WO2021080115A1 - 전지 모듈 및 이를 포함하는 전지팩 - Google Patents

전지 모듈 및 이를 포함하는 전지팩 Download PDF

Info

Publication number
WO2021080115A1
WO2021080115A1 PCT/KR2020/008381 KR2020008381W WO2021080115A1 WO 2021080115 A1 WO2021080115 A1 WO 2021080115A1 KR 2020008381 W KR2020008381 W KR 2020008381W WO 2021080115 A1 WO2021080115 A1 WO 2021080115A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
space
battery cell
cell stack
end plate
Prior art date
Application number
PCT/KR2020/008381
Other languages
English (en)
French (fr)
Inventor
강태영
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/263,764 priority Critical patent/US20210376410A1/en
Priority to CN202080004168.3A priority patent/CN113614985B/zh
Priority to JP2021513954A priority patent/JP7216809B2/ja
Priority to EP20841853.3A priority patent/EP3836293A4/en
Publication of WO2021080115A1 publication Critical patent/WO2021080115A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery module and a battery pack including the same, and more particularly, to a battery module using insulating oil and a battery pack including the same.
  • Rechargeable batteries are attracting a lot of attention as an energy source in various product lines such as mobile devices and electric vehicles.
  • Such a secondary battery is a potent energy resource that can replace the use of conventional products that use fossil fuels, and does not generate by-products due to energy use, and thus has been in the spotlight as an eco-friendly energy source.
  • a battery module consisting of at least one battery cell is configured, and other components are added to the battery pack using at least one battery module. How to configure is common.
  • Such a battery module is a battery cell stack in which a plurality of battery cells are stacked, electrode leads protruding from the battery cells, a frame and a battery cell stack formed in the top, bottom, left and right sides to cover the top, bottom, left, and right sides of the battery cell stack. Includes an end plate to cover the front and rear surfaces of.
  • the lithium-ion battery module It is important to use the lithium-ion battery module at an appropriate temperature because the deterioration of its lifespan is accelerated at high temperatures. To this end, most of the lithium-ion battery modules are cooled by air cooling or water cooling, and the existing cooling structure employs a method of cooling through several stages of the interface. However, each interface increases thermal resistance, and each component increases the weight of the vehicle.
  • the positive electrode and the case of the battery module should always maintain insulation performance and should not be destroyed even when a high voltage is applied.
  • FIG. 1 is an exploded perspective view showing a conventional battery module.
  • a battery cell stack 10 in which a plurality of battery cells are stacked, a frame 20 accommodating the battery cell stack 10, and the lower side of the battery cell stack 10 and the lower surface of the frame 20 are formed.
  • the thermal resin 30 is located under the thermal resin 30 to transfer heat
  • the thermal pad 40 is located under the thermal pad 40 to transfer heat
  • the heat sink 50 is located under the thermal pad 40 to transfer heat.
  • An object to be solved of the present invention is to provide a battery module that lowers weight and thermal resistance and secures insulation performance, and a battery pack including the same.
  • a battery module for realizing the above object is a battery cell stack in which battery cells formed on an edge surface and a flat surface are stacked, electrode leads protruding from the battery cells, and top, bottom, left, and right surfaces. It is formed as a frame covering the top, bottom, left and right sides of the battery cell stack and an end plate covering the front and rear surfaces of the battery cell stack, and between the edge surfaces of the battery cell and the frame and the end plate A space is formed in the space, an insulating oil for cooling the plurality of battery cells is filled to flow, and the insulating oil contacts the battery cells and the electrode leads.
  • the space portion a first space portion formed between the edge surfaces of the battery cells formed on the front surface of the battery cell stack and a first end plate covering the front surface of the battery cell stack, the upper side of the battery cell stack A second space portion formed between the edge surfaces of the battery cells formed in the upper surface of the frame, and a third space portion formed between the edge surfaces of the battery cells formed under the battery cell stack and the lower surface of the frame And a fourth space formed between edge surfaces of the battery cells formed on the rear surface of the battery cell stack and a second end plate covering the rear surface of the battery cell stack.
  • the first and fourth space portions may be formed in a space between the edge surfaces formed in two adjacent battery cells and the end plate.
  • the second and third space portions may be formed in a space between the frame and the edge surfaces formed on two adjacent battery cells.
  • the insulating oil may flow from the first space part of the battery cell stack, through the second space part or the third space part, to the fourth space part.
  • a supply unit through which the insulating oil is supplied may be formed at an upper end of the first end plate, and a discharge unit through which the insulating oil is discharged may be formed at a lower end of the second end plate.
  • the electrode leads are formed to protrude from both ends of the battery cells into the first and fourth spaces, respectively, and may contact the insulating oil flowing in the first and fourth spaces.
  • the end plate and the frame may be coupled with an adhesive, and the end plate and the frame may be sealed through the adhesive.
  • a bus bar frame formed between the end plate and the battery cell stack may be further included, and the bus bar frame may be positioned on the space to contact the insulating oil.
  • the battery module and the battery pack including the same are insulated by replacing conventional components for cooling the battery cells with insulating oil, reducing heat resistance and weight, and allowing direct contact between the battery cells and insulating oil. Provides an effect of improving performance.
  • FIG. 1 is an exploded perspective view showing a conventional battery module.
  • FIG. 2 is an exploded perspective view showing a battery module according to an embodiment of the present invention.
  • FIG 3 is a perspective view showing a battery cell according to an embodiment of the present invention.
  • FIG. 4 is a view showing the flow of insulating oil according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating second and third spaces filled with insulating oil in portion A-A' of FIG. 4.
  • FIG. 6 is a cross-sectional view illustrating first and fourth spaces filled with insulating oil in a portion B-B' of FIG. 4.
  • FIG. 7 is a view showing a supply unit and a discharge unit according to an embodiment of the present invention.
  • FIG. 8 is a view showing the flow of insulating oil according to an embodiment of the present invention.
  • FIG. 9 is a view showing a connection flow path between battery modules according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing a battery module according to an embodiment of the present invention.
  • 3 is a perspective view showing a battery cell according to an embodiment of the present invention.
  • 4 is a view showing the flow of insulating oil according to an embodiment of the present invention.
  • 5 is a cross-sectional view illustrating second and third spaces filled with insulating oil in portion A-A' of FIG. 4.
  • 6 is a cross-sectional view illustrating first and fourth spaces filled with insulating oil in a portion B-B' of FIG. 4.
  • battery cells 110 formed with edge surfaces 110a, 110b, 110c, and 110d and flat surfaces 110e and 110f are stacked.
  • the space part 400 is formed between the space part 300, and the space part 400 is filled with insulating oil (I) for cooling the plurality of battery cells 110 and flows, and the insulating oil (I) is the battery cell 110 and the electrode. It is in contact with the leads 120.
  • the battery cell 110 is a secondary battery, and may be configured as a pouch-type secondary battery.
