which the portion of the fine protrusions 200 for the riblet is softened through a roll-type guider mold 710 or a plate-shaped mold to bend and simultaneously cool the upper end of the fine protrusions 200 for the riblet (S600), It includes a step (S700) of completing the microprotrusions 400 and 500 and the riblet-shaped microprotrusions 300 on the surface.
또한, 상기와 같이 일정한 크기와 균일한 배열로 성형되는 초미세돌기(400, 500)와 리블렛형 미세돌기(300)를 도장공법으로 구현하는 것은 기술적으로 불가능하기 때문에 본 발명과 같이 초미세돌기(400, 500)와 리블렛형 미세돌기(300)를 금형에 의해서 정밀하게 성형시킨 필름(100)으로 제조하여 선체에 접착하는 방법으로만 가능하다.In addition, since it is technically impossible to implement the ultra-fine protrusions 400 and 500 and the riblet-type fine protrusions 300 that are molded in a uniform size and in a uniform arrangement as described above, it is technically impossible, as in the present invention. 400, 500) and the riblet-shaped microprotrusions 300 are manufactured with a film 100 that is precisely molded by a mold and adhered to the hull.
본 발명은 해양생물체가 부착되는 것을 방지하고, 유체역학적으로 미세와류를 발생시켜, 항해시 마찰저항을 저감하여 연료를 절감하기 위하여 유연성이 있는 열가소성수지, 열가소성탄성체 또는 고무를 소재로 자기윤활성물질 및 항균물질을 첨가한 필름(100)의 표면에 도 4에 도시된 바와 같이 롤형 금형 표면에 독립된 기둥형 초미세돌기 성형용 홈(702) 및 직립형 리블렛용 미세돌기 성형용 홈(701)이 가공된 롤형 금형(700)을 이용하여 마찰저항 저감용으로 직립형인 리블렛용 미세돌기(200)와, 동시에 리블렛용 미세돌기(200)끼리의 간격이 넓은 공간에는 해양생물체의 유충이 착상할 수 없도록 방오용으로 리블렛용 미세돌기(200)에 비해 크기가 작은 초미세돌기(400, 500)를 성형하기 위해서 롤형 금형(700)의 외주면에 리블렛용 미세돌기(200)를 성형하기 위한 리블렛용 미세돌기 성형용 홈(701)이 일정한 간격으로 구비되며, 상기 리블렛용 미세돌기 성형용 홈(701)과 리블렛용 미세돌기 성형용 홈(701) 사이에 초미세돌기(400, 500)를 성형하기 위한 초미세돌기 성형용 홈(702)이 구비된 롤형 금형(700)에 의해서 일정한 크기와 균일한 배열로 기계적으로 성형하며, 상기 직립형 리블렛용 미세돌기(200)는 도 6, 7, 8에 도시된 바와 같이 성형의 후공정인 연화공정에서 직립형 리블렛용 미세돌기(200)의 상단부를 가열, 연화하고, 롤형 가이더 금형(710)을 이용하여 상어 비늘과 같은 방향으로 굴곡하여 돌기의 상단부가 휘어진 리블렛형 구조로 변형시킴으로써 도 8에 도시된 독립된 기둥형 초미세돌기(400) 또는 도 9에 도시된 격자형상으로 연결된 막대형 초미세돌기(500)에 의한 물리적 방오 기능과 리블렛형 미세돌기(300)에 의한 마찰저항 저감 기능을 동시에 수행하게 된다.The present invention prevents the adhering of marine organisms and generates micro vortices hydrodynamically, thereby reducing frictional resistance during navigation to save fuel, using a flexible thermoplastic resin, thermoplastic elastomer, or rubber as a material, and a self-lubricating material and On the surface of the film 100 to which the antimicrobial material is added, as shown in FIG. 4, a groove 702 for forming a columnar ultrafine protrusion and a groove 701 for forming a fine protrusion for an upright riblet are processed as shown in FIG. Antifouling so that larvae of marine organisms cannot be implanted in a space with a large gap between the upright riblet microprotrusions 200 for reducing frictional resistance by using a roll-type mold 700 and at the same time In order to form the micro-protrusions 400 and 500 that are smaller in size than the micro-protrusions 200 for the riblet, for forming the micro-protrusions 200 for the riblet on the outer circumferential surface of the roll-type mold 700 Grooves 701 are provided at regular intervals, and ultra-fine protrusions for forming ultra-fine protrusions 400 and 500 between the groove 701 for forming the fine protrusions for the riblet and the groove 701 for forming the fine protrusions for the riblet Mechanically formed in a uniform size and arrangement by a roll-type mold 700 equipped with a forming groove 702, and the upright riblet microprotrusions 200 are formed as shown in Figs. In the softening process, which is a post-process, the upper end of the upright riblet microprotrusion 200 is heated and softened, and the upper end of the protrusion is transformed into a curved riblet-shaped structure by bending it in the same direction as the shark scale using a roll-type guider mold 710. By doing so, the physical antifouling function by the independent columnar microprotrusions 400 shown in FIG. 8 or the rod-type microprotrusions 500 connected in a grid shape shown in FIG. 9 and frictional resistance due to the riblet microprotrusions 300 It will perform the reduction function at the same time.
즉, 본 발명의 필름(100)에 성형되는 돌기는 초미세돌기(400, 500)와 돌기의 상단 부분이 휘어진 리블렛형 미세돌기(300)의 2종류로써 각각의 크기가 일정하고 조도와 돌기의 배열이 균일하며, 동일한 금형에서 성형되어 방오와 마찰저항 저감의 효율을 동시에 높일 수 있다.That is, the protrusions formed on the film 100 of the present invention are two types of ultra-fine protrusions 400 and 500 and a riblet-type fine protrusion 300 in which the upper part of the protrusion is curved, and each has a constant size and The arrangement is uniform, and it is molded in the same mold to increase the efficiency of antifouling and frictional resistance reduction at the same time.
그리고, 상기 방오용 초미세돌기(400, 500)는 도 8과 도 9에 도시된 바와 같이 독립된 기둥형 초미세돌기(400) 또는 가로 세로 격자 형상으로 연결된 막대형 초미세돌기(500) 중 선택된 어느 하나로 돌기의 높이 및 기둥의 굵기 또는 막대의 두께는 5~40㎛이며, 초미세돌기와 초미세돌기 사이의 간격은 해양생물체 유충의 착상을 방지하기 위해 0.5~20㎛로 실시하는 것이 바람직하며, 상기 초미세돌기(400, 500)는 돌기의 크기가 마이크로미터(㎛) 단위로써 작은 표면적과 돌기끼리의 간격인 틈새가 해양생물체의 유충 크기보다 작아 유충의 착상에 필요한 공간을 제공하지 않게 되어 유충의 착상을 방지하여 물리적으로 방오를 할 수 있다.In addition, the antifouling ultra-fine protrusions 400 and 500 are selected from independent columnar ultra-fine protrusions 400 or rod-shaped ultra-fine protrusions 500 connected in a horizontal and vertical grid shape as shown in FIGS. 8 and 9. In either case, the height of the protrusion and the thickness of the column or the thickness of the rod are 5 to 40 μm, and the interval between the ultra-fine protrusion and the super-fine protrusion is preferably 0.5 to 20 μm to prevent implantation of marine organisms larva, The ultrafine protrusions 400 and 500 have a small surface area and a gap between the protrusions in the unit of micrometers (㎛), which are smaller than the size of the larvae of marine organisms, and thus do not provide a space necessary for implantation of the larvae. It can be physically antifouling by preventing the implantation of.
