WO2021079613A1 - Polarizer complex and optical laminate - Google Patents

Polarizer complex and optical laminate Download PDF

Info

Publication number
WO2021079613A1
WO2021079613A1 PCT/JP2020/032326 JP2020032326W WO2021079613A1 WO 2021079613 A1 WO2021079613 A1 WO 2021079613A1 JP 2020032326 W JP2020032326 W JP 2020032326W WO 2021079613 A1 WO2021079613 A1 WO 2021079613A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
region
cell
polarized
curable resin
Prior art date
Application number
PCT/JP2020/032326
Other languages
French (fr)
Japanese (ja)
Inventor
寿和 松本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202080073291.0A priority Critical patent/CN114599514A/en
Priority to KR1020227014432A priority patent/KR20220084307A/en
Publication of WO2021079613A1 publication Critical patent/WO2021079613A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a polarizer complex and an optical laminate.
  • the polarizer is widely used as a polarization supply element in a display device such as a liquid crystal display device or an organic electroluminescence (EL) display device, and as a polarization detection element.
  • Display devices equipped with a polarizer have also been deployed in mobile devices such as notebook personal computers and mobile phones, and due to demands for diversification of display purposes, clarification of display categories, decoration, etc., the transmittance is high.
  • Polaritators with different regions are required.
  • a polarizer may be attached to the entire display surface in order to design the entire surface without boundaries from the viewpoint of decorativeness. In this case, since the polarizer may overlap the area of the camera lens and the area of the icon or logo printing at the bottom of the screen, there is a problem that the sensitivity of the camera is deteriorated or the design is inferior.
  • a low-concentration portion of a dichroic substance having a relatively low content of a dichroic substance is partially provided in a polarizer contained in a polarizing plate, and the low-concentration portion of the dichroic substance corresponds to the low-concentration portion of the dichroic substance. It is described that the camera is arranged so as not to adversely affect the camera performance.
  • Patent Document 1 the resin film is partially decolorized to form a low-concentration portion of the bicolor substance by subjecting the resin film containing the bicolor substance to a chemical treatment in which a basic solution is brought into contact with the resin film.
  • the basic solution used for decolorization requires labor and cost to be treated as a waste liquid.
  • Patent Document 1 describes that when iodine as a dichroic substance is used, the iodine content can be reduced and a low concentration portion of the dichroic substance can be formed by contacting with a basic solution. ing.
  • a specific method for forming a low-concentration portion of a dichroic substance when a dichroic substance other than iodine is used.
  • An object of the present invention is to provide a polarizer complex and an optical laminate having a novel polarizer instead of a polarizer in which a region having a low content of a dichroic substance is formed by a chemical treatment such as decolorization.
  • the present invention provides the following polarizer complexes and optical laminates.
  • a polarizer complex having a polarizer and a reinforcing material provided on at least one surface side of the polarizer.
  • the polarizer has a polarized region having a thickness of 15 ⁇ m or less and a non-polarized region surrounded by the polarized region in a plan view.
  • the reinforcing material is A plurality of cells having an open end face are provided, and each open end face is arranged so as to face the surface of the polarizer.
  • the epoxy compound contains an alicyclic epoxy compound.
  • the polarizer complex according to any one of [1] to [9], wherein the shape of the opening of the cell is a polygonal shape, a circular shape, or an elliptical shape.
  • the protective layer provided on one side of the polarizer composite is the same active energy ray-curable resin as the active energy ray-curable resin constituting the cured product contained in the non-polarized region and the non-cell region.
  • the optical laminate according to [12] which is a cured product layer of a sex resin.
  • FIGS. 1 (a) to 1 (c) are schematic cross-sectional views schematically showing an example of a polarizer complex of the present embodiment.
  • FIG. 2A is a schematic plan view of the polarizer complex shown in FIGS. 1A to 1C as viewed from the A direction (polarizer side), and
  • FIG. 2B is FIG. 1A. It is a schematic plan view which saw the polarizer composite shown in (c) from the B direction (reinforcing material side).
  • the polarizer complex 40 shown in FIGS. 1 (a) to 1 (c) has a polarizer 10 and a reinforcing member 50 provided on one side of the polarizer 10.
  • the polarizing element 10 included in the polarizing element complex 40 has a polarized light region 11 and a non-polarized light region 12 surrounded by the polarized light region 11 in a plan view.
  • the thickness of the polarized light region 11 is 15 ⁇ m or less.
  • the arrangement of the polarized light region 11 and the non-polarized light region 12 in the polarizer 10 is not particularly limited as long as the polarized light region 11 is provided so as to surround the non-polarized light region 12.
  • the total area occupied by the polarized region 11 is preferably larger than the total area occupied by the non-polarized region 12.
  • the polarizer 10 may have one non-polarized region 12 and may have two or more non-polarized regions 12. When two or more non-polarized regions 12 are provided, the shapes of the non-polarized regions 12 may be the same or different from each other.
  • the reinforcing material 50 included in the polarizer complex 40 has a plurality of cells 51 having open end faces, and each open end face faces the surface of the polarizer 10. It is arranged in.
  • the reinforcing material 50 has a cell region 55 in which the cell 51 is present and a non-cell region 56 in which the cell 51 is not present.
  • the cell 51 has a hollow columnar (cylindrical) structure surrounded by a cell partition wall 53 for partitioning the cell 51, and has an open end surface in which both ends in the axial direction of the columnar structure are open.
  • the non-cell region 56 in which the cell 51 does not exist is an region in which a hollow columnar (cylindrical) space surrounded by the cell partition wall 53 and the cell partition wall 53 constituting the cell 51 does not exist.
  • the cell region 55 exists in the region corresponding to the polarizing region 11 existing in the polarizer 10, and the non-cell region 56 exists in the region corresponding to the non-polarizing region 12 of the polarizer 10.
  • the fact that the cell region 55 exists in the region corresponding to the polarization region 11 means that the cell region 55 and the polarization region 11 have substantially the same shape and substantially the same dimensions in the plan view direction, and similarly, they are not.
  • the fact that the cell region 56 is in the region corresponding to the non-polarized region 12 means that the non-cell region 56 and the non-polarized region 12 have substantially the same shape and substantially the same dimensions (diameter) at substantially the same position in the plan view direction. To say.
  • the non-cell region 56 when the non-cell region 56 is projected onto the polarizer 10 in the plan view direction, the projected region of the non-cell region 56 and the non-polarizing region 12 in the polarizer 10 are substantially the same.
  • a polarizer complex in which the cell region 55 exists in a region corresponding to the polarizing region 11 can be efficiently manufactured.
  • the polarizer 10 included in the polarizer complex 40 has two or more non-polarized regions 12, if the non-cell region 56 is present in the region corresponding to at least one non-polarized region 12, the other non-polarized region 56 is present.
  • the cell region 55 may be present in the region corresponding to the polarization region 12.
  • the through hole 22 of the polarizer 10 and the through hole 52 of the reinforcing member 50 can have the same shape in a plan view.
  • the through hole 22 and the through hole 52 can be communicated with each other in the thickness direction of the polarizing region 11, and a cured product of the curable resin (X) can be provided over the through holes 22 and 52 that communicate with each other. it can.
  • the polarizer 10 included in the polarizer complex 40 has a non-polarizing region 12. Therefore, when the polarizing element composite 40 is applied to a display device such as a liquid crystal display device or an organic EL display device developed in a smartphone or a tablet terminal, the camera lens and the icon correspond to the non-polarizing region 12. Alternatively, by arranging a printing portion such as a logo, it is possible to suppress a decrease in the sensitivity of the camera and a decrease in the design.
  • the polarizer complex 40 since the polarizer 10 has a non-polarizing region 12, cracks are likely to occur around the non-polarizing region 12 due to shrinkage of the polarizer 10 due to a temperature change received when applied to a display device or the like. it is conceivable that. Further, since the polarizing element 10 has a thin polarization region 11 of 15 ⁇ m or less, it is considered that cracks are likely to occur when it receives an impact. In the polarizer complex 40, since the reinforcing material 50 is provided on one side of the polarizer 10 as described above, cracks occur when a temperature change or impact is applied, and fine cracks progress to large cracks. It is thought that this can be suppressed.
  • the non-polarizing region 12 and the non-cell region 56 contain a cured product of the curable resin (X), so that the through hole 22 of the polarizer 10 and the through hole 52 of the reinforcing material 50 are solid. can do. Since the thickness of the polarizer 10 of the polarizer complex 40 is as thin as 15 ⁇ m or less, if the non-polarizing region 12 is not provided with a cured product of the curable resin (X) and the through hole 22 is hollow, There is a risk of problems such as cracks occurring around the through hole 22 due to shrinkage of the polarizer due to temperature changes that are exposed when applied to a display device.
  • non-polarizing region 12 can be made solid by providing the cured product of the curable resin (X) in the through hole 22 like the polarizing element 10 of the polarizing element complex 40. It is possible to suppress the occurrence of the above-mentioned problems.
  • the thickness of the cured product of the curable resin (X) provided on the polarizer complex 40 may be the same as the total thickness of the polarizing region 11 and the cell region 55 (FIG. 1 (a)). It may be smaller than the total thickness (FIG. 1 (b)) or larger than the total thickness (FIG. 1 (c)).
  • the cured product of the curable resin (X) provided in the polarizer complex 40 is provided so as to fill at least a part of the through hole 22 of the polarizer 10 and at least a part of the through hole 52 of the reinforcing material 50. It suffices if it is done.
  • the thickness of the cured product provided on the polarizer complex 40 is determined as follows. First, in the polarizer complex 40, a first plane including the surface of the polarizing region 11 of the polarizer 10 (the surface opposite to the reinforcing member 50 side) and the open end surface (polarizer) of the cell region 55 of the reinforcing member 50. It is assumed that the second plane includes the open end face on the side opposite to the 10 side. Next, in the non-polarized region 12, the first position where the shortest distance between the surface of the cured product and the first plane on the polarizer 10 side is the maximum, and the surface of the cured product on the reinforcing material 50 side.
  • the second position which is the position where the shortest distance between the second plane and the second plane is maximized, is determined. Then, the value (dm + dn + D), which is the sum of the shortest distance (dm) at the first position, the shortest distance (dn) at the second position, and the distance (D) between the first plane and the second plane, is set as the polarizer complex. It is the thickness of the cured product provided in 40.
  • FIG. .. 3 (a) and 3 (b) are views schematically showing an example of a cross section around the non-polarized region and the non-cell region of the polarizer complex, and are the curing provided in the non-polarized region and the non-cell region. It is explanatory drawing for demonstrating the method of determining the thickness of an object.
  • the non-polarized region 12 is provided along the surface side of the polarizer 10 opposite to the reinforcing material 50 side. It is assumed that the straight line indicated by the alternate long and short dash line in is 11 m on the first plane. Of the straight lines having the shortest distance connecting an arbitrary point on the first plane 11 m and an arbitrary point on the surface of the cured product provided in the non-polarized region 12, the length of the straight line (FIG. 3). The position when "dm") in (a) is maximized is set as the first position. Next, as shown in FIG.
  • the straight line indicated by the alternate long and short dash line in the non-cell region 56 along the surface side of the reinforcing material 50 opposite to the polarizer 10 side is the second plane 11n. ..
  • the position when "dn") in (a) is maximized is defined as the second position.
  • the surfaces of the cured product provided in the non-polarized region 12 and the non-cell region 56 are the first plane 11 m and the second in the thickness direction of the polarizer complex 40.
  • dm and dn are shown as negative values. Further, let D be the distance between the first plane 11m and the second plane 11n. Then, the thickness of the cured product provided in the non-polarized region 12 and the non-cell region 56 shown in FIG. 3A can be determined as D + dm + dn (where dm and dn are negative values).
  • the first plane 11m and the second plane 11n are assumed in the same manner as described above.
  • the thickness of the cured product provided in the non-polarized region 12 and the non-cell region 56 can be determined. Specifically, first, among the straight lines having the shortest distance, the straight line connecting an arbitrary point on the first plane 11 m and an arbitrary point on the surface of the cured product provided in the non-polarized region 12 is the straight line. The position when the length (“dm” in FIG. 3B) is maximized is set as the first position.
  • the length of the straight line ( The position when “dn”) in FIG. 3 (b) is maximized is defined as the second position.
  • the surfaces of the cured product provided in the non-polarized region 12 and the non-cell region 56 are the first plane 11 m and the second in the thickness direction of the polarizer complex 40.
  • dm and dn are shown as positive values.
  • the thickness of the cured product provided in the non-polarized region 12 and the non-cell region 56 shown in FIG. 3B can be determined as D + dm + dn (dm and dn are positive values).
  • the polarizer complex 40 is applied to a display device or the like with the polarizer 10 and the reinforcing material 50 provided. If the internal space of the cell 51 of the reinforcing material 50 is hollow, the visibility of the display device may decrease due to a difference in the refractive index between the cell partition wall 53 and the internal space of the cell 51. Therefore, it is preferable that a translucent filler is provided in the internal space of the cell 51 of the reinforcing material 50 in the polarizer complex 40. In the reinforcing material 50 of the polarizer complex 40, when a gap is provided between the plurality of cells 51 as described later, it is preferable that a translucent filler is also provided in the gap.
  • the translucency refers to the property (transmittance) of transmitting 80% or more of visible light in the wavelength range of 400 nm to 700 nm, preferably 85% or more, and more preferably 90% or more. , 92% or more transparent is more preferable.
  • the definition of "translucency" below and the preferable range of transmittance for visible light are the same as above.
  • the polarizer complex 40 may be a single-wafered body, or may be a long body having a length that is wound into a roll shape during storage, transportation, or the like.
  • the planar shape and size of the polarizer complex 40 are not particularly limited.
  • FIG. 4 is a schematic cross-sectional view schematically showing another example of the polarizer complex of the present embodiment.
  • the polarizer complex 41 shown in FIG. 4 has a polarizer 10 and reinforcing members 50 and 50 provided on both side surfaces of the polarizer 10.
  • the polarizer 10 and the reinforcing member 50 are as described above.
  • the non-polarizing region 12 of the polarizer 10 and the non-cell region 56 of the two reinforcing members 50 each contain a cured product of the curable resin (X).
  • the through hole 22 of the polarizer 10 and the through hole 52 of the two reinforcing members 50 can have the same shape in a plan view.
  • the through hole 22 and the two through holes 52 can be in communication with each other in the thickness direction of the polarizing region 11, and a cured product of the curable resin (X) is provided over the through holes 22 and 52 that communicate with each other. be able to.
  • the polarizer complex 41 can also suppress a decrease in camera sensitivity and a decrease in design when applied to a display device, and has the above-mentioned problems. It is possible to suppress the decrease in occurrence.
  • the thickness of the cured product of the curable resin (X) provided on the polarizer complex 40 may be the same as the total thickness of the polarizing region 11 and the thickness of the cell region 55 of the two reinforcing members. It may be smaller than the total thickness and may be larger than the total thickness.
  • the cured product of the curable resin (X) provided in the polarizer complex 41 fills at least a part of the through hole 22 of the polarizer 10 and at least a part of each of the through holes 52 of the two reinforcing members 50. It suffices if it is provided as follows.
  • the cured product of the curable resin (X) is preferably provided so as to fill the entire through hole 22 of the polarizer 10, and the entire through hole 22 of the polarizer 10 and the through hole 52 of the two reinforcing members 50, respectively. It is more preferable that it is provided so as to fill the entire surface of the.
  • the thickness of the cured product of the curable resin (X) provided on the polarizing element complex 41 may be measured according to the method for measuring the thickness of the cured product provided on the polarizing element composite 40 described above. Specifically, in the above measurement method, the cell region of the reinforcing material 50 is different from the reinforcing material 50 assuming the second plane of the two reinforcing materials 50 provided on the polarizer complex 41.
  • the thickness of the cured product of the curable resin (X) may be determined as the surface including the open end surface of 55 (the open end surface on the side opposite to the polarizer 10 side).
  • the two reinforcing members 50 included in the polarizer complex 41 may be the same as each other (the shape and size of the cell 51 are the same), or may be different from each other.
  • the openings of the cells 51 of the two reinforcing members 50 provided on both sides of the polarizer 10 may be arranged so as to overlap each other in a plan view, but are preferably arranged so as to be offset from each other.
  • a translucent filler is provided in the internal space of the cell 51 of the reinforcing material 50 in the Polarizer Complex 41.
  • a translucent filler is also provided in the gap.
  • the polarizer complex 41 may be a single-wafered body, or may be a long body having a length that is wound into a roll shape during storage, transportation, or the like.
  • the planar shape and size of the polarizer complex 41 are not particularly limited.
  • the polarization region 11 of the polarizer 10 preferably exhibits absorption dichroism at wavelengths in the wavelength range of 380 nm to 780 nm.
  • the polarizer 10 has a property of absorbing linearly polarized light having a vibration plane parallel to its absorption axis and transmitting linearly polarized light having a vibration plane orthogonal to the absorption axis (parallel to the transmission axis). It can be obtained mainly by the polarization region 11.
  • the polarizing region 11 is a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, an ethylene / vinyl acetate copolymerization system partially saponified film, and two colors such as iodine and a dichroic dye.
  • Dichroic substances are adsorbed and oriented; dichroic substances are adsorbed and oriented on a polyene-based orientation film or liquid crystal compound oriented, such as a dehydrated product of polyvinyl alcohol or a dehydrogenated product of polyvinyl chloride. Things; etc. can be used.
  • Dyeing with iodine is performed, for example, by immersing a polyvinyl alcohol-based film in an aqueous iodine solution.
  • the draw ratio of uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Alternatively, it may be stretched and then dyed.
  • the polyvinyl alcohol-based film is subjected to swelling treatment, cross-linking treatment, cleaning treatment, drying treatment and the like, if necessary. For example, by immersing a polyvinyl alcohol-based film in water and washing it with water before dyeing, not only can the dirt on the surface of the polyvinyl alcohol-based film and the blocking inhibitor be washed, but also the polyvinyl alcohol-based film is swollen and dyed. It is possible to prevent unevenness and the like.
  • the stretching treatment, dyeing treatment, cross-linking treatment (boric acid treatment), washing treatment, and drying treatment of the polyvinyl alcohol-based resin film may be carried out according to, for example, the method described in Japanese Patent Application Laid-Open No. 2012-159778.
  • the polyvinyl alcohol-based resin layer to be the polarization region 11 is formed by coating the base film with the polyvinyl alcohol-based resin.
  • the base film used can also be used as the first support layer 25, which will be described later.
  • the polarization region 11 in which the dichroic dye is adsorbed and oriented on the oriented liquid crystal compound will be briefly described.
  • the polarization region 11 in this case is a liquid crystal compound as described in, for example, JP-A-2013-373353, JP-A-2013-33249, JP-A-2016-170368, JP-A-2017-83843, and the like.
  • the dichroic dye a dye having absorption in the wavelength range of 380 to 800 nm can be used, and it is preferable to use an organic dye. Examples of the dichroic dye include an azo compound.
  • the liquid crystal compound is a liquid crystal compound that can be polymerized while being oriented, and can have a polymerizable group in the molecule.
  • the cured film obtained by polymerizing such a liquid crystal compound may be formed on the base film, and in that case, the base film can also be used as the first support layer 25 described later.
  • the non-polarizing region 12 is formed by drilling to form the polarizer 10.
  • the polarizing film formed only in such a polarizing region 11 may be referred to as a raw material polarizer 20.
  • the luminous efficiency correction polarization degree (Py) of the polarized light region 11 is preferably 80% or more, more preferably 90% or more, further preferably 95% or more, and particularly preferably 99% or more.
  • the simple substance transmittance (Ts) of the polarized light region 11 is usually less than 50% and may be 46% or less.
  • the simple substance transmittance (Ts) of the polarized light region 11 is preferably 39% or more, more preferably 39.5% or more, further preferably 40% or more, and particularly preferably 40.5% or more. ..
  • the simple substance transmittance (Ts) is a Y value measured in accordance with the JIS Z8701 2 degree field of view (C light source) and corrected for luminosity factor.
  • the thickness of the polarized light region 11 is 15 ⁇ m or less, 13 ⁇ m or less, 10 ⁇ m or less, 8 ⁇ m or less, 5 ⁇ m or less, and usually 1 ⁇ m or more.
  • the thickness of the polarizing region 11 can be measured using, for example, a contact-type film thickness measuring device (MS-5C, manufactured by Nikon Corporation).
  • non-polarized light refers to light having no observable regularity in the electric field component. In other words, unpolarized light is random light in which no particular dominant specific polarization state is observed. Further, “partially polarized light” refers to light in an intermediate state between polarized light and unpolarized light, and means light in which at least one of linearly polarized light, circularly polarized light, and elliptically polarized light is mixed with non-polarized light.
  • the non-polarized region 12 in the polarizer 10 means that the light (transmitted light) transmitted through the non-polarized region 12 is unpolarized or partially polarized. In particular, a non-polarized region in which the transmitted light is non-polarized is preferable.
  • the non-polarized region 12 of the polarizer 10 is a region surrounded by the polarized region 11 in a plan view.
  • the non-polarized region 12 contains a cured product of the curable resin (X).
  • the non-polarizing region 12 is a curing of an active energy ray-curable resin composition containing a curable resin (X) described later in a through hole provided in a polarizer (raw material polarizer 20) formed only in the polarizing region 11. It is preferable that the object is provided.
  • the non-polarized region 12 has translucency.
  • the non-polarizing region 12 of the polarizer 10 Since the non-polarizing region 12 of the polarizer 10 has translucency, optical transparency can be ensured in the non-polarizing region 12. As a result, when the polarizer complexes 40 and 41 are applied to the display device, the sensitivity of the camera is lowered by arranging the printing portion such as the camera lens, the icon or the logo corresponding to the non-polarized region 12. It is possible to suppress the deterioration of the design.
  • the diameter of the non-polarized region 12 is preferably 0.5 mm or more, and may be 1 mm or more, 2 mm or more, or 3 mm or more.
  • the diameter of the non-polarized region 12 is preferably 20 mm or less, may be 15 mm or less, may be 10 mm or less, or may be 7 mm or less.
  • the diameter of the non-polarized region 12 means the length of the longest straight line connecting arbitrary two points on the outer circumference of the non-polarized region 12.
  • the thickness of the cured product of the curable resin (X) provided in the non-polarized region 12 may be the same as the thickness of the polarized region 11, or may be smaller than the thickness of the polarized region 11, and the thickness of the polarized region 11 may be smaller. It may be larger than the thickness.
  • the cured product of the curable resin (X) provided in the non-polarized region 12 is preferably provided so as to fill the entire through hole 22.
  • the thickness of the cured product provided in the non-polarized region 12 may be measured according to the method for measuring the thickness of the cured product provided in the polarizer complex 40 described above. Specifically, in the above measuring method, the curable resin (X) is set as the surface of the polarizing region 11 of the polarizer 10 on the opposite side of the surface of the polarization region 11 that is included in the first plane. The thickness of the cured product may be determined.
  • the cell region 55 is an region in which the cell 51 of the reinforcing member 50 exists.
  • the cell 51 has a hollow columnar (cylindrical) structure surrounded by a cell partition wall 53 for partitioning the cell 51, and an open end surface in which both ends in the axial direction of the columnar structure are open. It is the one that has become.
  • the cell 51 has a first opening end face arranged on a side in which the distance between the polarizer complexes 40 and 41 and the polarizer 10 is relatively short, and a second opening arranged on a relatively distant side as opening end faces. Has an end face.
  • the cell region 55 may be arranged so that at least one of the first open end face and the second open end face faces the polarizer 10, and both the first open end face and the second open end face are polarized. It is preferable that they are arranged so as to face the child 10.
  • the shape of the opening of the cell 51 included in the cell region 55 is not particularly limited, but is preferably a polygonal shape, a circular shape, or an elliptical shape.
  • the shape of the opening on the first opening end face and the shape of the opening on the second opening end face are preferably the same shape of the same size, but may be different shapes, and the same shape and size may be used. It may be different. Further, the shapes of the openings of the plurality of cells 51 included in the cell region 55 may be the same as each other or may be different from each other.
  • the plurality of cells 51 included in the cell region 55 are arranged so that the openings of the cells 51 are adjacent to each other in the plan view of the opening end surface.
  • the plurality of cells 51 are arranged so that the cells 51 are arranged without gaps in the plan view of the opening end face, for example, when the shape of the opening of the cell 51 shown in FIG. 2B is hexagonal or the like. You may be doing it.
  • the plurality of cells 51 are in contact with a part of the cell partition wall 53 of the plurality of cells 51 as in the case where the shape of the opening of the cell 51 is circular or the like in the plan view of the opening end face, and the plurality of cells are present. It may be arranged so as to be arranged with a gap between 51.
  • the cell region 55 of the reinforcing member 50 has a hexagonal opening shape in both the first opening end face and the second opening end face, and the polarizer composites 40 and 41 have a hexagonal shape. It is preferable to have a honeycomb structure in which a plurality of cells 51 are arranged so that the openings are arranged adjacent to each other without a gap in the plane direction.
  • the size of the opening of the cell 51 is not particularly limited, but it is preferable to have a diameter smaller than the diameter of the non-polarized region 12.
  • the diameter of the cell 51 is preferably 3 mm or less, preferably 2 mm or less, may be 1 mm or less, and is usually 0.1 mm or more, and may be 0.5 mm or more.
  • the diameter of the opening of the cell 51 refers to the length of the longest straight line connecting arbitrary two points on the outer circumference of the opening.
  • the height of the cell 51 (the length in the direction orthogonal to the opening end face of the cell 51) is usually 0.1 ⁇ m or more, 0.5 ⁇ m or more, 1 ⁇ m or more, or 3 ⁇ m or more. It may be 15 ⁇ m or less, 13 ⁇ m or less, or 10 ⁇ m or less.
  • the cell partition wall 53 that partitions the cell 51 in the cell region 55 preferably has translucency.
  • the line width of the cell partition wall 53 of the reinforcing material 50 is, for example, 0.05 mm or more, 0.1 mm or more, 0.5 mm or more, 1 mm or more, and also. It is usually 5 mm or less, and may be 3 mm or less.
  • the cell partition wall 53 of the cell region 55 can be formed of, for example, a resin material or an inorganic oxide, and is preferably formed of a resin material.
  • the resin material include a thermoplastic resin, a thermosetting resin, a curable resin such as an active energy ray-curable resin, and the like.