  • the battery cells 110 may be composed of a plurality, and the plurality of battery cells 110 may be stacked together so as to be electrically connected to each other to form a battery cell stack 100.
  • the plurality of battery cells 110 are flat surfaces 110e and 110f forming a case, respectively, and edge surfaces in four directions extending from the edges of the flat surface to seal the electrode assembly inside the case. (110a, 110b, 110c, 110d), and an electrode lead 120 protruding from the electrode assembly.
  • the bus bar frame 130 is formed between the end plate 300 and the battery cell stack 100, covers the front and rear surfaces of the battery cell stack 100, and electrically connects the electrode leads 120. .
  • the bus bar frame 130 is located on the first and fourth spaces 410 and 440 among the spaces 400 to be described later, and flows within the first and fourth spaces 410 and 440. It can come into contact with insulating oil (I).
  • the frame 200 may accommodate the battery cell stack 100 on the top, bottom, left and right sides of the battery cell stack 100.
  • the third space portion 430 formed between the lower portions may be filled with insulating oil I to flow.
  • the end plate 300 is formed to cover the front and rear surfaces of the battery cell stack 100, so that the battery cell stack 100, the bus bar frame 130, and other electronic devices connected thereto may be physically protected.
  • the end plate 310 may include a structure for mounting the battery module to the battery pack.
  • the end plate 300 may be coupled to the frame 200 with an adhesive.
  • the end plate 300 and the frame 200 are sealedly coupled through an adhesive, so that the insulating oil I filled and flowing inside the end plate 300 and the frame 200 does not leak out of the battery module.
  • welding may be performed locally on a part of the junction between the end plate 300 and the frame 200 in order to fix the bonding position of each component.
  • the end plate 300 may include a first end plate 310 formed on the front surface of the battery cell stack 100 and a second end plate 320 formed on the rear surface of the battery cell stack 100.
  • the space part 400 is formed between the edge surfaces 110a, 110b, 110c, and 110d of the battery cells 110 and the frame 200 and the end plate 300, and the space part 400 includes a plurality of battery cells.
  • the insulating oil (I) that cools 110 is filled and flows, and the insulating oil (I) contacts the battery cells 110 and the electrode leads 120 to cool the heat generated from the plurality of battery cells 110. have.
  • the space part 400 is a first end plate 310 covering the edge surfaces 110a of the battery cells 110 formed on the front surface of the battery cell stack 100 and the front surface of the battery cell stack 100 A second space formed between the first space 410 formed therebetween, the edge surfaces 110b of the battery cells 110 formed on the upper side of the battery cell stack 100 and the upper surface 210 of the frame 200
  • the first and fourth space portions 410 and 440 are formed in the space between the edge surfaces 110a and 110d formed on two adjacent battery cells and the end plate 300.
  • the first space 410 may be formed in a space between the edge surfaces 110a formed on two adjacent battery cells and the first end plate 310.
  • the fourth space 440 may be formed in a space between the edge surfaces 110d formed on two adjacent battery cells and the second end plate 320.
  • the electrode leads 120 are disposed on the first and fourth spaces 410 and 440, respectively, and the insulating oil I and the electrode leads 120 that flow by filling the first and fourth spaces 410 and 440 are in direct contact with each other. can do. Since the electrode lead 120 generates the most heat in the battery cell 110, the electrode lead 120 and the insulating oil (I) directly contact the first and fourth spaces 410 and 440, The cooling performance of the entire module can be enhanced.
  • the second and third space portions 420 and 430 may be formed in a space between the frame 200 and edge surfaces 110b and 110c formed on two adjacent battery cells.
  • the second space 420 may be formed in a space between the edge surfaces 110b formed on two adjacent battery cells and the upper surface 210 of the frame.
  • the third space 430 may be formed in a space between the edge surfaces 110c formed on two adjacent battery cells and the lower surface 220 of the frame.
  • the space portions 410, 420, 430, 440 are formed on the edge surfaces 110a, 110b, 110c, 110d of the battery cell 110, and the insulating oil I is spaced Since the parts 410, 420, 430, and 440 are filled and flowed, as a result, a cooling passage may be formed in the edge surfaces 110a, 110b, 110c, and 110d of the battery cell 110. Since the edge surfaces 110a, 110b, 110c, and 110d of the battery cell 110 have high thermal conductivity of the battery cell 110, the insulating oil I directly contacts the edge surfaces 110a, 110b, 110c, and 110d. By flowing, the cooling performance of the battery cells 110 may be improved.
  • the battery since it is possible to directly contact and cool 4 of the 6 surfaces of the battery cell 110 through the edge surfaces 110a, 110b, 110c, and 110d that occupy only about 10% of the area of the cell 110, insulating oil (I) It can minimize the use of and at the same time improve the cooling efficiency.
  • the conventional thermal resin, thermal pad, heat sink, and the like are no longer required, so that the thermal resistance of each component is reduced, and the battery module can be made lighter and more compact.
  • FIG. 7 is a view showing a supply unit and a discharge unit according to an embodiment of the present invention.
  • 8 is a view showing the flow of insulating oil according to an embodiment of the present invention.
  • 9 is a view showing a connection flow path between battery modules according to an embodiment of the present invention.
  • a supply unit 500 to which insulating oil I is supplied may be formed on an upper end of a first end plate 310 according to an embodiment of the present invention, and a second end plate 320 A discharge part 600 through which the insulating oil I is discharged may be formed at the lower end of ). Therefore, the insulating oil (I) supplied to the supply unit 500 may flow from the first space part 410, through the second space part 420 or the third space part 430, to the fourth space part 440. I can. The insulating oil I flowing into the fourth space part 440 may be discharged to the outside of the battery module through the discharge part 600.
  • connection flow path 700 may be formed of a hose, but is not limited thereto, and it is formed of a material that minimizes the flow resistance of the insulation oil I, so that the insulation oil I can be stably supplied. It is enough.
  • the supply unit 500 may be formed at the upper end of the first end plate 310, and the discharge unit 600 may be formed at the lower end of the second end plate 320.
  • the insulating oil (I) is stably supplied to the battery module in consideration of the difference in resistance between the flow path resistance inside the module and the connection flow path 700 that connects the battery modules. Can supply.
  • the battery module described above may be included in the battery pack.
  • the battery pack may have a structure in which one or more battery modules according to the present embodiment are collected and a battery management system (BMS) that manages the temperature or voltage of the battery, and a cooling device are added and packed.
  • BMS battery management system
  • the battery pack can be applied to various devices.
  • a device may be applied to a vehicle such as an electric bicycle, an electric vehicle, or a hybrid vehicle, but the present invention is not limited thereto and may be applied to various devices capable of using a battery module, and this also falls within the scope of the present invention. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 절연유를 활용한 전지 모듈 및 이를 포함하는 전지팩에 관한 것으로, 엣지면 및 평탄면으로 형성된 전지셀들이 적층되어 있는 전지셀 적층체, 상기 전지셀들로부터 돌출 형성된 전극 리드들, 상하좌우면으로 형성되어 상기 전지셀 적층체의 상하좌우면을 커버하는 프레임 및 상기 전지셀 적층체의 전후면을 커버하는 엔드 플레이트를 포함하고, 상기 전지셀의 엣지면들과, 상기 프레임 및 상기 엔드 플레이트 사이에는 공간부가 형성되며, 상기 공간부에는 상기 복수의 전지셀을 냉각시키는 절연유가 채워져 유동하고, 상기 절연유는 상기 전지셀 및 상기 전극 리드들과 접촉한다.