한편, 도 10에 도시된 바와 같이 리블렛형 미세돌기(300) 끼리의 간격인 틈새에서 발생하는 미세와류인 작은 소용돌이는 선체 외벽의 난류와의 사이에서 방파제와 같은 역할을 함으로써 유체역학적으로 마찰저항을 줄여서 상어와 같이 선박의 속도를 높이기 때문에 리블렛형으로 상단 부분이 휘어진 리블렛형 미세돌기(300)와 이웃하는 리블렛형 미세돌기(300)의 사이에는 일정한 간격이 유지되어야 한다.On the other hand, as shown in FIG. 10, a small eddy, which is a micro vortex that occurs in a gap between the riblet-type microprotrusions 300, acts like a breakwater between the turbulence of the outer wall of the hull, thereby increasing frictional resistance hydrodynamically. Since the speed of the ship is reduced by reducing it, a certain distance must be maintained between the riblet-shaped microprotrusion 300, which has a curved upper part in a riblet-like shape, and the neighboring riblet-type microprotrusion 300, to increase the speed of the ship.
따라서, 마찰저항 저감용으로 직립형인 리블렛용 미세돌기(200)는 기둥형상으로 굵기는 900㎛ 이하, 높이는 2.0mm 이하로써 초미세돌기보다 높이가 높으며, 성형 후 연화공정에서 리블렛용 미세돌기(200)의 상단부를 상어 비늘과 같은 방향으로 휘어지게 하여 리블렛형 미세돌기(300)의 구조로 변형하고, 높이가 1000㎛ 이하로 휘어진 리블렛형 미세돌기(300)는 유연성 및 탄성을 가진 소재의 특성으로 물과의 마찰에 의해 진동이 발생하여 선체 표면의 불안정 상태와 자기세정으로 방오 효율을 높인다.Therefore, the fine protrusions 200 for riblets, which are upright for reducing frictional resistance, have a columnar shape with a thickness of 900 µm or less and a height of 2.0 mm or less, which is higher than that of the ultra fine protrusions. ) By bending the upper end of the shark in the same direction as the shark scale, and transforming it into a structure of a riblet-type microprotrusion 300, and the riblet-type microprotrusion 300 bent to a height of 1000㎛ or less, which is a characteristic of a material having flexibility and elasticity. Vibration is generated by friction with water, which increases the antifouling efficiency by self-cleaning and instability of the hull surface.
그리고, 초미세돌기(400, 500)와 돌기(400, 500) 사이에서도 발생되는 초미세와류는 소용돌이 효과가 작지만, 리블렛형 미세돌기(300)와 돌기(300) 사이의 일정한 틈새에서 발생되는 미세와류는 소용돌이 효과가 커서 유체역학적으로 마찰저항 저감 효과를 높일 수 있는 구조로 실시하는 것이 바람직하다.In addition, the ultra-fine vortex generated even between the ultra-fine protrusions 400 and 500 and the protrusions 400 and 500 has a small vortex effect, but the microscopic vortex generated in a certain gap between the riblet-type fine protrusions 300 and the protrusions 300 It is preferable to implement the eddy current in a structure that can increase the effect of reducing frictional resistance hydrodynamically due to a large eddy effect.
즉, 상기와 같이 이격되어 독립된 리블렛형 미세돌기(300)는 틈새에서 미세와류가 발생함과 동시에 물과의 마찰로 진동함으로써 선체 표면은 해양생물체의 유충이 착상하기에는 불안정한 상태가 되고, 진동에 의한 자기세정 효과로 방오 효율을 높일 수 있다.That is, the separate riblet-type microprotrusions 300 separated as described above generate micro vortices in the gap and at the same time vibrate due to friction with water, so that the hull surface becomes unstable for the implantation of larvae of marine organisms. The self-cleaning effect can increase the antifouling efficiency.
한편, 본 출원인은 대한민국 특허등록 제2022443호(명칭:선박 및 해양 구조물용 저마찰 방오 라이닝의 제조방법)를 발명한 바 있다.On the other hand, the present applicant has invented Korean Patent Registration No. 2022443 (name: manufacturing method of low friction antifouling lining for ships and offshore structures).
그러나, 상기와 같은 저마찰 방오 라이닝의 미세돌기는 필름의 표면에서 직립형으로 돌출되어 물과의 마찰에 의해서 상단이 휘어지는데, 오히려 마찰저항이 증가되며, 돌기와 돌기 사이의 간격이 넓어 방오 효율이 낮은 문제점이 있었다.However, the fine protrusions of the low-friction antifouling lining as described above protrude upright from the surface of the film and the upper end is bent due to friction with water, but rather the frictional resistance is increased, and the spacing between the protrusions and the protrusions is wide, so the antifouling efficiency is low. There was a problem.
예를 들어, 크기가 작은 초미세돌기만 존재할 경우, 방오 기능은 우수하지만 리블렛 구조에 의한 마찰저항의 저감 효율은 거의 없고, 리블렛형 미세돌기만 존재할 경우에는 미세와류 발생으로 마찰저항 저감 기능은 우수하지만 초미세돌기에 비해서 크기가 큰 리블렛형 미세돌기끼리의 간격이 넓기 때문에 방오 효율은 낮아진다.For example, if there are only microprotrusions of small size, the antifouling function is excellent, but there is little efficiency in reducing frictional resistance due to the riblet structure, and if there are only riblet-type microprotrusions, the frictional resistance reduction function is achieved due to the occurrence of micro vortices. It is excellent, but the antifouling efficiency is lowered because the spacing between the riblet-shaped microprotrusions, which is larger in size than the ultrafine protrusions, is wide.
따라서, 본 발명에 따른 두 종류의 돌기인 초미세돌기(400, 500)와 리블렛형 미세돌기(300)를 공존시키기 위해서는 동일한 금형에서 성형해야 하며, 리블렛형 미세돌기(300) 끼리의 여백 공간에는 리블렛형 미세돌기(300)에 비해 상대적으로 크기가 작은 초미세돌기(400, 500)를 균일하게 배열하여 성형함으로써 방오와 마찰저항 저감 기능을 동시에 수행할 수 있다.Therefore, in order to coexist with the two types of protrusions according to the present invention, the ultrafine protrusions 400 and 500 and the riblet-type microprotrusion 300, they must be molded in the same mold, and in the blank space between the riblet-type microprotrusions 300 By uniformly arranging and molding the microprotrusions 400 and 500, which are relatively smaller in size than the riblet-type microprotrusions 300, the antifouling and frictional resistance reduction functions can be performed at the same time.