  • the resin material include the above-mentioned curable resin (X); the thermoplastic resin exemplified as the thermoplastic resin used for the above-mentioned filler.
  • the inorganic oxide include silicon oxide (SiO 2 ) and aluminum oxide.
  • the non-cell region 56 is a region in which the cell 51 of the reinforcing material 50 does not exist, and as described above, a hollow columnar (cylindrical) space surrounded by the cell partition wall 53 and the cell partition wall 53 constituting the cell 51 exists. It is an area that is not.
  • the non-cell region 56 is provided so as to cut out all or a part of the plurality of cells 51, and has a through hole 52 provided in a region corresponding to the through hole 22 of the polarizer 10.
  • the non-cell region 56 can contain a cured product of the curable resin (X) in the through hole 52.
  • the planar shape and diameter of the non-cell region 56 are not particularly limited, and examples thereof include the shape and diameter exemplified as the planar shape of the non-polarized region 12.
  • the planar shape and diameter of the non-cell region 56 are preferably the same as the planar shape and diameter of the non-polarized region 12.
  • the non-polarizing region 12 and the non-cell region 56 in the polarizer composites 40 and 41 are regions provided with a cured product of the active energy ray-curable resin (curable resin (X)), and are preferably regions. It is formed of an active energy ray-curable resin composition containing the curable resin (X) (hereinafter, may be referred to as "curable resin composition").
  • the curable resin (X) contained in the curable resin composition is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays.
  • the curable resin (X) is preferably an ultraviolet curable resin that is cured by irradiation with ultraviolet rays.
  • the curable resin composition containing the curable resin (X) may be an active energy ray-curable adhesive, and in this case, an ultraviolet curable adhesive is more preferable.
  • the curable resin composition is preferably a solvent-free type.
  • the solvent-free type means that no solvent is positively added.
  • the solvent-free type curable resin composition is a curable resin contained in the curable resin composition.
  • the curable resin (X) preferably contains an epoxy compound.
  • the epoxy compound is a compound having one or more, preferably two or more epoxy groups in the molecule.
  • Examples of the epoxy compound include an alicyclic epoxy compound, an aliphatic epoxy compound, and a hydride epoxy compound (glycidyl ether of a polyol having an alicyclic ring).
  • the epoxy compound contained in the curable resin (X) may be one kind or two or more kinds.
  • the content of the epoxy compound is preferably 40% by weight or more, more preferably 50% by weight or more, and further preferably 60% by weight or more with respect to 100% by weight of the curable resin (X). preferable.
  • the content of the epoxy compound may be 100% by weight or less, 90% by weight or less, or even 80% by weight or less with respect to 100% by weight of the curable resin (X). However, it may be 75% by weight or less.
  • the epoxy equivalent of the epoxy compound is usually in the range of 40 to 3000 g / equivalent, preferably 50 to 1500 g / equivalent. If the epoxy equivalent exceeds 3000 g / equivalent, the compatibility with other components contained in the curable resin (X) may decrease.
  • the epoxy compound contained in the curable resin (X) preferably contains an alicyclic epoxy compound.
  • the alicyclic epoxy compound is an epoxy compound having one or more epoxy groups bonded to the alicyclic in the molecule.
  • the "epoxy group bonded to the alicyclic” means a bridging oxygen atom-O-in the structure represented by the following formula. In the following formula, m is an integer of 2 to 5.
  • a compound in which one or more hydrogen atoms in the (CH 2 ) m in the above formula are bonded to another chemical structure can be an alicyclic epoxy compound.
  • One or more hydrogen atoms in (CH 2 ) m may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group.
  • alicyclic epoxy compounds that are preferably used will be specifically exemplified, but the present invention is not limited to these compounds.
  • R 8 and R 9 represent hydrogen atoms or linear alkyl groups having 1 to 5 carbon atoms independently of each other.
  • R 10 and R 11 represent a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms independently of each other, and n represents an integer of 2 to 20.
  • Epoxy cyclopentyl ethers represented by the following formula (XII): [In formula (XII), R 23 and R 24 represent a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms independently of each other. ]
  • Examples of the aliphatic epoxy compound include an aliphatic polyhydric alcohol or a polyglycidyl ether as an adduct thereof. More specifically, 1,4-butanediol diglycidyl ether; 1,6-hexanediol diglycidyl ether; glycerin triglycidyl ether; trimethylrol propane triglycidyl ether; polyethylene glycol diglycidyl ether; propylene Diglycidyl ether of glycol; Polyglycidyl of a polyether polyol obtained by adding one or more alkylene oxides (ethylene oxide or propylene oxide) to an aliphatic polyhydric alcohol such as ethylene glycol, propylene glycol or glycerin. Examples include ether.
  • the hydrogenated epoxy compound is obtained by reacting epichlorohydrin with an alicyclic polyol obtained by hydrogenating the aromatic ring of an aromatic polyol.
  • aromatic polyol include bisphenol-type compounds such as bisphenol A, bisphenol F, and bisphenol S; novolak-type resins such as phenol novolac resin, cresol novolac resin, and hydroxybenzaldehyde phenol novolac resin; tetrahydroxydiphenylmethane, tetrahydroxybenzophenone, polyvinylphenol, and the like.
  • Polyfunctional compounds of Among the hydrogenated epoxy compounds, the diglycidyl ether of hydrogenated bisphenol A can be mentioned.
  • the curable resin (X) may contain a (meth) acrylic compound or the like together with an active energy ray-curable compound such as an epoxy compound.
  • "(Meta) acrylic” means at least one selected from the group consisting of acrylic and methacrylic.
  • the curable resin composition containing the curable resin (X) preferably contains a polymerization initiator.
  • the polymerization initiator include cationic polymerization agents such as photocationic polymerization agents and radical polymerization initiators.
  • the photocationic polymerization initiator generates a cationic species or Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates a polymerization reaction of an epoxy group.
  • the curable resin (X) is preferably an ultraviolet curable resin that is cured by irradiation with ultraviolet rays, and the curable resin (X) preferably contains an alicyclic epoxy compound.
  • the polymerization initiator is preferably one that generates a cationic species or a Lewis acid by irradiation with ultraviolet rays.
  • the curable resin composition further comprises a photosensitizer, a polymerization accelerator, an ion trapping agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow conditioner, a plasticizer, and a defoamer. It can contain additives such as agents, antistatic agents, and leveling agents.
  • the filler that may be provided in the reinforcing material 50 is not particularly limited as long as it has translucency and can fill the internal space of the cell 51 of the reinforcing material 50.
  • the filler is preferably a material different from the material constituting the cell partition wall 53 of the reinforcing material 50, and preferably contains a resin material.
  • the resin material include one or more selected from the group consisting of curable resins such as thermoplastic resins, thermosetting resins and active energy ray-curable resins, and are adhesives or adhesives. May be good.
  • curable resin examples include the above-mentioned curable resin (X).
  • the pressure-sensitive adhesive exhibits adhesiveness by sticking itself to an adherend, and is a so-called pressure-sensitive adhesive.
  • the pressure-sensitive adhesive include those containing a polymer such as a (meth) acrylic polymer, a silicone polymer, a polyester polymer, a polyurethane polymer, a polyether polymer, or a rubber polymer as a main component.
  • the main component means a component containing 50% by mass or more of the total solid content of the pressure-sensitive adhesive.
  • the pressure-sensitive adhesive may be an active energy ray-curable type or a thermosetting type, and the degree of cross-linking and adhesive strength may be adjusted by irradiation with active energy rays or heating.
  • the adhesive contains a curable resin component and is an adhesive other than a pressure-sensitive adhesive (adhesive).
  • the adhesive include an aqueous adhesive in which a curable resin component is dissolved or dispersed in water, an active energy ray-curable adhesive containing an active energy ray-curable compound, and a thermosetting adhesive.
  • FIG. 5 is a schematic cross-sectional view schematically showing an example of a method for manufacturing the polarizer complex 40 (FIG. 1 (a)).
  • FIG. 5 shows a case where the polarizer 10 shown in FIG. 1 (a) is obtained, the polarizer 10 shown in FIGS. 1 (b) and 1 (c) can also be manufactured by the method described below. ..
  • the polarizer complex 40 is, for example, a non-cell composed of only a cell region 55 on one side of a raw material polarizer 20 having the same luminous efficiency correction degree of polarization (Py) as a whole and not having a non-polarizing region 12.
  • structure 58 It can be manufactured by forming a reinforcing material forming structure 58 (hereinafter, may be referred to as “structure 58”) having no region 56. Since the raw material polarizer 20 is formed only by the polarization region 11 of the above-mentioned polarizer 10, the thickness of the raw material polarizer 20 is preferably 15 ⁇ m or less, which is the same thickness as the polarizing region 11 of the polarizer 10. Since the structure 58 is the cell region 55 of the reinforcing material 50 described above, it is preferable that the structure 58 has the same thickness as the cell region 55 of the reinforcing material 50.
  • the polarizer complex 40 can be produced, for example, in the following process. First, as shown in FIG. 5A, a first support layer 25 is provided on one surface of the raw material polarizer 20 so as to be detachable from the raw material polarizer 20, and then the other surface of the raw material polarizer 20 is provided. The structure 58 is formed in the structure 58 to prepare the first laminated body 31. The structure 58 can be obtained, for example, by forming a cell partition wall 53 for partitioning the cell 51 on the surface of the raw material polarizer 20 using a resin material or an inorganic oxide.
  • the method for forming the cell partition wall 53 using a resin material is not particularly limited, and examples thereof include printing methods such as inkjet printing, screen printing, and gravure printing; photolithography methods; coating methods using nozzles, dies, and the like. Be done.
  • a resin composition obtained by mixing a resin material with a solvent, an additive, or the like may be used.
  • the additive include a leveling agent, an antioxidant, a plasticizer, a tackifier, an organic or inorganic filler, a pigment, an antioxidant, an ultraviolet absorber, an antioxidant and the like.
  • the cell partition wall 53 may be formed by subjecting the printed or coated resin composition to a treatment for solidification or curing, if necessary.
  • the method for forming the cell partition wall 53 using an inorganic oxide is not particularly limited, but it can be formed, for example, by depositing an inorganic oxide.
  • a through hole 32 penetrating in the stacking direction is formed in the prepared first laminated body 31 by punching, cutting, cutting, laser cutting, or the like (FIG. 5 (b)).
  • the structure 59 is formed.
  • the second support layer 26 is detachably provided on the perforated structure 59 side of the first laminated body 31 in which the through hole 32 is formed (FIG. 5 (c)), and then the first support layer 25 is peeled off. (Fig. 5 (d)).
  • the through hole 22 of the perforated polarizer 21 of the second laminated body 33 and the through hole 52 of the perforated structure 59 are filled with a curable resin composition containing a curable resin (X), and active energy rays are applied.
  • the curable resin (X) in the through holes 22 and 52 is cured.
  • a cured product of the curable resin (X) is formed in the through hole 22 of the perforated polarizer 21 and the through hole 52 of the perforated structure 59, and the polarizer composite laminated on the second support layer 26. 40 is obtained (FIG. 5 (e)).
  • the second support layer 26 may be peeled off.
  • the region other than the through hole 22 of the perforated polarizer 21 is the polarized region 11, and the region of the through hole 22 provided with the cured product is the non-polarized region 12.
  • the region other than the through hole 52 of the perforated structure 59 is the cell region 55, and the region of the through hole 52 provided with the cured product is the non-cell region 56.
  • the method of filling the through hole 22 of the perforated polarizing element 21 and the through hole 52 of the perforated structure 59 with the curable resin composition is not particularly limited.
  • the curable resin composition may be injected into the through holes 22 and 52 of the second laminated body 33 using a dispenser, a dispenser, or the like, and the curable resin composition may be injected onto the surface of the perforated polarizer 21 of the second laminated body 33.
  • the through holes 22 and 52 may be filled with the curable resin composition while coating the curable resin composition.
  • the cured product layer of the curable resin composition coated on the surface of the perforated polarizing element 21 can be a protective layer described later.
  • a base film When coating the curable resin composition, a base film may be provided so as to cover the surface of the coating layer formed by the coating.
  • the base film may be used as a protective layer described later, and in this case, the cured product layer of the curable resin (X) may be a bonding layer for bonding the protective layer described later.
  • the base film may be peeled off after the curable resin (X) contained in the curable resin composition is cured.
  • the polarizer complex 41 is, for example, a non-cell composed of only a cell region 55 on both sides of a raw material polarizer 20 having the same luminous efficiency correction degree of polarization (Py) as a whole and not having a non-polarizing region 12. It can be manufactured by forming each of the structures (reinforcing material forming structures) 58 having no region 56.
  • the thickness of the raw material polarizer 20 is preferably 15 ⁇ m or less, which is the same thickness as the polarizing region 11 of the polarizer 10. Since the structure 58 is the cell region 55 of the reinforcing material 50 described above, it is preferable that the structure 58 has the same thickness as the cell region 55 of the reinforcing material 50.
  • the polarizer complex 41 can be produced, for example, in the following process.
  • the first laminated body 31 is prepared by the procedure described in the method for manufacturing the polarizer complex 40 (FIG. 6A).
  • the third support layer 27 is detachably provided on the structure 58 side of the prepared first laminated body 31 (FIG. 6 (b)), and then the first support layer 25 is detached (FIG. 6 (c)).
  • the structure 58 is formed on the exposed surface (the surface of the raw material polarizer 20) by peeling off the first support layer 25 in the same procedure as described above (FIG. 6 (d)).
  • a third laminated body 34 in which the third support layer 27, the structure 58, the raw material polarizer 20, and the structure 58 are laminated in this order is obtained (FIG. 6 (d)).
  • a through hole 36 penetrating in the stacking direction is formed in the obtained third laminated body 34 by punching, cutting, cutting, laser cutting, or the like (FIG. 7A).
  • the perforated polarizer 21 in which the through hole 22 is formed in the raw material polarizer 20 and the perforated hole 52 in which the through hole 52 is formed in the structure 58.
  • the structure 59 is formed.
  • the fourth support layer 28 is detachably provided on the perforated structure 59 side of the third laminated body 34 in which the through hole 36 is formed (FIG. 7B), and then the third support layer 27 is peeled off. (Fig. 7 (c)).
  • a fourth laminated body 35 in which the perforated structure 59, the perforated polarizing element 21, the perforated structure 59, and the fourth support layer 28 are laminated in this order is obtained (FIG. 7 (c)).
  • the fourth support layer 28 is provided so as to close one side of the through hole 52 of the perforated structure 59.
  • the curable resin (X) is applied to the through hole 22 of the perforated polarizer 21 of the fourth laminated body 35 and the through hole 52 of the perforated structure 59 by the method exemplified in the method for producing the polarizer composite 40.
  • the curable resin (X) in the through holes 22 and 52 is cured by filling the curable resin composition containing the mixture and irradiating it with active energy rays.
  • a cured product of the curable resin (X) is formed in the through hole 22 of the perforated polarizing element 21 and the through hole 52 of the perforated structure 59, and the polarizer composite laminated on the fourth support layer 28. 41 is obtained (FIG. 7 (d)).
  • the fourth support layer 28 may be peeled off.
  • the region other than the through hole 22 of the perforated polarizer 21 is the polarized region 11, and the region of the through hole 22 provided with the cured product is the non-polarized region 12.
  • the region other than the through hole 52 of the perforated structure 59 is the cell region 55, and the region of the through hole 52 provided with the cured product is the non-cell region 56.
  • Examples of the method for filling the through hole 22 of the perforated polarizer 21 and the through hole 52 of the perforated structure 59 with the curable resin (X) include the filling method described in the method for producing the polarizer complex (1). Be done.
  • Examples of the method of providing the third support layer 27 and the fourth support layer 28 include the methods exemplified as the method of providing the first support layer 25 and the second support layer 26.
  • the depth of the through hole 22 provided in the perforated polarizer 21 can also be 15 ⁇ m or less. Since the height of the cell 51 of the perforated structure 59 is usually 15 ⁇ m or less, the depth of the through hole 52 provided in the perforated structure 59 can also be 15 ⁇ m or less.
  • the curable resin composition is filled in the through hole 22 of the perforated polarizing element 21 and the through hole 52 of the perforated structure 59, and is included in the curable resin composition filled in the through holes 22 and 52. Since the curing treatment of the curable resin (X) can be performed in a short time, deterioration of workability can be suppressed.
  • a through hole 32 is formed in the first laminated body 31 having the structure 58, the raw material polarizer 20, and the first support layer 25 in this order.
  • a through hole 36 is formed in the third laminated body 34 having the third support layer 27, the structure 58, the raw material polarizer 20, and the structure 58 in this order.
  • the raw material polarizer 20 forms a region to be the non-polarized region 12 of the polarizing element 10, and its thickness is as thin as 15 ⁇ m or less. Therefore, when the raw material polarizer 20 is formed with the through hole 22, the through hole 22 is formed. There is a risk of problems such as cracks occurring in the periphery.
  • the structure 58 is provided in the raw material polarizer 20, and the through hole 22 is formed in a state where the raw material polarizer 20 is reinforced by the structure 58. It is possible to obtain a polarizer 10 in which cracks are suppressed and cracks are suppressed.
  • the raw material polarizer 20 is not significantly deteriorated by the active energy rays irradiated to cure the curable resin (X) in the curable resin composition filled in the through hole 22.
  • a raw material polarizer 20 is, for example, a film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film, or a film in which the dichroic dye is oriented in a cured layer of a polymerizable liquid crystal compound. , These manufacturing methods are as described in the above-mentioned polarization region 11.
  • the structure 58 is a structure consisting of only the cell region 55 and not having the non-cell region 56. As described above, the structure 58 can be obtained by forming the cell partition wall 53 that partitions the cell 51 using a resin material or an inorganic oxide. Examples of the material that can be used as the resin material and the inorganic oxide, and the method for forming the cell partition wall 53 using these are the materials and methods exemplified above.
  • optical laminate> 8 and 9 are schematic cross-sectional views schematically showing an example of the optical laminate of the present embodiment.
  • the optical laminate has a protective layer on one side or both sides of the polarizer complex 40 shown in FIGS. 1 (a) to 1 (c) and the polarizer complex 41 shown in FIG.
  • the optical laminate 45 shown in FIG. 8 has protective layers 17 and 18 on both side surfaces of the polarizer complex 40 shown in FIG. 1 (a).
  • the optical laminate 45 may have a protective layer 17 (or 18) only on one side of the polarizer complex 40.
  • the polarizer complex 40 included in the optical laminate 45 may be the polarizer complex 40 shown in FIGS. 1 (b) or 1 (c).
  • the protective layers 17 and 18 can be provided on the polarizer complex 40 via a bonding layer such as an adhesive layer or an adhesive layer. In this case, for example, a film-like protective layer may be laminated on the polarizer complex 40 via a bonding layer.
  • the protective layers 17 and 18 may be provided so as to be in direct contact with the polarizer complex 40 without interposing a bonding layer.
  • a composition containing a resin material constituting the protective layers 17 and 18 is applied onto the polarizer complex 40, and the coated layers are solidified or cured to form the protective layers 17 and 18. be able to.
  • the optical laminate 45 When the optical laminate 45 is provided with the protective layer 18 via the bonding layer on the reinforcing material 50 side of the polarizing element composite 40, the internal space of the cells 51 of the reinforcing material 50 and the plurality of cells 51. It is preferable to provide a bonding layer so as to fill the gaps between the layers to form the protective layer 18.
  • the optical laminate 45 When the optical laminate 45 is provided with the protective layer 18 so as to be in direct contact with the reinforcing material 50 side of the polarizing element composite 40, the internal space of the cells 51 of the reinforcing material 50 and the space between the plurality of cells 51. It is preferable to form the protective layer 18 by providing a composition containing a resin material constituting the protective layer 18 so as to fill the gaps and the like.
  • the polarizing element 10 is provided. It is preferable to provide a bonding layer and provide a protective layer 17 so as to fill the thickness difference between the polarized region 11 and the non-polarized region 12.
  • the protective layer 17 is formed by providing a composition containing a resin material constituting the protective layer 17 so as to fill the thickness difference between the region 11 and the non-polarized region 12.
  • the protective layer 17 may be a cured product layer of a curable resin (X) provided directly on the polarizing element 10.
  • the curable resin (X) constituting the protective layer 17 which is a cured product layer is not particularly limited as long as it is a resin that is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays. Examples thereof include the curable resin (X) described above.
  • the protective layer 17 is a cured product of a curable resin composition containing the same curable resin (X) as the curable resin (X) constituting the cured product contained in the non-polarized region 12 and the non-cell region 56 of the polarizer 10. It is preferably a layer.
  • the protective layer 17 is a cured product layer of the same curable resin (X) as the curable resin (X) constituting the cured product of the polarizer 10 and the cured product of the reinforcing material 50, the protective layer 17 is at least the polarizer 10 It is preferable to cover the non-polarized region 12 of the above.
  • the protective layer 17 may cover at least a part of one side of the polarizer 10, but it is preferable to cover the entire surface of one side of the polarizer 10.
  • the curable resin composition is coated on the polarizer 10 side of the polarizer composite 40, and the curable resin (X) is cured by irradiating it with active energy rays. ..
  • the protective layer 17 which is a cured product layer of the curable resin (X) may be formed on the polarizing element 10 to obtain the optical laminate 45.
  • the through holes 52 and the perforations of the perforated structure 59 are perforated.
  • the through hole 22 of the polarizer 21 is filled with the curable resin composition, and a coating layer of the curable resin composition is also formed on the surface of the perforated polarizer 21.
  • the curable resin (X) in the through hole 52 of the perforated structure 59, in the through hole 22 of the perforated polarizing element 21, and on the surface of the perforated polarizing element 21 is cured.
  • the cured product and the protective layer 17 which is a cured product layer may be formed to obtain the optical laminate 45.
  • the cured product contained in the non-polarized region 12 and the non-cell region 56 and the cured product layer constituting the protective layer 17 can be integrated, and the protective layer 17 is the non-polarized region 12 and the non-cell region.
  • the cured product layer is a curable resin composition containing the same curable resin (X) as the curable resin (X) constituting the cured product contained in 56.
  • the optical laminate 46 shown in FIG. 9 has protective layers 17 and 18 on both side surfaces of the polarizer complex 41 shown in FIG.
  • the optical laminate 46 may have a protective layer 17 (or 18) only on one side of the polarizer complex 41.
  • the protective layers 17 and 18 may be provided on the polarizing element complex 41 via a bonding layer such as an adhesive layer or an adhesive layer, and are in direct contact with the polarizing element complex 41 without a bonding layer. It may be provided in.
  • the method of providing the protective layers 17 and 18 on the polarizer complex 41 may be performed in the same procedure as the method of providing the protective layers 17 and 18 on the polarizer complex 40 in the optical laminate 45 shown in FIG. 8 described above. it can.
  • the protective layer 17 (or 18) provided on one side of the polarizer composites 40 and 41 is a layer provided so as to be in direct contact with the polarizer composites 40 and 41
  • the protective layer 17 (or 18) Can be a cured product layer of the same curable resin (X) as the curable resin (X) constituting the cured product contained in the non-polarized region 12 and the non-cell region 56 of the polarizer composites 40 and 41. ..
  • the through hole 22 of the perforated polarizer 21 and the through hole 52 of the perforated structure 59 are filled with a curable resin (X) while performing perforated polarized light.
  • the cured product layer obtained by curing the curable resin (X) coated on the surface of the child 21 or the perforated structure 59 may be the protective layer 17 (or 18).
  • the cured product contained in the non-polarized region 12 and the non-cell region 56 and the cured product layer constituting the protective layer 17 (or 18) can be integrated, and the protective layer 17 (or 18) can be integrated.
  • It can be a cured product layer of a curable resin composition containing the same curable resin (X) as the curable resin (X) constituting the cured product contained in the non-polarized region 12 and the non-cell region 56.
  • one of the protective layers 17 and 18 is a protective layer provided via a bonding layer, and the other is a protective layer provided without a bonding layer. May be good.
  • the protective layers 17 and 18 included in the optical laminates 45 and 46 may be the same as each other or may be different from each other.
  • a base film When coating the curable resin composition, a base film may be provided so as to cover the surface of the coating layer formed by the coating.
  • the base film may be the protective layers 17 and 18, and the cured product layer of the curable resin (X) may be the bonding layer for bonding the protective layers 17 and 18.
  • the base film may be peeled off after the curable resin (X) is cured.
  • the protective layers 17 and 18 are preferably resin layers that can transmit light, and may be a resin film or a coating layer formed by applying a composition containing a resin material.
  • the resin used for the resin layer is preferably a thermoplastic resin having excellent transparency, mechanical strength, thermal stability, moisture blocking property, isotropic property, stretchability and the like.
  • the thermoplastic resin include the thermoplastic resin constituting the base film that may be used in the production of the raw material polarizer 20 described above.
  • the resin compositions of the protective layers 17 and 18 may be the same or different from each other.
  • the thicknesses of the protective layers 17 and 18 are usually 200 ⁇ m or less, preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less, 80 ⁇ m or less, and 60 ⁇ m or less. You may.
  • the thickness of the protective layers 17 and 18 is usually 5 ⁇ m or more, may be 10 ⁇ m or more, or may be 20 ⁇ m or more.
  • the protective layers 17 and 18 may or may not have a phase difference. When the optical laminates 45 and 46 have the protective layers 17 and 18 on both sides, the thicknesses of the protective layers 17 and 18 may be the same or different from each other.
  • the bonding layer is an adhesive layer or an adhesive layer.
  • Examples of the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer and the adhesive for forming the adhesive layer include the pressure-sensitive adhesive and the adhesive used for forming the above-mentioned filler.
  • the polarizing element composites 40, 41 shown in FIGS. 1 (a) to 1 (c) and FIGS. 4 and the optical laminates 45, 46 shown in FIGS. 8 and 9 further display a liquid crystal display device, an organic EL display device, or the like. It may have a bonding layer for an optical display element for bonding to an optical display element (liquid crystal panel, organic EL element) of the apparatus.
  • the polarizer complex 40 for an optical display element on a surface having a thickness difference between a polarized region 11 and a non-polarized region 12 as in the polarizer complex 40 shown in FIGS. 1 (b) or 1 (c).
  • the bonding layer it is preferable to provide the bonding layer for the optical display element so as to fill this difference in thickness.
  • the bonding layer for the optical display element is provided on the surface of the reinforcing material 50
  • the bonding layer for the optical display element is provided as a filler to be provided on the reinforcing material 50.
  • the filling material may be filled in the internal space of the cell 51 of the reinforcing material 50 and the bonding layer for the optical display element may be formed at the same time by using the material constituting the above.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