Description

전지 모듈 및 이를 포함하는 전지팩
관련 출원(들)과의 상호 인용
본 출원은 2019년 10월 24일자 한국 특허 출원 제10-2019-0133055호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지 모듈 및 이를 포함하는 전지팩에 관한 것으로서, 보다 상세하게는 절연유를 활용한 전지 모듈 및 이를 포함하는 전지팩에 관한 것이다.
이차 전지는 모바일 기기 및 전기 자동차 등의 다양한 제품군에서 에너지원으로 많은 관심을 받고 있다. 이러한 이차 전지는 화석 연료를 사용하는 기존 제품의 사용을 대체할 수 있는 유력한 에너지 자원으로서, 에너지 사용에 따른 부산물이 발생하지 않아 친환경 에너지원으로서 각광받고 있다.
최근 이차 전지의 에너지 저장원으로서의 활용을 비롯하여 대용량 이차 전지 구조에 대한 필요성이 높아지면서, 다수의 이차 전지가 직렬/병렬로 연결된 전지 모듈을 집합시킨 멀티 모듈 구조의 전지팩에 대한 수요가 증가하고 있다.
한편, 복수개의 전지셀을 직렬/병렬로 연결하여 전지팩을 구성하는 경우, 적어도 하나의 전지셀로 이루어지는 전지 모듈을 구성하고, 이러한 적어도 하나의 전지 모듈을 이용하여 기타 구성 요소를 추가하여 전지팩을 구성하는 방법이 일반적이다.
이러한 전지 모듈은 복수의 전지셀이 적층되어 있는 전지셀 적층체, 전지셀들로부터 돌출 형성된 전극 리드들, 상하좌우면으로 형성되어 전지셀 적층체의 상하좌우면을 커버하는 프레임 및 전지셀 적층체의 전후면을 커버하는 엔드 플레이트를 포함한다.
리튬이온 전지 모듈은 고온에서 수명의 열화가 가속되기 때문에 적정 온도에서 사용하는 것이 중요하다. 이를 위해 대부분의 리튬이온 전지 모듈은 공냉 또는 수냉 방식으로 냉각을 하는데, 기존의 냉각 구조는 몇 단계의 계면을 거쳐 냉각을 하는 방식을 채용하고 있다. 다만 각 계면은 열 저항을 높이고, 각 부품은 차량의 무게를 증가시키는 문제가 있다.
또한 전지 모듈의 양극과 케이스는 상시 절연 성능을 유지해야 하고 높은 전압이 인가되더라도 파괴되지 않아야 한다. 그러나 전지 모듈의 무게, 부피 저감을 위한 레이아웃 설계만으로는 충분한 절연 거리를 확보하기 어려운 문제가 있다.
도 1은 종래 전지모듈을 나타낸 분해 사시도이다.
종래에는 복수의 전지셀이 적층 형성된 전지셀 적층체(10), 전지셀 적층체(10)를 수용하는 프레임(20), 전지셀 적층체(10)의 하측과 프레임(20) 하면 사이에 형성되어 열을 전달하는 써말레진(30), 써말레진(30)의 하측에 위치하여 열을 전달하는 써말패드(40), 써말패드(40)의 하측에 위치하여 열을 전달하는 히트싱크(50)의 구성들을 통해, 복수의 전지셀에서 발생하는 열을 외부로 배출하는 기능을 수행하였다.
그러나 상술한 바와 같이 몇 단계의 구성을 거쳐 냉각을 하는 종래의 냉각 시스템은, 각각 구성이 추가됨에 따라 전지 모듈의 무게가 증가하고, 각 구성 단계를 거침으로 인한 열 저항이 상승하며, 전지 모듈의 부피 저감을 위한 구성 요소의 밀집화으로 인해 전지 모듈의 양극과 케이스 간의 절연 거리 확보가 어려운 문제가 있었다.
본 발명의 해결하고자 하는 과제는, 무게 및 열 저항을 낮추고 절연 성능을 확보하는 전지 모듈 및 이를 포함하는 전지팩을 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 실현하기 위한 본 발명의 일 실시예에 따른 전지 모듈은, 엣지면 및 평탄면으로 형성된 전지셀들이 적층되어 있는 전지셀 적층체, 상기 전지셀들로부터 돌출 형성된 전극 리드들, 상하좌우면으로 형성되어 상기 전지셀 적층체의 상하좌우면을 커버하는 프레임 및 상기 전지셀 적층체의 전후면을 커버하는 엔드 플레이트를 포함하고, 상기 전지셀의 엣지면들과, 상기 프레임 및 상기 엔드 플레이트 사이에는 공간부가 형성되며, 상기 공간부에는 상기 복수의 전지셀을 냉각시키는 절연유가 채워져 유동하고, 상기 절연유는 상기 전지셀 및 상기 전극 리드들과 접촉한다.
상기 공간부는, 상기 전지셀 적층체의 전면에 형성된 상기 전지셀들의 엣지면들과 상기 전지셀 적층체의 전면을 커버하는 제1 엔드 플레이트 사이에 형성된 제1 공간부, 상기 전지셀 적층체의 상측에 형성된 상기 전지셀의 엣지면들과 상기 프레임의 상면 사이에 형성된 제2 공간부, 상기 전지셀 적층체의 하측에 형성된 상기 전지셀의 엣지면들과 상기 프레임의 하면 사이에 형성된 제3 공간부 및 상기 전지셀 적층체의 후면에 형성된 상기 전지셀들의 엣지면들과 상기 전지셀 적층체의 후면을 커버하는 제2 엔드 플레이트 사이에 형성된 제4 공간부를 포함할 수 있다.
상기 제1,4 공간부는 서로 이웃하는 2개의 전지셀에 형성된 상기 엣지면들과 상기 엔드 플레이트 사이의 공간에 형성될 수 있다.
상기 제2,3 공간부는 서로 이웃하는 2개의 전지셀에 형성된 상기 엣지면들과 상기 프레임 사이의 공간에 형성될 수 있다.
상기 절연유는 상기 전지셀 적층체의 제1 공간부에서, 제2 공간부 또는 제3 공간부를 지나, 제4 공간부로 유동할 수 있다.