구체적으로 설명하면, 초미세돌기(400, 500) 보다 리블렛형 미세돌기(300)의 굵기가 굵고 높이가 높으며, 리블렛형 미세돌기(300)의 상단 부분이 휘어진 하부 공간과 독립된 리블렛형 미세돌기(300)끼리의 일정한 간격이 필요함으로 틈새가 넓어서 유충이 착상할 수 있는 공간을 제공하기 때문에 이와 같은 공간에 크기가 작은 초미세돌기(400, 500)를 균일하게 성형시킴으로써 필름(100)의 전체 표면에서 방오기능 사각 부분이 발생되는 것을 방지할 수 있다.Specifically, the riblet-type microprotrusions 300 are thicker and higher in height than the ultra-fine protrusions 400 and 500, and the riblet-type microprotrusions independent from the lower space where the upper part of the riblet-type microprotrusions 300 is curved ( 300) Since the gap is wide and provides a space for larvae to implant, as a constant gap between them is required, the entire surface of the film 100 is uniformly formed by uniformly molding the small- sized microprotrusions 400 and 500 in such a space. It is possible to prevent the occurrence of the antifouling function in the blind spot.
그리고, 리블렛형 미세돌기(300)의 상단부분이 휘어지지 않고 직립상태로 존재할 경우, 돌기의 굵기와 높이가 초미세돌기(400, 500)보다 커서 선박 항해시 물과의 마찰에 의한 마찰저항이 증가되는 요인이 되기 때문에 반드시 도 7, 8, 9에 도시된 바와 같이 상어 비늘과 같은 방향으로 굴곡되어야만 도 1과 같이 상어 비늘의 리블렛 구조로써 마찰저항을 줄이면서 미세와류를 발생시키기에도 효과적이다.In addition, when the upper end of the riblet-type microprotrusion 300 is not bent and is in an upright state, the thickness and height of the protrusion are larger than the ultrafine protrusions 400 and 500, so that frictional resistance due to friction with water when sailing a ship is Since it is a factor of increasing, it must be bent in the same direction as the shark scales as shown in Figs. 7, 8, 9, and it is effective to generate micro vortices while reducing frictional resistance as a riblet structure of shark scales as shown in Fig. 1. .
한편, 본발명의 리블렛형 미세돌기(300), 초미세돌기(400, 500)가 성형되는 필름(100)의 소재는 고인장강도와 내마모성이 있는 소재로써 유연성이 있는 나일론(Nylon), 폴리에스터(Polyester)와 같은 열가소성 수지, 그리고 TPU(Thermo Plastic Urethane)와 같은 탄성이 있는 열가소성탄성체(Thermo Plastic Elastomer), 열에 의해 변형이 가능한 천연 또는 합성 고무 중에서 선택되는 1종의 재료로 성형하는 것이 바람직하다.On the other hand, the material of the film 100 on which the riblet-type microprotrusions 300 and the ultrafine protrusions 400 and 500 of the present invention are molded is a material having high tensile strength and abrasion resistance, and is flexible nylon (Nylon), polyester ( It is preferable to mold it with one type of material selected from a thermoplastic resin such as polyester), an elastic thermoplastic elastomer such as TPU (Thermo Plastic Urethane), and a natural or synthetic rubber that can be deformed by heat.
본 발명의 연화공정은 평면필름에 돌기를 성형하기 위한 도 3에 도시된 연화공정 및 직립형인 리블렛용 미세돌기(200)를 리블렛형 구조로 변형하기 위해서 직립 상태의 돌기 상단부를 휘어지게 하는 공정으로 도 6과 도 7에 도시된 바와 같이 용융점 이하 연화온도 범위 내에서 리블렛용 미세돌기(200)를 가열하여 연화한 후, 일정한 높이로 설정된 판 또는 롤형의 이형성이 있는 냉각된 가이더(guider) 금형(710)을 통과시켜서 굴곡과 동시에 냉각하여 일정한 높이로 돌기의 상단부가 휘어져 리블렛형 미세돌기(300)의 구조를 갖는다.The softening process of the present invention is a process of bending the upper end of the protrusion in an upright state in order to transform the softening process shown in FIG. 3 for forming the protrusion on a flat film and the fine protrusion 200 for an upright riblet into a riblet-shaped structure. 6 and 7, after heating and softening the fine protrusions 200 for riblets within the softening temperature range below the melting point, a cooled guider mold having a plate or roll-shaped release property set to a certain height ( It passes through 710 and cools at the same time as it is bent, so that the upper end of the protrusion is bent to a certain height, thereby having a structure of a riblet-shaped fine protrusion 300.
그리고, 초미세돌기(400, 500) 및 리블렛형 미세돌기(300)가 성형되는 필름(100)의 표면을 윤활하게 하여 방오 효율을 높이고, 선박의 선속을 높이기 위하여 저마찰용으로 자기윤활성 물질인 이황화몰리브덴(MoS2), 이황화텅스텐(WS2), 흑연(Graphite), 육방정계질화붕소(h-BN) 또는 탈크(Talc)의 고체 윤활제 미분말 중 하나의 종을 첨가제로 첨가하는 것이 바람직하다.And, by lubricating the surface of the film 100 on which the ultra-fine protrusions 400 and 500 and the riblet-type fine protrusions 300 are formed, the antifouling efficiency is increased, and in order to increase the ship's speed, the self-lubricating material, which is a self-lubricating material, is used for low friction. It is preferable to add one of the solid lubricant fine powders of molybdenum disulfide (MoS2), tungsten disulfide (WS2), graphite, hexagonal boron nitride (h-BN) or talc (Talc) as an additive.
그리고, 항균물질은 해양생물체의 방오를 위해 물리적으로 방오하는 초미세돌기(400, 500)와 리블렛형 미세돌기(300) 외에 보조적 수단으로써, 항균제인 은(Ag), 구리(Cu), 아연(Zn) 또는 은(Ag), 구리(Cu), 아연(Zn) 화합물의 미분말 또는 제올라이트(Zeolite)에 항균제를 포함하고, 발수 기능을 위해 소수성화하며, 상기 항균제 중 1종 또는 2종 이상을 첨가하는 것이 바람직하다.In addition, the antimicrobial material is an auxiliary means in addition to the ultrafine protrusions 400 and 500 physically antifouling for antifouling of marine organisms and the riblet microprotrusion 300, as antibacterial agents silver (Ag), copper (Cu), zinc ( Zn) or silver (Ag), copper (Cu), zinc (Zn) fine powder or zeolite containing an antimicrobial agent, hydrophobicized for water repellency, and added one or two or more of the antimicrobial agents It is desirable to do it.
본 발명에 따른 초미세돌기(400, 500) 및 리블렛형 미세돌기(300)가 성형되는 필름(100)의 소재가 고인장강도와 내마모성이 우수하기 때문에 첨가되는 자기윤활성물질과 향균물질의 박리나 용출로 인한 해양환경 오염의 우려가 적으며, 상대적으로 방오도료는 표면 경도가 낮아서 박리에 의한 해양 환경 오염의 우려가 크다.Separation or elution of self-lubricating substances and antibacterial substances added because the material of the film 100 on which the ultrafine protrusions 400 and 500 and the riblet-shaped fine protrusions 300 according to the present invention are formed is excellent in high tensile strength and abrasion resistance There is little concern about pollution of the marine environment due to this, and since the surface hardness of antifouling paint is relatively low, there is a great concern about pollution of the marine environment due to peeling.