A polarizer complex that has a polarizer and a reinforcing material provided on at least one surface side of the polarizer. The polarizer has: a polarized region having a thickness of no more than 15 µm; and a non-polarized region surrounded by the polarized region in the planar view. The reinforcing material has a plurality of cells having an open end surface and each open end surface is arranged so as to face the surface of the polarizer. The reinforcing material has: a cell region that has cells present therein and is present in a region corresponding to the polarized region; and a non-cell region that does not have cells present therein and is present in a region corresponding to the non-polarized region. The non-polarized region and the non-cell region include a cured product of an active energy ray curable resin and, in the planar view, the cured product included in the non-polarized region is provided in a through-hole surrounded by the polarized region.

Description

偏光子複合体及び光学積層体Polarizer complex and optical laminate
 本発明は、偏光子複合体及び光学積層体に関する。 The present invention relates to a polarizer complex and an optical laminate.
 偏光子は、液晶表示装置や有機エレクトロルミネッセンス(EL)表示装置等の表示装置における偏光の供給素子として、また偏光の検出素子として広く用いられている。偏光子を備えた表示装置は、ノート型パーソナルコンピュータや携帯電話等のモバイル機器にも展開されており、表示目的の多様化、表示区分の明確化、装飾化等への要求から、透過率の異なる領域を有する偏光子が要求されている。特にスマートフォンやタブレット型端末に代表される中小型の携帯端末においては、装飾性の観点から全面にわたって境目のないデザインとするため、表示面全面に偏光子を貼り合わせることがある。この場合、カメラレンズの領域、画面下のアイコン又はロゴ印刷の領域にも偏光子が重なることがあるため、カメラの感度が悪くなったり、意匠性に劣ったりするという問題がある。 The polarizer is widely used as a polarization supply element in a display device such as a liquid crystal display device or an organic electroluminescence (EL) display device, and as a polarization detection element. Display devices equipped with a polarizer have also been deployed in mobile devices such as notebook personal computers and mobile phones, and due to demands for diversification of display purposes, clarification of display categories, decoration, etc., the transmittance is high. Polaritators with different regions are required. In particular, in small and medium-sized mobile terminals such as smartphones and tablet terminals, a polarizer may be attached to the entire display surface in order to design the entire surface without boundaries from the viewpoint of decorativeness. In this case, since the polarizer may overlap the area of the camera lens and the area of the icon or logo printing at the bottom of the screen, there is a problem that the sensitivity of the camera is deteriorated or the design is inferior.
 例えば特許文献1には、偏光板に含まれる偏光子に二色性物質の含有量が相対的に低い二色性物質低濃度部を部分的に設け、この二色性物質低濃度部に対応させてカメラを配置することにより、カメラ性能に悪影響を与えないようにすることが記載されている。 For example, in Patent Document 1, a low-concentration portion of a dichroic substance having a relatively low content of a dichroic substance is partially provided in a polarizer contained in a polarizing plate, and the low-concentration portion of the dichroic substance corresponds to the low-concentration portion of the dichroic substance. It is described that the camera is arranged so as not to adversely affect the camera performance.
特開2015-215609号公報JP-A-2015-215609
 特許文献1では、二色性物質を含む樹脂フィルムに塩基性溶液を接触させるという化学処理を施すことにより、樹脂フィルムを部分的に脱色して二色性物質低濃度部を形成している。脱色のために用いた塩基性溶液は、廃液として処理するために手間やコストを要する。また、特許文献1には、二色性物質としてのヨウ素を用いた場合に塩基性溶液を接触させることにより、ヨウ素の含有量を低減して二色性物質低濃度部を形成できることが記載されている。しかしながら、ヨウ素以外の二色性物質を用いた場合に二色性物質低濃度部を形成する具体的な方法については開示がない。 In Patent Document 1, the resin film is partially decolorized to form a low-concentration portion of the bicolor substance by subjecting the resin film containing the bicolor substance to a chemical treatment in which a basic solution is brought into contact with the resin film. The basic solution used for decolorization requires labor and cost to be treated as a waste liquid. Further, Patent Document 1 describes that when iodine as a dichroic substance is used, the iodine content can be reduced and a low concentration portion of the dichroic substance can be formed by contacting with a basic solution. ing. However, there is no disclosure about a specific method for forming a low-concentration portion of a dichroic substance when a dichroic substance other than iodine is used.
 本発明は、脱色等の化学処理によって二色性物質の含有量の少ない領域を形成した偏光子に代わる、新規な偏光子を備える偏光子複合体及び光学積層体の提供を目的とする。 An object of the present invention is to provide a polarizer complex and an optical laminate having a novel polarizer instead of a polarizer in which a region having a low content of a dichroic substance is formed by a chemical treatment such as decolorization.
 本発明は、以下の偏光子複合体及び光学積層体を提供する。
 〔1〕 偏光子と、前記偏光子の少なくとも一方の面側に設けられた補強材と、を有する偏光子複合体であって、
 前記偏光子は、厚みが15μm以下の偏光領域と、平面視において前記偏光領域に囲まれた非偏光領域と、を有し、
 前記補強材は、
  開口端面を有するセルを複数有し、且つ、各開口端面が前記偏光子の面に対向するように配列しており、
  前記セルが存在し且つ前記偏光領域に対応する領域に存在するセル領域と、前記セルが存在せず且つ前記非偏光領域に対応する領域に存在する非セル領域と、を有し、
 前記非偏光領域及び前記非セル領域は、活性エネルギー線硬化性樹脂組成物の硬化物を含み、
 前記非偏光領域に含まれる前記硬化物は、平面視において前記偏光領域に囲まれた貫通穴に設けられている、偏光子複合体。
 〔2〕 前記補強材は、前記偏光子の両面側に設けられる、〔1〕に記載の偏光子複合体。
 〔3〕 前記硬化物の厚みは、前記偏光領域の厚み及び前記セル領域の厚みの合計厚みと同じである、〔1〕又は〔2〕に記載の偏光子複合体。
 〔4〕 前記硬化物の厚みは、前記偏光領域の厚み及び前記セル領域の厚みの合計厚みよりも小さい、〔1〕又は〔2〕に記載の偏光子複合体。
 〔5〕 前記硬化物の厚みは、前記偏光領域の厚み及び前記セル領域の厚みの合計厚みよりも大きい、〔1〕又は〔2〕に記載の偏光子複合体。
 〔6〕 前記非偏光領域は、透光性を有する、〔1〕~〔5〕のいずれかに記載の偏光子複合体。
 〔7〕 前記非偏光領域の平面視における径は、0.5mm以上20mm以下である、〔1〕~〔6〕のいずれかに記載の偏光子複合体。
 〔8〕 前記活性エネルギー線硬化性樹脂は、エポキシ化合物を含む、〔1〕~〔7〕のいずれかに記載の偏光子複合体。
 〔9〕 前記エポキシ化合物は、脂環式エポキシ化合物を含む、〔8〕に記載の偏光子複合体。
 〔10〕 前記セルの前記開口の形状は、多角形状、円形状、又は楕円形状である、〔1〕~〔9〕のいずれかに記載の偏光子複合体。
 〔11〕 さらに、前記セルの内部空間に透光性の充填材が設けられている、〔1〕~〔10〕のいずれかに記載の偏光子複合体。
 〔12〕 〔1〕~〔11〕のいずれかに記載の偏光子複合体の片面側又は両面側に保護層を有する、光学積層体。
 〔13〕 前記偏光子複合体の片面側に設けられた前記保護層は、前記非偏光領域及び前記非セル領域に含まれる前記硬化物を構成する活性エネルギー線硬化性樹脂と同じ活性エネルギー線硬化性樹脂の硬化物層である、〔12〕に記載の光学積層体。
The present invention provides the following polarizer complexes and optical laminates.
[1] A polarizer complex having a polarizer and a reinforcing material provided on at least one surface side of the polarizer.
The polarizer has a polarized region having a thickness of 15 μm or less and a non-polarized region surrounded by the polarized region in a plan view.
The reinforcing material is
A plurality of cells having an open end face are provided, and each open end face is arranged so as to face the surface of the polarizer.
It has a cell region in which the cell exists and exists in a region corresponding to the polarized light region, and a non-cell region in which the cell does not exist and exists in a region corresponding to the non-polarized region.
The non-polarized region and the non-cell region contain a cured product of an active energy ray-curable resin composition.
The cured product contained in the non-polarized region is a polarizer complex provided in a through hole surrounded by the polarized region in a plan view.
[2] The polarizer composite according to [1], wherein the reinforcing material is provided on both sides of the polarizer.
[3] The polarizer complex according to [1] or [2], wherein the thickness of the cured product is the same as the total thickness of the polarization region and the cell region.
[4] The polarizer complex according to [1] or [2], wherein the thickness of the cured product is smaller than the total thickness of the polarization region and the cell region.
[5] The polarizer complex according to [1] or [2], wherein the thickness of the cured product is larger than the total thickness of the polarization region and the cell region.
[6] The polarizer complex according to any one of [1] to [5], wherein the non-polarized region has translucency.
[7] The polarizer complex according to any one of [1] to [6], wherein the diameter of the non-polarized region in a plan view is 0.5 mm or more and 20 mm or less.
[8] The polarizer complex according to any one of [1] to [7], wherein the active energy ray-curable resin contains an epoxy compound.
[9] The polarizer complex according to [8], wherein the epoxy compound contains an alicyclic epoxy compound.
[10] The polarizer complex according to any one of [1] to [9], wherein the shape of the opening of the cell is a polygonal shape, a circular shape, or an elliptical shape.
[11] The polarizer complex according to any one of [1] to [10], wherein a translucent filler is provided in the internal space of the cell.
[12] An optical laminate having a protective layer on one side or both sides of the polarizer complex according to any one of [1] to [11].
[13] The protective layer provided on one side of the polarizer composite is the same active energy ray-curable resin as the active energy ray-curable resin constituting the cured product contained in the non-polarized region and the non-cell region. The optical laminate according to [12], which is a cured product layer of a sex resin.
 本発明によれば、新規な偏光子を備える偏光子複合体及び光学積層体を提供することができる。 According to the present invention, it is possible to provide a polarizer complex and an optical laminate having a novel polarizer.
(a)~(c)は、本発明の偏光子複合体の一例を模式的に示す概略断面図である。(A) to (c) are schematic cross-sectional views schematically showing an example of the polarizer complex of the present invention. (a)は、図1(a)~(c)に示す偏光子複合体をA方向からみた概略平面図であり、(b)は、図1(a)~(c)に示す偏光子複合体をB方向からみた概略平面図である。(A) is a schematic plan view of the polarizing element complexes shown in FIGS. 1 (a) to 1 (c) when viewed from the A direction, and FIG. 1 (b) is a schematic plan view of the polarizing element complexes shown in FIGS. It is a schematic plan view which looked at the body from the B direction. (a)及び(b)は、偏光子複合体の非偏光領域及び非セル領域周辺の断面の一例を模式的に示す図であって、非偏光領域及び非セル領域に設けられた硬化物の厚みを決定する方法を説明するための説明図である。(A) and (b) are diagrams schematically showing an example of a cross section around a non-polarized region and a non-cell region of a polarizer complex, and are views of a cured product provided in the non-polarized region and the non-cell region. It is explanatory drawing for demonstrating the method of determining a thickness. 本発明の偏光子複合体の他の一例を模式的に示す概略断面図である。It is schematic cross-sectional view which shows another example of the polarizer complex of this invention schematically. (a)~(e)は、本発明の偏光子複合体の製造方法の一例を模式的に示す概略断面図である。(A) to (e) are schematic cross-sectional views schematically showing an example of the method for producing a polarizer complex of the present invention. (a)~(d)は、本発明の偏光子複合体の製造方法の他の一例を模式的に示す概略断面図である。(A) to (d) are schematic cross-sectional views schematically showing another example of the method for producing a polarizer complex of the present invention. (a)~(d)は、図6に示す偏光子複合体の製造方法の続きを模式的に示す概略断面図である。(A) to (d) are schematic cross-sectional views schematically showing a continuation of the method for producing a polarizer complex shown in FIG. 本発明の光学積層体の一例を模式的に示す概略断面図である。It is schematic cross-sectional view which shows typically an example of the optical laminated body of this invention. 本発明の光学積層体の他の一例を模式的に示す概略断面図である。It is the schematic sectional drawing which shows another example of the optical laminated body of this invention schematically.
 以下、図面を参照して本発明の偏光子複合体、及び光学積層体の好ましい実施形態について説明する。以下のすべての図面においては、各構成要素を理解しやすくするために縮尺を適宜調整して示しており、図面に示される各構成要素の縮尺と実際の構成要素の縮尺とは必ずしも一致しない。 Hereinafter, preferred embodiments of the polarizer complex of the present invention and the optical laminate will be described with reference to the drawings. In all the drawings below, the scales are appropriately adjusted to make each component easier to understand, and the scale of each component shown in the drawings does not necessarily match the scale of the actual component.
 <偏光子複合体>
 (偏光子複合体(1))
 図1(a)~(c)は、本実施形態の偏光子複合体の一例を模式的に示す概略断面図である。図2(a)は、図1(a)~(c)に示す偏光子複合体をA方向(偏光子側)からみた概略平面図であり、図2(b)は、図1(a)~(c)に示す偏光子複合体をB方向(補強材側)からみた概略平面図である。図1(a)~(c)に示す偏光子複合体40は、偏光子10と、偏光子10の片面側に設けられた補強材50とを有する。
<Polarizer complex>
(Polarizer complex (1))
1 (a) to 1 (c) are schematic cross-sectional views schematically showing an example of a polarizer complex of the present embodiment. FIG. 2A is a schematic plan view of the polarizer complex shown in FIGS. 1A to 1C as viewed from the A direction (polarizer side), and FIG. 2B is FIG. 1A. It is a schematic plan view which saw the polarizer composite shown in (c) from the B direction (reinforcing material side). The polarizer complex 40 shown in FIGS. 1 (a) to 1 (c) has a polarizer 10 and a reinforcing member 50 provided on one side of the polarizer 10.
 偏光子複合体40が有する偏光子10は、図2(a)に示すように、偏光領域11と、平面視において偏光領域11に囲まれた非偏光領域12とを有する。偏光領域11の厚みは、15μm以下である。 As shown in FIG. 2A, the polarizing element 10 included in the polarizing element complex 40 has a polarized light region 11 and a non-polarized light region 12 surrounded by the polarized light region 11 in a plan view. The thickness of the polarized light region 11 is 15 μm or less.
 偏光子10における偏光領域11及び非偏光領域12の配置は、偏光領域11が非偏光領域12を取り囲むように設けられていれば特に限定されない。偏光子10の平面視において、偏光領域11が占有する総面積は、非偏光領域12が占有する総面積よりも大きいことが好ましい。偏光子10は、非偏光領域12を1つ有していればよく、非偏光領域12を2つ以上有していてもよい。非偏光領域12を2つ以上有する場合、それぞれの非偏光領域12の形状は互いに同じであってもよく、互いに異なっていてもよい。 The arrangement of the polarized light region 11 and the non-polarized light region 12 in the polarizer 10 is not particularly limited as long as the polarized light region 11 is provided so as to surround the non-polarized light region 12. In a plan view of the polarizer 10, the total area occupied by the polarized region 11 is preferably larger than the total area occupied by the non-polarized region 12. The polarizer 10 may have one non-polarized region 12 and may have two or more non-polarized regions 12. When two or more non-polarized regions 12 are provided, the shapes of the non-polarized regions 12 may be the same or different from each other.
 偏光子複合体40が有する補強材50は、図2(b)に一例を示すように、開口端面を有するセル51を複数有し、且つ、各開口端面が偏光子10の面に対向するように配列している。補強材50は、セル51が存在するセル領域55と、セル51が存在しない非セル領域56とを有する。セル51は、セル51を区画するセル隔壁53に囲まれた中空柱状(筒状)の構造を有し、柱状の構造の軸方向両端が開口した開口端面となっているものである。セル51が存在しない非セル領域56とは、セル51を構成するセル隔壁53及びセル隔壁53に囲まれた中空柱状(筒状)の空間が存在していない領域である。 As shown in FIG. 2B, the reinforcing material 50 included in the polarizer complex 40 has a plurality of cells 51 having open end faces, and each open end face faces the surface of the polarizer 10. It is arranged in. The reinforcing material 50 has a cell region 55 in which the cell 51 is present and a non-cell region 56 in which the cell 51 is not present. The cell 51 has a hollow columnar (cylindrical) structure surrounded by a cell partition wall 53 for partitioning the cell 51, and has an open end surface in which both ends in the axial direction of the columnar structure are open. The non-cell region 56 in which the cell 51 does not exist is an region in which a hollow columnar (cylindrical) space surrounded by the cell partition wall 53 and the cell partition wall 53 constituting the cell 51 does not exist.
 補強材50において、セル領域55は、偏光子10に存在する偏光領域11に対応する領域に存在し、非セル領域56は、偏光子10の非偏光領域12に対応する領域に存在する。ここで、セル領域55が偏光領域11に対応する領域に存在するとは、平面視方向において、セル領域55及び偏光領域11が互いに略同形状、略同寸法であることをいい、同様に、非セル領域56が非偏光領域12に対応する領域にあるとは、平面視方向において、非セル領域56及び非偏光領域12が略同じ位置に、略同形状、略同寸法(径)であることをいう。換言すれば、非セル領域56を、平面視方向で、偏光子10に投影したとき、非セル領域56の投影領域と、当該偏光子10にある非偏光領域12とが略同一であることをいう。後述する偏光子複合体の製造手段によれば、セル領域55が偏光領域11に対応する領域に存在する偏光子複合体を、効率的に製造できる。偏光子複合体40に含まれる偏光子10が2つ以上の非偏光領域12を有する場合、少なくとも1つの非偏光領域12に対応する領域に非セル領域56が存在していれば、他の非偏光領域12に対応する領域にはセル領域55が存在していてもよい。 In the reinforcing material 50, the cell region 55 exists in the region corresponding to the polarizing region 11 existing in the polarizer 10, and the non-cell region 56 exists in the region corresponding to the non-polarizing region 12 of the polarizer 10. Here, the fact that the cell region 55 exists in the region corresponding to the polarization region 11 means that the cell region 55 and the polarization region 11 have substantially the same shape and substantially the same dimensions in the plan view direction, and similarly, they are not. The fact that the cell region 56 is in the region corresponding to the non-polarized region 12 means that the non-cell region 56 and the non-polarized region 12 have substantially the same shape and substantially the same dimensions (diameter) at substantially the same position in the plan view direction. To say. In other words, when the non-cell region 56 is projected onto the polarizer 10 in the plan view direction, the projected region of the non-cell region 56 and the non-polarizing region 12 in the polarizer 10 are substantially the same. Say. According to the means for producing a polarizer complex described later, a polarizer complex in which the cell region 55 exists in a region corresponding to the polarizing region 11 can be efficiently manufactured. When the polarizer 10 included in the polarizer complex 40 has two or more non-polarized regions 12, if the non-cell region 56 is present in the region corresponding to at least one non-polarized region 12, the other non-polarized region 56 is present. The cell region 55 may be present in the region corresponding to the polarization region 12.
 偏光子10の非偏光領域12及び補強材50の非セル領域56は、活性エネルギー線硬化性樹脂(以下、「硬化性樹脂(X)」ということがある。)の硬化物を含む。非偏光領域12は、図1(a)~(c)に示すように、平面視において偏光領域11に囲まれた貫通穴22に、硬化性樹脂(X)の硬化物が設けられた領域とすることができる。非セル領域56は、複数のセル51の全体又は一部を切欠くように設けられ、且つ上記した貫通穴22に対応する領域に設けられた貫通穴52に、硬化性樹脂(X)の硬化物が設けられた領域とすることができる。偏光子10の貫通穴22と補強材50の貫通穴52とは、平面視において同形状とすることができる。貫通穴22と貫通穴52とは、偏光領域11の厚み方向に連通したものとすることができ、連通する上記貫通穴22,52に亘って硬化性樹脂(X)の硬化物を設けることができる。 The non-polarizing region 12 of the polarizer 10 and the non-cell region 56 of the reinforcing material 50 include a cured product of an active energy ray-curable resin (hereinafter, may be referred to as “curable resin (X)”). As shown in FIGS. 1 (a) to 1 (c), the non-polarized region 12 is a region in which a cured product of the curable resin (X) is provided in a through hole 22 surrounded by the polarized region 11 in a plan view. can do. The non-cell region 56 is provided so as to cut out all or a part of the plurality of cells 51, and the curable resin (X) is cured in the through holes 52 provided in the regions corresponding to the through holes 22 described above. It can be an area provided with an object. The through hole 22 of the polarizer 10 and the through hole 52 of the reinforcing member 50 can have the same shape in a plan view. The through hole 22 and the through hole 52 can be communicated with each other in the thickness direction of the polarizing region 11, and a cured product of the curable resin (X) can be provided over the through holes 22 and 52 that communicate with each other. it can.
 偏光子複合体40が有する偏光子10は、図2(a)に示すように、非偏光領域12を有している。そのため、スマートフォンやタブレット型端末等に展開される液晶表示装置や有機EL表示装置等の表示装置に、偏光子複合体40を適用する際に、非偏光領域12に対応させて、カメラレンズ、アイコン又はロゴ等の印刷部を配置することにより、カメラの感度の低下及び意匠性の低下を抑制することができる。 As shown in FIG. 2A, the polarizer 10 included in the polarizer complex 40 has a non-polarizing region 12. Therefore, when the polarizing element composite 40 is applied to a display device such as a liquid crystal display device or an organic EL display device developed in a smartphone or a tablet terminal, the camera lens and the icon correspond to the non-polarizing region 12. Alternatively, by arranging a printing portion such as a logo, it is possible to suppress a decrease in the sensitivity of the camera and a decrease in the design.
 偏光子複合体40では、偏光子10が非偏光領域12を有するため、表示装置に適用した場合等に受ける温度変化に伴う偏光子10の収縮によって非偏光領域12の周辺にクラックが発生しやすいと考えられる。また、偏光子10は、偏光領域11の厚みが15μm以下と薄いため、衝撃を受けた場合にクラックが発生しやすいと考えられる。偏光子複合体40では、上記のように偏光子10の片面に補強材50が設けられているため、温度変化や衝撃を受けた場合のクラックの発生や、微細なクラックが大きなクラックに進行することを抑制できると考えられる。 In the polarizer complex 40, since the polarizer 10 has a non-polarizing region 12, cracks are likely to occur around the non-polarizing region 12 due to shrinkage of the polarizer 10 due to a temperature change received when applied to a display device or the like. it is conceivable that. Further, since the polarizing element 10 has a thin polarization region 11 of 15 μm or less, it is considered that cracks are likely to occur when it receives an impact. In the polarizer complex 40, since the reinforcing material 50 is provided on one side of the polarizer 10 as described above, cracks occur when a temperature change or impact is applied, and fine cracks progress to large cracks. It is thought that this can be suppressed.
 偏光子複合体40では、非偏光領域12及び非セル領域56が硬化性樹脂(X)の硬化物を含むことにより、偏光子10の貫通穴22及び補強材50の貫通穴52を中実とすることができる。偏光子複合体40が有する偏光子10の厚みは15μm以下と薄いため、非偏光領域12に硬化性樹脂(X)の硬化物が設けられておらず貫通穴22が中空の状態であると、表示装置に適用した際等に曝される温度変化に伴う偏光子の収縮によって貫通穴22の周辺にクラックが発生したりする等の不具合を生じる虞がある。これに対し、偏光子複合体40が有する偏光子10のように、貫通穴22に硬化性樹脂(X)の硬化物が設けられることによって非偏光領域12を中実とすることができるため、上記の不具合の発生を抑制することができる。 In the polarizer complex 40, the non-polarizing region 12 and the non-cell region 56 contain a cured product of the curable resin (X), so that the through hole 22 of the polarizer 10 and the through hole 52 of the reinforcing material 50 are solid. can do. Since the thickness of the polarizer 10 of the polarizer complex 40 is as thin as 15 μm or less, if the non-polarizing region 12 is not provided with a cured product of the curable resin (X) and the through hole 22 is hollow, There is a risk of problems such as cracks occurring around the through hole 22 due to shrinkage of the polarizer due to temperature changes that are exposed when applied to a display device. On the other hand, since the non-polarizing region 12 can be made solid by providing the cured product of the curable resin (X) in the through hole 22 like the polarizing element 10 of the polarizing element complex 40. It is possible to suppress the occurrence of the above-mentioned problems.
 偏光子複合体40に設けられる硬化性樹脂(X)の硬化物の厚みは、偏光領域11の厚み及びセル領域55の厚みの合計厚みと同じであってもよく(図1(a))、当該合計厚みよりも小さくてもよく(図1(b))、当該合計厚みよりも大きくてもよい(図1(c))。偏光子複合体40に設けられた硬化性樹脂(X)の硬化物は、偏光子10の貫通穴22の少なくとも一部、及び、補強材50の貫通穴52の少なくとも一部を埋めるように設けられていればよい。硬化性樹脂(X)の硬化物は、偏光子10の貫通穴22全体を埋めるように設けられることが好ましく、偏光子10の貫通穴22全体及び補強材50の貫通穴52全体を埋めるように設けられることがより好ましい。 The thickness of the cured product of the curable resin (X) provided on the polarizer complex 40 may be the same as the total thickness of the polarizing region 11 and the cell region 55 (FIG. 1 (a)). It may be smaller than the total thickness (FIG. 1 (b)) or larger than the total thickness (FIG. 1 (c)). The cured product of the curable resin (X) provided in the polarizer complex 40 is provided so as to fill at least a part of the through hole 22 of the polarizer 10 and at least a part of the through hole 52 of the reinforcing material 50. It suffices if it is done. The cured product of the curable resin (X) is preferably provided so as to fill the entire through hole 22 of the polarizer 10, and fills the entire through hole 22 of the polarizer 10 and the entire through hole 52 of the reinforcing material 50. It is more preferable to be provided.
 偏光子複合体40に設けられた硬化物の厚みは、次のようにして決定する。まず、偏光子複合体40において、偏光子10の偏光領域11の表面(補強材50側とは反対側の表面)を含む第1平面と、補強材50のセル領域55の開口端面(偏光子10側とは反対側の開口端面)を含む第2平面とを仮定する。次に、非偏光領域12において、偏光子10側における硬化物の表面と第1平面とがなす最短距離が最大となる位置である第1位置、及び、補強材50側における硬化物の表面と第2平面とがなす最短距離が最大となる位置である第2位置を決定する。そして、第1位置における最短距離(dm)、第2位置における最短距離(dn)、及び、第1平面と第2平面との距離(D)を合計した値(dm+dn+D)を、偏光子複合体40に設けられた硬化物の厚みとする。 The thickness of the cured product provided on the polarizer complex 40 is determined as follows. First, in the polarizer complex 40, a first plane including the surface of the polarizing region 11 of the polarizer 10 (the surface opposite to the reinforcing member 50 side) and the open end surface (polarizer) of the cell region 55 of the reinforcing member 50. It is assumed that the second plane includes the open end face on the side opposite to the 10 side. Next, in the non-polarized region 12, the first position where the shortest distance between the surface of the cured product and the first plane on the polarizer 10 side is the maximum, and the surface of the cured product on the reinforcing material 50 side. The second position, which is the position where the shortest distance between the second plane and the second plane is maximized, is determined. Then, the value (dm + dn + D), which is the sum of the shortest distance (dm) at the first position, the shortest distance (dn) at the second position, and the distance (D) between the first plane and the second plane, is set as the polarizer complex. It is the thickness of the cured product provided in 40.
 非偏光領域12及び非セル領域56に設けられた硬化物の厚みと偏光領域11及びセル領域55の合計の厚みとが異なる場合の厚みの決定方法について、図3に基づいて具体的に説明する。図3(a)及び(b)は、偏光子複合体の非偏光領域及び非セル領域周辺の断面の一例を模式的に示す図であって、非偏光領域及び非セル領域に設けられた硬化物の厚みを決定する方法を説明するための説明図である。 A method for determining the thickness when the thickness of the cured product provided in the non-polarized region 12 and the non-cell region 56 is different from the total thickness of the polarized region 11 and the cell region 55 will be specifically described with reference to FIG. .. 3 (a) and 3 (b) are views schematically showing an example of a cross section around the non-polarized region and the non-cell region of the polarizer complex, and are the curing provided in the non-polarized region and the non-cell region. It is explanatory drawing for demonstrating the method of determining the thickness of an object.
 図3(a)に示すように非偏光領域12及び非セル領域56に硬化物が設けられている場合、偏光子10の補強材50側とは反対側の表面側に沿って非偏光領域12にある一点鎖線で示す直線を第1平面11mと仮定する。この第1平面11m上の任意の点と、非偏光領域12に設けられた硬化物の表面上の任意の点とを結ぶ直線が最短距離となる直線のうち、当該直線の長さ(図3(a)中の「dm」)が最大となるときの位置を第1位置とする。次に、図3(a)に示すように、補強材50の偏光子10側とは反対側の表面側に沿って非セル領域56にある一点鎖線で示す直線を第2平面11nと仮定する。この第2平面11n上の任意の点と、非セル領域56に設けられた硬化物の表面上の任意の点とを結ぶ直線が最短距離となる直線のうち、当該直線の長さ(図3(a)中の「dn」)が最大となるときの位置を第2位置とする。ここで、図3(a)に示すように、非偏光領域12及び非セル領域56に設けられている硬化物の表面が、偏光子複合体40の厚み方向において、第1平面11m及び第2平面11nよりも内面側(偏光子複合体40側)に存在する場合、dm及びdnは負の値として示すものとする。また、第1平面11mと第2平面11nとの間の距離をDとする。そうすると、図3(a)に示す非偏光領域12及び非セル領域56に設けられている硬化物の厚みは、D+dm+dn(dm及びdnは負の値)として決定することができる。 When a cured product is provided in the non-polarized region 12 and the non-cell region 56 as shown in FIG. 3A, the non-polarized region 12 is provided along the surface side of the polarizer 10 opposite to the reinforcing material 50 side. It is assumed that the straight line indicated by the alternate long and short dash line in is 11 m on the first plane. Of the straight lines having the shortest distance connecting an arbitrary point on the first plane 11 m and an arbitrary point on the surface of the cured product provided in the non-polarized region 12, the length of the straight line (FIG. 3). The position when "dm") in (a) is maximized is set as the first position. Next, as shown in FIG. 3A, it is assumed that the straight line indicated by the alternate long and short dash line in the non-cell region 56 along the surface side of the reinforcing material 50 opposite to the polarizer 10 side is the second plane 11n. .. Of the straight lines having the shortest distance connecting an arbitrary point on the second plane 11n and an arbitrary point on the surface of the cured product provided in the non-cell region 56, the length of the straight line (FIG. 3). The position when "dn") in (a) is maximized is defined as the second position. Here, as shown in FIG. 3A, the surfaces of the cured product provided in the non-polarized region 12 and the non-cell region 56 are the first plane 11 m and the second in the thickness direction of the polarizer complex 40. When it exists on the inner surface side (polarizer complex 40 side) of the plane 11n, dm and dn are shown as negative values. Further, let D be the distance between the first plane 11m and the second plane 11n. Then, the thickness of the cured product provided in the non-polarized region 12 and the non-cell region 56 shown in FIG. 3A can be determined as D + dm + dn (where dm and dn are negative values).
 また、図3(b)に示すように非偏光領域12及び非セル領域56に硬化物が設けられている場合についても上記と同様に、第1平面11m及び第2平面11nを仮定することにより、非偏光領域12及び非セル領域56に設けられている硬化物の厚みを決定することができる。具体的には、まず、第1平面11m上の任意の点と、非偏光領域12に設けられた硬化物の表面上の任意の点とを結ぶ直線が最短距離となる直線のうち、当該直線の長さ(図3(b)中の「dm」)が最大となるときの位置を第1位置とする。次に、第2平面11n上の任意の点と、非セル領域56に設けられた硬化物の表面上の任意の点とを結ぶ直線が最短距離となる直線のうち、当該直線の長さ(図3(b)中の「dn」)が最大となるときの位置を第2位置とする。ここで、図3(b)に示すように、非偏光領域12及び非セル領域56に設けられている硬化物の表面が、偏光子複合体40の厚み方向において、第1平面11m及び第2平面11nよりも外面側(偏光子複合体40とは反対側)に存在する場合、dm及びdnは正の値として示すものとする。そうすると、図3(b)に示す非偏光領域12及び非セル領域56に設けられている硬化物の厚みは、D+dm+dn(dm及びdnは正の値)として決定することができる。 Further, as shown in FIG. 3B, when the cured product is provided in the non-polarized region 12 and the non-cell region 56, the first plane 11m and the second plane 11n are assumed in the same manner as described above. , The thickness of the cured product provided in the non-polarized region 12 and the non-cell region 56 can be determined. Specifically, first, among the straight lines having the shortest distance, the straight line connecting an arbitrary point on the first plane 11 m and an arbitrary point on the surface of the cured product provided in the non-polarized region 12 is the straight line. The position when the length (“dm” in FIG. 3B) is maximized is set as the first position. Next, among the straight lines having the shortest distance connecting an arbitrary point on the second plane 11n and an arbitrary point on the surface of the cured product provided in the non-cell region 56, the length of the straight line ( The position when “dn”) in FIG. 3 (b) is maximized is defined as the second position. Here, as shown in FIG. 3B, the surfaces of the cured product provided in the non-polarized region 12 and the non-cell region 56 are the first plane 11 m and the second in the thickness direction of the polarizer complex 40. When it exists on the outer surface side (opposite side of the polarizer complex 40) from the plane 11n, dm and dn are shown as positive values. Then, the thickness of the cured product provided in the non-polarized region 12 and the non-cell region 56 shown in FIG. 3B can be determined as D + dm + dn (dm and dn are positive values).
 偏光子複合体40は、偏光子10及び補強材50を備えた状態で表示装置等に適用される。補強材50のセル51の内部空間が空洞であると、セル隔壁53とセル51の内部空間との屈折率の違い等により表示装置の視認性が低下する虞がある。そのため、偏光子複合体40における補強材50のセル51の内部空間には、透光性の充填材が設けられることが好ましい。偏光子複合体40の補強材50において、後述するように複数のセル51の間に隙間が設けられている場合には、この隙間にも透光性の充填材が設けられることが好ましい。 The polarizer complex 40 is applied to a display device or the like with the polarizer 10 and the reinforcing material 50 provided. If the internal space of the cell 51 of the reinforcing material 50 is hollow, the visibility of the display device may decrease due to a difference in the refractive index between the cell partition wall 53 and the internal space of the cell 51. Therefore, it is preferable that a translucent filler is provided in the internal space of the cell 51 of the reinforcing material 50 in the polarizer complex 40. In the reinforcing material 50 of the polarizer complex 40, when a gap is provided between the plurality of cells 51 as described later, it is preferable that a translucent filler is also provided in the gap.
 本明細書において、透光性とは波長400nm~700nmの範囲の可視光が80%以上透過する性質(透過率)をいい、85%以上透過するもの好ましく、90%以上透過するものがより好ましく、92%以上透過するものさらに好ましい。以下における「透光性」の定義及び可視光に対する透過率の好ましい範囲も上記と同じである。 In the present specification, the translucency refers to the property (transmittance) of transmitting 80% or more of visible light in the wavelength range of 400 nm to 700 nm, preferably 85% or more, and more preferably 90% or more. , 92% or more transparent is more preferable. The definition of "translucency" below and the preferable range of transmittance for visible light are the same as above.