상기 제1 엔드 플레이트의 상단에는 상기 절연유가 공급되는 공급부가 형성되고, 상기 제2 엔드 플레이트의 하단에는 상기 절연유가 배출되는 배출부가 형성될 수 있다.
상기 전극 리드들은, 상기 전지셀들의 양단에서 상기 제1,4 공간부로 각각 돌출 형성되어, 상기 제1, 4 공간부에서 유동하는 상기 절연유와 접촉할 수 있다.
상기 엔드 플레이트와 상기 프레임은 접착제로 결합되고, 상기 접착제를 통해 상기 엔드 플레이트와 상기 프레임은 밀봉될 수 있다.
상기 엔드 플레이트와 상기 전지셀 적층체 사이에 형성된 버스바 프레임을 더 포함하고, 상기 버스바 프레임은 상기 공간부상에 위치하여 상기 절연유와 접촉할 수 있다.
본 발명의 일 실시예에 따른 전지 모듈 및 이를 포함하는 전지팩은, 종래 전지셀의 냉각을 위한 구성들이 절연유로 대체됨으로써, 열저항 및 무게가 감소하고, 전지셀과 절연유가 직접 접촉 가능함으로써 절연 성능이 향상되는 효과를 제공한다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래 전지모듈을 나타낸 분해 사시도이다.
도 2는 본 발명의 일 실시예에 따른 전지 모듈을 나타낸 분해 사시도이다.
도 3은 본 발명의 일 실시예에 따른 전지셀을 나타낸 사시도이다.
도 4는 본 발명의 일 실시예에 따른 절연유의 흐름을 나타낸 도면이다.
도 5는 도 4의 A-A’ 부분에서, 절연유가 채워진 제2,3 공간부를 나타낸 단면이다.
도 6은 도 4의 B-B’ 부분에서, 절연유가 채워진 제1,4 공간부를 나타낸 단면이다.
도 7은 본 발명의 일 실시예에 따른 공급부 및 배출부를 나타낸 도면이다.
도 8은 본 발명의 일 실시예에 따른 절연유의 흐름을 나타낸 도면이다.
도 9는 본 발명의 일 실시예에 따른 전지 모듈간 연결 유로를 나타낸 도면이다.
이하에서 설명되는 실시 예는 발명의 이해를 돕기 위하여 예시적으로 나타낸 것이며, 본 발명은 여기서 설명되는 실시 예와 다르게 다양하게 변형되어 실시될 수 있음이 이해되어야 할 것이다. 다만, 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성요소에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명 및 구체적인 도시를 생략한다. 또한, 첨부된 도면은 발명의 이해를 돕기 위하여 실제 축척대로 도시된 것이 아니라 일부 구성요소의 치수가 과장되게 도시될 수 있다.
본 출원에서 사용되는 제1, 제2 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
또한, 본 출원에서 사용되는 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 권리범위를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서 "포함하다", "이루어진다" 또는 "구성되다" 등의 용어는 명세서상 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들의 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들의 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 도 2 내지 도 6을 참조하여 본 발명의 일 실시예에 따른 전지 모듈에 대해 설명한다.
도 2는 본 발명의 일 실시예에 따른 전지 모듈을 나타낸 분해 사시도이다. 도 3은 본 발명의 일 실시예에 따른 전지셀을 나타낸 사시도이다. 도 4는 본 발명의 일 실시예에 따른 절연유의 흐름을 나타낸 도면이다. 도 5는 도 4의 A-A’ 부분에서, 절연유가 채워진 제2,3 공간부를 나타낸 단면이다. 도 6은 도 4의 B-B’ 부분에서, 절연유가 채워진 제1,4 공간부를 나타낸 단면이다.
도 2 내지 도 6을 참조하면, 본 발명의 일 실시예에 따른 전지 모듈은, 엣지면(110a, 110b, 110c, 110d) 및 평탄면(110e, 110f)으로 형성된 전지셀(110)들이 적층되어 있는 전지셀 적층체(100), 전지셀(110)들로부터 돌출 형성된 전극 리드(120)들, 상하좌우면으로 형성되어 전지셀 적층체(100)의 상하좌우면을 커버하는 프레임(200) 및 전지셀 적층체(100)의 전후면을 커버하는 엔드 플레이트(300)를 포함하고, 전지셀(110)의 엣지면(110a, 110b, 110c, 110d)들과, 프레임(200) 및 엔드 플레이트(300) 사이에는 공간부(400)가 형성되며, 공간부(400)에는 복수의 전지셀(110)을 냉각시키는 절연유(I)가 채워져 유동하고, 절연유(I)는 전지셀(110) 및 전극 리드(120)들과 접촉한다.