그리고, 소재가 열가소성탄성체의 일종인 TPU(열가소성우레탄) 또는 고무와 같은 탄성체인 경우는 선박 항해시 돌기부분이 물과의 마찰로 인해서 진동을 크게하여 자기세정 효과가 높고, 선체에 가해지는 난류와 조파에 의한 충격을 탄성체 소재가 감쇄하는 효과가 있다.And, in the case where the material is an elastic material such as TPU (thermoplastic urethane) or rubber, which is a kind of thermoplastic elastomer, the protrusion part during sailing a ship increases vibration due to friction with water, so that the self-cleaning effect is high, and the turbulence applied to the hull and The elastic material has the effect of attenuating the impact caused by harmonics.
본 발명에 따른 필름(100)의 기계적 성형은 카렌다 성형기(Sheet making M/CMechanical molding of the film 100 according to the present invention is carried out by a calendar molding machine (Sheet making M/C).
즉 calendar M/C, 롤형 금형 700), 진공성형, 가열압축성형의 방법 중에서 선택되는 어느 하나의 방식으로 이루어지고, 상기 금형은 레이저, 부식법(Etching) 및 방전가공 방식으로 제조한다.That is, calendar M/C, roll-type mold 700), vacuum molding, and heat-compression molding are performed in any one of the methods, and the mold is manufactured by laser, etching, and electric discharge processing.
그리고, 상기 초미세돌기(400, 500)와 리블렛용 미세돌기(200)는 동일한 금형에서 동시에 성형하며 직립상태로 성형되어지는 리블렛용 미세돌기(200)는 후공정에서 굴곡하여 돌기의 상단 부분이 휘어지는 리블렛형 미세돌기(300)로 변형한다.In addition, the micro-protrusions 400 and 500 and the micro-protrusions 200 for riblets are simultaneously molded in the same mold, and the micro-protrusions for riblets 200, which are formed in an upright state, are bent in a post process so that the upper part of the protrusion is It transforms into a curved riblet-type microprotrusion 300.
상기 후공정은 전술한 바와 같이 연화공정으로써 도 6 및 도 7에 도시된 바와 같이 직립상태의 리블렛용 미세돌기(200)를 용융점 이하 연화온도 범위로 가열한 후, 이형성이 있고, 냉각상태로써 일정한 높이로 설정된 판재 또는 롤형 가이더(guider) 금형(710)을 통과시켜서 굴곡과 동시에 냉각함으로써 돌기의 상단부가 휘어지는 리블렛형 미세돌기(300)로 변형시키는 공정이며, 이때 리블렛용 미세돌기(200)는 초미세돌기(400, 500)의 높이보다 높아서 선택적으로 휘어지게 할 수 있다.The post-process is a softening process as described above, and after heating the upright riblet microprotrusions 200 in an upright state to a softening temperature range below the melting point, as shown in FIGS. 6 and 7, there is releasability, and there is a constant cooling state. It is a process in which the upper end of the protrusion is transformed into a riblet-shaped fine protrusion 300 in which the upper end of the protrusion is bent by passing through a plate material or roll-type guider mold 710 set to the height and cooling at the same time. It is higher than the height of the fine protrusions 400 and 500 and can be selectively bent.
평면필름(100)에 돌기를 성형하기 위한 연화공정과 상기와 같이 직립상태의 돌기를 굴곡하기 위한 연화공정의 가열방법은 비접촉식으로 가열공기의 분사, 복사열을 이용한 가열 및 접촉식으로 열전도를 위한 롤형의 가열장치를 통과시켜서 가열하며 그 중 한 가지 가열방법을 선택하여 실시하는 것이 바람직하다.The softening process for forming the protrusions on the flat film 100 and the heating method of the softening process for bending the upright protrusions as described above are non-contact type by spraying heated air, heating using radiant heat, and a contact type roll type for heat conduction. It is heated by passing it through the heating device of, and it is preferable to select and carry out one of the heating methods.
본 발명의 초미세돌기(400, 500)는 서로 이격되어 독립된 기둥형(400) 또는 격자형으로 연속되는 돌기로써 막대형(Bar type, 500)으로 하되, 돌기의 높이 및 기둥의 굵기 또는 막대의 두께는 5~40㎛이며, 초미세돌기와 초미세돌기 사이의 간격은 0.5~20㎛로 해양생물의 유충이 착상할 수 있는 공간을 최소화해서 필름(100)의 전체 표면에서 일정한 크기와 균일한 배열로 성형을 하며, 기둥형 또는 막대형 중 한가지를 선택한다.The ultrafine protrusions 400 and 500 of the present invention are separated from each other and are independent columnar 400 or a bar type 500 as a continuous protrusion in a grid type, but the height of the protrusion and the thickness of the column or the bar The thickness is 5~40㎛, and the interval between the ultrafine protrusions and the superfine protrusions is 0.5~20㎛, minimizing the space for larvae of marine organisms to implant, so that the film 100 has a uniform size and uniform arrangement on the entire surface. It is molded with, and chooses either a column shape or a rod shape.
또한, 리블렛용 미세돌기(200)는 기둥형상으로써, 크기는 선체 위치별 물의 저항에 따라서 차이가 있고, 기둥의 굵기는 900㎛ 이하, 높이는 2.0mm 이하이며, 후공정인 연화공정에서 돌기 상단부가 휘어져 높이가 1000㎛ 이하인 리블렛형 미세돌기(300)로 변형하는 것이 바람직하다.In addition, the fine protrusions 200 for riblets are in the shape of a column, and the size varies according to the resistance of water for each position of the hull, and the thickness of the column is 900 µm or less, and the height is 2.0 mm or less, and the upper end of the protrusion is It is preferable to bend and transform into a riblet-shaped microprotrusion 300 having a height of 1000 μm or less.
그리고, 초미세돌기(400, 500)가 균일하게 배열된 필름(100)의 전체 표면에 리블렛형 미세돌기(300)가 성형되며, 그 배열은 도 8, 9 또는 도 12, 13에 도시된 바와 같이 격자형(grid pattern) 또는 이웃하는 돌기와 간격을 일정하게 하기 위하여 벌집형(honey comb pattern) 구조로 배치하며, 그 중 한가지를 선택하여 실시하는 것이 바람직하다.Further, the riblet-shaped microprotrusions 300 are molded on the entire surface of the film 100 in which the ultrafine protrusions 400 and 500 are uniformly arranged, and the arrangement is as shown in FIGS. Likewise, it is arranged in a grid pattern or in a honeycomb pattern in order to make the gaps with neighboring protrusions constant, and it is preferable to select one of them.