 偏光子複合体40は、枚葉体であってもよく、保管時や輸送時等に巻回されてロール形状とされる長さを有する長尺体であってもよい。偏光子複合体40の平面形状及び大きさは、特に限定されない。 The polarizer complex 40 may be a single-wafered body, or may be a long body having a length that is wound into a roll shape during storage, transportation, or the like. The planar shape and size of the polarizer complex 40 are not particularly limited.
 (偏光子複合体(2))
 図4は、本実施形態の偏光子複合体の他の一例を模式的に示す概略断面図である。図4に示す偏光子複合体41は、偏光子10と、偏光子10の両面側に設けられた補強材50,50とを有する。偏光子10及び補強材50については、上記で説明したとおりである。偏光子複合体41では、偏光子10の非偏光領域12、及び、2つの補強材50の非セル領域56は、それぞれ硬化性樹脂(X)の硬化物を含む。偏光子10の貫通穴22、2つの補強材50の貫通穴52とは、平面視において同形状とすることができる。貫通穴22と2つの貫通穴52とは、偏光領域11の厚み方向に連通したものとすることができ、連通する上記貫通穴22,52に亘って硬化性樹脂(X)の硬化物を設けることができる。
(Polarizer complex (2))
FIG. 4 is a schematic cross-sectional view schematically showing another example of the polarizer complex of the present embodiment. The polarizer complex 41 shown in FIG. 4 has a polarizer 10 and reinforcing members 50 and 50 provided on both side surfaces of the polarizer 10. The polarizer 10 and the reinforcing member 50 are as described above. In the polarizer complex 41, the non-polarizing region 12 of the polarizer 10 and the non-cell region 56 of the two reinforcing members 50 each contain a cured product of the curable resin (X). The through hole 22 of the polarizer 10 and the through hole 52 of the two reinforcing members 50 can have the same shape in a plan view. The through hole 22 and the two through holes 52 can be in communication with each other in the thickness direction of the polarizing region 11, and a cured product of the curable resin (X) is provided over the through holes 22 and 52 that communicate with each other. be able to.
 偏光子複合体41においても、図1に示す偏光子複合体40と同様に、表示装置に適用した際に、カメラの感度の低下及び意匠性の低下を抑制することができ、上記した不具合の発生の低下を抑制することができる。 Similar to the polarizing element complex 40 shown in FIG. 1, the polarizer complex 41 can also suppress a decrease in camera sensitivity and a decrease in design when applied to a display device, and has the above-mentioned problems. It is possible to suppress the decrease in occurrence.
 偏光子複合体40に設けられる硬化性樹脂(X)の硬化物の厚みは、偏光領域11の厚み、及び、2つの補強材のセル領域55の厚みの合計厚みと同じであってもよく、当該合計厚みよりも小さくてもよく、当該合計厚みよりも大きくてもよい。偏光子複合体41に設けられた硬化性樹脂(X)の硬化物は、偏光子10の貫通穴22の少なくとも一部、及び、2つの補強材50の貫通穴52それぞれの少なくとも一部を埋めるように設けられていればよい。硬化性樹脂(X)の硬化物は、偏光子10の貫通穴22全体を埋めるように設けられることが好ましく、偏光子10の貫通穴22全体、及び、2つの補強材50の貫通穴52それぞれの全体を埋めるように設けられることがより好ましい。 The thickness of the cured product of the curable resin (X) provided on the polarizer complex 40 may be the same as the total thickness of the polarizing region 11 and the thickness of the cell region 55 of the two reinforcing members. It may be smaller than the total thickness and may be larger than the total thickness. The cured product of the curable resin (X) provided in the polarizer complex 41 fills at least a part of the through hole 22 of the polarizer 10 and at least a part of each of the through holes 52 of the two reinforcing members 50. It suffices if it is provided as follows. The cured product of the curable resin (X) is preferably provided so as to fill the entire through hole 22 of the polarizer 10, and the entire through hole 22 of the polarizer 10 and the through hole 52 of the two reinforcing members 50, respectively. It is more preferable that it is provided so as to fill the entire surface of the.
 偏光子複合体41に設けられる硬化性樹脂(X)の硬化物の厚みは、上記で説明した偏光子複合体40に設けられた硬化物の厚みの測定方法に倣って行えばよい。具体的には、上記測定方法において、第1平面を、偏光子複合体41に設けられた2つの補強材50のうちの第2平面を仮定した補強材50とは異なる補強材50のセル領域55の開口端面(偏光子10側とは反対側の開口端面)を含む面として、硬化性樹脂(X)の硬化物の厚みを決定すればよい。 The thickness of the cured product of the curable resin (X) provided on the polarizing element complex 41 may be measured according to the method for measuring the thickness of the cured product provided on the polarizing element composite 40 described above. Specifically, in the above measurement method, the cell region of the reinforcing material 50 is different from the reinforcing material 50 assuming the second plane of the two reinforcing materials 50 provided on the polarizer complex 41. The thickness of the cured product of the curable resin (X) may be determined as the surface including the open end surface of 55 (the open end surface on the side opposite to the polarizer 10 side).
 偏光子複合体41が有する2つの補強材50は、互いに同じもの(セル51の形状及び大きさが同じもの)であってもよく、互いに異なっていてもよい。偏光子10の両面側に設けられる2つの補強材50のセル51の開口は、平面視において、互いに重なるように配置されていてもよいが、互いにずれるように配置されていることが好ましい。 The two reinforcing members 50 included in the polarizer complex 41 may be the same as each other (the shape and size of the cell 51 are the same), or may be different from each other. The openings of the cells 51 of the two reinforcing members 50 provided on both sides of the polarizer 10 may be arranged so as to overlap each other in a plan view, but are preferably arranged so as to be offset from each other.
 偏光子複合体41における補強材50のセル51の内部空間には、上記偏光子複合体40で説明したように、透光性の充填材が設けられることが好ましい。偏光子複合体41の補強材50において、後述するように複数のセル51の間に隙間が設けられている場合には、この隙間にも透光性の充填材が設けられることが好ましい。 As described in the above-mentioned Polarizer Complex 40, it is preferable that a translucent filler is provided in the internal space of the cell 51 of the reinforcing material 50 in the Polarizer Complex 41. In the reinforcing material 50 of the polarizer complex 41, when a gap is provided between the plurality of cells 51 as described later, it is preferable that a translucent filler is also provided in the gap.
 偏光子複合体41は、枚葉体であってもよく、保管時や輸送時等に巻回されてロール形状とされる長さを有する長尺体であってもよい。偏光子複合体41の平面形状及び大きさは、特に限定されない。 The polarizer complex 41 may be a single-wafered body, or may be a long body having a length that is wound into a roll shape during storage, transportation, or the like. The planar shape and size of the polarizer complex 41 are not particularly limited.
 (偏光領域)
 偏光子10の偏光領域11は、好ましくは波長380nm~780nmの範囲の波長において吸収二色性を示す。偏光子10は、その吸収軸に平行な振動面をもつ直線偏光を吸収し、吸収軸に直交する(透過軸と平行な)振動面をもつ直線偏光を透過する性質を有するが、この性質は主に偏光領域11によって得ることができる。
(Polarized region)
The polarization region 11 of the polarizer 10 preferably exhibits absorption dichroism at wavelengths in the wavelength range of 380 nm to 780 nm. The polarizer 10 has a property of absorbing linearly polarized light having a vibration plane parallel to its absorption axis and transmitting linearly polarized light having a vibration plane orthogonal to the absorption axis (parallel to the transmission axis). It can be obtained mainly by the polarization region 11.
 偏光領域11は、例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質が吸着・配向されたもの;ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等、ポリエン系配向フィルムや液晶化合物を配向させたものに二色性物質が吸着・配向されたもの;等を用いることができる。その中でも、光学特性に優れたものとして、ポリビニルアルコール系フィルムをヨウ素で染色し、一軸延伸して得られたものを用いることが好ましい。 The polarizing region 11 is a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, an ethylene / vinyl acetate copolymerization system partially saponified film, and two colors such as iodine and a dichroic dye. Dichroic substances are adsorbed and oriented; dichroic substances are adsorbed and oriented on a polyene-based orientation film or liquid crystal compound oriented, such as a dehydrated product of polyvinyl alcohol or a dehydrogenated product of polyvinyl chloride. Things; etc. can be used. Among them, as one having excellent optical characteristics, it is preferable to use a film obtained by dyeing a polyvinyl alcohol-based film with iodine and uniaxially stretching it.
 まず、好ましい偏光領域11となる、ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸して得られたものについて、簡単にその製造方法を説明する。 First, a method for producing a polyvinyl alcohol-based film, which is a preferable polarization region 11, obtained by dyeing with iodine and uniaxially stretching the film will be briefly described.
 ヨウ素による染色は、例えば、ポリビニルアルコール系フィルムをヨウ素水溶液に浸漬することにより行われる。一軸延伸の延伸倍率は、3~7倍であることが好ましい。延伸は、染色処理後に行ってもよく、染色しながら行ってもよい。また、延伸してから染色してもよい。 Dyeing with iodine is performed, for example, by immersing a polyvinyl alcohol-based film in an aqueous iodine solution. The draw ratio of uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Alternatively, it may be stretched and then dyed.
 ポリビニルアルコール系フィルムには、必要に応じて、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗することで、ポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、ポリビニルアルコール系フィルムを膨潤させて染色ムラ等を防止することができる。 The polyvinyl alcohol-based film is subjected to swelling treatment, cross-linking treatment, cleaning treatment, drying treatment and the like, if necessary. For example, by immersing a polyvinyl alcohol-based film in water and washing it with water before dyeing, not only can the dirt on the surface of the polyvinyl alcohol-based film and the blocking inhibitor be washed, but also the polyvinyl alcohol-based film is swollen and dyed. It is possible to prevent unevenness and the like.
 ポリビニルアルコール系樹脂フィルムの延伸処理、染色処理、架橋処理(ホウ酸処理)、水洗処理、乾燥処理は、例えば、特開2012-159778号公報に記載されている方法に準じて行ってもよい。この文献記載の方法では、基材フィルムへのポリビニルアルコール系樹脂のコーティングにより、偏光領域11となるポリビニルアルコール系樹脂層を形成する。この際、用いた基材フィルムは、後述する第1支持層25として用いることもできる。 The stretching treatment, dyeing treatment, cross-linking treatment (boric acid treatment), washing treatment, and drying treatment of the polyvinyl alcohol-based resin film may be carried out according to, for example, the method described in Japanese Patent Application Laid-Open No. 2012-159778. In the method described in this document, the polyvinyl alcohol-based resin layer to be the polarization region 11 is formed by coating the base film with the polyvinyl alcohol-based resin. At this time, the base film used can also be used as the first support layer 25, which will be described later.
 続いて、液晶化合物を配向させたものに二色性色素が吸着・配向してなる偏光領域11について簡単に説明する。この場合の偏光領域11としては、例えば特開2013-37353号公報、特開2013-33249号公報、特開2016-170368号公報特開2017-83843号公報等に記載されるように、液晶化合物が重合した硬化膜中に、二色性色素が配向したものを使用してもよい。二色性色素としては、波長380~800nmの範囲内に吸収を有するものを用いることができ、有機染料を用いることが好ましい。二色性色素として、例えば、アゾ化合物が挙げられる。液晶化合物は、配向したまま重合することができる液晶化合物であり、分子内に重合性基を有することができる。このような液晶化合物が重合した硬化膜は、基材フィルム上に形成されていてもよく、その場合は、上記基材フィルムは、後述する第1支持層25として用いることもできる。 Subsequently, the polarization region 11 in which the dichroic dye is adsorbed and oriented on the oriented liquid crystal compound will be briefly described. The polarization region 11 in this case is a liquid crystal compound as described in, for example, JP-A-2013-373353, JP-A-2013-33249, JP-A-2016-170368, JP-A-2017-83843, and the like. You may use the one in which the dichroic dye is oriented in the cured film which is polymerized with. As the dichroic dye, a dye having absorption in the wavelength range of 380 to 800 nm can be used, and it is preferable to use an organic dye. Examples of the dichroic dye include an azo compound. The liquid crystal compound is a liquid crystal compound that can be polymerized while being oriented, and can have a polymerizable group in the molecule. The cured film obtained by polymerizing such a liquid crystal compound may be formed on the base film, and in that case, the base film can also be used as the first support layer 25 described later.
  上記のようにして偏光領域11に用いられる偏光フィルムを作製した後に、穴あけ加工により非偏光領域12を形成して偏光子10を形成することも好ましい。本明細書では、このような偏光領域11のみで形成された偏光フィルムを原料偏光子20ということがある。 It is also preferable that after the polarizing film used for the polarizing region 11 is produced as described above, the non-polarizing region 12 is formed by drilling to form the polarizer 10. In the present specification, the polarizing film formed only in such a polarizing region 11 may be referred to as a raw material polarizer 20.
 偏光領域11の視感度補正偏光度(Py)は、好ましくは80%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上であり、特に好ましくは99%以上である。偏光領域11の単体透過率(Ts)は、通常50%未満であり、46%以下であってもよい。偏光領域11の単体透過率(Ts)は、好ましくは39%以上であり、より好ましくは39.5%以上であり、さらに好ましくは40%以上であり、特に好ましくは40.5%以上である。 The luminous efficiency correction polarization degree (Py) of the polarized light region 11 is preferably 80% or more, more preferably 90% or more, further preferably 95% or more, and particularly preferably 99% or more. The simple substance transmittance (Ts) of the polarized light region 11 is usually less than 50% and may be 46% or less. The simple substance transmittance (Ts) of the polarized light region 11 is preferably 39% or more, more preferably 39.5% or more, further preferably 40% or more, and particularly preferably 40.5% or more. ..
 単体透過率(Ts)は、JIS Z8701の2度視野(C光源)に準拠して測定して視感度補正を行ったY値である。視感度補正偏光度(Py)は、例えば、紫外可視分光光度計(日本分光株式会社製、製品名:V7100)を用いて測定することができ、視感度補正を行った平行透過率Tp及び直交透過率Tcに基づいて、下記式により求められる。
  Py[%]={(Tp-Tc)/(Tp+Tc)}1/2×100
The simple substance transmittance (Ts) is a Y value measured in accordance with the JIS Z8701 2 degree field of view (C light source) and corrected for luminosity factor. The luminosity factor correction polarization degree (Py) can be measured using, for example, an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name: V7100), and the parallel transmittance Tp and the orthogonality factor with luminosity factor correction. It is calculated by the following formula based on the transmittance Tc.
Py [%] = {(Tp-Tc) / (Tp + Tc)} 1/2 x 100
 偏光領域11の厚みは、15μm以下であり、13μm以下であってもよく、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよく、通常1μm以上である。偏光領域11の厚みが上記範囲を超えると、非偏光領域12に、後述する硬化性樹脂(X)を含む活性エネルギー線硬化性樹脂組成物を設けるための作業性が低下しやすい。また、偏光領域11が上記範囲未満である場合、所望の光学特性を得ることが難しくなる。偏光領域11の厚みは、例えば接触式膜厚測定装置(MS-5C、株式会社ニコン製)を用いて測定することができる。 The thickness of the polarized light region 11 is 15 μm or less, 13 μm or less, 10 μm or less, 8 μm or less, 5 μm or less, and usually 1 μm or more. When the thickness of the polarizing region 11 exceeds the above range, the workability for providing the active energy ray-curable resin composition containing the curable resin (X) described later in the non-polarizing region 12 tends to decrease. Further, when the polarization region 11 is less than the above range, it becomes difficult to obtain desired optical characteristics. The thickness of the polarizing region 11 can be measured using, for example, a contact-type film thickness measuring device (MS-5C, manufactured by Nikon Corporation).
 (非偏光領域)
 一般的に「非偏光」とは、電界成分に観測し得る規則性がない光を指す。換言すると、非偏光とは、優位な特定の偏光状態が観測されないランダムな光である。また、「部分偏光」とは、偏光と非偏光との中間の状態にある光を指し、直線偏光、円偏光及び楕円偏光の少なくとも1つと非偏光とが交じり合った光を意味する。偏光子10における非偏光領域12とは、当該非偏光領域12を透過する光(透過光)が、非偏光又は部分偏光となることを意味するものである。特に、透過光が非偏光である非偏光領域が好ましい。
(Non-polarized region)
Generally, "non-polarized light" refers to light having no observable regularity in the electric field component. In other words, unpolarized light is random light in which no particular dominant specific polarization state is observed. Further, "partially polarized light" refers to light in an intermediate state between polarized light and unpolarized light, and means light in which at least one of linearly polarized light, circularly polarized light, and elliptically polarized light is mixed with non-polarized light. The non-polarized region 12 in the polarizer 10 means that the light (transmitted light) transmitted through the non-polarized region 12 is unpolarized or partially polarized. In particular, a non-polarized region in which the transmitted light is non-polarized is preferable.
 偏光子10の非偏光領域12は、平面視において偏光領域11に囲まれた領域である。
非偏光領域12は、硬化性樹脂(X)の硬化物を含む。非偏光領域12は、偏光領域11のみで形成された偏光子(原料偏光子20)に設けられた貫通穴に、後述する硬化性樹脂(X)を含む活性エネルギー線硬化性樹脂組成物の硬化物を設けたものであることが好ましい。非偏光領域12は透光性を有する。
The non-polarized region 12 of the polarizer 10 is a region surrounded by the polarized region 11 in a plan view.
The non-polarized region 12 contains a cured product of the curable resin (X). The non-polarizing region 12 is a curing of an active energy ray-curable resin composition containing a curable resin (X) described later in a through hole provided in a polarizer (raw material polarizer 20) formed only in the polarizing region 11. It is preferable that the object is provided. The non-polarized region 12 has translucency.
 偏光子10の非偏光領域12が透光性を有することにより、非偏光領域12において光学的な透明性を確保することができる。これにより、偏光子複合体40,41を表示装置に適用する際に、非偏光領域12に対応させて、カメラレンズ、アイコン又はロゴ等の印刷部を配置することにより、カメラの感度の低下や意匠性の低下を抑制することができる。 Since the non-polarizing region 12 of the polarizer 10 has translucency, optical transparency can be ensured in the non-polarizing region 12. As a result, when the polarizer complexes 40 and 41 are applied to the display device, the sensitivity of the camera is lowered by arranging the printing portion such as the camera lens, the icon or the logo corresponding to the non-polarized region 12. It is possible to suppress the deterioration of the design.
 非偏光領域12の平面形状は特に限定されないが、円形;楕円形;小判形;三角形や四角形等の多角形;多角形の少なくとも1つの角が角丸(Rを有する形状)とされた角丸多角形等とすることができる。 The planar shape of the non-polarized region 12 is not particularly limited, but is circular; elliptical; oval; polygon such as triangle or quadrangle; rounded corners in which at least one corner of the polygon is rounded (shape having R). It can be a polygon or the like.
 非偏光領域12の径は、0.5mm以上であることが好ましく、1mm以上であってもよく、2mm以上であってもよく、3mm以上であってもよい。非偏光領域12の径は、20mm以下であることが好ましく、15mm以下であってもよく、10mm以下であってもよく、7mm以下であってもよい。非偏光領域12の径とは、当該非偏光領域12の外周の任意の二点を結ぶ直線のうち最も長さが長い直線における長さをいう。 The diameter of the non-polarized region 12 is preferably 0.5 mm or more, and may be 1 mm or more, 2 mm or more, or 3 mm or more. The diameter of the non-polarized region 12 is preferably 20 mm or less, may be 15 mm or less, may be 10 mm or less, or may be 7 mm or less. The diameter of the non-polarized region 12 means the length of the longest straight line connecting arbitrary two points on the outer circumference of the non-polarized region 12.
 非偏光領域12に設けられた硬化性樹脂(X)の硬化物の厚みは、偏光領域11の厚みと同じであってもよく、偏光領域11の厚みよりも小さくてもよく、偏光領域11の厚みよりも大きくてもよい。上記したように、非偏光領域12に設けられた硬化性樹脂(X)の硬化物は、貫通穴22全体を埋めるように設けられていることが好ましい。 The thickness of the cured product of the curable resin (X) provided in the non-polarized region 12 may be the same as the thickness of the polarized region 11, or may be smaller than the thickness of the polarized region 11, and the thickness of the polarized region 11 may be smaller. It may be larger than the thickness. As described above, the cured product of the curable resin (X) provided in the non-polarized region 12 is preferably provided so as to fill the entire through hole 22.
 非偏光領域12に設けられた硬化物の厚みは、上記で説明した偏光子複合体40に設けられた硬化物の厚みの測定方法に倣って行えばよい。具体的には、上記測定方法において、第2平面を、偏光子10の偏光領域11の表面のうち、第1平面に含まれるとした表面とは反対側の表面として、硬化性樹脂(X)の硬化物の厚みを決定すればよい。 The thickness of the cured product provided in the non-polarized region 12 may be measured according to the method for measuring the thickness of the cured product provided in the polarizer complex 40 described above. Specifically, in the above measuring method, the curable resin (X) is set as the surface of the polarizing region 11 of the polarizer 10 on the opposite side of the surface of the polarization region 11 that is included in the first plane. The thickness of the cured product may be determined.
 (セル領域)
 セル領域55は、補強材50のセル51が存在する領域である。セル51は、図2(b)に示すように、セル51を区画するセル隔壁53に囲まれた中空柱状(筒状)の構造を有し、柱状の構造の軸方向両端が開口した開口端面となっているものである。セル51は、開口端面として、偏光子複合体40,41の偏光子10との距離が相対的に近い側に配置される第1開口端面と、相対的に遠い側に配置される第2開口端面とを有する。セル領域55は、第1開口端面及び第2開口端面のうちの少なくとも一方が、偏光子10に対向するように配列していればよく、第1開口端面及び第2開口端面の両方が、偏光子10に対向するように配列していることが好ましい。
(Cell area)
The cell region 55 is an region in which the cell 51 of the reinforcing member 50 exists. As shown in FIG. 2B, the cell 51 has a hollow columnar (cylindrical) structure surrounded by a cell partition wall 53 for partitioning the cell 51, and an open end surface in which both ends in the axial direction of the columnar structure are open. It is the one that has become. The cell 51 has a first opening end face arranged on a side in which the distance between the polarizer complexes 40 and 41 and the polarizer 10 is relatively short, and a second opening arranged on a relatively distant side as opening end faces. Has an end face. The cell region 55 may be arranged so that at least one of the first open end face and the second open end face faces the polarizer 10, and both the first open end face and the second open end face are polarized. It is preferable that they are arranged so as to face the child 10.
 セル領域55が有するセル51の開口の形状は特に限定されないが、多角形状、円形状、又は楕円形状であることが好ましい。第1開口端面の開口の形状と、第2開口端面の開口の形状とは、同じ大きさの同じ形状であることが好ましいが、異なる形状であってもよく、同じ形状であって大きさが異なっていてもよい。また、セル領域55が有する複数のセル51の開口の形状は、互いに同じであってもよく、互いに異なっていてもよい。 The shape of the opening of the cell 51 included in the cell region 55 is not particularly limited, but is preferably a polygonal shape, a circular shape, or an elliptical shape. The shape of the opening on the first opening end face and the shape of the opening on the second opening end face are preferably the same shape of the same size, but may be different shapes, and the same shape and size may be used. It may be different. Further, the shapes of the openings of the plurality of cells 51 included in the cell region 55 may be the same as each other or may be different from each other.
 セル領域55が有する複数のセル51は、開口端面の平面視において、各セル51の開口が互いに隣接するように配列していることが好ましい。複数のセル51は、開口端面の平面視において、例えば図2(b)に示すセル51の開口の形状が六角形等である場合のように、セル51が互いに隙間なく配置されるように配列していてもよい。あるいは、複数のセル51は、開口端面の平面視において、セル51の開口の形状が円形等である場合のように、複数のセル51のセル隔壁53の一部が接しており、複数のセル51の間に隙間を有して配置されるように配列されていてもよい。 It is preferable that the plurality of cells 51 included in the cell region 55 are arranged so that the openings of the cells 51 are adjacent to each other in the plan view of the opening end surface. The plurality of cells 51 are arranged so that the cells 51 are arranged without gaps in the plan view of the opening end face, for example, when the shape of the opening of the cell 51 shown in FIG. 2B is hexagonal or the like. You may be doing it. Alternatively, the plurality of cells 51 are in contact with a part of the cell partition wall 53 of the plurality of cells 51 as in the case where the shape of the opening of the cell 51 is circular or the like in the plan view of the opening end face, and the plurality of cells are present. It may be arranged so as to be arranged with a gap between 51.
 補強材50のセル領域55は、例えば図2(b)に示すように、第1開口端面及び第2開口端面のいずれにおいても開口の形状が六角形状であり、偏光子複合体40,41の面方向において、開口が互いに隣り合い隙間なく配置されるように複数のセル51が配列したハニカム構造を有することが好ましい。 As shown in FIG. 2B, for example, the cell region 55 of the reinforcing member 50 has a hexagonal opening shape in both the first opening end face and the second opening end face, and the polarizer composites 40 and 41 have a hexagonal shape. It is preferable to have a honeycomb structure in which a plurality of cells 51 are arranged so that the openings are arranged adjacent to each other without a gap in the plane direction.
 セル51の開口の大きさは特に限定されないが、非偏光領域12の径よりも小さい径を有することが好ましい。セル51の径は、3mm以下であることが好ましく、2mm以下であってもよく、1mm以下であってもよく、通常、0.1mm以上であり、0.5mm以上であってもよい。このセル51の開口の径は、開口の外周の任意の二点を結ぶ直線のうち最も長さが長い直線における長さをいう。 The size of the opening of the cell 51 is not particularly limited, but it is preferable to have a diameter smaller than the diameter of the non-polarized region 12. The diameter of the cell 51 is preferably 3 mm or less, preferably 2 mm or less, may be 1 mm or less, and is usually 0.1 mm or more, and may be 0.5 mm or more. The diameter of the opening of the cell 51 refers to the length of the longest straight line connecting arbitrary two points on the outer circumference of the opening.
 セル51の高さ(セル51の開口端面に直交する方向の長さ)は、通常0.1μm以上であり、0.5μm以上であってもよく、1μm以上であってもよく、3μm以上であってもよく、また、通常15μm以下であり、13μm以下であってもよく、10μm以下であってもよい。 The height of the cell 51 (the length in the direction orthogonal to the opening end face of the cell 51) is usually 0.1 μm or more, 0.5 μm or more, 1 μm or more, or 3 μm or more. It may be 15 μm or less, 13 μm or less, or 10 μm or less.
 セル領域55のセル51を区画するセル隔壁53は、透光性を有することが好ましい。 The cell partition wall 53 that partitions the cell 51 in the cell region 55 preferably has translucency.
 補強材50のセル隔壁53の線幅は、例えば0.05mm以上であり、0.1mm以上であってもよく、0.5mm以上であってもよく、1mm以上であってもよく、また、通常5mm以下であり、3mm以下であってもよい。 The line width of the cell partition wall 53 of the reinforcing material 50 is, for example, 0.05 mm or more, 0.1 mm or more, 0.5 mm or more, 1 mm or more, and also. It is usually 5 mm or less, and may be 3 mm or less.
 セル領域55のセル隔壁53は、例えば樹脂材料又は無機酸化物によって形成することができ、樹脂材料によって形成されることが好ましい。樹脂材料としては、熱可塑性樹脂、熱硬化性樹脂や活性エネルギー線硬化性樹脂等の硬化性樹脂等が挙げられる。樹脂材料としては、例えば、上記した硬化性樹脂(X);上記充填材に用いる熱可塑性樹脂として例示した熱可塑性樹脂等が挙げられる。無機酸化物としては、酸化珪素(SiO)、酸化アルミニウム等が挙げられる。 The cell partition wall 53 of the cell region 55 can be formed of, for example, a resin material or an inorganic oxide, and is preferably formed of a resin material. Examples of the resin material include a thermoplastic resin, a thermosetting resin, a curable resin such as an active energy ray-curable resin, and the like. Examples of the resin material include the above-mentioned curable resin (X); the thermoplastic resin exemplified as the thermoplastic resin used for the above-mentioned filler. Examples of the inorganic oxide include silicon oxide (SiO 2 ) and aluminum oxide.
 (非セル領域)
 非セル領域56は、補強材50のセル51が存在しない領域であり、上記したように、セル51を構成するセル隔壁53及びセル隔壁53に囲まれた中空柱状(筒状)の空間が存在していない領域である。非セル領域56は、複数のセル51の全体又は一部を切欠くように設けられ、偏光子10の貫通穴22に対応する領域に設けられた貫通穴52を有する。非セル領域56は、この貫通穴52に硬化性樹脂(X)の硬化物を含むことができる。
(Non-cell area)
The non-cell region 56 is a region in which the cell 51 of the reinforcing material 50 does not exist, and as described above, a hollow columnar (cylindrical) space surrounded by the cell partition wall 53 and the cell partition wall 53 constituting the cell 51 exists. It is an area that is not. The non-cell region 56 is provided so as to cut out all or a part of the plurality of cells 51, and has a through hole 52 provided in a region corresponding to the through hole 22 of the polarizer 10. The non-cell region 56 can contain a cured product of the curable resin (X) in the through hole 52.
 非セル領域56の平面形状及び径は特に限定されず、非偏光領域12の平面形状として例示した形状及び径が挙げられる。非セル領域56の平面形状及び径は、非偏光領域12の平面形状及び径と同じであることが好ましい。 The planar shape and diameter of the non-cell region 56 are not particularly limited, and examples thereof include the shape and diameter exemplified as the planar shape of the non-polarized region 12. The planar shape and diameter of the non-cell region 56 are preferably the same as the planar shape and diameter of the non-polarized region 12.
 (活性エネルギー線硬化性樹脂組成物(硬化性樹脂組成物))
 偏光子複合体40,41における非偏光領域12及び非セル領域56は上記のとおり、活性エネルギー線硬化性樹脂(硬化性樹脂(X))の硬化物が設けられた領域であり、好ましくは、当該硬化性樹脂(X)を含む活性エネルギー線硬化性樹脂組成物(以下、「硬化性樹脂組成物」ということがある。)により形成される。硬化性樹脂組成物に含まれる硬化性樹脂(X)は、紫外線、可視光、電子線、X線等の活性エネルギー線の照射によって硬化するものである。硬化性樹脂(X)は、紫外線の照射によって硬化する紫外線硬化性樹脂であることが好ましい。硬化性樹脂(X)を含む硬化性樹脂組成物は、活性エネルギー線硬化型の接着剤であってもよく、この場合、紫外線硬化型の接着剤であることがより好ましい。
(Active energy ray-curable resin composition (curable resin composition))
As described above, the non-polarizing region 12 and the non-cell region 56 in the polarizer composites 40 and 41 are regions provided with a cured product of the active energy ray-curable resin (curable resin (X)), and are preferably regions. It is formed of an active energy ray-curable resin composition containing the curable resin (X) (hereinafter, may be referred to as "curable resin composition"). The curable resin (X) contained in the curable resin composition is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays. The curable resin (X) is preferably an ultraviolet curable resin that is cured by irradiation with ultraviolet rays. The curable resin composition containing the curable resin (X) may be an active energy ray-curable adhesive, and in this case, an ultraviolet curable adhesive is more preferable.
 硬化性樹脂組成物は無溶剤型であることが好ましい。無溶剤型とは、積極的には溶剤を添加していないことをいい、具体的には、無溶剤型の硬化性樹脂組成物とは、当該硬化性樹脂組成物に含まれる硬化性樹脂(X)100重量%に対して溶剤の含有量が5重量%以下であることをいう。 The curable resin composition is preferably a solvent-free type. The solvent-free type means that no solvent is positively added. Specifically, the solvent-free type curable resin composition is a curable resin contained in the curable resin composition. X) It means that the content of the solvent is 5% by weight or less with respect to 100% by weight.
 硬化性樹脂(X)は、エポキシ化合物を含むことが好ましい。エポキシ化合物とは、分子内に1個以上、好ましくは2個以上のエポキシ基を有する化合物である。エポキシ化合物としては、脂環式エポキシ化合物、脂肪族エポキシ化合物、水素化エポキシ化合物(脂環式環を有するポリオールのグリシジルエーテル)等を挙げることができる。硬化性樹脂(X)に含まれるエポキシ化合物は、1種であってもよく、2種以上であってもよい。 The curable resin (X) preferably contains an epoxy compound. The epoxy compound is a compound having one or more, preferably two or more epoxy groups in the molecule. Examples of the epoxy compound include an alicyclic epoxy compound, an aliphatic epoxy compound, and a hydride epoxy compound (glycidyl ether of a polyol having an alicyclic ring). The epoxy compound contained in the curable resin (X) may be one kind or two or more kinds.
 エポキシ化合物の含有量は、硬化性樹脂(X)100重量%に対して、40重量%以上であることが好ましく、50重量%以上であることがより好ましく、60重量%以上であることがさらに好ましい。エポキシ化合物の含有量は、硬化性樹脂(X)100重量%に対して、100重量%以下であればよく、90重量%以下であってもよく、さらには80重量%以下であってもよいし、75重量%以下であってもよい。 The content of the epoxy compound is preferably 40% by weight or more, more preferably 50% by weight or more, and further preferably 60% by weight or more with respect to 100% by weight of the curable resin (X). preferable. The content of the epoxy compound may be 100% by weight or less, 90% by weight or less, or even 80% by weight or less with respect to 100% by weight of the curable resin (X). However, it may be 75% by weight or less.
 エポキシ化合物のエポキシ当量は通常、40~3000g/当量、好ましくは50~1500g/当量の範囲内である。エポキシ当量が3000g/当量を超えると、硬化性樹脂(X)に含有される他の成分との相溶性が低下する可能性がある。 The epoxy equivalent of the epoxy compound is usually in the range of 40 to 3000 g / equivalent, preferably 50 to 1500 g / equivalent. If the epoxy equivalent exceeds 3000 g / equivalent, the compatibility with other components contained in the curable resin (X) may decrease.
 硬化性樹脂(X)に含まれるエポキシ化合物は、脂環式エポキシ化合物を含有することが好ましい。脂環式エポキシ化合物は、脂環に結合したエポキシ基を分子内に1個以上有するエポキシ化合物である。「脂環に結合したエポキシ基」とは、下記式に示される構造における橋かけの酸素原子-O-を意味する。下記式中、mは2~5の整数である。
Figure JPOXMLDOC01-appb-C000001
The epoxy compound contained in the curable resin (X) preferably contains an alicyclic epoxy compound. The alicyclic epoxy compound is an epoxy compound having one or more epoxy groups bonded to the alicyclic in the molecule. The "epoxy group bonded to the alicyclic" means a bridging oxygen atom-O-in the structure represented by the following formula. In the following formula, m is an integer of 2 to 5.
Figure JPOXMLDOC01-appb-C000001
 上記式における(CH中の1個又は複数個の水素原子を取り除いた形の基が他の化学構造に結合している化合物が、脂環式エポキシ化合物となり得る。(CH中の1個又は複数個の水素原子は、メチル基やエチル基等の直鎖状アルキル基で適宜置換されていてもよい。脂環式エポキシ化合物の中でも、オキサビシクロヘキサン環(上記式においてm=3のもの)や、オキサビシクロヘプタン環(上記式においてm=4のもの)を有するエポキシ化合物は、偏光子10の偏光領域11及び補強材50のセル領域55と、非偏光領域12及び非セル領域56を形成する硬化性樹脂(X)の硬化物との間に優れた密着性を与えることから好ましく用いられる。以下に、好ましく用いられる脂環式エポキシ化合物を具体的に例示するが、これらの化合物に限定されるものではない。 A compound in which one or more hydrogen atoms in the (CH 2 ) m in the above formula are bonded to another chemical structure can be an alicyclic epoxy compound. One or more hydrogen atoms in (CH 2 ) m may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group. Among the alicyclic epoxy compounds, the epoxy compound having an oxabicyclohexane ring (m = 3 in the above formula) and an oxabicycloheptane ring (m = 4 in the above formula) is the polarization region of the polarizer 10. It is preferably used because it provides excellent adhesion between the cell region 55 of 11 and the reinforcing material 50 and the cured product of the curable resin (X) forming the non-polarized region 12 and the non-cell region 56. Hereinafter, alicyclic epoxy compounds that are preferably used will be specifically exemplified, but the present invention is not limited to these compounds.
 [a]下記式(IV)で示されるエポキシシクロヘキシルメチル エポキシシクロヘキサンカルボキシレート類:
Figure JPOXMLDOC01-appb-C000002