전지셀(110)은 이차 전지로서, 파우치형 이차 전지로 구성될 수 있다. 이러한 전지셀(110)은 복수개로 구성될 수 있으며, 복수개의 전지셀(110)은 상호 전기적으로 연결될 수 있도록 상호 적층되어 전지셀 적층체(100)를 형성할 수 있다. 도 3에 도시된 바와 같이, 복수개의 전지셀(110)은 각각 케이스를 형성하는 평탄면(110e, 110f), 평판면의 테두리에서 연장 형성되어 케이스 내부의 전극 조립체를 밀봉하는 네 방향의 엣지면(110a, 110b, 110c, 110d), 및 전극 조립체로부터 돌출 형성된 전극 리드(120)를 포함할 수 있다.
버스바 프레임(130)은 엔드 플레이트(300)와 전지셀 적층체(100) 사이에 형성되어, 전지셀 적층체(100)의 전후면을 커버하고, 전극 리드(120)들을 전기적으로 연결할 수 있다. 이러한 버스바 프레임(130)은 후술할 공간부(400) 중 제1 공간부(410)와 제4 공간부(440) 상에 위치하여 제1,4 공간부(410, 440) 내에서 유동하는 절연유(I)와 접촉할 수 있다.
프레임(200)은 전지셀 적층체(100)의 상하좌우면에서 전지셀 적층체(100)를 수용할 수 있다. 본 발명의 일 실시예에 따르면, 프레임 상면(210)과 전지셀 적층체(100)의 상측부 사이에 형성된 제2 공간부(420) 및 프레임 하면(220)과 전지셀 적층체(100)의 하측부 사이에 형성된 제3 공간부(430)에는 절연유(I)가 채워져 유동할 수 있다.
엔드 플레이트(300)는 전지셀 적층체(100)의 전후면을 커버하도록 형성되어, 전지셀 적층체(100), 버스바 프레임(130) 및 기타 이들과 연결된 전장품을 물리적으로 보호할 수 있다. 또한 엔드 플레이트(310)는, 전지 모듈을 전지팩에 마운팅하는 구조를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 엔드 플레이트(300)는 프레임(200)과 접착제로 결합될 수 있다. 접착제를 통해 엔드 플레이트(300)와 프레임(200)이 밀봉 결합되어, 엔드 플레이트(300) 및 프레임(200) 내부에 채워져 유동하는 절연유(I)가 전지 모듈 밖으로 새어나가지 않게 할 수 있다. 엔드 플레이트(300)와 프레임(200)의 접착 전, 각 구성의 접착 위치 고정을 위해 엔드 플레이트(300)와 프레임(200)의 접합부 일부에 국부적으로 용접을 수행할 수 있다.
엔드 플레이트(300)는, 전지셀 적층체(100)의 전면에 형성된 제1 엔드 플레이트(310), 전지셀 적층체의 후면에 형성된 제2 엔드 플레이트(320)를 포함할 수 있다.
공간부(400)는 전지셀(110)들의 엣지면(110a, 110b, 110c, 110d)들과 프레임(200) 및 엔드 플레이트(300) 사이에 형성되며, 공간부(400)에는 복수의 전지셀(110)을 냉각시키는 절연유(I)가 채워져 유동하고, 절연유(I)는 전지셀(110) 및 전극 리드(120)들과 접촉하여 복수의 전지셀(110)에서 발생하는 열을 냉각시킬 수 있다.
공간부(400)는, 전지셀 적층체(100)의 전면에 형성된 전지셀(110)들의 엣지면(110a)들과 전지셀 적층체(100)의 전면을 커버하는 제1 엔드 플레이트(310) 사이에 형성된 제1 공간부(410), 전지셀 적층체(100)의 상측에 형성된 전지셀(110)의 엣지면(110b)들과 프레임(200)의 상면(210) 사이에 형성된 제2 공간부(420), 전지셀 적층체(100)의 하측에 형성된 전지셀(110)의 엣지면(110c)들과 프레임(200)의 하면(220) 사이에 형성된 제3 공간부(430) 및 전지셀 적층체(100)의 후면에 형성된 전지셀(110)의 엣지면(110d)들과 전지셀 적층체(100)의 후면을 커버하는 제2 엔드 플레이트(320) 사이에 형성된 제4 공간부(440)를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 제1,4 공간부(410, 440)는 서로 이웃하는 두개의 전지셀에 형성된 엣지면(110a, 110d)들과 엔드 플레이트(300) 사이의 공간에 형성될 수 있다. 보다 상세하게는, 제1 공간부(410)는 서로 이웃하는 두개의 전지셀에 형성된 엣지면(110a)들과 제1 엔드 플레이트(310) 사이의 공간에 형성될 수 있다. 제4 공간부(440)는 서로 이웃하는 두개의 전지셀에 형성된 엣지면(110d)들과 제2 엔드 플레이트(320) 사이의 공간에 형성될 수 있다.
제1,4 공간부(410, 440) 상에는 각각 전극 리드(120)들이 배치되어, 제1,4 공간부(410, 440)를 채워져 유동하는 절연유(I)와 전극 리드(120)들이 직접 접촉할 수 있다. 전극 리드(120)는 전지셀(110)에서 가장 열이 많이 발생하는 부분이므로, 전극 리드(120)와 절연유(I)가 제1,4 공간부(410, 440)를 통해 직접 접촉함으로써, 전지 모듈 전체의 냉각 성능을 강화할 수 있다.
제2, 3 공간부(420, 430)는 서로 이웃하는 두개의 전지셀에 형성된 엣지면(110b, 110c)들과 프레임(200) 사이의 공간에 형성될 수 있다. 보다 상세하게는, 제2 공간부(420)는 서로 이웃하는 두개의 전지셀에 형성된 엣지면(110b)들과 프레임 상면(210) 사이의 공간에 형성될 수 있다. 제3 공간부(430)는 서로 이웃하는 두개의 전지셀에 형성된 엣지면(110c)들과 프레임 하면(220) 사이의 공간에 형성될 수 있다.