한편, 본 발명의 필름(100)은 도 14에 도시된 바와 같이 선체에 복수개가 상하좌우 방향으로 연결 배치되어 접착제로 접착되되, 각 필름(100)의 연결부위에는 접착면적 증대로 인한 접착력 강화와 수밀성을 높이기 위해 밀착되는 필름(100)의 경계면을 계단식 구조로 하여 계단의 하단부는 서로 밀착되며, 경계면 사이의 상부 공간에는 필름연결홈부(800)를 구비하여 필름(100)의 1/2 두께의 연결용필름(900)을 상기 필름연결홈부(800)에 접착함으로써 접착력과 수밀성을 높일 수 있도록 실시할 수 있다.On the other hand, the film 100 of the present invention is a plurality of the hull as shown in Fig. 14 are connected and arranged in the vertical, left and right direction to be bonded with an adhesive, and the connection portion of each film 100 is strengthened due to the increase in the adhesive area and In order to increase watertightness, the interface of the film 100 that is in close contact with each other is formed in a stepped structure, so that the lower ends of the steps are in close contact with each other, and a film connection groove 800 is provided in the upper space between the interface to have a thickness of 1/2 of the film 100. By adhering the connection film 900 to the film connection groove 800, the adhesion and watertightness may be improved.
이와 같은 본 발명의 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰필름 및 그 제조방법은 연꽃잎효과를 응용하여 필름의 표면에 해양생물체의 유충보다 크기가 작은 초미세돌기를 성형하여 유충이 착상할 수 있는 공간을 제공하지 않음으로써 물리적인 방법으로 친환경 방오함과 동시에 방오 효율에 비례하는 만큼의 마찰저항 감소로 인해 연료 손실을 방지할 수 있으며, 상어 비늘의 리블렛 구조를 응용하여 리블렛형 미세돌기를 필름의 표면에 성형하여 유체역학적으로도 마찰저항을 저감시켜 선박의 연료를 절감할 수 있으며, 필름에 초미세돌기와 리블렛형 미세돌기를 동일한 금형에서 동시에 성형함으로써 방오 기능을 갖게 하여 선박의 수선 하부에 해양생물체가 부착되는 것을 방지하고, 선박 항해시 물과의 마찰저항을 저감시켜 연료를 절감시킬 수 있는 2가지 기능을 동시에 구현할 수 있으며, 필름을 선체에 부착하여 친환경 방오와 유체역학적인 마찰저항을 저감시킬 수 있는 것이다.The antifouling and low-friction film for ships applying the ultrafine protrusions and riblet structure of the present invention and its manufacturing method apply a lotus leaf effect to form ultrafine protrusions smaller in size than the larvae of marine organisms on the surface of the film. By not providing a space for larvae to implant, it is environmentally friendly antifouling by a physical method, and at the same time, fuel loss can be prevented due to a reduction in frictional resistance proportional to the antifouling efficiency, and the riblet structure of shark scales is applied. By forming the riblet-shaped microprotrusions on the surface of the film, you can reduce the frictional resistance hydrodynamically to save fuel on the ship, and by molding the ultra-fine protrusions and the riblet-shaped microprotrusions on the film at the same time in the same mold, they have an antifouling function. It prevents marine organisms from adhering to the bottom of the ship's waterline, reduces the frictional resistance with water when sailing the ship to save fuel, and implements two functions at the same time, and eco-friendly antifouling and fluid by attaching a film to the hull. It is possible to reduce the mechanical frictional resistance.
앞에서, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안 되며, 변형된 실시예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.In the above, although specific embodiments of the present invention have been described and illustrated, the present invention is not limited to the described embodiments, and various modifications and variations can be made without departing from the spirit and scope of the present invention. It is self-evident to those who have. Therefore, such modifications or variations should not be individually understood from the technical spirit or viewpoint of the present invention, and the modified embodiments should be said to belong to the claims of the present invention.
본 발명은, 2종의 생체모방기술을 응용하되, 생체모방기술인 연꽃잎효과(Lotus Effect)를 응용한 초(超)미세돌기를 필름에 성형하여 물리적인 방오 기능을 갖게함으로써 선박의 수선 하부 선체에 해양생물체가 부착되는 것을 방지함과 동시에 상어 비늘의 리블렛(Riblet) 구조를 응용한 리블렛형 미세돌기를 초미세돌기가 성형된 필름에 동시에 성형하여 미세와류를 발생시킴으로써 유체역학적으로 물과의 마찰저항을 저감시켜 연료를 절감하고, 리블렛형 미세돌기가 없는 여백 공간에는 ㎛ 단위 크기인 해양생물체 유충의 부착을 방지하기 위해서 리블렛형 미세돌기보다 크기가 작은 복수의 초미세돌기를 균일하게 성형하고, 필름의 뒷면에는 접착제를 도포하여 선박의 수선 아래 선체에 접착하여 친환경적인 방오와 유체역학적인 마찰저항을 감소시킬 수 있으며, 유충이 착상할 수 있는 공간을 제공하지 않고, 미세와류 발생에 의한 마찰저항을 저감시켜 선박의 연료를 절감할 수 있는 최적의 발명이다.The present invention applies two kinds of biomimetic technologies, but by forming superfine protrusions applying the lotus effect, which is a biomimetic technology, into a film to have a physical antifouling function, At the same time, it prevents marine organisms from adhering to the surface, and simultaneously molds the riblet-type microprotrusions that apply the riblet structure of shark scales to the film formed with ultra-fine protrusions to generate micro vortices. In order to save fuel by reducing frictional resistance, and to prevent attachment of marine organisms larvae in µm unit size in the blank space without riblet-type microprotrusions, a plurality of ultra-fine protrusions, which are smaller in size than the riblet-type microprotrusions, are uniformly molded. , By applying adhesive on the back side of the film and bonding it to the hull under the waterline of the ship, it is possible to reduce environmentally friendly antifouling and hydrodynamic frictional resistance, and does not provide a space for larvae to implant, and friction due to the occurrence of micro vortices. It is an optimal invention that can reduce the resistance and save fuel of the ship.

Claims (11)

  1. 자기윤활성물질 및 항균물질이 첨가되어 선박의 수선 아래 선체에 접착되는 필름(100);A film 100 to which a self-lubricating material and an antibacterial material are added and adhered to the hull under the waterline of the ship;
    상기 필름(100)의 표면에 직립형 리블렛용 미세돌기(200)가 돌출되며, 상기 직립형 리블렛용 미세돌기(200)의 상단부를 후공정인 연화공정에서 상어 비늘과 같은 방향으로 휘어지게 하여 리블렛형 구조로 변형하며, 유연성 및 탄성을 가진 소재의 특성으로 물과의 마찰에 의해 진동이 발생하여 선체 표면의 불안정 상태와 자기세정으로 방오 효율을 높이고, 돌기 사이의 틈새에서 발생되는 미세와류는 유체역학적으로 마찰저항을 저감시키는 리블렛형 미세돌기(300);The upright riblet microprotrusion 200 protrudes on the surface of the film 100, and the upper end of the upright riblet microprotrusion 200 is bent in the same direction as the shark scale in the softening process, which is a post-process, to form a riblet structure. As a characteristic of a material with flexibility and elasticity, vibration is generated due to friction with water, which increases the antifouling efficiency by self-cleaning and instability of the hull surface, and micro vortices generated in the gaps between the protrusions are hydrodynamically Riblet-shaped fine protrusions 300 to reduce frictional resistance;
    상기 필름(100) 표면의 리블렛형 미세돌기(300)끼리의 간격이 넓은 공간에는 해양생물체의 유충이 착상할 수 없도록 방오용으로 일정한 크기와 균일한 배열로 리블렛형 미세돌기(300)에 비해 크기가 작게 돌출되는 초미세돌기(400, 500);Compared to the riblet-type microprotrusions 300 in a space with a large gap between the riblet-type microprotrusions 300 on the surface of the film 100, a uniform size and uniform arrangement for antifouling so that larvae of marine organisms cannot be implanted. Ultrafine protrusions 400 and 500 protruding small;
    를 포함하는 것을 특징으로 하는 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름.Antifouling and low-friction film for ships applying ultrafine protrusions and riblet structures comprising a.