[式(IV)中、R及びRは、互いに独立して、水素原子又は炭素数1~5の直鎖状アルキル基を表す。]
[A] Epoxycyclohexylmethyl epoxycyclohexanecarboxylates represented by the following formula (IV):
Figure JPOXMLDOC01-appb-C000002

[In formula (IV), R 8 and R 9 represent hydrogen atoms or linear alkyl groups having 1 to 5 carbon atoms independently of each other. ]
 [b]下記式(V)で示されるアルカンジオールのエポキシシクロヘキサンカルボキシレート類:
Figure JPOXMLDOC01-appb-C000003

[式(V)中、R10及びR11は、互いに独立して、水素原子又は炭素数1~5の直鎖状アルキル基を表し、nは2~20の整数を表す。]
[B] Epoxycyclohexanecarboxylates of alkanediol represented by the following formula (V):
Figure JPOXMLDOC01-appb-C000003

[In formula (V), R 10 and R 11 represent a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms independently of each other, and n represents an integer of 2 to 20. ]
 [c]下記式(VI)で示されるジカルボン酸のエポキシシクロヘキシルメチルエステル類:
Figure JPOXMLDOC01-appb-C000004

[式(VI)中、R12及びR13は、互いに独立して、水素原子又は炭素数1~5の直鎖状アルキル基を表し、pは2~20の整数を表す。]
[C] Epoxycyclohexylmethyl esters of dicarboxylic acids represented by the following formula (VI):
Figure JPOXMLDOC01-appb-C000004

[In formula (VI), R 12 and R 13 represent a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms independently of each other, and p represents an integer of 2 to 20. ]
 [d]下記式(VII)で示されるポリエチレングリコールのエポキシシクロヘキシルメチルエーテル類:
Figure JPOXMLDOC01-appb-C000005

[式(VII)中、R14及びR15は、互いに独立して、水素原子又は炭素数1~5の直鎖状アルキル基を表し、qは2~10の整数を表す。]
[D] Epoxycyclohexylmethyl ethers of polyethylene glycol represented by the following formula (VII):
Figure JPOXMLDOC01-appb-C000005

[In formula (VII), R 14 and R 15 represent a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms independently of each other, and q represents an integer of 2 to 10. ]
 [e]下記式(VIII)で示されるアルカンジオールのエポキシシクロヘキシルメチルエーテル類:
Figure JPOXMLDOC01-appb-C000006

[式(VIII)中、R16及びR17は、互いに独立して、水素原子又は炭素数1~5の直鎖状アルキル基を表し、rは2~20の整数を表す。]
[E] Epoxycyclohexylmethyl ethers of alkanediol represented by the following formula (VIII):
Figure JPOXMLDOC01-appb-C000006

[In formula (VIII), R 16 and R 17 represent a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms independently of each other, and r represents an integer of 2 to 20. ]
 [f]下記式(IX)で示されるジエポキシトリスピロ化合物:
Figure JPOXMLDOC01-appb-C000007

[式(IX)中、R18及びR19は、互いに独立して、水素原子又は炭素数1~5の直鎖状アルキル基を表す。]
[F] The diepoxy trispyro compound represented by the following formula (IX):
Figure JPOXMLDOC01-appb-C000007

[In formula (IX), R 18 and R 19 represent a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms independently of each other. ]
 [g]下記式(X)で示されるジエポキシモノスピロ化合物:
Figure JPOXMLDOC01-appb-C000008

[式(X)中、R20及びR21は、互いに独立して、水素原子又は炭素数1~5の直鎖状アルキル基を表す。]
[G] Diepoxy monospiro compound represented by the following formula (X):
Figure JPOXMLDOC01-appb-C000008

[In formula (X), R 20 and R 21 represent hydrogen atoms or linear alkyl groups having 1 to 5 carbon atoms independently of each other. ]
 [h]下記式(XI)で示されるビニルシクロヘキセンジエポキシド類:
Figure JPOXMLDOC01-appb-C000009

[式(XI)中、R22は、水素原子又は炭素数1~5の直鎖状アルキル基を表す。]
[H] Vinyl cyclohexene epoxides represented by the following formula (XI):
Figure JPOXMLDOC01-appb-C000009

[In formula (XI), R 22 represents a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms. ]
 [i]下記式(XII)で示されるエポキシシクロペンチルエーテル類:
Figure JPOXMLDOC01-appb-C000010

[式(XII)中、R23及びR24は、互いに独立して、水素原子又は炭素数1~5の直鎖状アルキル基を表す。]
[I] Epoxy cyclopentyl ethers represented by the following formula (XII):
Figure JPOXMLDOC01-appb-C000010

[In formula (XII), R 23 and R 24 represent a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms independently of each other. ]
 [j]下記式(XIII)で示されるジエポキシトリシクロデカン類:
Figure JPOXMLDOC01-appb-C000011

[式(XIII)中、R25は、水素原子又は炭素数1~5の直鎖状アルキル基を表す。
[J] Diepoxytricyclodecanes represented by the following formula (XIII):
Figure JPOXMLDOC01-appb-C000011