본 발명의 일 실시예에 따르면, 전지셀(110)의 엣지면(110a, 110b, 110c, 110d)들 상에 공간부들(410, 420, 430, 440)이 형성되고, 절연유(I)가 공간부들(410, 420, 430, 440)에 채워져 유동하므로, 결과적으로 전지셀(110)의 엣지면(110a, 110b, 110c, 110d)들에 냉각 유로가 형성되는 결과를 가져올 수 있다. 전지셀(110)의 엣지면(110a, 110b, 110c, 110d)들은 전지셀(110)의 열전도율이 높은 부분이므로, 엣지면(110a, 110b, 110c, 110d)에 절연유(I)가 직접 접촉하여 유동함으로써 전지셀(110)들의 냉각 성능을 향상시킬 수 있다.
또한 본 발명의 일 실시예에 따르면, 평탄면(110e, 110f)에는 절연유(I)를 접촉시키지 않고, 엣지면(110a, 110b, 110c, 110d)을 통하여만 절연유(I)를 접촉시킴으로써, 전지셀(110)의 면적 중 약 10%만을 차지하는 엣지면(110a, 110b, 110c, 110d)을 통하여 전지셀(110)의 6면 중 4면을 직접 접촉하여 냉각할 수 있게 됨으로써, 절연유(I)의 사용을 최소화 하며 동시에 냉각 효율을 향상시킬 수 있다.
또한 절연유(I)를 사용으로 인해 종래 써말레진, 써말패드, 히트싱크 등의 구성이 더이상 필요치 않게 됨으로써, 각 구성들의 열저항이 감소하고, 전지 모듈의 경량화 및 컴팩트화가 가능하도록 할 수 있다. 또한 써말레진, 써말패드 부착 공정 중 계면 사이 공기층 불량 등의 위험성을 미연에 방지할 수 있으며, 전지 모듈이 장착된 차량 사고 발생시 냉각수의 누출로 인한 전지 모듈의 내부 단락 현상을 미연에 방지할 수도 있다.
이하, 도 7 내지 도 9를 참조하여 본 발명의 일 실시예에 따른 공급부 및 배출부를 통한 절연유의 흐름에 대해 설명한다.
도 7은 본 발명의 일 실시예에 따른 공급부 및 배출부를 나타낸 도면이다. 도 8은 본 발명의 일 실시예에 따른 절연유의 흐름을 나타낸 도면이다. 도 9는 본 발명의 일 실시예에 따른 전지 모듈간 연결 유로를 나타낸 도면이다.
도 7및 도 8을 참조하면, 본 발명의 일 실시예에 따른 제1 엔드 플레이트(310)의 상단에는 절연유(I)가 공급되는 공급부(500)가 형성될 수 있고, 제2 엔드 플레이트(320)의 하단에는 절연유(I)가 배출되는 배출부(600)가 형성될 수 있다. 따라서 공급부(500)로 공급된 절연유(I)는 제1 공간부(410)에서, 제2 공간부(420) 또는 제3 공간부(430)를 지나, 제4 공간부(440)로 유동할 수 있다. 제4 공간부(440)로 유동한 절연유(I)는 배출부(600)를 통해 전지 모듈의 외부로 배출될 수 있다.
각 전지 모듈에 형성된 공급부(500)와 배출부(600)는 연결 유로(700)를 통해 서로 연결될 수 있다. 본 발명의 일 실시예에 따르면, 연결 유로(700)는 호스로 형성될 수 있으나, 이에 한정되지 아니하며, 절연유(I)의 유로 저항이 최소화 되는 재질로 형성되어 절연유(I)를 안정적으로 공급할 수 있으면 충분하다.
본 발명의 일 실시예에 따르면, 공급부(500)는 제1 엔드 플레이트(310)의 상단에 형성되고, 배출부(600)는 제2 엔드 플레이트(320)의 하단에 형성될 수 있다. 이와 같이 공급부(500)를 배출부(600)보다 상측에 위치시킴으로써, 모듈 내부의 유로 저항과 전지 모듈간 연결하는 연결 유로(700)의 저항 차이를 고려하여 절연유(I)를 전지 모듈에 안정적으로 공급할 수 있다.
앞에서 설명한 전지 모듈은 전지팩에 포함될 수 있다. 전지팩은, 본 실시예에 따른 전지 모듈을 하나 이상 모아서 전지의 온도나 전압 등을 관리해 주는 전지 관리시스템(Battery Management System; BMS)과 냉각 장치 등을 추가하여 패킹한 구조일 수 있다.
상기 전지팩은 다양한 디바이스에 적용될 수 있다. 이러한 디바이스에는, 전기 자전거, 전기 자동차, 하이브리드 자동차 등의 운송 수단에 적용될 수 있으나, 본 발명은 이에 제한되지 않고 전지 모듈을 사용할 수 있는 다양한 디바이스에 적용 가능하며, 이 또한 본 발명의 권리범위에 속한다.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.
부호의 설명
100: 전지셀 적층체
110: 전지셀
110a, 110b, 110c, 110d: 엣지면
110e, 110f: 평탄면
120: 전극 리드
130: 버스바 프레임
200: 프레임
210: 프레임 상면
220: 프레임 하면
300: 엔드 플레이트
310: 제1 엔드 플레이트
320: 제2 엔드 플레이트
400: 공간부
410: 제1 공간부
420: 제2 공간부
430: 제3 공간부
440: 제4 공간부
500: 공급부
600: 배출부
700: 연결 유로
I: 절연유