  2. 선박의 선체에 해양생물체가 부착되는 것을 방지하고, 유체역학적으로 미세와류를 발생시켜 항해시 마찰저항을 저감하여 연료를 절감하기 위하여 유연성이 있는 열가소성수지, 열가소성탄성체 또는 고무를 소재로 자기윤활성물질 및 항균물질을 첨가한 필름(100)의 표면에 마찰저항 저감용으로 직립형인 리블렛용 미세돌기(200)를 성형하고 동시에 리블렛용 미세돌기(200)끼리의 간격이 넓은 공간에는 해양생물체의 유충이 착상할 수 없도록 방오용으로 리블렛용 미세돌기(200)에 비해 크기가 작은 초미세돌기(400, 500)를 일정한 크기와 균일한 배열로 동일한 금형에서 기계적으로 성형하며, 상기 직립형 리블렛용 미세돌기(200)는 성형의 후공정인 연화공정에서 돌기의 상단부를 상어 비늘과 같은 방향으로 굴곡하여 돌기의 상단부가 휘어진 리블렛형 미세돌기(300) 구조로 변형시킴으로써 초미세돌기(400, 500)에 의한 물리적 방오 기능과 리블렛형 미세돌기(300)에 의한 마찰저항 저감 기능을 동시에 수행하며, 무동력선인 바지선(barge)과 정지된 해양구조물에는 방오용으로 초미세돌기(400, 500)만 성형하는 것을 특징으로 하는 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름의 제조방법.In order to prevent marine organisms from adhering to the ship's hull and to reduce the frictional resistance during voyage by generating micro vortices hydrodynamically, a self-lubricating material made of flexible thermoplastic resin, thermoplastic elastomer or rubber as a material and On the surface of the film 100 to which the antibacterial material is added, the upright riblet microprotrusions 200 are formed to reduce frictional resistance, and at the same time, the larvae of marine organisms are implanted in the space where the distance between the microprotrusions 200 for the riblet is wide. For antifouling purposes, microprotrusions 400 and 500, which are smaller in size than the fine protrusions 200 for riblets, are mechanically molded in the same mold with a certain size and uniform arrangement, and the fine protrusions for the upright riblet 200 ) Is a physical antifouling due to the ultrafine protrusions 400 and 500 by bending the upper end of the protrusion in the same direction as the shark scale in the softening process, which is a post-molding process, and transforming the upper end of the protrusion into a curved riblet-shaped microprotrusion 300 structure. It performs the function and the function of reducing frictional resistance by the riblet-type fine protrusions 300 at the same time, and it is characterized in that only the ultra-fine protrusions 400 and 500 are molded for antifouling purposes in a barge, which is a non-powered ship, and a stationary offshore structure. Method for producing antifouling and low friction film for ships using ultrafine protrusion and riblet structure.
  3. 선박의 선체에 해양생물체가 부착되는 것을 방지하고, 유체역학적으로 미세와류를 발생시켜 항해시 마찰저항을 저감하여 연료를 절감하기 위하여 유연성이 있는 열가소성수지, 열가소성탄성체 또는 고무를 소재로 자기윤활성물질 및 항균물질을 첨가한 필름(100)의 표면에 마찰저항 저감용으로 직립형인 리블렛용 미세돌기(200)와 동시에 리블렛용 미세돌기(200)끼리의 간격이 넓은 공간에는 해양생물체의 유충이 착상할 수 없도록 방오용으로 리블렛용 미세돌기(200)에 비해 크기가 작은 초미세돌기(400, 500)를 성형하기 위해서 롤형 금형(700) 외주면에 리블렛용 미세돌기(200)를 성형하기 위한 리블렛용 미세돌기 성형용 홈(701)이 일정한 간격으로 구비되며, 상기 리블렛용 미세돌기 성형용 홈(701)과 리블렛용 미세돌기 성형용 홈(701) 사이에 초미세돌기(400, 500)를 성형하기 위한 초미세돌기 성형용 홈(702)이 구비된 롤형 금형(700)에 의해서 일정한 크기와 균일한 배열로 기계적으로 성형하며, 상기 직립형 리블렛용 미세돌기(200)는 성형의 후공정인 연화공정에서 돌기의 상단부를 상어 비늘과 같은 방향으로 굴곡하여 돌기의 상단부가 휘어진 리블렛형 미세돌기(300) 구조로 변형시킴으로써 초미세돌기(400, 500)에 의한 물리적 방오 기능과 리블렛형 미세돌기(300)에 의한 마찰저항 저감 기능을 동시에 수행하는 것을 특징으로 하는 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름의 제조방법.A self-lubricating material made of flexible thermoplastic resin, thermoplastic elastomer, or rubber as a material to prevent marine organisms from adhering to the ship's hull and to reduce frictional resistance during navigation by generating micro vortices hydrodynamically. On the surface of the film 100 to which an antibacterial substance is added, larvae of marine organisms can be implanted in a space with a large gap between the microprotrusions 200 for riblets, which are upright for reducing frictional resistance, and the microprotrusions 200 for riblets at the same time. In order to form the micro-protrusions 400 and 500 that are smaller in size than the micro-protrusions 200 for the riblet for antifouling purposes, the fine protrusions for the riblet to form the micro-protrusions 200 for the riblet on the outer peripheral surface of the roll-type mold 700 Forming grooves 701 are provided at regular intervals, and a second for forming ultra-fine protrusions 400 and 500 between the groove 701 for forming the fine protrusions for the riblet and the groove 701 for forming the fine protrusions for the riblet. The fine protrusions are mechanically formed in a uniform size and arrangement by a roll-type mold 700 equipped with a groove 702 for forming the fine protrusions, and the micro protrusions 200 for the upright riblets are formed by the softening process, which is a post-molding process. By bending the upper end in the same direction as the shark scale and transforming the upper end of the protrusion into a curved riblet-type microprotrusion 300 structure, the physical antifouling function by the ultrafine protrusions 400 and 500 and friction due to the riblet microprotrusion 300 A method of manufacturing an antifouling and low friction film for ships using an ultra-fine protrusion and a riblet structure, characterized in that it performs a resistance reduction function at the same time.