[In formula (XIII), R 25 represents a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms.
]
 脂肪族エポキシ化合物としては、脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテルが挙げられる。より具体的には、1,4-ブタンジオールのジグリシジルエーテル;1,6-ヘキサンジオールのジグリシジルエーテル;グリセリンのトリグリシジルエーテル;トリメチロールプロパンのトリグリシジルエーテル;ポリエチレングリコールのジグリシジルエーテル;プロピレングリコールのジグリシジルエーテル;エチレングリコール、プロピレングリコール又はグリセリン等の脂肪族多価アルコールに1種又は2種以上のアルキレンオキサイド(エチレンオキサイドやプロピレンオキサイド)を付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル等が挙げられる。 Examples of the aliphatic epoxy compound include an aliphatic polyhydric alcohol or a polyglycidyl ether as an adduct thereof. More specifically, 1,4-butanediol diglycidyl ether; 1,6-hexanediol diglycidyl ether; glycerin triglycidyl ether; trimethylrol propane triglycidyl ether; polyethylene glycol diglycidyl ether; propylene Diglycidyl ether of glycol; Polyglycidyl of a polyether polyol obtained by adding one or more alkylene oxides (ethylene oxide or propylene oxide) to an aliphatic polyhydric alcohol such as ethylene glycol, propylene glycol or glycerin. Examples include ether.
 水素化エポキシ化合物は、芳香族ポリオールの芳香環に水素化反応を行って得られる脂環式ポリオールに、エピクロロヒドリンを反応させることにより得られるものである。芳香族ポリオールとしては、ビスフェノールA、ビスフェノールF、ビスフェノールS等のビスフェノール型化合物;フェノールノボラック樹脂、クレゾールノボラック樹脂、ヒドロキシベンズアルデヒドフェノールノボラック樹脂等のノボラック型樹脂;テトラヒドロキシジフェニルメタン、テトラヒドロキシベンゾフェノン、ポリビニルフェノール等の多官能型の化合物が挙げられる。水素化エポキシ化合物の中でも好ましいものとして、水素化されたビスフェノールAのジグリシジルエーテルが挙げられる。 The hydrogenated epoxy compound is obtained by reacting epichlorohydrin with an alicyclic polyol obtained by hydrogenating the aromatic ring of an aromatic polyol. Examples of the aromatic polyol include bisphenol-type compounds such as bisphenol A, bisphenol F, and bisphenol S; novolak-type resins such as phenol novolac resin, cresol novolac resin, and hydroxybenzaldehyde phenol novolac resin; tetrahydroxydiphenylmethane, tetrahydroxybenzophenone, polyvinylphenol, and the like. Polyfunctional compounds of. Among the hydrogenated epoxy compounds, the diglycidyl ether of hydrogenated bisphenol A can be mentioned.
 硬化性樹脂(X)は、エポキシ化合物等の活性エネルギー線硬化性化合物とともに(メタ)アクリル系化合物等を含有してもよい。(メタ)アクリル系化合物を併用することにより、偏光子10の偏光領域11及び補強材50のセル領域55と、非偏光領域12及び非セル領域56を形成する硬化性樹脂(X)の硬化物との間の密着性、硬化性樹脂(X)の硬化物の硬度及び機械的強度を高める効果が期待でき、さらには、硬化性樹脂(X)の粘度や硬化速度等の調整をより容易に行うことができるようになる。「(メタ)アクリル」は、アクリル及びメタクリルからなる群より選択される少なくとも一方を意味する。 The curable resin (X) may contain a (meth) acrylic compound or the like together with an active energy ray-curable compound such as an epoxy compound. A cured product of a curable resin (X) that forms the polarized region 11 of the polarizer 10 and the cell region 55 of the reinforcing material 50, and the non-polarized region 12 and the non-cell region 56 by using the (meth) acrylic compound in combination. It can be expected to have the effect of increasing the adhesion between the curable resin (X), the hardness of the cured product of the curable resin (X), and the mechanical strength, and further, it is easier to adjust the viscosity and curing rate of the curable resin (X). You will be able to do it. "(Meta) acrylic" means at least one selected from the group consisting of acrylic and methacrylic.
 硬化性樹脂(X)を含む硬化性樹脂組成物は、重合開始剤を含むことが好ましい。重合開始剤としては、光カチオン系重合剤等のカチオン系重合剤やラジカル重合開始剤が挙げられる。光カチオン系重合開始剤は、可視光線、紫外線、X線、電子線等の活性エネルギー線の照射によりカチオン種又はルイス酸を発生し、エポキシ基の重合反応を開始させるものである。上述のように硬化性樹脂(X)は、紫外線の照射によって硬化する紫外線硬化性樹脂であることが好ましく、硬化性樹脂(X)は脂環式エポキシ化合物を含むことが好ましいため、この場合の重合開始剤は、紫外線の照射によりカチオン種又はルイス酸を発生するものが好ましい。 The curable resin composition containing the curable resin (X) preferably contains a polymerization initiator. Examples of the polymerization initiator include cationic polymerization agents such as photocationic polymerization agents and radical polymerization initiators. The photocationic polymerization initiator generates a cationic species or Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates a polymerization reaction of an epoxy group. As described above, the curable resin (X) is preferably an ultraviolet curable resin that is cured by irradiation with ultraviolet rays, and the curable resin (X) preferably contains an alicyclic epoxy compound. The polymerization initiator is preferably one that generates a cationic species or a Lewis acid by irradiation with ultraviolet rays.
 硬化性樹脂組成物は、さらに、光増感剤、重合促進剤、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、帯電防止剤、レベリング剤等の添加剤を含有することができる。 The curable resin composition further comprises a photosensitizer, a polymerization accelerator, an ion trapping agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow conditioner, a plasticizer, and a defoamer. It can contain additives such as agents, antistatic agents, and leveling agents.
 (充填材)
 補強材50に設けてもよい充填材は透光性を有し、補強材50のセル51の内部空間を埋めることができるものであれば特に限定されない。充填材は、補強材50のセル隔壁53を構成する材料とは異なる材料であることが好ましく、樹脂材料を含むことが好ましい。当該樹脂材料としては、例えば、熱可塑性樹脂、熱硬化性樹脂や活性エネルギー線硬化性樹脂等の硬化性樹脂等からなる群より選ばれる1種以上が挙げられ、粘着剤又は接着剤であってもよい。
(Filler)
The filler that may be provided in the reinforcing material 50 is not particularly limited as long as it has translucency and can fill the internal space of the cell 51 of the reinforcing material 50. The filler is preferably a material different from the material constituting the cell partition wall 53 of the reinforcing material 50, and preferably contains a resin material. Examples of the resin material include one or more selected from the group consisting of curable resins such as thermoplastic resins, thermosetting resins and active energy ray-curable resins, and are adhesives or adhesives. May be good.
 熱可塑性樹脂としては、鎖状ポリオレフィン系樹脂(ポリプロピレン系樹脂等)、環状ポリオレフィン系樹脂(ノルボルネン系樹脂等)等のポリオレフィン系樹脂;トリアセチルセルロース、ジアセチルセルロース等のセルロースエステル系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂;(メタ)アクリル系樹脂;ポリスチレン系樹脂;ポリエーテル系樹脂;ポリウレタン系樹脂;ポリアミド系樹脂;ポリイミド系樹脂;フッ素系樹脂等が挙げられる。 Examples of the thermoplastic resin include polyolefin resins such as chain polyolefin resins (polypropylene resins, etc.) and cyclic polyolefin resins (norbornene resins, etc.); cellulose ester resins such as triacetyl cellulose and diacetyl cellulose; polyethylene terephthalates, Polyester resins such as polyethylene naphthalate and polybutylene terephthalate; polycarbonate resins; (meth) acrylic resins; polystyrene resins; polyether resins; polyurethane resins; polyamide resins; polyimide resins; fluororesins, etc. Can be mentioned.
 硬化性樹脂としては、例えば上記した硬化性樹脂(X)が挙げられる。 Examples of the curable resin include the above-mentioned curable resin (X).
 粘着剤は、それ自体を被着体に貼り付けることで接着性を発現するものであり、いわゆる感圧型接着剤と称されるものである。粘着剤としては、(メタ)アクリル系ポリマー、シリコーン系ポリマー、ポリエステル系ポリマー、ポリウレタン系ポリマー、ポリエーテル系ポリマー、又はゴム系ポリマー等のポリマーを主成分として含むものが挙げられる。
本明細書において、主成分とは、粘着剤の全固形分のうち50質量%以上を含む成分をいう。粘着剤は、活性エネルギー線硬化型、熱硬化型であってもよく、活性エネルギー線照射や加熱により、架橋度や接着力を調整してもよい。
The pressure-sensitive adhesive exhibits adhesiveness by sticking itself to an adherend, and is a so-called pressure-sensitive adhesive. Examples of the pressure-sensitive adhesive include those containing a polymer such as a (meth) acrylic polymer, a silicone polymer, a polyester polymer, a polyurethane polymer, a polyether polymer, or a rubber polymer as a main component.
In the present specification, the main component means a component containing 50% by mass or more of the total solid content of the pressure-sensitive adhesive. The pressure-sensitive adhesive may be an active energy ray-curable type or a thermosetting type, and the degree of cross-linking and adhesive strength may be adjusted by irradiation with active energy rays or heating.
 接着剤は、硬化性の樹脂成分を含むものであって、感圧型接着剤(粘着剤)以外の接着剤である。接着剤としては、硬化性の樹脂成分を水に溶解又は分散させた水系接着剤、活性エネルギー線硬化性化合物を含有する活性エネルギー線硬化性接着剤、熱硬化性接着剤等が挙げられる。 The adhesive contains a curable resin component and is an adhesive other than a pressure-sensitive adhesive (adhesive). Examples of the adhesive include an aqueous adhesive in which a curable resin component is dissolved or dispersed in water, an active energy ray-curable adhesive containing an active energy ray-curable compound, and a thermosetting adhesive.
 接着剤として、偏光板の技術分野で汎用されている水系接着剤を用いることもできる。
水系接着剤に含有される樹脂成分としては、ポリビニルアルコール系樹脂やウレタン系樹脂等が挙げられる。活性エネルギー線硬化性接着剤としては、紫外線、可視光、電子線、X線等の活性エネルギー線の照射によって硬化する組成物が挙げられる。活性エネルギー線硬化性接着剤としては、上記した硬化性樹脂(X)を含む硬化性樹脂組成物を用いてもよい。熱硬化性接着剤としては、エポキシ系樹脂、シリコーン系樹脂、フェノール系樹脂、メラミン系樹脂等を主成分として含むものが挙げられる。
As the adhesive, an aqueous adhesive widely used in the technical field of polarizing plates can also be used.
Examples of the resin component contained in the water-based adhesive include polyvinyl alcohol-based resin and urethane-based resin. Examples of the active energy ray-curable adhesive include compositions that are cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays. As the active energy ray-curable adhesive, a curable resin composition containing the above-mentioned curable resin (X) may be used. Examples of the thermosetting adhesive include those containing an epoxy resin, a silicone resin, a phenol resin, a melamine resin, or the like as a main component.
 (偏光子複合体(1)の製造方法)
 図5は、偏光子複合体40(図1(a))の製造方法の一例を模式的に示す概略断面図である。図5では、図1(a)に示す偏光子10を得る場合を示しているが、図1(b)及び(c)に示す偏光子10も、下記に説明する方法によって製造することができる。偏光子複合体40は、例えば、全体が同じ視感度補正偏光度(Py)を有し、非偏光領域12を有していない原料偏光子20の片面側に、セル領域55のみからなり非セル領域56を有していない補強材形成用構造体58(以下、「構造体58」ということがある。)を形成したものを用いて製造することができる。原料偏光子20は上記した偏光子10の偏光領域11のみで形成されているため、原料偏光子20の厚みは、偏光子10の偏光領域11と同じ厚みである15μm以下であることが好ましい。構造体58は上記した補強材50のセル領域55となるため、補強材50のセル領域55と同じ厚みを有することが好ましい。
(Manufacturing method of polarizer complex (1))
FIG. 5 is a schematic cross-sectional view schematically showing an example of a method for manufacturing the polarizer complex 40 (FIG. 1 (a)). Although FIG. 5 shows a case where the polarizer 10 shown in FIG. 1 (a) is obtained, the polarizer 10 shown in FIGS. 1 (b) and 1 (c) can also be manufactured by the method described below. .. The polarizer complex 40 is, for example, a non-cell composed of only a cell region 55 on one side of a raw material polarizer 20 having the same luminous efficiency correction degree of polarization (Py) as a whole and not having a non-polarizing region 12. It can be manufactured by forming a reinforcing material forming structure 58 (hereinafter, may be referred to as “structure 58”) having no region 56. Since the raw material polarizer 20 is formed only by the polarization region 11 of the above-mentioned polarizer 10, the thickness of the raw material polarizer 20 is preferably 15 μm or less, which is the same thickness as the polarizing region 11 of the polarizer 10. Since the structure 58 is the cell region 55 of the reinforcing material 50 described above, it is preferable that the structure 58 has the same thickness as the cell region 55 of the reinforcing material 50.
 偏光子複合体40は、例えば次の工程で製造することができる。まず、図5(a)に示すように、原料偏光子20の一方の面に、原料偏光子20に対して剥離可能に第1支持層25を設けた後、原料偏光子20の他方の面に構造体58を形成して、第1積層体31を準備する。構造体58は、例えば、樹脂材料又は無機酸化物を用いて、原料偏光子20の表面にセル51を区画するセル隔壁53を形成することによって得ることができる。 The polarizer complex 40 can be produced, for example, in the following process. First, as shown in FIG. 5A, a first support layer 25 is provided on one surface of the raw material polarizer 20 so as to be detachable from the raw material polarizer 20, and then the other surface of the raw material polarizer 20 is provided. The structure 58 is formed in the structure 58 to prepare the first laminated body 31. The structure 58 can be obtained, for example, by forming a cell partition wall 53 for partitioning the cell 51 on the surface of the raw material polarizer 20 using a resin material or an inorganic oxide.
 樹脂材料を用いてセル隔壁53を形成する方法としては特に限定されないが、例えば、インクジェット印刷、スクリーン印刷、グラビア印刷等の印刷法;フォトリソグラフィ法;ノズルやダイ等を用いた塗布法等が挙げられる。上記方法では、樹脂材料を、溶媒、添加剤等と混合した樹脂組成物を用いてもよい。添加剤としては、レベリング剤、酸化防止剤、可塑剤、粘着付与剤、有機又は無機の充填剤、顔料、老化防止剤、紫外線吸収剤、酸化防止剤等が挙げられる。セル隔壁53は、印刷又は塗布された樹脂組成物に、必要に応じて固化又は硬化のための処理を行って形成してもよい。 The method for forming the cell partition wall 53 using a resin material is not particularly limited, and examples thereof include printing methods such as inkjet printing, screen printing, and gravure printing; photolithography methods; coating methods using nozzles, dies, and the like. Be done. In the above method, a resin composition obtained by mixing a resin material with a solvent, an additive, or the like may be used. Examples of the additive include a leveling agent, an antioxidant, a plasticizer, a tackifier, an organic or inorganic filler, a pigment, an antioxidant, an ultraviolet absorber, an antioxidant and the like. The cell partition wall 53 may be formed by subjecting the printed or coated resin composition to a treatment for solidification or curing, if necessary.
 無機酸化物を用いてセル隔壁53を形成する方法としては特に限定されないが、例えば、無機酸化物を蒸着することによって形成することができる。 The method for forming the cell partition wall 53 using an inorganic oxide is not particularly limited, but it can be formed, for example, by depositing an inorganic oxide.
 準備した第1積層体31に対して、打抜き、切抜き、切削、又はレーザーカット等により積層方向に貫通する貫通穴32を形成する(図5(b))。これにより、貫通穴が形成された第1支持層25上に、原料偏光子20に貫通穴22が形成された穴あき偏光子21、及び、構造体58に貫通穴52が形成された穴あき構造体59が形成される。続いて、貫通穴32が形成された第1積層体31の穴あき構造体59側に第2支持層26を剥離可能に設けた後(図5(c))、第1支持層25を剥離する(図5(d))。これにより、第2支持層26、穴あき構造体59、及び穴あき偏光子21がこの順に積層された第2積層体33を得る(図5(d))。第2支持層26は、穴あき構造体59の貫通穴52の一方側を塞ぐように設ける。 A through hole 32 penetrating in the stacking direction is formed in the prepared first laminated body 31 by punching, cutting, cutting, laser cutting, or the like (FIG. 5 (b)). As a result, on the first support layer 25 in which the through hole is formed, the perforated polarizer 21 in which the through hole 22 is formed in the raw material polarizer 20 and the perforated hole 52 in which the through hole 52 is formed in the structure 58. The structure 59 is formed. Subsequently, the second support layer 26 is detachably provided on the perforated structure 59 side of the first laminated body 31 in which the through hole 32 is formed (FIG. 5 (c)), and then the first support layer 25 is peeled off. (Fig. 5 (d)). As a result, a second laminated body 33 in which the second support layer 26, the perforated structure 59, and the perforated polarizer 21 are laminated in this order is obtained (FIG. 5 (d)). The second support layer 26 is provided so as to close one side of the through hole 52 of the perforated structure 59.
 次に、第2積層体33の穴あき偏光子21の貫通穴22及び穴あき構造体59の貫通穴52に硬化性樹脂(X)を含む硬化性樹脂組成物を充填し、活性エネルギー線を照射することにより、貫通穴22,52内の硬化性樹脂(X)を硬化させる。これにより、穴あき偏光子21の貫通穴22及び穴あき構造体59の貫通穴52に硬化性樹脂(X)の硬化物を形成し、第2支持層26上に積層された偏光子複合体40を得る(図5(e))。硬化物を形成した後に、第2支持層26は剥離してもよい。得られた偏光子複合体40は、穴あき偏光子21の貫通穴22以外の領域が偏光領域11となり、硬化物が設けられた貫通穴22の領域が非偏光領域12となった偏光子10、及び、穴あき構造体59の貫通穴52以外の領域がセル領域55となり、硬化物が設けられた貫通穴52の領域が非セル領域56となった補強材50を有する。 Next, the through hole 22 of the perforated polarizer 21 of the second laminated body 33 and the through hole 52 of the perforated structure 59 are filled with a curable resin composition containing a curable resin (X), and active energy rays are applied. By irradiating, the curable resin (X) in the through holes 22 and 52 is cured. As a result, a cured product of the curable resin (X) is formed in the through hole 22 of the perforated polarizer 21 and the through hole 52 of the perforated structure 59, and the polarizer composite laminated on the second support layer 26. 40 is obtained (FIG. 5 (e)). After forming the cured product, the second support layer 26 may be peeled off. In the obtained polarizer complex 40, the region other than the through hole 22 of the perforated polarizer 21 is the polarized region 11, and the region of the through hole 22 provided with the cured product is the non-polarized region 12. And, the region other than the through hole 52 of the perforated structure 59 is the cell region 55, and the region of the through hole 52 provided with the cured product is the non-cell region 56.
 穴あき偏光子21の貫通穴22及び穴あき構造体59の貫通穴52に硬化性樹脂組成物を充填する方法としては、特に限定されない。例えば、分注器又はディスペンサー等を用いて第2積層体33の貫通穴22,52に硬化性樹脂組成物を注入してもよく、第2積層体33の穴あき偏光子21の表面上に硬化性樹脂組成物をコーティングしながら、貫通穴22,52に硬化性樹脂組成物を充填してもよい。穴あき偏光子21の表面上にコーティングされた硬化性樹脂組成物の硬化物層は、後述する保護層とすることができる。硬化性樹脂組成物をコーティングする場合は、コーティングにより形成された塗布層表面を覆うように基材フィルムを設けてもよい。基材フィルムは、後述する保護層として用いてもよく、この場合、硬化性樹脂(X)の硬化物層は、後述する保護層を貼合するための貼合層としてもよい。基材フィルムは、硬化性樹脂組成物に含まれる硬化性樹脂(X)の硬化後に剥離してもよい。 The method of filling the through hole 22 of the perforated polarizing element 21 and the through hole 52 of the perforated structure 59 with the curable resin composition is not particularly limited. For example, the curable resin composition may be injected into the through holes 22 and 52 of the second laminated body 33 using a dispenser, a dispenser, or the like, and the curable resin composition may be injected onto the surface of the perforated polarizer 21 of the second laminated body 33. The through holes 22 and 52 may be filled with the curable resin composition while coating the curable resin composition. The cured product layer of the curable resin composition coated on the surface of the perforated polarizing element 21 can be a protective layer described later. When coating the curable resin composition, a base film may be provided so as to cover the surface of the coating layer formed by the coating. The base film may be used as a protective layer described later, and in this case, the cured product layer of the curable resin (X) may be a bonding layer for bonding the protective layer described later. The base film may be peeled off after the curable resin (X) contained in the curable resin composition is cured.
 第1支持層25は、原料偏光子20の製造時に用いられる支持層であってもよく、硬化性樹脂組成物をコーティングする際に用いた上記基材フィルムを用いてもよい。あるいは、原料偏光子20に、水等の揮発性液体によって貼合された剥離可能な支持層であってもよく、原料偏光子20に対して剥離可能な粘着シートであってもよい。第2支持層26は、穴あき偏光子21に水等の揮発性液体によって貼合された剥離可能な支持層であってもよく、穴あき偏光子21に対して剥離可能な粘着シートであってもよい。 The first support layer 25 may be the support layer used in the production of the raw material polarizer 20, or the above-mentioned base film used for coating the curable resin composition may be used. Alternatively, it may be a peelable support layer attached to the raw material polarizer 20 by a volatile liquid such as water, or an adhesive sheet that can be peeled off from the raw material polarizer 20. The second support layer 26 may be a peelable support layer bonded to the perforated polarizing element 21 by a volatile liquid such as water, and is an adhesive sheet that can be peeled off from the perforated polarizing element 21. You may.
 (偏光子複合体(2)の製造方法)
 図6及び図7は、偏光子複合体41(図4)の製造方法の一例を模式的に示す概略断面図である。偏光子複合体41は、例えば、全体が同じ視感度補正偏光度(Py)を有し、非偏光領域12を有していない原料偏光子20の両面側に、セル領域55のみからなり非セル領域56を有していない構造体(補強材形成用構造体)58をそれぞれ形成したものを用いて製造することができる。原料偏光子20は上記した偏光子10の偏光領域11のみで形成されているため、原料偏光子20の厚みは、偏光子10の偏光領域11と同じ厚みである15μm以下であることが好ましい。構造体58は上記した補強材50のセル領域55となるため、補強材50のセル領域55と同じ厚みを有することが好ましい。
(Manufacturing method of polarizer complex (2))
6 and 7 are schematic cross-sectional views schematically showing an example of a method for producing the polarizer complex 41 (FIG. 4). The polarizer complex 41 is, for example, a non-cell composed of only a cell region 55 on both sides of a raw material polarizer 20 having the same luminous efficiency correction degree of polarization (Py) as a whole and not having a non-polarizing region 12. It can be manufactured by forming each of the structures (reinforcing material forming structures) 58 having no region 56. Since the raw material polarizer 20 is formed only by the polarization region 11 of the above-mentioned polarizer 10, the thickness of the raw material polarizer 20 is preferably 15 μm or less, which is the same thickness as the polarizing region 11 of the polarizer 10. Since the structure 58 is the cell region 55 of the reinforcing material 50 described above, it is preferable that the structure 58 has the same thickness as the cell region 55 of the reinforcing material 50.
 偏光子複合体41は、例えば次の工程で製造することができる。まず、偏光子複合体40の製造方法で説明した手順で、第1積層体31を準備する(図6(a))。準備した第1積層体31の構造体58側に、第3支持層27を剥離可能に設けた後(図6(b))、第1支持層25を剥離する(図6(c))。第1支持層25を剥離して露出した面(原料偏光子20の面)に、上記と同様の手順で構造体58を形成する(図6(d))。これにより、第3支持層27、構造体58、原料偏光子20、及び構造体58がこの順に積層された第3積層体34を得る(図6(d))。 The polarizer complex 41 can be produced, for example, in the following process. First, the first laminated body 31 is prepared by the procedure described in the method for manufacturing the polarizer complex 40 (FIG. 6A). The third support layer 27 is detachably provided on the structure 58 side of the prepared first laminated body 31 (FIG. 6 (b)), and then the first support layer 25 is detached (FIG. 6 (c)). The structure 58 is formed on the exposed surface (the surface of the raw material polarizer 20) by peeling off the first support layer 25 in the same procedure as described above (FIG. 6 (d)). As a result, a third laminated body 34 in which the third support layer 27, the structure 58, the raw material polarizer 20, and the structure 58 are laminated in this order is obtained (FIG. 6 (d)).
 得られた第3積層体34に対して、打抜き、切抜き、切削、又はレーザーカット等により積層方向に貫通する貫通穴36を形成する(図7(a))。これにより、貫通穴が形成された第3支持層27上に、原料偏光子20に貫通穴22が形成された穴あき偏光子21、及び、構造体58に貫通穴52が形成された穴あき構造体59が形成される。続いて、貫通穴36が形成された第3積層体34の穴あき構造体59側に第4支持層28を剥離可能に設けた後(図7(b))、第3支持層27を剥離する(図7(c))。これにより、穴あき構造体59、穴あき偏光子21、穴あき構造体59、及び第4支持層28がこの順に積層された第4積層体35を得る(図7(c))。第4支持層28は、穴あき構造体59の貫通穴52の一方側を塞ぐように設ける。 A through hole 36 penetrating in the stacking direction is formed in the obtained third laminated body 34 by punching, cutting, cutting, laser cutting, or the like (FIG. 7A). As a result, on the third support layer 27 in which the through hole is formed, the perforated polarizer 21 in which the through hole 22 is formed in the raw material polarizer 20, and the perforated hole 52 in which the through hole 52 is formed in the structure 58. The structure 59 is formed. Subsequently, the fourth support layer 28 is detachably provided on the perforated structure 59 side of the third laminated body 34 in which the through hole 36 is formed (FIG. 7B), and then the third support layer 27 is peeled off. (Fig. 7 (c)). As a result, a fourth laminated body 35 in which the perforated structure 59, the perforated polarizing element 21, the perforated structure 59, and the fourth support layer 28 are laminated in this order is obtained (FIG. 7 (c)). The fourth support layer 28 is provided so as to close one side of the through hole 52 of the perforated structure 59.