Claims (10)

  1. 엣지면 및 평탄면으로 형성된 전지셀들이 적층되어 있는 전지셀 적층체;
    상기 전지셀들로부터 돌출 형성된 전극 리드들;
    상하좌우면으로 형성되어 상기 전지셀 적층체의 상하좌우면을 커버하는 프레임; 및
    상기 전지셀 적층체의 전후면을 커버하는 엔드 플레이트를 포함하고,
    상기 전지셀의 엣지면들과, 상기 프레임 및 상기 엔드 플레이트 사이에는 공간부가 형성되며,
    상기 공간부에는 상기 복수의 전지셀을 냉각시키는 절연유가 채워져 유동하고, 상기 절연유는 상기 전지셀 및 상기 전극 리드들과 접촉하는 전지 모듈.
  2. 제1항에서,
    상기 공간부는,
    상기 전지셀 적층체의 전면에 형성된 상기 전지셀들의 엣지면들과 상기 전지셀 적층체의 전면을 커버하는 제1 엔드 플레이트 사이에 형성된 제1 공간부;
    상기 전지셀 적층체의 상측에 형성된 상기 전지셀의 엣지면들과 상기 프레임의 상면 사이에 형성된 제2 공간부;
    상기 전지셀 적층체의 하측에 형성된 상기 전지셀의 엣지면들과 상기 프레임의 하면 사이에 형성된 제3 공간부; 및
    상기 전지셀 적층체의 후면에 형성된 상기 전지셀들의 엣지면들과 상기 전지셀 적층체의 후면을 커버하는 제2 엔드 플레이트 사이에 형성된 제4 공간부를 포함하는 전지 모듈.
  3. 제2항에서,
    상기 제1,4 공간부는 서로 이웃하는 2개의 전지셀에 형성된 상기 엣지면들과 상기 엔드 플레이트 사이의 공간에 형성되는 전지 모듈.
  4. 제2항에서,
    상기 제2,3 공간부는 서로 이웃하는 2개의 전지셀에 형성된 상기 엣지면들과 상기 프레임 사이의 공간에 형성되는 전지 모듈.
  5. 제2항에서,
    상기 절연유는 상기 전지셀 적층체의 제1 공간부에서, 제2 공간부 또는 제3 공간부를 지나, 제4 공간부로 유동하는 전지 모듈.
  6. 제2항에서,
    상기 제1 엔드 플레이트의 상단에는 상기 절연유가 공급되는 공급부가 형성되고, 상기 제2 엔드 플레이트의 하단에는 상기 절연유가 배출되는 배출부가 형성되는 전지 모듈.
  7. 제2항에서,
    상기 전극 리드들은, 상기 전지셀들의 양단에서 상기 제1,4 공간부로 각각 돌출 형성되어, 상기 제1, 4 공간부에서 유동하는 상기 절연유와 접촉하는 전지 모듈.
  8. 제1항에서,
    상기 엔드 플레이트와 상기 프레임은 접착제로 결합되고, 상기 접착제를 통해 상기 엔드 플레이트와 상기 프레임은 밀봉되는 전지 모듈.
  9. 제1항에서,
    상기 엔드 플레이트와 상기 전지셀 적층체 사이에 형성된 버스바 프레임을 더 포함하고, 상기 버스바 프레임은 상기 공간부상에 위치하여 상기 절연유와 접촉하는 전지 모듈.
  10. 제1항에 따른 전지 모듈을 포함하는 전지팩.
PCT/KR2020/008381 2019-10-24 2020-06-26 전지 모듈 및 이를 포함하는 전지팩 WO2021080115A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/263,764 US20210376410A1 (en) 2019-10-24 2020-06-26 Battery Module and Battery Pack Including the Same
CN202080004168.3A CN113614985B (zh) 2019-10-24 2020-06-26 电池模块和包括该电池模块的电池组
JP2021513954A JP7216809B2 (ja) 2019-10-24 2020-06-26 電池モジュールおよびこれを含む電池パック
EP20841853.3A EP3836293A4 (en) 2019-10-24 2020-06-26 BATTERY MODULE AND BATTERY PACK INCLUDING IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190133055A KR102520590B1 (ko) 2019-10-24 2019-10-24 전지 모듈 및 이를 포함하는 전지팩
KR10-2019-0133055 2019-10-24

Publications (1)

Publication Number Publication Date
WO2021080115A1 true WO2021080115A1 (ko) 2021-04-29

Family

ID=74859166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008381 WO2021080115A1 (ko) 2019-10-24 2020-06-26 전지 모듈 및 이를 포함하는 전지팩

Country Status (6)