  4. 청구항 3에 있어서, The method of claim 3,
    상기 방오용 초미세돌기(400, 500)는,The antifouling ultrafine protrusions 400 and 500,
    독립된 기둥형 초미세돌기(400) 또는 가로 세로 격자 형상으로 연결된 막대형 초미세돌기(500) 중 선택된 어느 하나로 돌기의 높이, 기둥의 굵기 또는 막대의 두께는 5~40㎛이며, 초미세돌기와 초미세돌기 사이의 간격은 해양생물 유충의 착상을 방지하기 위해 0.5~20㎛인 것을 특징으로 하는 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름의 제조방법.The height of the protrusion, the thickness of the column, or the thickness of the rod in any one selected from the independent columnar ultrafine protrusions 400 or the rod-shaped superfine protrusions 500 connected in a horizontal and vertical lattice shape is 5 to 40㎛, and the ultrafine protrusions and the superfine protrusions A method of manufacturing an antifouling and low-friction film for ships employing an ultra-fine protrusion and a riblet structure, characterized in that the spacing between the fine protrusions is 0.5 to 20 μm to prevent the implantation of marine organisms larvae.
  5. 청구항 3에 있어서, The method of claim 3,
    상기 마찰저항 저감용인 직립형 리블렛용 미세돌기(200)는,The fine protrusions 200 for upright riblets for reducing frictional resistance,
    기둥형상으로 굵기는 900㎛ 이하, 높이는 2.0mm 이하로 초미세돌기보다 높이가 높도록 성형 후, 연화공정에서 리블렛용 미세돌기(200)의 상단부를 상어 비늘과 같은 방향으로 휘어지게 하여 리블렛형 미세돌기(300) 구조로 변형하며, 높이가 1000㎛ 이하로 휘어진 돌기는 유연성 및 탄성을 가진 소재의 특성으로 물과의 마찰에 의해 진동이 발생하여 선체 표면의 불안정 상태와 자기세정으로 방오 효율을 높이고, 리블렛형 미세돌기(300)와 돌기(300) 사이의 틈새에서 발생되는 미세와류는 유체역학적으로 마찰저항을 저감할 수 있는 구조인 것을 특징으로 하는 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름의 제조방법.After forming a column with a thickness of 900 μm or less and a height of 2.0 mm or less so that the height is higher than that of the ultrafine protrusions, in the softening process, the upper end of the riblet fine protrusion 200 is bent in the same direction as the shark scale, The protrusion is transformed into a structure of the protrusion 300, and the protrusion that is bent to a height of 1000 µm or less is a characteristic of a material having flexibility and elasticity, and vibration is generated by friction with water, thereby increasing the antifouling efficiency through instability of the hull surface and self-cleaning , Micro-vortex generated in the gap between the riblet-type microprotrusions 300 and the protrusions 300 is a structure capable of reducing frictional resistance hydrodynamically. And manufacturing method of low friction film.
  6. 청구항 3에 있어서,The method of claim 3,
    연화공정은 직립형인 리블렛용 미세돌기(200)를 리블렛형 구조로 변형하기 위해서 직립 상태의 돌기 상단부를 휘어지게 하는 공정으로 용융점 이하 연화온도 범위 내에서 돌기를 가열하여 연화한 후, 일정한 높이로 설정된 판 또는 롤형의 이형성이 있는 냉각된 가이더(guider) 금형(710)을 통과시켜서 굴곡과 동시에 냉각하여 일정한 높이로 돌기의 상단부가 휘어져 리블렛형 구조를 갖는 것을 특징으로 하는 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름의 제조방법.The softening process is a process of bending the upper part of the upright protrusion in order to transform the erect fine protrusion 200 into a riblet-shaped structure.After softening the protrusion within the softening temperature range below the melting point, it is set to a certain height. Ultra-fine protrusion and riblet structure characterized in that the upper end of the protrusion is bent to a certain height by passing through a cooled guider mold 710 having a releasable plate or roll shape, and cooling at the same time. Method of manufacturing applied antifouling and low friction film for ships.
  7. 청구항 3에 있어서,The method of claim 3,
    상기 초미세돌기(400, 500) 및 리블렛형 미세돌기(300)가 성형되는 필름(100)의 소재는 유연성이 있는 열가소성수지, 탄성이 있는 열가소성 탄성체, 열에 의해 연화가 가능한 천연고무 또는 합성고무 중에서 선택되는 어느 하나의 소재인 것을 특징으로 하는 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름의 제조방법.The material of the film 100 on which the ultrafine protrusions 400 and 500 and the riblet-type fine protrusions 300 are formed is a flexible thermoplastic resin, an elastic thermoplastic elastomer, a natural rubber or synthetic rubber that can be softened by heat. A method of manufacturing an antifouling and low friction film for ships using an ultrafine protrusion and a riblet structure, characterized in that it is any one material selected.
  8. 청구항 3에 있어서,The method of claim 3,
    상기 자기윤활성물질은 필름(100)의 표면을 윤활하게 하여 방오 효율을 높이고, 선박의 선속을 높이기 위하여 이황화몰리브덴(MoS2), 이황화텅스텐(WS2), 흑연(Graphite), 육방정계질화붕소(h-BN) 또는 탈크(Talc)의 고체 윤활제 미분말 중 하나의 종을 첨가제로 첨가하는 것을 특징으로 하는 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름의 제조방법.The self-lubricating material lubricates the surface of the film 100 to increase antifouling efficiency, and to increase the ship's speed, molybdenum disulfide (MoS2), tungsten disulfide (WS2), graphite, hexagonal boron nitride (h-) A method of manufacturing an antifouling and low friction film for ships using ultrafine protrusions and riblet structures, characterized in that one of the fine powders of solid lubricants of BN) or talc is added as an additive.
  9. 청구항 3에 있어서,The method of claim 3,
    상기 항균물질은 은(Ag), 구리(Cu), 아연(Zn) 또는 은(Ag), 구리(Cu), 아연(Zn) 화합물의 미분말 또는 제올라이트(Zeolite)에 항균제를 포함하고, 발수 기능을 위해 소수성화하며, 상기 항균제 중 1종 또는 2종 이상을 첨가하는 것을 특징으로 하는 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름의 제조방법.The antibacterial material contains an antimicrobial agent in fine powder or zeolite of silver (Ag), copper (Cu), zinc (Zn) or silver (Ag), copper (Cu), zinc (Zn) compound, and has a water repellent function. A method for producing an antifouling and low-friction film for ships using ultrafine protrusions and a riblet structure, characterized in that it is hydrophobized for, and one or two or more of the antimicrobial agents are added.
  10. 청구항 5에 있어서,The method of claim 5,
    상기 리블렛형 미세돌기(300)의 배열은 격자형(grid pattern) 또는 이웃하는 돌기와 간격을 일정하게 하기 위하여 벌집형(honey comb pattern) 구조로 배치한 것을 특징으로 하는 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름의 제조방법.The riblet-shaped microprotrusions 300 are arranged in a grid pattern or in a honeycomb pattern in order to make the interval with neighboring protrusions constant. Method of manufacturing applied antifouling and low friction film for ships.
  11. 청구항 1에 있어서,The method according to claim 1,
    상기 필름(100)은 선체에 복수개가 상하좌우 방향으로 연결 배치되어 접착제로 접착되되, 각 필름(100)의 연결부위에는 접착면적 증대로 인한 접착력 강화와 수밀성을 높이기 위해 밀착되는 필름의 경계면을 계단식 구조로 하여 계단의 하단부는 서로 밀착되며 경계면 사이의 상부 공간인 필름연결홈부(800)에는 필름(100)의 1/2 두께의 연결용필름(900)을 접착하는 것을 특징으로 하는 초미세돌기 및 리블렛 구조를 응용한 선박용 방오 겸 저마찰 필름.A plurality of the films 100 are connected to the hull in the vertical, left and right directions and adhered with an adhesive, but at the connection portions of each film 100, the interface of the film that is closely adhered is stepped to enhance the adhesion and watertightness due to the increase in the adhesive area. As a structure, the lower ends of the steps are in close contact with each other, and a connection film 900 having a thickness of 1/2 of the film 100 is adhered to the film connection groove 800, which is an upper space between the boundary surfaces. Antifouling and low friction film for ships with riblet structure applied.
PCT/KR2020/014319 2019-10-21 2020-10-20 Antifouling, low-friction film for ships utilizing ultrafine protrusions and riblet structure, and method for manufacturing same WO2021080285A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190130793A KR102119878B1 (en) 2019-10-21 2019-10-21 Manufacturing method of marine antifouling and low friction film utilizing fine protuberance and riblet structure
KR10-2019-0130793 2019-10-21

Publications (1)

Publication Number Publication Date
WO2021080285A1 true WO2021080285A1 (en) 2021-04-29

Family

ID=71089266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014319 WO2021080285A1 (en) 2019-10-21 2020-10-20 Antifouling, low-friction film for ships utilizing ultrafine protrusions and riblet structure, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102119878B1 (en)
WO (1) WO2021080285A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115489658A (en) * 2022-10-28 2022-12-20 北京大学 Bionic drag reduction method, device and equipment of underwater vehicle and readable storage medium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102119878B1 (en) * 2019-10-21 2020-06-05 허남일 Manufacturing method of marine antifouling and low friction film utilizing fine protuberance and riblet structure
KR102177173B1 (en) * 2020-06-29 2020-11-11 엠.씨.케이 (주) An antimicrobial article and a method thereof
CN111871224B (en) * 2020-08-11 2022-05-31 哈尔滨工业大学 Shark scale shield micro-blade filtering membrane
CN117125215A (en) * 2021-02-24 2023-11-28 北京丰润铭科贸有限责任公司 Bionic anti-biological parasitic flexible ship bottom material and structure
CN113636012A (en) * 2021-09-07 2021-11-12 北京丰润铭科贸有限责任公司 Method for preventing aquatic organisms from being parasitic on ship bottom shell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110023607A (en) * 2009-08-31 2011-03-08 삼성중공업 주식회사 Oceanic life preventing apparatus
KR20110106001A (en) * 2010-03-22 2011-09-28 현대중공업 주식회사 Method for shipbuilding painting using anti-fouling coating film and ship fabricated by the same
JP6493206B2 (en) * 2014-04-15 2019-04-03 東レ株式会社 Structure having protrusions on the surface
KR102022443B1 (en) * 2017-12-05 2019-09-18 허남일 Method for manufacturing low friction anti-fouling lining of ship and marine structure
KR102119878B1 (en) * 2019-10-21 2020-06-05 허남일 Manufacturing method of marine antifouling and low friction film utilizing fine protuberance and riblet structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140076995A (en) 2012-12-13 2014-06-23 주식회사 그린애드 Film for ship with antifouling paint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110023607A (en) * 2009-08-31 2011-03-08 삼성중공업 주식회사 Oceanic life preventing apparatus
KR20110106001A (en) * 2010-03-22 2011-09-28 현대중공업 주식회사 Method for shipbuilding painting using anti-fouling coating film and ship fabricated by the same
JP6493206B2 (en) * 2014-04-15 2019-04-03 東レ株式会社 Structure having protrusions on the surface
KR102022443B1 (en) * 2017-12-05 2019-09-18 허남일 Method for manufacturing low friction anti-fouling lining of ship and marine structure
KR102119878B1 (en) * 2019-10-21 2020-06-05 허남일 Manufacturing method of marine antifouling and low friction film utilizing fine protuberance and riblet structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115489658A (en) * 2022-10-28 2022-12-20 北京大学 Bionic drag reduction method, device and equipment of underwater vehicle and readable storage medium
CN115489658B (en) * 2022-10-28 2023-10-10 北京大学 Bionic drag reduction method, device and equipment for underwater vehicle and readable storage medium

Also Published As

Publication number Publication date
KR102119878B1 (en) 2020-06-05

Similar Documents

Publication Publication Date Title
WO2021080285A1 (en) Antifouling, low-friction film for ships utilizing ultrafine protrusions and riblet structure, and method for manufacturing same
US5359574A (en) Electromagnetically activated compliant wavy-wall
EP3354563B1 (en) Shape memory riblets
EP1845419A3 (en) Electrostatic latent image carrier, electrostatic latent image developer and image forming apparatus
US4947785A (en) Improvements in or relating to boat hulls
ATE182524T1 (en) METHOD AND DEVICE FOR HANDLING PRINTED SHEETS
ATE416084T1 (en) CARRIER AND IMAGE RECEIVER FOR THERMAL TRANSMISSION
US20110100597A1 (en) Water-cooled heat sink
KR102022443B1 (en) Method for manufacturing low friction anti-fouling lining of ship and marine structure
KR970705134A (en) Binder system for magnetic media (BINDER SYSTEM FOR MAGNETIC MEDIUM)
EP0329117A1 (en) Heat transfer recording sheet
Steager et al. A novel method of microfabrication and manipulation of bacterial teamsters in low Reynolds number fluidic environments
JP2011185410A (en) Moving body external wall and moving body
JP4138044B2 (en) Manufacturing method of decorative sheet
CN100475548C (en) Thermal transfer receiver, method for producing the same, method for recording image, and recorded image
EP0826749A3 (en) Electrodeposition coated member and electrodeposition coating material
JP2006016505A5 (en)
WO2021125820A1 (en) Antifouling fishing net and manufacturing method therefor
EP1938940A3 (en) In-mold transfer film
CN113133189A (en) Flexible circuit board, zoom lens and electronic equipment
KR20210132068A (en) heat transfer sheet
WO2023224296A1 (en) Method for manufacturing magnet, electronic component comprising same, and method for manufacturing same
Wan et al. Antifouling of Micro-/Nanostructural Surfaces
JP2014065156A (en) Thermal transfer image receiving sheet
WO2024117855A1 (en) Heat transfer member, and heat transfer assembly and electronic device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879627

Country of ref document: EP

Kind code of ref document: A1