 次に、第4積層体35の穴あき偏光子21の貫通穴22及び穴あき構造体59の貫通穴52に、偏光子複合体40の製造方法で例示した方法で硬化性樹脂(X)を含む硬化性樹脂組成物を充填し、活性エネルギー線を照射することにより、貫通穴22,52内の硬化性樹脂(X)を硬化させる。これにより、穴あき偏光子21の貫通穴22及び穴あき構造体59の貫通穴52に硬化性樹脂(X)の硬化物を形成し、第4支持層28上に積層された偏光子複合体41を得る(図7(d))。硬化物を形成した後に、第4支持層28は剥離してもよい。得られた偏光子複合体41は、穴あき偏光子21の貫通穴22以外の領域が偏光領域11となり、硬化物が設けられた貫通穴22の領域が非偏光領域12となった偏光子10、及び、穴あき構造体59の貫通穴52以外の領域がセル領域55となり、硬化物が設けられた貫通穴52の領域が非セル領域56となった補強材50を有する。 Next, the curable resin (X) is applied to the through hole 22 of the perforated polarizer 21 of the fourth laminated body 35 and the through hole 52 of the perforated structure 59 by the method exemplified in the method for producing the polarizer composite 40. The curable resin (X) in the through holes 22 and 52 is cured by filling the curable resin composition containing the mixture and irradiating it with active energy rays. As a result, a cured product of the curable resin (X) is formed in the through hole 22 of the perforated polarizing element 21 and the through hole 52 of the perforated structure 59, and the polarizer composite laminated on the fourth support layer 28. 41 is obtained (FIG. 7 (d)). After forming the cured product, the fourth support layer 28 may be peeled off. In the obtained polarizer complex 41, the region other than the through hole 22 of the perforated polarizer 21 is the polarized region 11, and the region of the through hole 22 provided with the cured product is the non-polarized region 12. And, the region other than the through hole 52 of the perforated structure 59 is the cell region 55, and the region of the through hole 52 provided with the cured product is the non-cell region 56.
 穴あき偏光子21の貫通穴22及び穴あき構造体59の貫通穴52に硬化性樹脂(X)を充填する方法としては、偏光子複合体(1)の製造方法で説明した充填方法が挙げられる。第3支持層27及び第4支持層28を設ける方法としては、第1支持層25や第2支持層26を設ける方法として例示した方法が挙げられる。 Examples of the method for filling the through hole 22 of the perforated polarizer 21 and the through hole 52 of the perforated structure 59 with the curable resin (X) include the filling method described in the method for producing the polarizer complex (1). Be done. Examples of the method of providing the third support layer 27 and the fourth support layer 28 include the methods exemplified as the method of providing the first support layer 25 and the second support layer 26.
 上記のように、偏光子複合体40,41では、原料偏光子20の厚みが15μm以下であることにより、穴あき偏光子21に設けられる貫通穴22の深さも15μm以下とすることができる。穴あき構造体59のセル51の高さも通常15μm以下であるため、穴あき構造体59に設けられる貫通穴52の深さも15μm以下とすることができる。これにより、穴あき偏光子21の貫通穴22及び穴あき構造体59の貫通穴52への硬化性樹脂組成物の充填や、貫通穴22,52に充填された硬化性樹脂組成物に含まれる硬化性樹脂(X)の硬化処理を短時間で行うことができるため、作業性の低下を抑制できる。 As described above, in the polarizer complexes 40 and 41, since the thickness of the raw material polarizer 20 is 15 μm or less, the depth of the through hole 22 provided in the perforated polarizer 21 can also be 15 μm or less. Since the height of the cell 51 of the perforated structure 59 is usually 15 μm or less, the depth of the through hole 52 provided in the perforated structure 59 can also be 15 μm or less. As a result, the curable resin composition is filled in the through hole 22 of the perforated polarizing element 21 and the through hole 52 of the perforated structure 59, and is included in the curable resin composition filled in the through holes 22 and 52. Since the curing treatment of the curable resin (X) can be performed in a short time, deterioration of workability can be suppressed.
 偏光子複合体40の製造方法では、構造体58、原料偏光子20、及び第1支持層25をこの順に有する第1積層体31に、貫通穴32を形成している。偏光子複合体41の製造方法では、第3支持層27、構造体58、原料偏光子20、及び構造体58をこの順に有する第3積層体34に、貫通穴36を形成している。原料偏光子20は、偏光子10の非偏光領域12となる領域を形成するものであり、その厚みは15μm以下と薄いため、原料偏光子20に貫通穴22を形成する際に貫通穴22の周辺にクラックが発生する等の不具合を生じる虞がある。偏光子複合体40,41の製造方法では、原料偏光子20に構造体58を設け、原料偏光子20を構造体58によって補強した状態で貫通穴22を形成するため、穴あき偏光子21にクラックが発生することを抑制し、クラックの発生が抑制された偏光子10を得ることができる。 In the method for manufacturing the polarizer complex 40, a through hole 32 is formed in the first laminated body 31 having the structure 58, the raw material polarizer 20, and the first support layer 25 in this order. In the method for producing the polarizer complex 41, a through hole 36 is formed in the third laminated body 34 having the third support layer 27, the structure 58, the raw material polarizer 20, and the structure 58 in this order. The raw material polarizer 20 forms a region to be the non-polarized region 12 of the polarizing element 10, and its thickness is as thin as 15 μm or less. Therefore, when the raw material polarizer 20 is formed with the through hole 22, the through hole 22 is formed. There is a risk of problems such as cracks occurring in the periphery. In the method for producing the polarizer complexes 40 and 41, the structure 58 is provided in the raw material polarizer 20, and the through hole 22 is formed in a state where the raw material polarizer 20 is reinforced by the structure 58. It is possible to obtain a polarizer 10 in which cracks are suppressed and cracks are suppressed.
 (原料偏光子)
 原料偏光子20は、貫通穴22に充填された硬化性樹脂組成物中の硬化性樹脂(X)を硬化させるために照射する活性エネルギー線によって著しく変質しにくいものであることが好ましい。このような原料偏光子20は、例えば、ポリビニルアルコール系樹脂フィルムに二色性色素を吸着配向させたフィルムや、重合性液晶化合物の硬化層中で二色性色素が配向しているものであり、これらの製造方法は、上述の偏光領域11において説明したとおりである。
(Raw material polarizer)
It is preferable that the raw material polarizer 20 is not significantly deteriorated by the active energy rays irradiated to cure the curable resin (X) in the curable resin composition filled in the through hole 22. Such a raw material polarizer 20 is, for example, a film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film, or a film in which the dichroic dye is oriented in a cured layer of a polymerizable liquid crystal compound. , These manufacturing methods are as described in the above-mentioned polarization region 11.
 (補強材形成用構造体(構造体))
 構造体58は、セル領域55のみからなり非セル領域56を有していない構造体である。構造体58は、上記したように、樹脂材料又は無機酸化物を用いて、セル51を区画するセル隔壁53を形成することによって得ることができる。樹脂材料及び無機酸化物として用いることができる材料、及びこれらを用いてセル隔壁53を形成する方法としては、上記で例示した材料及び方法が挙げられる。
(Structure for forming reinforcing material (structure))
The structure 58 is a structure consisting of only the cell region 55 and not having the non-cell region 56. As described above, the structure 58 can be obtained by forming the cell partition wall 53 that partitions the cell 51 using a resin material or an inorganic oxide. Examples of the material that can be used as the resin material and the inorganic oxide, and the method for forming the cell partition wall 53 using these are the materials and methods exemplified above.
 <光学積層体>
 図8及び図9は、本実施形態の光学積層体の一例を模式的に示す概略断面図である。光学積層体は、図1(a)~(c)に示す偏光子複合体40、図4に示す偏光子複合体41の片面側又は両面側に保護層を有するものである。
<Optical laminate>
8 and 9 are schematic cross-sectional views schematically showing an example of the optical laminate of the present embodiment. The optical laminate has a protective layer on one side or both sides of the polarizer complex 40 shown in FIGS. 1 (a) to 1 (c) and the polarizer complex 41 shown in FIG.
 (光学積層体(1))
 図8に示す光学積層体45は、図1(a)に示す偏光子複合体40の両面側に保護層17,18を有する。光学積層体45は、偏光子複合体40の片面側にのみ保護層17(又は18)を有するものであってもよい。光学積層体45に含まれる偏光子複合体40は、図1(b)又は(c)に示す偏光子複合体40であってもよい。保護層17,18は、粘着剤層又は接着剤層等の貼合層を介して偏光子複合体40上に設けることができる。この場合、例えば、貼合層を介して、偏光子複合体40にフィルム状の保護層を積層すればよい。保護層17,18は、貼合層を介さずに偏光子複合体40に直接接するように設けてもよい。この場合、例えば、保護層17,18を構成する樹脂材料を含む組成物を、偏光子複合体40上に塗布し、この塗布層を固化又は硬化すること等によって保護層17,18を形成することができる。
(Optical laminate (1))
The optical laminate 45 shown in FIG. 8 has protective layers 17 and 18 on both side surfaces of the polarizer complex 40 shown in FIG. 1 (a). The optical laminate 45 may have a protective layer 17 (or 18) only on one side of the polarizer complex 40. The polarizer complex 40 included in the optical laminate 45 may be the polarizer complex 40 shown in FIGS. 1 (b) or 1 (c). The protective layers 17 and 18 can be provided on the polarizer complex 40 via a bonding layer such as an adhesive layer or an adhesive layer. In this case, for example, a film-like protective layer may be laminated on the polarizer complex 40 via a bonding layer. The protective layers 17 and 18 may be provided so as to be in direct contact with the polarizer complex 40 without interposing a bonding layer. In this case, for example, a composition containing a resin material constituting the protective layers 17 and 18 is applied onto the polarizer complex 40, and the coated layers are solidified or cured to form the protective layers 17 and 18. be able to.
 光学積層体45が、偏光子複合体40の補強材50側に貼合層を介して保護層18を設けたものである場合は、補強材50のセル51の内部空間、及び複数のセル51の間の隙間等を埋めるように貼合層を設けて、保護層18を形成することが好ましい。光学積層体45が、偏光子複合体40の補強材50側に直接接するように保護層18を設けたものである場合は、補強材50のセル51の内部空間、及び複数のセル51の間の隙間等を埋めるように、保護層18を構成する樹脂材料を含む組成物を設けて、保護層18を形成することが好ましい。 When the optical laminate 45 is provided with the protective layer 18 via the bonding layer on the reinforcing material 50 side of the polarizing element composite 40, the internal space of the cells 51 of the reinforcing material 50 and the plurality of cells 51. It is preferable to provide a bonding layer so as to fill the gaps between the layers to form the protective layer 18. When the optical laminate 45 is provided with the protective layer 18 so as to be in direct contact with the reinforcing material 50 side of the polarizing element composite 40, the internal space of the cells 51 of the reinforcing material 50 and the space between the plurality of cells 51. It is preferable to form the protective layer 18 by providing a composition containing a resin material constituting the protective layer 18 so as to fill the gaps and the like.
 光学積層体45が、図1(b)又は(c)に示す偏光子複合体40の偏光子10側に貼合層を介して保護層17を設けたものである場合は、偏光子10の偏光領域11と非偏光領域12との厚み差を埋めるように貼合層を設けて、保護層17を設けることが好ましい。光学積層体45が、図1(b)又は(c)に示す偏光子複合体40の偏光子10側に直接接するように保護層17を設けたものである場合には、偏光子10の偏光領域11と非偏光領域12との厚み差を埋めるように保護層17を構成する樹脂材料を含む組成物を設けて、保護層17を形成することが好ましい。 When the optical laminate 45 is provided with a protective layer 17 via a bonding layer on the polarizer 10 side of the polarizer complex 40 shown in FIG. 1B or FIG. 1C, the polarizing element 10 is provided. It is preferable to provide a bonding layer and provide a protective layer 17 so as to fill the thickness difference between the polarized region 11 and the non-polarized region 12. When the optical laminate 45 is provided with the protective layer 17 so as to be in direct contact with the polarizer 10 side of the polarizer complex 40 shown in FIG. 1 (b) or (c), the polarized light of the polarizer 10 is provided. It is preferable to form the protective layer 17 by providing a composition containing a resin material constituting the protective layer 17 so as to fill the thickness difference between the region 11 and the non-polarized region 12.
 光学積層体45において保護層17は、偏光子10上に直接設けられた硬化性樹脂(X)の硬化物層であってもよい。硬化物層である保護層17を構成する硬化性樹脂(X)としては、紫外線、可視光、電子線、X線等の活性エネルギー線の照射によって硬化する樹脂であれば特に限定されず、例えば上記で説明した硬化性樹脂(X)が挙げられる。保護層17は、偏光子10の非偏光領域12及び非セル領域56に含まれる硬化物を構成する硬化性樹脂(X)と同じ硬化性樹脂(X)を含む硬化性樹脂組成物の硬化物層であることが好ましい。 In the optical laminate 45, the protective layer 17 may be a cured product layer of a curable resin (X) provided directly on the polarizing element 10. The curable resin (X) constituting the protective layer 17 which is a cured product layer is not particularly limited as long as it is a resin that is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays. Examples thereof include the curable resin (X) described above. The protective layer 17 is a cured product of a curable resin composition containing the same curable resin (X) as the curable resin (X) constituting the cured product contained in the non-polarized region 12 and the non-cell region 56 of the polarizer 10. It is preferably a layer.
 保護層17が偏光子10の硬化物及び補強材50の硬化物を構成する硬化性樹脂(X)と同じ硬化性樹脂(X)の硬化物層である場合、保護層17は少なくとも偏光子10の非偏光領域12を被覆することが好ましい。保護層17は、偏光子10の片面の少なくとも一部を被覆していればよいが、偏光子10の片面の全面を被覆することが好ましい。 When the protective layer 17 is a cured product layer of the same curable resin (X) as the curable resin (X) constituting the cured product of the polarizer 10 and the cured product of the reinforcing material 50, the protective layer 17 is at least the polarizer 10 It is preferable to cover the non-polarized region 12 of the above. The protective layer 17 may cover at least a part of one side of the polarizer 10, but it is preferable to cover the entire surface of one side of the polarizer 10.
 光学積層体45を製造するためには、例えば、偏光子複合体40の偏光子10側に硬化性樹脂組成物をコーティングし、活性エネルギー線を照射することによって硬化性樹脂(X)を硬化させる。これにより、偏光子10上に、硬化性樹脂(X)の硬化物層である保護層17を形成して光学積層体45を得てもよい。 In order to produce the optical laminate 45, for example, the curable resin composition is coated on the polarizer 10 side of the polarizer composite 40, and the curable resin (X) is cured by irradiating it with active energy rays. .. As a result, the protective layer 17 which is a cured product layer of the curable resin (X) may be formed on the polarizing element 10 to obtain the optical laminate 45.
 あるいは、まず上記した第2積層体33(図5(d))の穴あき偏光子21の表面上に硬化性樹脂組成物をコーティングすることにより、穴あき構造体59の貫通穴52及び穴あき偏光子21の貫通穴22に硬化性樹脂組成物を充填し、穴あき偏光子21の表面にも硬化性樹脂組成物の塗布層を形成する。その後、活性エネルギー線の照射により、穴あき構造体59の貫通穴52内、穴あき偏光子21の貫通穴22内、及び穴あき偏光子21の表面上の硬化性樹脂(X)を硬化させて、硬化物及び硬化物層である保護層17を形成して光学積層体45を得てもよい。この場合、非偏光領域12及び非セル領域56に含まれる硬化物と、保護層17を構成する硬化物層とを一体化することができ、保護層17は、非偏光領域12及び非セル領域56に含まれる硬化物を構成する硬化性樹脂(X)と同じ硬化性樹脂(X)を含む硬化性樹脂組成物の硬化物層であることが好ましい。 Alternatively, first, by coating the surface of the perforated polarizing element 21 of the second laminated body 33 (FIG. 5 (d)) with the curable resin composition, the through holes 52 and the perforations of the perforated structure 59 are perforated. The through hole 22 of the polarizer 21 is filled with the curable resin composition, and a coating layer of the curable resin composition is also formed on the surface of the perforated polarizer 21. Then, by irradiating with active energy rays, the curable resin (X) in the through hole 52 of the perforated structure 59, in the through hole 22 of the perforated polarizing element 21, and on the surface of the perforated polarizing element 21 is cured. Alternatively, the cured product and the protective layer 17 which is a cured product layer may be formed to obtain the optical laminate 45. In this case, the cured product contained in the non-polarized region 12 and the non-cell region 56 and the cured product layer constituting the protective layer 17 can be integrated, and the protective layer 17 is the non-polarized region 12 and the non-cell region. It is preferable that the cured product layer is a curable resin composition containing the same curable resin (X) as the curable resin (X) constituting the cured product contained in 56.
 (光学積層体(2))
 図9に示す光学積層体46は、図4に示す偏光子複合体41の両面側に保護層17,18を有する。光学積層体46は、偏光子複合体41の片面側にのみ保護層17(又は18)を有するものであってもよい。保護層17,18は、粘着剤層又は接着剤層等の貼合層を介して偏光子複合体41上に設けてもよく、貼合層を介さずに偏光子複合体41に直接接するように設けてもよい。偏光子複合体41に保護層17,18を設ける方法については、上記した図8に示す光学積層体45において偏光子複合体40に保護層17,18を設ける方法と同様の手順で行うことができる。
(Optical laminate (2))
The optical laminate 46 shown in FIG. 9 has protective layers 17 and 18 on both side surfaces of the polarizer complex 41 shown in FIG. The optical laminate 46 may have a protective layer 17 (or 18) only on one side of the polarizer complex 41. The protective layers 17 and 18 may be provided on the polarizing element complex 41 via a bonding layer such as an adhesive layer or an adhesive layer, and are in direct contact with the polarizing element complex 41 without a bonding layer. It may be provided in. The method of providing the protective layers 17 and 18 on the polarizer complex 41 may be performed in the same procedure as the method of providing the protective layers 17 and 18 on the polarizer complex 40 in the optical laminate 45 shown in FIG. 8 described above. it can.
 偏光子複合体40,41の片面側に設けられる保護層17(又は18)が、偏光子複合体40,41に直接接するように設けられた層である場合、この保護層17(又は18)は、偏光子複合体40,41の非偏光領域12及び非セル領域56に含まれる硬化物を構成する硬化性樹脂(X)と同じ硬化性樹脂(X)の硬化物層とすることができる。この場合、偏光子複合体40,41を製造する際に、穴あき偏光子21の貫通穴22及び穴あき構造体59の貫通穴52に硬化性樹脂(X)を充填しながら、穴あき偏光子21又は穴あき構造体59の表面上にコーティングされた硬化性樹脂(X)を硬化した硬化物層を保護層17(又は18)とすればよい。これにより、非偏光領域12及び非セル領域56に含まれる硬化物と、保護層17(又は18)を構成する硬化物層とを一体化することができ、保護層17(又は18)は、非偏光領域12及び非セル領域56に含まれる硬化物を構成する硬化性樹脂(X)と同じ硬化性樹脂(X)を含む硬化性樹脂組成物の硬化物層とすることができる。 When the protective layer 17 (or 18) provided on one side of the polarizer composites 40 and 41 is a layer provided so as to be in direct contact with the polarizer composites 40 and 41, the protective layer 17 (or 18) Can be a cured product layer of the same curable resin (X) as the curable resin (X) constituting the cured product contained in the non-polarized region 12 and the non-cell region 56 of the polarizer composites 40 and 41. .. In this case, when the polarizer composites 40 and 41 are manufactured, the through hole 22 of the perforated polarizer 21 and the through hole 52 of the perforated structure 59 are filled with a curable resin (X) while performing perforated polarized light. The cured product layer obtained by curing the curable resin (X) coated on the surface of the child 21 or the perforated structure 59 may be the protective layer 17 (or 18). As a result, the cured product contained in the non-polarized region 12 and the non-cell region 56 and the cured product layer constituting the protective layer 17 (or 18) can be integrated, and the protective layer 17 (or 18) can be integrated. It can be a cured product layer of a curable resin composition containing the same curable resin (X) as the curable resin (X) constituting the cured product contained in the non-polarized region 12 and the non-cell region 56.
 図8及び図9に示す光学積層体45,46において、保護層17,18は、一方を貼合層を介して設けた保護層とし、他方を貼合層を介さずに設けた保護層としてもよい。光学積層体45、46に含まれる保護層17,18は、互いに同じであってもよく、互いに異なっていてもよい。 In the optical laminates 45 and 46 shown in FIGS. 8 and 9, one of the protective layers 17 and 18 is a protective layer provided via a bonding layer, and the other is a protective layer provided without a bonding layer. May be good. The protective layers 17 and 18 included in the optical laminates 45 and 46 may be the same as each other or may be different from each other.
 硬化性樹脂組成物をコーティングする場合は、コーティングにより形成された塗布層表面を覆うように基材フィルムを設けてもよい。この場合、基材フィルムを保護層17,18とし、硬化性樹脂(X)の硬化物層を保護層17,18を貼合するための貼合層としてもよい。基材フィルムは、硬化性樹脂(X)の硬化後に剥離してもよい。 When coating the curable resin composition, a base film may be provided so as to cover the surface of the coating layer formed by the coating. In this case, the base film may be the protective layers 17 and 18, and the cured product layer of the curable resin (X) may be the bonding layer for bonding the protective layers 17 and 18. The base film may be peeled off after the curable resin (X) is cured.
 (保護層)
 保護層17,18は、光を透過可能な樹脂層であることが好ましく、樹脂フィルムであってもよく、樹脂材料を含む組成物を塗布して形成した塗布層であってもよい。樹脂層に用いられる樹脂としては、透明性、機械的強度、熱安定性、水分遮断性、等方性、延伸性等に優れる熱可塑性樹脂であることが好ましい。熱可塑性樹脂としては、上記した原料偏光子20の製造に用いてもよい基材フィルムを構成する熱可塑性樹脂が挙げられる。光学積層体45,46が両面に保護層17,18を有する場合、保護層17,18の樹脂組成は、互いに同一であってもよく、互いに異なっていてもよい。
(Protective layer)
The protective layers 17 and 18 are preferably resin layers that can transmit light, and may be a resin film or a coating layer formed by applying a composition containing a resin material. The resin used for the resin layer is preferably a thermoplastic resin having excellent transparency, mechanical strength, thermal stability, moisture blocking property, isotropic property, stretchability and the like. Examples of the thermoplastic resin include the thermoplastic resin constituting the base film that may be used in the production of the raw material polarizer 20 described above. When the optical laminates 45 and 46 have the protective layers 17 and 18 on both sides, the resin compositions of the protective layers 17 and 18 may be the same or different from each other.
 保護層17,18の厚みは、薄型化の観点から、通常200μm以下であり、150μm以下であることが好ましく、100μm以下であることがより好ましく、80μm以下であってもよく、60μm以下であってもよい。保護層17,18の厚みは、通常5μm以上であり、10μm以上であってもよく、20μm以上であってもよい。保護層17,18は位相差を有していても、有していなくてもよい。光学積層体45,46が両面に保護層17,18を有する場合、保護層17,18の厚みは、互いに同一であってもよく、互いに異なっていてもよい。 From the viewpoint of thinning, the thicknesses of the protective layers 17 and 18 are usually 200 μm or less, preferably 150 μm or less, more preferably 100 μm or less, 80 μm or less, and 60 μm or less. You may. The thickness of the protective layers 17 and 18 is usually 5 μm or more, may be 10 μm or more, or may be 20 μm or more. The protective layers 17 and 18 may or may not have a phase difference. When the optical laminates 45 and 46 have the protective layers 17 and 18 on both sides, the thicknesses of the protective layers 17 and 18 may be the same or different from each other.
 (貼合層)
 貼合層は、粘着剤層又は接着剤層である。粘着剤層を形成するための粘着剤及び接着剤層を形成するための接着剤としては、例えば、上記した充填材を構成するために用いる粘着剤及び接着剤が挙げられる。
(Lated layer)
The bonding layer is an adhesive layer or an adhesive layer. Examples of the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer and the adhesive for forming the adhesive layer include the pressure-sensitive adhesive and the adhesive used for forming the above-mentioned filler.
 <光学表示素子用貼合層を有する積層体>
 図1(a)~(c)及び図4に示す偏光子複合体40,41、図8及び図9に示す光学積層体45,46は、さらに、液晶表示装置や有機EL表示装置等の表示装置の光学表示素子(液晶パネル、有機EL素子)に貼合するための光学表示素子用貼合層を有していてもよい。
<Laminate with laminated layer for optical display element>
The polarizing element composites 40, 41 shown in FIGS. 1 (a) to 1 (c) and FIGS. 4 and the optical laminates 45, 46 shown in FIGS. 8 and 9 further display a liquid crystal display device, an organic EL display device, or the like. It may have a bonding layer for an optical display element for bonding to an optical display element (liquid crystal panel, organic EL element) of the apparatus.
 偏光子複合体40において、図1(b)又は(c)に示す偏光子複合体40のように偏光領域11と非偏光領域12との間に厚み差が生じている表面に光学表示素子用貼合層を設ける場合は、この厚み差を埋めるように光学表示素子用貼合層を設けることが好ましい。 In the polarizer complex 40, for an optical display element on a surface having a thickness difference between a polarized region 11 and a non-polarized region 12 as in the polarizer complex 40 shown in FIGS. 1 (b) or 1 (c). When the bonding layer is provided, it is preferable to provide the bonding layer for the optical display element so as to fill this difference in thickness.
 偏光子複合体40,41及び光学積層体45,46において、補強材50の表面に光学表示素子用貼合層を設ける場合は、補強材50に設けられる充填材として光学表示素子用貼合層を構成する材料を用い、補強材50のセル51の内部空間等への充填材の充填と、光学表示素子用貼合層の形成とを同時に行ってもよい。 In the polarizer composites 40, 41 and the optical laminates 45, 46, when the bonding layer for the optical display element is provided on the surface of the reinforcing material 50, the bonding layer for the optical display element is provided as a filler to be provided on the reinforcing material 50. The filling material may be filled in the internal space of the cell 51 of the reinforcing material 50 and the bonding layer for the optical display element may be formed at the same time by using the material constituting the above.
 10 偏光子、11 偏光領域、11m 第1平面、11n 第2平面、12 非偏光領域、17,18 保護層、20 原料偏光子、21 穴あき偏光子、22 貫通穴、25 第1支持層、26 第2支持層、27 第3支持層、28 第4支持層、31 第1積層体、32 貫通穴、33 第2積層体、34 第3積層体、35 第4積層体、36 貫通穴、40,41 偏光子複合体、45,46 光学積層体、50 補強材、51 セル、52 貫通穴、53 セル隔壁、55 セル領域、56 非セル領域、58 補強材形成用構造体、59 穴あき構造体。 10 Polarizer, 11 Polarized Region, 11 m 1st Plane, 11n 2nd Plane, 12 Non-Polarized Region, 17, 18 Protective Layer, 20 Raw Material Polarizer, 21 Perforated Polarizer, 22 Through Hole, 25 1st Support Layer, 26 2nd support layer, 27 3rd support layer, 28 4th support layer, 31 1st laminate, 32 through hole, 33 2nd laminate, 34 3rd laminate, 35 4th laminate, 36 through hole, 40,41 Polarizer composite, 45,46 Optical laminate, 50 Reinforcing material, 51 cells, 52 Through holes, 53 Cell bulkheads, 55 cell areas, 56 Non-cell areas, 58 Reinforcing material forming structures, 59 Perforated Structure.

Claims (13)

  1.  偏光子と、前記偏光子の少なくとも一方の面側に設けられた補強材と、を有する偏光子複合体であって、
     前記偏光子は、厚みが15μm以下の偏光領域と、平面視において前記偏光領域に囲まれた非偏光領域と、を有し、
     前記補強材は、
      開口端面を有するセルを複数有し、且つ、各開口端面が前記偏光子の面に対向するように配列しており、
      前記セルが存在し且つ前記偏光領域に対応する領域に存在するセル領域と、前記セルが存在せず且つ前記非偏光領域に対応する領域に存在する非セル領域と、を有し、
     前記非偏光領域及び前記非セル領域は、活性エネルギー線硬化性樹脂の硬化物を含み、 前記非偏光領域に含まれる前記硬化物は、平面視において前記偏光領域に囲まれた貫通穴に設けられている、偏光子複合体。
    A polarizer complex having a polarizer and a reinforcing material provided on at least one surface side of the polarizer.
    The polarizer has a polarized region having a thickness of 15 μm or less and a non-polarized region surrounded by the polarized region in a plan view.
    The reinforcing material is
    A plurality of cells having an open end face are provided, and each open end face is arranged so as to face the surface of the polarizer.
    It has a cell region in which the cell exists and exists in a region corresponding to the polarized light region, and a non-cell region in which the cell does not exist and exists in a region corresponding to the non-polarized region.
    The non-polarized region and the non-cell region include a cured product of an active energy ray-curable resin, and the cured product contained in the non-polarized region is provided in a through hole surrounded by the polarized region in a plan view. Polarizer complex.
  2.  前記補強材は、前記偏光子の両面側に設けられる、請求項1に記載の偏光子複合体。 The polarizer composite according to claim 1, wherein the reinforcing material is provided on both sides of the polarizer.
  3.  前記硬化物の厚みは、前記偏光領域の厚み及び前記セル領域の厚みの合計厚みと同じである、請求項1又は2に記載の偏光子複合体。 The polarizer complex according to claim 1 or 2, wherein the thickness of the cured product is the same as the total thickness of the polarization region and the cell region.
  4.  前記硬化物の厚みは、前記偏光領域の厚み及び前記セル領域の厚みの合計厚みよりも小さい、請求項1又は2に記載の偏光子複合体。 The polarizer complex according to claim 1 or 2, wherein the thickness of the cured product is smaller than the total thickness of the polarization region and the cell region.
  5.  前記硬化物の厚みは、前記偏光領域の厚み及び前記セル領域の厚みの合計厚みよりも大きい、請求項1又は2に記載の偏光子複合体。 The polarizer complex according to claim 1 or 2, wherein the thickness of the cured product is larger than the total thickness of the polarization region and the cell region.
  6.  前記非偏光領域は、透光性を有する、請求項1~5のいずれか1項に記載の偏光子複合体。 The polarizer complex according to any one of claims 1 to 5, wherein the non-polarized region has translucency.
  7.  前記非偏光領域の平面視における径は、0.5mm以上20mm以下である、請求項1~6のいずれか1項に記載の偏光子複合体。 The polarizer complex according to any one of claims 1 to 6, wherein the diameter of the non-polarized region in a plan view is 0.5 mm or more and 20 mm or less.
  8.  前記活性エネルギー線硬化性樹脂は、エポキシ化合物を含む、請求項1~7のいずれか1項に記載の偏光子複合体。 The polarizer complex according to any one of claims 1 to 7, wherein the active energy ray-curable resin contains an epoxy compound.
  9.  前記エポキシ化合物は、脂環式エポキシ化合物を含む、請求項8に記載の偏光子複合体。 The polarizer complex according to claim 8, wherein the epoxy compound contains an alicyclic epoxy compound.
  10.  前記セルの前記開口の形状は、多角形状、円形状、又は楕円形状である、請求項1~9のいずれか1項に記載の偏光子複合体。 The polarizer complex according to any one of claims 1 to 9, wherein the shape of the opening of the cell is a polygonal shape, a circular shape, or an elliptical shape.
  11.  さらに、前記セルの内部空間に透光性の充填材が設けられている、請求項1~10のいずれか1項に記載の偏光子複合体。 The polarizer complex according to any one of claims 1 to 10, further comprising a translucent filler in the internal space of the cell.
  12.  請求項1~11のいずれか1項に記載の偏光子複合体の片面側又は両面側に保護層を有する、光学積層体。 An optical laminate having a protective layer on one side or both sides of the polarizer complex according to any one of claims 1 to 11.
  13.  前記偏光子複合体の片面側に設けられた前記保護層は、前記非偏光領域及び前記非セル領域に含まれる前記硬化物を構成する活性エネルギー線硬化性樹脂と同じ活性エネルギー線硬化性樹脂の硬化物層である、請求項12に記載の光学積層体。 The protective layer provided on one side of the polarizer composite is made of the same active energy ray-curable resin as the active energy ray-curable resin constituting the cured product contained in the non-polarized region and the non-cell region. The optical laminate according to claim 12, which is a cured product layer.
PCT/JP2020/032326 2019-10-25 2020-08-27 Polarizer complex and optical laminate WO2021079613A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080073291.0A CN114599514A (en) 2019-10-25 2020-08-27 Polarizing plate composite and optical laminate
KR1020227014432A KR20220084307A (en) 2019-10-25 2020-08-27 Polarizer composite and optical laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-194276 2019-10-25
JP2019194276A JP7516027B2 (en) 2019-10-25 2019-10-25 Optical laminate

Publications (1)

Publication Number Publication Date
WO2021079613A1 true WO2021079613A1 (en) 2021-04-29

Family

ID=75620472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032326 WO2021079613A1 (en) 2019-10-25 2020-08-27 Polarizer complex and optical laminate

Country Status (5)

Country Link
JP (1) JP7516027B2 (en)
KR (1) KR20220084307A (en)
CN (1) CN114599514A (en)
TW (1) TW202120309A (en)
WO (1) WO2021079613A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165802A (en) * 1981-04-04 1982-10-13 Dainippon Printing Co Ltd Manufacture of light-shielding plate
JP2010227846A (en) * 2009-03-27 2010-10-14 Ngk Insulators Ltd Honeycomb structure
JP2010234243A (en) * 2009-03-31 2010-10-21 Ngk Insulators Ltd Honeycomb structure and method of manufacturing the same
US20170176657A1 (en) * 2013-11-08 2017-06-22 Apple Inc. Electronic Device Display With Polarizer Windows
JP2018128664A (en) * 2017-02-10 2018-08-16 日東電工株式会社 Polarizing film, image display device, and manufacturing method of the polarizing film
CN110208891A (en) * 2019-05-21 2019-09-06 华为技术有限公司 A kind of polaroid, display screen and mobile terminal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9075199B2 (en) 2012-10-30 2015-07-07 Apple Inc. Displays with polarizer layers for electronic devices
JP6214594B2 (en) 2014-04-25 2017-10-18 日東電工株式会社 Polarizer, polarizing plate and image display device
JP6668312B2 (en) 2017-02-10 2020-03-18 日東電工株式会社 Polarizing film, image display device, and method for manufacturing polarizing film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165802A (en) * 1981-04-04 1982-10-13 Dainippon Printing Co Ltd Manufacture of light-shielding plate
JP2010227846A (en) * 2009-03-27 2010-10-14 Ngk Insulators Ltd Honeycomb structure
JP2010234243A (en) * 2009-03-31 2010-10-21 Ngk Insulators Ltd Honeycomb structure and method of manufacturing the same
US20170176657A1 (en) * 2013-11-08 2017-06-22 Apple Inc. Electronic Device Display With Polarizer Windows
JP2018128664A (en) * 2017-02-10 2018-08-16 日東電工株式会社 Polarizing film, image display device, and manufacturing method of the polarizing film
CN110208891A (en) * 2019-05-21 2019-09-06 华为技术有限公司 A kind of polaroid, display screen and mobile terminal

Also Published As

Publication number Publication date
JP2021067867A (en) 2021-04-30
KR20220084307A (en) 2022-06-21
CN114599514A (en) 2022-06-07
TW202120309A (en) 2021-06-01
JP7516027B2 (en) 2024-07-16

Similar Documents

Publication Publication Date Title
WO2021079623A1 (en) Polarizer composite and optical laminate
WO2013168722A1 (en) Polarizing plate
WO2021079613A1 (en) Polarizer complex and optical laminate
WO2021079614A1 (en) Polarizer complex and optical laminate
WO2021079612A1 (en) Polarizer, polarizer composite, and optical laminate
WO2021079622A1 (en) Polarizer composite and optical laminate
WO2021079621A1 (en) Polarizer having phase difference layer, polarizer composite, and optical laminate
KR101748531B1 (en) Polarizing plate set and liquid crystal panel
KR101781308B1 (en) Polarizing plate set and liquid crystal panel
TWI857133B (en) Polarizer composite and optical laminate
TW201732326A (en) Polarizing plate and liquid crystal panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227014432

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20879584

Country of ref document: EP

Kind code of ref document: A1