Country Link
US (1) US20210376410A1 (ko)
EP (1) EP3836293A4 (ko)
JP (1) JP7216809B2 (ko)
KR (1) KR102520590B1 (ko)
CN (1) CN113614985B (ko)
WO (1) WO2021080115A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7481584B2 (ja) 2021-06-08 2024-05-10 エルジー エナジー ソリューション リミテッド バッテリーモジュール、それを含むバッテリーパック及び自動車

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230123266A (ko) * 2022-02-16 2023-08-23 주식회사 엘지에너지솔루션 절연유를 포함하는 전지모듈 및 이를 포함하는 전지팩
KR20240063224A (ko) 2022-10-28 2024-05-10 주식회사 엘지에너지솔루션 침냉식 배터리 모듈 및 이를 포함한 배터리 팩 및 차량
KR20240070102A (ko) 2022-11-14 2024-05-21 주식회사 엘지에너지솔루션 침냉식 배터리 모듈 및 이를 포함한 배터리 팩 및 차량
KR20240074938A (ko) 2022-11-14 2024-05-29 주식회사 엘지에너지솔루션 침냉식 배터리 모듈 및 이를 포함한 배터리 팩 및 차량

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431550B1 (ko) * 2012-07-03 2014-10-06 (주)인벤티오 배터리 냉각 장치 및 배터리 냉각 장치의 제조 방법
KR101447062B1 (ko) * 2012-01-26 2014-11-03 주식회사 엘지화학 전지모듈 및 이를 포함하는 전지팩
JP5644086B2 (ja) * 2009-10-29 2014-12-24 三洋電機株式会社 電池モジュール、電源装置及びそれを備える車両
KR20180016801A (ko) * 2016-08-08 2018-02-20 보성파워텍 주식회사 배터리 모듈
JP2018538662A (ja) * 2016-04-25 2018-12-27 エルジー・ケム・リミテッド バッテリーパック及び該バッテリーパックを含む自動車

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110297Y2 (ko) * 1979-06-26 1986-04-02
JP2003346924A (ja) * 2002-05-29 2003-12-05 Fuji Heavy Ind Ltd 組電池の冷却システムおよび組電池の冷却方法
JP4513816B2 (ja) * 2007-02-20 2010-07-28 トヨタ自動車株式会社 温度調節機構および車両
JP4325721B2 (ja) * 2008-01-18 2009-09-02 トヨタ自動車株式会社 温度調節機構
JP2013051100A (ja) * 2011-08-31 2013-03-14 Nissan Motor Co Ltd バッテリ温調用モジュール
WO2013102268A1 (en) * 2012-01-05 2013-07-11 Electrovaya Inc. Fluid-cooled battery module containing battery cells
KR102179681B1 (ko) * 2016-01-12 2020-11-17 주식회사 엘지화학 측면 냉각 방식의 냉각 부재를 포함하는 전지팩
KR102172515B1 (ko) * 2016-03-16 2020-10-30 주식회사 엘지화학 배터리 모듈
KR102184753B1 (ko) * 2016-05-24 2020-11-30 주식회사 엘지화학 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR102130818B1 (ko) * 2016-09-28 2020-07-06 주식회사 엘지화학 냉각 유로를 구비한 배터리 모듈 및 그 조립방법과 프레임 어셈블리
CN207800740U (zh) * 2018-02-07 2018-08-31 宁德时代新能源科技股份有限公司 电池模组
KR102646854B1 (ko) * 2018-10-19 2024-03-11 삼성에스디아이 주식회사 배터리 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644086B2 (ja) * 2009-10-29 2014-12-24 三洋電機株式会社 電池モジュール、電源装置及びそれを備える車両
KR101447062B1 (ko) * 2012-01-26 2014-11-03 주식회사 엘지화학 전지모듈 및 이를 포함하는 전지팩
KR101431550B1 (ko) * 2012-07-03 2014-10-06 (주)인벤티오 배터리 냉각 장치 및 배터리 냉각 장치의 제조 방법
JP2018538662A (ja) * 2016-04-25 2018-12-27 エルジー・ケム・リミテッド バッテリーパック及び該バッテリーパックを含む自動車
KR20180016801A (ko) * 2016-08-08 2018-02-20 보성파워텍 주식회사 배터리 모듈

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3836293A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7481584B2 (ja) 2021-06-08 2024-05-10 エルジー エナジー ソリューション リミテッド バッテリーモジュール、それを含むバッテリーパック及び自動車

Also Published As

Publication number Publication date
CN113614985A (zh) 2021-11-05
JP7216809B2 (ja) 2023-02-01
KR102520590B1 (ko) 2023-04-10
EP3836293A4 (en) 2021-10-06
EP3836293A1 (en) 2021-06-16
CN113614985B (zh) 2024-04-19
JP2022513557A (ja) 2022-02-09
US20210376410A1 (en) 2021-12-02
KR20210048855A (ko) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2021080115A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2018186566A1 (ko) 루버 핀 형상의 열전도 매개체를 구비한 배터리 팩
WO2018186616A1 (ko) 크래쉬 빔과 배수 구조를 갖는 배터리 팩
WO2018008866A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2017209365A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2011083968A2 (ko) 냉각 효율성이 향상된 중대형 전지팩
WO2017217633A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2021125469A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2019235724A1 (ko) 개선된 냉각 구조를 갖는 배터리 모듈
WO2021201421A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2017146379A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2018199521A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2022014966A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2021210771A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021071052A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022065650A1 (ko) 전지 모듈, 전지팩 및 이를 포함하는 자동차
WO2021025473A1 (ko) 상부 냉각 방식 배터리 팩
WO2022154311A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022149888A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022097943A1 (ko) 전기 차량용 공냉식 배터리 팩
WO2022080754A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021215660A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021071053A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021215662A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022086075A1 (ko) 전지 모듈 및 이를 포함하는 전지팩

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020841853

Country of ref document: EP

Effective date: 20210126

ENP Entry into the national phase

Ref document number: 2021513954

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE