WO2021079508A1 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
WO2021079508A1
WO2021079508A1 PCT/JP2019/041996 JP2019041996W WO2021079508A1 WO 2021079508 A1 WO2021079508 A1 WO 2021079508A1 JP 2019041996 W JP2019041996 W JP 2019041996W WO 2021079508 A1 WO2021079508 A1 WO 2021079508A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
teeth
rotor
electric motor
core
Prior art date
Application number
PCT/JP2019/041996
Other languages
French (fr)
Japanese (ja)
Inventor
ザイニ アリフ
友矩 佐々木
亮哉 吉村
裕介 坂本
詠吾 十時
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020538743A priority Critical patent/JPWO2021079508A1/en
Priority to PCT/JP2019/041996 priority patent/WO2021079508A1/en
Priority to TW109136099A priority patent/TW202118193A/en
Publication of WO2021079508A1 publication Critical patent/WO2021079508A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings

Definitions

  • the present invention relates to an electric motor having a stator core having a plurality of teeth protruding from an annular core bag to the inner peripheral side of the core bag.
  • the electric motor has an annular stator and a rotor arranged inside the stator.
  • the stator of the electric motor has a stator core and an armature winding wound around the stator core.
  • the stator core has an annular core back and a plurality of teeth protruding radially from the core back, and the armature winding is wound around the teeth.
  • the space between two adjacent teeth is called a slot.
  • the annular stator core is divided into a plurality of iron core pieces having a core back portion and a teeth portion in the circumferential direction, and among the boundary portions of the core back portions of the adjacent iron core pieces. There is a recess in the area facing the slot.
  • the electric motor disclosed in Patent Document 1 has a stator core by making the width of the middle portion of the teeth orthogonal to the radial direction less than twice the radial width of the core back portion which is the thinnest due to the dent. By fitting it into the frame, the compressive stress generated in the stator core is relaxed and iron loss is suppressed.
  • Electric motors for applications such as shakers or injection molding machines may be required to frequently reverse the direction of rotation or accelerate to a high rotation speed in a short time.
  • the torque of the electric motor is large, and that the moment of inertia of the rotor is small.
  • the torque of the electric motor is proportional to the square of the diameter of the rotor.
  • the moment of inertia of the rotor is roughly proportional to the fourth power of the diameter of the rotor. Therefore, the moment of inertia of the rotor and the torque of the electric motor are in a relationship that the torque also decreases when the diameter of the rotor is reduced in order to reduce the moment of inertia.
  • Patent Document 1 does not disclose the conditions for suppressing the decrease in torque efficiency when reducing the moment of inertia of the rotor.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an electric motor in which the moment of inertia of the rotor is reduced while suppressing the decrease in torque.
  • the present invention presents a stator core having an annular core back and a plurality of teeth protruding from the core back to the inner peripheral side of the core back, and two adjacent cores.
  • a stator having an armature winding arranged in a slot which is a space between teeth and wound around each of a plurality of teeth in a concentrated winding, and a rotor having a permanent magnet are provided on the outside of the rotor. It is an electric motor in which a stator is placed.
  • the outer diameter D out and the inner diameter D in of the stator satisfy the relationship of D out / D in ⁇ 2.1.
  • the width T w of each of the plurality of teeth and the width C b of the core back satisfy the relationship of 2.1 ⁇ C b / T w ⁇ 1.1.
  • the length L c of the stator core in the direction along the rotation axis of the rotor and the inner diameter D in of the stator satisfy the relationship of 14.3 ⁇ L c / D in ⁇ 1.5.
  • the electric motor according to the present invention has the effect of being able to reduce the moment of inertia of the rotor while suppressing the decrease in torque efficiency.
  • Cross-sectional view along the rotation axis of the electric motor according to the first embodiment of the present invention Cross-sectional view perpendicular to the rotation axis of the rotor and stator of the electric motor according to the first embodiment.
  • FIG. 1 is a cross-sectional view taken along the rotation axis of the electric motor according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view perpendicular to the rotation axis of the rotor and stator of the electric motor according to the first embodiment.
  • the electric motor 1 has a stator 5, a frame 6, a housing 7, and a rotor 13.
  • the frame 6 has a cylindrical shape, and a stator 5 is press-fitted into the inner wall surface.
  • One end 6a of the frame 6 is covered with a housing 7.
  • the housing 7 is fixed to one end 6a of the frame 6 by a bolt 8.
  • the other end 6b of the frame 6 is covered with an end cover 19.
  • a gap called an air gap portion 20 is formed between the rotor 13 and the stator 5.
  • the stator 5 has a stator core 3 and an armature winding 4 that is wound around the stator core 3 via an insulator (not shown).
  • the rotor 13 includes a shaft 11 supported by the first bearing 9 and a second bearing 10, a rotor core 14 through which the shaft 11 penetrates, and a rotor at equal pitches along the circumferential direction of the rotor core 14. It has a plurality of permanent magnets 15 attached to the outer periphery of the iron core 14.
  • the first bearing 9 is fitted in the housing 7.
  • the second bearing 10 is fitted in the wall portion 12 of the frame 6.
  • the central axis of the shaft 11 coincides with the rotating shaft 50 of the rotor 13.
  • the rotor 13 has 10 permanent magnets 15 installed on the outer circumference of the rotor core 14.
  • the permanent magnet 15 is a rare earth magnet or a ferrite magnet.
  • a cover made of a non-magnetic material such as stainless steel or aluminum in a cylindrical shape may be installed on the outer peripheral side of the permanent magnet 15.
  • stator 5 includes a connection portion 16 connected to the armature winding 4.
  • connection portion 16 connected to the armature winding 4.
  • a pulley 17 is attached to one end of the shaft 11.
  • a rotation transmission member such as a V-belt is hung on the pulley 17, and the rotation of the shaft 11 is transmitted to a load (not shown) through the rotation transmission member.
  • the stator core 3 and the rotor core 14 are formed by laminating a magnetic core material such as an electromagnetic steel plate.
  • the stacking direction of the magnetic core material is the direction along the rotation shaft 50.
  • the length L c of the stator core 3 in the direction along the rotation axis 50 is the same as the length of the rotor core 14 in the direction along the rotation axis 50.
  • the length L c of the stator core 3 in the direction along the rotation axis 50 is referred to as a core width L c .
  • the stator core 3 has an annular core back 3b in a cross section perpendicular to the rotation axis 50, and twelve teeth 3a protruding toward the inner diameter side from the core back 3b.
  • a slot 18 is formed between two adjacent teeth 3a, which is a space in which the armature winding 4 is arranged.
  • An armature winding 4 is wound around each of the teeth 3a.
  • the armature winding 4 wound around each of the teeth 3a is assigned to either the U phase, the V phase, or the W phase.
  • the armature winding 4 assigned to the U phase is called the U phase winding
  • the armature winding 4 assigned to the V phase is called the V phase wiring
  • the armature winding 4 assigned to the W phase is called the W phase wiring. ..
  • U-phase wiring, V-phase wiring, and W-phase wiring are arranged for each set of two adjacent teeth 3a as a set.
  • the 12 teeth 3a include U-phase wiring, U-phase wiring, V-phase wiring, V-phase wiring, W-phase wiring, W-phase wiring, U-phase wiring, U-phase wiring, V-phase wiring, and V-phase wiring.
  • the armature winding 4 is arranged in the order of the W-phase wiring and the W-phase wiring.
  • the stator 5 has a so-called centralized winding structure in which a single phase armature winding 4 is wound around one tooth 3a.
  • a brim portion 32 is provided at the tip portion 311a on the inner diameter side of the teeth 3a facing the rotor 13. By providing the brim portion 32 on the teeth 3a, cogging torque and torque ripple are suppressed. Further, by providing the brim portion 32 on the teeth 3a, the magnetic flux generated by the permanent magnet 15 can be efficiently received by the stator 5.
  • FIG. 3 is a diagram showing the shape of the iron core piece of the electric motor according to the first embodiment.
  • the stator core 3 is configured by arranging a plurality of iron core pieces 31 divided in the circumferential direction in an annular shape.
  • the plurality of iron core pieces 31 are fixed to the inner peripheral surface of the frame 6 in a state of being arranged in the circumferential direction, so that they are connected to each other to form an annular stator core 3.
  • the iron core piece 31 is fixed to the inner peripheral surface of the frame 6 by press fitting or adhesion.
  • Each of the iron core pieces 31 includes a teeth 3a and a core back 3b.
  • the main direction of the magnetic flux is the radial direction at the center of the circumferential direction indicated by the arrow A in FIG.
  • the main direction of the magnetic flux is the circumferential direction indicated by the arrow B in FIG.
  • the teeth 3a has a so-called straight teeth shape, and the width, which is the dimension of the teeth 3a in the circumferential direction of the rotating shaft 50, is constant regardless of the position in the radial direction.
  • the length which is the dimension of the teeth 3a in the radial direction of the circle centered on the rotation shaft 50 is T l
  • the width of the teeth 3a is T w
  • the width of the core back 3 b is C b.
  • the width T w of the teeth 3a and the width C b of the core back 3b are dimensions in a direction orthogonal to the main direction of the magnetic flux.
  • the diameter of the circle connecting the tip portion 311a of the teeth 3a that is, the inner diameter of the stator 5
  • D in the diameter of the circle formed by the outer peripheral portion 311b of the core back 3b, that is, the outer diameter of the stator 5. Let it be D out.
  • the torque of the electric motor 1 is proportional to the product of the side area of the rotor 13 and the radius, it is known to be proportional to the square of the diameter of the rotor 13. Further, the diameter of the rotor 13 can be regarded as substantially equal to the inner diameter of the stator 5 if the size of the air gap portion 20 can be ignored. Further, when the size of the entire motor 1 is specified, the outer diameter of the stator 5 is determined by subtracting the thickness of the frame 6 from the size of the entire motor 1. Therefore, when the size of the entire electric motor 1 is specified, it is desirable that the value of D out / D in is small in order to increase the torque generated by the electric motor 1.
  • the torque of the motor 1 is approximately proportional to the square of the inner diameter of the stator 5, and the moment of inertia is approximately the inner diameter of the stator 5. Is proportional to the fourth power of. Since the rotational acceleration of the electric motor 1 is obtained by dividing the torque by the moment of inertia, it is advantageous to reduce the inner diameter of the stator 5 if the electric motor 1 is designed with an emphasis on the rotational acceleration. Therefore, in the first embodiment, the value of D out / D in is limited to 2.1 or more.
  • the magnetic resistance per tooth 3a is represented by the following formula (1).
  • R g is the reluctance of the air gap portion 20
  • R c is the reluctance of the teeth 3a.
  • R g is represented by the following formula (2).
  • R c is represented by the following equation (3).
  • the length gl of the air gap portion 20 includes the length of the permanent magnet 15 in addition to the length of the physical void. .. According to Hopkinson's law, the magnetomotive force F m and the magnetic flux ⁇ of the magnetic circuit satisfy the following equation (4).
  • the left side of the above equation (5) means the amount of increase in electromotive force required to increase the magnetic flux by one unit, and it is necessary to make this value as small as possible in order not to reduce the torque linearity described later. is there.
  • R m When the second term on the right side of the above equation (5) is decomposed, among the components of R m , R g does not change with respect to the magnetic flux and the derivative becomes 0, so that the following equation (6) holds.
  • the magnetic field in the stator core 3 is H
  • the magnetic field H and the magnetic flux density B have the relationship of the following equation (10).
  • stator core 3 has a larger contribution to the amount of increase in the magnetomotive force required to increase the magnetic flux by one unit than the air gap portion 20.
  • a motor in which the stator core 3 contributes more to the amount of increase in the magnetomotive force required to increase the magnetic flux by one unit than the air gap portion 20 suppresses the magnetic resistance of the stator core 3. The magnetic flux can be increased efficiently.
  • the length gl of the air gap portion 20 is set to about 1/10 of the inner diameter D in of the stator 5.
  • the width g w of the air gap portion 20 can be approximated by dividing the circumference length of the inner diameter D in of the stator 5 by the number of slots N s.
  • the length T l of the teeth 3a and the width T w of the teeth 3a have a physically set upper limit.
  • the length T l of the teeth 3a can be secured up to only half of the difference between the inner diameter D in of the stator 5 and the outer diameter D out of the stator 5.
  • the width T w of the teeth 3a can be secured only up to the same length as the width of the air gap portion 20 at the maximum. Therefore, the following equation (17) and the following equation (18) hold.
  • k 1 and k 2 are constants larger than 0 and smaller than 1.
  • the values of k 1 and k 2 differ depending on the design, but since they are set so as to maintain the aspect ratio from the maximum value, they can be approximated by the following equation (19).
  • the value of ( ⁇ H / ⁇ B) in the stator core 3 differs depending on the magnitude of the magnetic flux density B, but most of the iron-based core materials used for the stator 5 are around 2T. It is known to saturate with magnetic flux density. In the first embodiment, since the motor having a low moment of inertia and a high torque is to be realized, the stator core 3 is almost saturated. In the case of an iron-based core material, the value of ( ⁇ H / ⁇ B) near 2T is about 1.5 ⁇ 10 5 m / H, which is 1/5 based on the magnetic permeability ⁇ 0 of the vacuum. . Corresponds to 3 ⁇ 0.
  • the teeth 3a has a shape in which the length T l is larger than the width T w. Since the magnetic reluctance of the teeth 3a with respect to the magnetic flux passing through the teeth 3a in the radial direction is proportional to the radial length of the teeth 3a and inversely proportional to the width in the circumferential direction, the length T l of the teeth 3a is larger than the width T w. In the case of the iron core piece 31 having a shape, the magnetic resistance of the teeth 3a becomes extremely large.
  • the magnetic flux generated from the permanent magnet 15 of the rotor 13 and interlinking with the armature winding 4 of the stator 5 is reduced, and the torque tends to be reduced as compared with the case where the width of the teeth 3a can be secured widely. ..
  • the teeth 3a are likely to be magnetically saturated, so that the amount of torque increase is proportional to the amount of current supplied to the armature winding 4.
  • a phenomenon occurs in which the torque is less likely to increase as the amount of current increases without increasing.
  • the phenomenon in which the torque is less likely to increase as the amount of current increases is called "decrease in torque linearity".
  • FIG. 4 is a diagram showing the relationship between the ratio between the width of the core back and the width of the teeth of the electric motor according to the first embodiment and the torque efficiency.
  • the width C b of the core back 3b is standardized by dividing by the width T w of the teeth 3a, and the torque is standardized by dividing by the Joule loss. ing.
  • the magnitude of torque per joule loss is called torque efficiency.
  • the torque efficiency is shown normalized with the maximum value set to "1".
  • the torque efficiency of the electric motor 1 is maximized when the value of the ratio C b / T w of the width C b of the core back 3b and the width T w of the teeth 3a is between 1.5 and 1.7.
  • the torque efficiency does not change significantly even if the C b / T w value changes slightly near the peak, but the slope with respect to the C b / T w value increases at a distance from the peak.
  • the torque efficiency is set to 90% or more by setting the value of C b / T w to 1.1 or more.
  • the electric motor 1 has a torque efficiency of 90% or more by setting the value of C b / T w to 2.1 or less.
  • Heat-resistant class F windings specified in JIS C 4003 are widely used for motors.
  • the permissible temperature of the heat resistant class F winding is 155 ° C. Since the ambient temperature of the motor during operation is 40 ° C., the temperature rise of the winding that can be tolerated due to the loss is 115 ° C. Further, since a margin of 15 ° C. is required to absorb the influence of variations in motor characteristics due to manufacturing variations, the actual allowable increase in winding temperature is 100 ° C.
  • the motor 1 according to the first embodiment is designed so that a larger current is applied in order to maximize the motor output, but the winding temperature rise is 90 ° C., which is slightly lower than the permissible rise temperature of 100 ° C. There is. Therefore, when the torque efficiency shown in FIG. 4 decreases by 10% and falls below 90%, the winding temperature rises by 10% and exceeds the allowable temperature of the winding. Therefore, the electric motor 1 according to the first embodiment is designed so that the torque efficiency is 90% or more.
  • the torque of the electric motor 1 is basically proportional to the core widths L c, the core width L c is significantly shortened, torque is smaller than the value proportional to the core widths L c. This is because the interlinkage magnetic flux leaks in the direction along the rotation shaft 50 at both ends of the stator core 3 in the direction along the rotation shaft 50.
  • the core width L c is long, the Joule loss in the armature winding 4 is substantially proportional to the core width L c as well as the torque.
  • FIG. 5 is a diagram showing the relationship between the ratio of the core width of the electric motor according to the first embodiment to the inner diameter of the stator and the torque efficiency.
  • the torque efficiency is 100%. ing. Therefore, in the electric motor 1, the torque efficiency is set to 100% by setting the value of L c / D in to 1.5 or more.
  • FIG. 6 is a diagram showing the relationship between the amount of deflection of the rotor of the electric motor according to the first embodiment and the size of the air gap portion. Normally, the size of the air gap portion 20 is set to about 1/10 of the diameter D in , so the amount of deflection ⁇ must be smaller than D in / 10.
  • the Young's modulus E of the shaft 11 made of steel is generally 20.6 Gpa.
  • the upper limit of L c / D in is set to 14.3.
  • FIG. 7 is a diagram showing a definition of a slot opening angle of the electric motor according to the first embodiment.
  • the central angle of the arc 62 connecting the corners 61 of the two teeth 3a sandwiching the slot 18 is the slot opening angle So. If the slot opening angle So is too small, the arc 62 becomes short and the distance between the two corners 61 becomes short, so that the magnetic flux generated by the armature winding 4 does not pass through the rotor 13 and the adjacent teeth 3a A phenomenon called magnetic flux leakage occurs, which leads to a decrease in torque linearity. Therefore, the electric motor 1 according to the first embodiment, the slot opening angle S o is sized to decrease the torque linearity does not occur.
  • Conditions of the desired slot opening angle S o varies depending the number of teeth. When there are many number of teeth is fewer magnetic flux responsible is per one tooth 3a, since each also reduced the stator magnetomotive force with the armature winding 4 of the teeth 3a, necessary to so large a slot opening angle S o Will disappear. Therefore, when defines a desired slot opening angle S o, at an angle T o per one tooth 3a shown in FIG. 7, it is necessary to standardize by dividing the slot opening angle S o.
  • FIG. 8 is a diagram showing the relationship between the ratio of the slot opening angle of the electric motor according to the first embodiment to the angle per tooth and the torque efficiency. If the value of the slot which is the ratio of the aperture angle S o and the angle T o per one tooth 3a S o / T o of 0.2 or more, the torque efficiency is above 90%. Therefore, the motor 1, by the values of S o / T o and 0.2 or more, and a torque efficiency to 90% or more.
  • the electric motor 1 according to the first embodiment has a larger width C b of the core back 3b than that of a general electric motor, so that the mechanical strength is improved, and vibration due to electromagnetic vibration and vibration and vibration due to electromagnetic vibration force are generated. Noise is reduced. Further, in the electric motor 1 according to the first embodiment, since the inductance of the armature winding 4 is low, the voltage between terminals is particularly low when the rotor 13 is rotated at high speed, and the voltage of the drive system is limited. For example, high torque can be maintained up to higher speeds.
  • the rotor 1 has a D out / D in value of 2.1 or more so that the length Tl of each of the plurality of teeth 3a becomes larger than the width T w. 13 aims to reduce the moment of inertia, and the torque efficiency is to set the value of the value of C b / T w and S o / T o to prevent lower than 90%, reducing the moment of inertia Even so, torque can be obtained efficiently.
  • Embodiment 2 The electric motor 1 according to the second embodiment of the present invention is different from the electric motor 1 according to the first embodiment in the structures of the stator 5 and the rotor 13.
  • FIG. 9 is a cross-sectional view perpendicular to the rotation axis of the rotor and stator of the electric motor according to the second embodiment of the present invention.
  • the number of teeth 3a included in the stator 5 is 6, and the number of slots 18 formed between two adjacent teeth 3a is 6.
  • a permanent magnet 15 is embedded in the rotor core 14.
  • a total of eight permanent magnets 15 are embedded in the rotor core 14.
  • Each of the permanent magnets 15 is arranged so that the direction in which the N-pole magnetic flux is concentrated and the direction in which the S-pole magnetic flux is concentrated are orthogonal to each other in the air gap portion 20 between the rotor 13 and the stator 5.
  • the magnetization direction of each permanent magnet 15 is indicated by an arrow. Since the permanent magnet 15 is arranged so that the direction in which the N-pole magnetic flux is concentrated and the direction in which the S-pole magnetic flux is concentrated are orthogonal to each other, the permanent magnet 15 is placed on the surface of the rotor 13 facing the air gap portion 20. It forms four magnetic poles.
  • the electric motor 1 according to the second embodiment has four magnetic poles formed by eight permanent magnets 15 embedded in the rotor core 14, and six slots 18, so that the surface permanent magnets have four poles and six slots. It is a motor.
  • the electric motor 1 according to the second embodiment has a so-called Halbach structure in which magnetic fluxes from a plurality of permanent magnets 15 are concentrated on one magnetic pole of the rotor 13, and is a surface magnet type as in the first embodiment. A larger torque can be obtained than a motor.
  • the number of magnetic poles N p of the permanent magnet 15 is formed on the surface of the rotor 13 facing the air gap portion 20, the number of teeth N t of the stator 5 is not limited to the combination of the above ..
  • the teeth 3a of the iron core piece 31 constituting the stator core 3 are straight teeth, but the teeth 3a have the width of the teeth 3a on the inner diameter side and the outer diameter side. It may be different, tapered teeth.
  • FIG. 10 is a diagram showing the shape of the teeth of the electric motor according to the modified example of the first embodiment or the second embodiment of the present invention. In the case of tapered teeth, the same effect can be obtained by defining the average width of the entire teeth 3a as the width T w of the teeth 3a. For example, in the case of FIG.
  • the average value of the widths of the entire teeth 3a (T w1 + T w2 ) / 2 is set.
  • the width T w of the teeth 3a may be set, and the design may be performed in the same manner as in the first and second embodiments.
  • the iron core piece 31 forms a three-dimensional stator core 3 by laminating electromagnetic steel sheets, but the present invention is not limited to this.
  • a stator core 3 made of a so-called compressed iron core, which is formed by compacting a magnetic powder, may be used.
  • one iron core piece 31 has one tooth 3a, but the present invention is not limited to this.
  • the stator core 3 may be configured by combining a plurality of iron core pieces 31 having a plurality of teeth 3a.
  • a part of the plurality of iron core pieces 31, for example, only the core back 3b may be integrally formed with each other to form the core back 3b of the stator core 3 as a single component.
  • the core width L c is the same as the length of the rotor core 14 in the direction along the rotation axis 50, but is not limited thereto.
  • an electric motor having a core width L c shorter than the length of the rotor core 14 in the direction along the rotation shaft 50, that is, a rotor overhang may be used.
  • an electric motor having a core width L c longer than the length of the rotor core 14 in the direction along the rotation shaft 50, that is, a rotor underhang may be used.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

An electric motor comprising: a stator (5) having a stator core (3) having a ring-shaped core back (3b) and a plurality of teeth (3a) protruding from the core back (3b) to the inner peripheral side of the core back (3b), and an armature winding (4) that is arranged in a slot (18), which is a space between the two adjacent teeth (3a), and wound around each of the plurality of teeth (3a) in a concentrated winding manner; and a rotor (13) having a permanent magnet (15), the stator (5) being arranged outside the rotor (13), wherein the outer diameter Dout and the inner diameter Din of the stator (5) satisfy the relationship of Dout/Din ≥ 2.1, the width Tw of each of the plurality of teeth (3a) and the width Cb of the core back (3b) satisfy the relationship of 2.1 ≥ Cb/Tw ≥ 1.1, and the length Lc of the stator core (3) in the direction along a rotation axis (50) and the inner diameter Din of the stator (5) satisfy the relationship of Lc/Din ≥ 1.5.

Description

電動機Electric motor
 本発明は、環状のコアバックからコアバックの内周側に突出する複数のティースを備えた固定子鉄心を有する電動機に関する。 The present invention relates to an electric motor having a stator core having a plurality of teeth protruding from an annular core bag to the inner peripheral side of the core bag.
 電動機は、環状の固定子と、固定子の内側に配置された回転子とを備えている。電動機の固定子は、固定子鉄心と、固定子鉄心に巻かれた電機子巻線とを有している。一般的に、固定子鉄心は、環状のコアバックと、コアバックから径方向に突出する複数のティースとを有しており、電機子巻線は、ティースに巻かれている。隣接する二つのティースの間のスペースは、スロットと称される。 The electric motor has an annular stator and a rotor arranged inside the stator. The stator of the electric motor has a stator core and an armature winding wound around the stator core. Generally, the stator core has an annular core back and a plurality of teeth protruding radially from the core back, and the armature winding is wound around the teeth. The space between two adjacent teeth is called a slot.
 特許文献1に開示される電動機は、環状の固定子鉄心が周方向でコアバック部及びティース部を有する複数の鉄心片に分割されており、隣り合う鉄心片のコアバック部の境界部のうちスロットに面する箇所に窪みが設けられている。特許文献1に開示される電動機は、ティース中間部の径方向に直交する方向の幅を、窪みにより最も薄くなるコアバック部の径方向の幅の2倍未満とすることにより、固定子鉄心をフレームに嵌め込むことによって固定子鉄心に生じる圧縮応力を緩和して鉄損を抑制している。 In the electric motor disclosed in Patent Document 1, the annular stator core is divided into a plurality of iron core pieces having a core back portion and a teeth portion in the circumferential direction, and among the boundary portions of the core back portions of the adjacent iron core pieces. There is a recess in the area facing the slot. The electric motor disclosed in Patent Document 1 has a stator core by making the width of the middle portion of the teeth orthogonal to the radial direction less than twice the radial width of the core back portion which is the thinnest due to the dent. By fitting it into the frame, the compressive stress generated in the stator core is relaxed and iron loss is suppressed.
特開2010-279126号公報Japanese Unexamined Patent Publication No. 2010-279126
 加振機又は射出成型機向けといった用途の電動機は、頻繁に回転方向を逆転させたり、短時間で高回転速度まで加速したりすることが要求されることがある。これらの要求を満たすためには、電動機のトルクは大きい方が有利であり、かつ回転子の慣性モーメントは小さい方が有利である。電動機のトルクは、回転子の直径の2乗に比例する。一方、回転子の慣性モーメントは、回転子の直径の4乗に概ね比例する。したがって、回転子の慣性モーメントと電動機のトルクとは、慣性モーメントを小さくするために回転子の直径を小さくすると、トルクも低下してしまう関係にある。このため、上記の要求を満たすためには、トルク効率が低下することを抑制して、回転子の直径を小さくした場合でもできるだけ大きいトルクが得られるようにする必要がある。特許文献1には、回転子の慣性モーメントの低減を図る場合にトルク効率が低下することを抑制するための条件については開示されていなかった。 Electric motors for applications such as shakers or injection molding machines may be required to frequently reverse the direction of rotation or accelerate to a high rotation speed in a short time. In order to satisfy these requirements, it is advantageous that the torque of the electric motor is large, and that the moment of inertia of the rotor is small. The torque of the electric motor is proportional to the square of the diameter of the rotor. On the other hand, the moment of inertia of the rotor is roughly proportional to the fourth power of the diameter of the rotor. Therefore, the moment of inertia of the rotor and the torque of the electric motor are in a relationship that the torque also decreases when the diameter of the rotor is reduced in order to reduce the moment of inertia. Therefore, in order to satisfy the above requirements, it is necessary to suppress a decrease in torque efficiency so that as large a torque as possible can be obtained even when the diameter of the rotor is reduced. Patent Document 1 does not disclose the conditions for suppressing the decrease in torque efficiency when reducing the moment of inertia of the rotor.
 本発明は、上記に鑑みてなされたものであって、トルクが低下することを抑制しつつ回転子の慣性モーメントの低減を図った電動機を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain an electric motor in which the moment of inertia of the rotor is reduced while suppressing the decrease in torque.
 上述した課題を解決し、目的を達成するために、本発明は、環状のコアバック及びコアバックからコアバックの内周側に突出する複数のティースを備えた固定子鉄心と、隣接する二つのティースの間の空間であるスロットに配置されて複数のティースの各々に集中巻きで巻き付けられた電機子巻線とを有する固定子と、永久磁石を有する回転子とを備え、回転子の外側に固定子が配置される電動機である。固定子の外径Doutと内径Dinとは、Dout/Din≧2.1の関係を満たす。複数のティースの各々の幅Tとコアバックの幅Cとは、2.1≧C/T≧1.1の関係を満たす。回転子の回転軸に沿った方向における固定子鉄心の長さLと、固定子の内径Dinとは、14.3≧L/Din≧1.5の関係を満たす。 In order to solve the above-mentioned problems and achieve the object, the present invention presents a stator core having an annular core back and a plurality of teeth protruding from the core back to the inner peripheral side of the core back, and two adjacent cores. A stator having an armature winding arranged in a slot which is a space between teeth and wound around each of a plurality of teeth in a concentrated winding, and a rotor having a permanent magnet are provided on the outside of the rotor. It is an electric motor in which a stator is placed. The outer diameter D out and the inner diameter D in of the stator satisfy the relationship of D out / D in ≧ 2.1. The width T w of each of the plurality of teeth and the width C b of the core back satisfy the relationship of 2.1 ≧ C b / T w ≧ 1.1. The length L c of the stator core in the direction along the rotation axis of the rotor and the inner diameter D in of the stator satisfy the relationship of 14.3 ≧ L c / D in ≧ 1.5.
 本発明に係る電動機は、トルク効率が低下することを抑制しつつ回転子の慣性モーメントの低減をすることができるという効果を奏する。 The electric motor according to the present invention has the effect of being able to reduce the moment of inertia of the rotor while suppressing the decrease in torque efficiency.
本発明の実施の形態1に係る電動機の回転軸に沿った断面図Cross-sectional view along the rotation axis of the electric motor according to the first embodiment of the present invention. 実施の形態1に係る電動機の回転子及び固定子の回転軸に垂直な断面図Cross-sectional view perpendicular to the rotation axis of the rotor and stator of the electric motor according to the first embodiment. 実施の形態1に係る電動機の鉄心片の形状を示す図The figure which shows the shape of the iron core piece of the electric motor which concerns on Embodiment 1. 実施の形態1に係る電動機のコアバックの幅とティースの幅との比と、トルク効率との関係を示す図The figure which shows the relationship between the ratio of the width of the core back of the electric motor which concerns on Embodiment 1 and the width of a tooth, and torque efficiency. 実施の形態1に係る電動機のコア幅と固定子の内径との比と、トルク効率との関係を示す図The figure which shows the relationship between the ratio of the core width of the electric motor which concerns on Embodiment 1 and the inner diameter of a stator, and torque efficiency. 実施の形態1に係る電動機の回転子のたわみ量とエアギャップ部の大きさとの関係を示す図The figure which shows the relationship between the amount of deflection of the rotor of the electric motor which concerns on Embodiment 1 and the size of an air gap part. 実施の形態1に係る電動機のスロット開口角の定義を示す図The figure which shows the definition of the slot opening angle of the electric motor which concerns on Embodiment 1. 実施の形態1に係る電動機のスロット開口角とティース一つあたりの角度との比と、トルク効率との関係を示す図The figure which shows the relationship between the ratio of the slot opening angle of the electric motor which concerns on Embodiment 1 and the angle per tooth, and torque efficiency. 本発明の実施の形態2に係る電動機の回転子及び固定子の回転軸に垂直な断面図Cross-sectional view perpendicular to the rotation axis of the rotor and stator of the electric motor according to the second embodiment of the present invention. 本発明の実施の形態1又は実施の形態2の変形例に係る電動機のティースの形状を示す図The figure which shows the shape of the tooth of the electric motor which concerns on the modification of Embodiment 1 or Embodiment 2 of this invention.
 以下に、本発明の実施の形態に係る電動機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The electric motor according to the embodiment of the present invention will be described in detail below with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、本発明の実施の形態1に係る電動機の回転軸に沿った断面図である。図2は、実施の形態1に係る電動機の回転子及び固定子の回転軸に垂直な断面図である。電動機1は、固定子5と、フレーム6と、ハウジング7と、回転子13とを有する。フレーム6は、円筒形状であり、内壁面には固定子5が圧入されている。フレーム6の一端部6aは、ハウジング7で覆われている。ハウジング7は、ボルト8によってフレーム6の一端部6aに固定されている。フレーム6の他端部6bは、エンドカバー19で覆われている。回転子13と固定子5との間には、エアギャップ部20と称される隙間が形成されている。
Embodiment 1.
FIG. 1 is a cross-sectional view taken along the rotation axis of the electric motor according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view perpendicular to the rotation axis of the rotor and stator of the electric motor according to the first embodiment. The electric motor 1 has a stator 5, a frame 6, a housing 7, and a rotor 13. The frame 6 has a cylindrical shape, and a stator 5 is press-fitted into the inner wall surface. One end 6a of the frame 6 is covered with a housing 7. The housing 7 is fixed to one end 6a of the frame 6 by a bolt 8. The other end 6b of the frame 6 is covered with an end cover 19. A gap called an air gap portion 20 is formed between the rotor 13 and the stator 5.
 固定子5は、固定子鉄心3と、不図示のインシュレータを介して固定子鉄心3に巻き付けられる電機子巻線4とを有する。回転子13は、第1の軸受9及び第2の軸受10によって支持されたシャフト11と、シャフト11が貫通した回転子鉄心14と、回転子鉄心14の周方向に沿って等ピッチで回転子鉄心14の外周に貼り付けられた複数の永久磁石15とを有している。第1の軸受9は、ハウジング7に嵌め込まれている。第2の軸受10は、フレーム6の壁部12に嵌め込まれている。シャフト11の中心軸は、回転子13の回転軸50と一致している。実施の形態1に係る電動機1では、回転子13は、回転子鉄心14の外周に10個の永久磁石15が設置されている。永久磁石15は、希土類磁石又はフェライト磁石である。なお、永久磁石15の保護と飛散防止との目的で、ステンレス鋼又はアルミニウムといった非磁性材料を円筒状にしたカバーを永久磁石15よりも外周側に設置してもよい。 The stator 5 has a stator core 3 and an armature winding 4 that is wound around the stator core 3 via an insulator (not shown). The rotor 13 includes a shaft 11 supported by the first bearing 9 and a second bearing 10, a rotor core 14 through which the shaft 11 penetrates, and a rotor at equal pitches along the circumferential direction of the rotor core 14. It has a plurality of permanent magnets 15 attached to the outer periphery of the iron core 14. The first bearing 9 is fitted in the housing 7. The second bearing 10 is fitted in the wall portion 12 of the frame 6. The central axis of the shaft 11 coincides with the rotating shaft 50 of the rotor 13. In the electric motor 1 according to the first embodiment, the rotor 13 has 10 permanent magnets 15 installed on the outer circumference of the rotor core 14. The permanent magnet 15 is a rare earth magnet or a ferrite magnet. For the purpose of protecting the permanent magnet 15 and preventing scattering, a cover made of a non-magnetic material such as stainless steel or aluminum in a cylindrical shape may be installed on the outer peripheral side of the permanent magnet 15.
 また、固定子5は、電機子巻線4に接続された結線部16を備えている。結線部16を通じてU相、V相、W相の三相交流電流が電機子巻線4に供給されると回転子13が回転する。 Further, the stator 5 includes a connection portion 16 connected to the armature winding 4. When a U-phase, V-phase, and W-phase three-phase alternating current is supplied to the armature winding 4 through the connection portion 16, the rotor 13 rotates.
 シャフト11の一端部には、プーリ17が取り付けられている。プーリ17には、Vベルトといった不図示の回転伝達部材が掛けられており、回転伝達部材を通じてシャフト11の回転が不図示の負荷に伝達される。 A pulley 17 is attached to one end of the shaft 11. A rotation transmission member (not shown) such as a V-belt is hung on the pulley 17, and the rotation of the shaft 11 is transmitted to a load (not shown) through the rotation transmission member.
 固定子鉄心3及び回転子鉄心14は、電磁鋼板といった磁性体コア材を積層することによって構成されている。電動機1を組み立てた状態において、磁性体コア材の積層方向は、回転軸50に沿った方向である。回転軸50に沿った方向における固定子鉄心3の長さLは、回転軸50に沿った方向における回転子鉄心14の長さと同じである。以下、回転軸50に沿った方向における固定子鉄心3の長さLをコア幅Lという。 The stator core 3 and the rotor core 14 are formed by laminating a magnetic core material such as an electromagnetic steel plate. In the assembled state of the electric motor 1, the stacking direction of the magnetic core material is the direction along the rotation shaft 50. The length L c of the stator core 3 in the direction along the rotation axis 50 is the same as the length of the rotor core 14 in the direction along the rotation axis 50. Hereinafter, the length L c of the stator core 3 in the direction along the rotation axis 50 is referred to as a core width L c .
 固定子鉄心3は、回転軸50に垂直な断面において環状のコアバック3bと、コアバック3bから内径側に突出した12本のティース3aを有する。隣接する二つのティース3a間には、電機子巻線4が配置されるスペースであるスロット18が形成されている。回転子13は、ティース3aと同数の12個のスロット18が形成されている。実施の形態1に係る電動機1は、回転子鉄心14の外周に配置された10個の永久磁石15と、12個のスロット18とを備えているため、10極12スロットの表面永久磁石モータである。電動機1は、回転子13の外周側に永久磁石15が形成する磁極数Nと、固定子5のティース数Nとが、N/N=5/6の関係になっている。 The stator core 3 has an annular core back 3b in a cross section perpendicular to the rotation axis 50, and twelve teeth 3a protruding toward the inner diameter side from the core back 3b. A slot 18 is formed between two adjacent teeth 3a, which is a space in which the armature winding 4 is arranged. The rotor 13 has 12 slots 18 formed in the same number as the teeth 3a. Since the electric motor 1 according to the first embodiment includes 10 permanent magnets 15 arranged on the outer periphery of the rotor core 14 and 12 slots 18, a surface permanent magnet motor having 10 poles and 12 slots is used. is there. In the electric motor 1, the number of magnetic poles N p formed by the permanent magnet 15 on the outer peripheral side of the rotor 13 and the number N t of teeth of the stator 5 have a relationship of N p / N t = 5/6.
 ティース3aの各々には電機子巻線4が巻き付けられている。ティース3aの各々に巻き付けられた電機子巻線4は、それぞれがU相、V相、W相のいずれかに割当てられている。U相に割り当てられた電機子巻線4をU相巻線、V相に割り当てられた電機子巻線4をV相配線、W相に割り当てられた電機子巻線4をW相配線と呼ぶ。隣接する二つのティース3aを一組として、組ごとにU相配線、V相配線及びW相配線が配置される。すなわち、12本のティース3aには、U相配線、U相配線、V相配線、V相配線、W相配線、W相配線、U相配線、U相配線、V相配線、V相配線、W相配線、W相配線の並びで電機子巻線4が配置される。固定子5は、一つのティース3aに単一の相の電機子巻線4が巻き付けられた、いわゆる集中巻構造となっている。 An armature winding 4 is wound around each of the teeth 3a. The armature winding 4 wound around each of the teeth 3a is assigned to either the U phase, the V phase, or the W phase. The armature winding 4 assigned to the U phase is called the U phase winding, the armature winding 4 assigned to the V phase is called the V phase wiring, and the armature winding 4 assigned to the W phase is called the W phase wiring. .. U-phase wiring, V-phase wiring, and W-phase wiring are arranged for each set of two adjacent teeth 3a as a set. That is, the 12 teeth 3a include U-phase wiring, U-phase wiring, V-phase wiring, V-phase wiring, W-phase wiring, W-phase wiring, U-phase wiring, U-phase wiring, V-phase wiring, and V-phase wiring. The armature winding 4 is arranged in the order of the W-phase wiring and the W-phase wiring. The stator 5 has a so-called centralized winding structure in which a single phase armature winding 4 is wound around one tooth 3a.
 ティース3aのうち回転子13と対面する内径側の先端部311aには、つば部32が設けられている。ティース3aにつば部32を設けることにより、コギングトルク及びトルクリップルが抑制されている。また、ティース3aにつば部32を設けることにより、永久磁石15が発生させる磁束を固定子5において効率的に受けられるようにされている。 A brim portion 32 is provided at the tip portion 311a on the inner diameter side of the teeth 3a facing the rotor 13. By providing the brim portion 32 on the teeth 3a, cogging torque and torque ripple are suppressed. Further, by providing the brim portion 32 on the teeth 3a, the magnetic flux generated by the permanent magnet 15 can be efficiently received by the stator 5.
 図3は、実施の形態1に係る電動機の鉄心片の形状を示す図である。固定子鉄心3は、周方向に分割された複数の鉄心片31を円環状に並べることにより構成される。複数の鉄心片31は、周方向に並べられた状態でフレーム6の内周面に固定されることにより、互いに連結されて環状の固定子鉄心3を形成している。鉄心片31は、フレーム6の内周面に、圧入又は接着により固定される。 FIG. 3 is a diagram showing the shape of the iron core piece of the electric motor according to the first embodiment. The stator core 3 is configured by arranging a plurality of iron core pieces 31 divided in the circumferential direction in an annular shape. The plurality of iron core pieces 31 are fixed to the inner peripheral surface of the frame 6 in a state of being arranged in the circumferential direction, so that they are connected to each other to form an annular stator core 3. The iron core piece 31 is fixed to the inner peripheral surface of the frame 6 by press fitting or adhesion.
 鉄心片31の各々は、ティース3aとコアバック3bとを備える。ティース3aでは、磁束の主な方向は、図3中に矢印Aで示す周方向の中央における径方向である。コアバック3bでは、磁束の主な方向は、図3中に矢印Bで示す周方向である。ティース3aは、いわゆるストレートティースの形状をしており、回転軸50の周方向におけるティース3aの寸法である幅は、径方向の位置によらず一定である。以下の説明において、回転軸50を中心とする円の径方向におけるティース3aの寸法である長さをT、ティース3aの幅をT、コアバック3bの幅をCとする。なお、ティース3aの幅T及びコアバック3bの幅Cは、磁束の主な方向と直交する方向の寸法である。また、以下の説明において、ティース3aの先端部311aをつなぐ円の直径、すなわち固定子5の内径をDin、コアバック3bの外周部311bがなす円の直径、すなわち固定子5の外径をDoutとする。 Each of the iron core pieces 31 includes a teeth 3a and a core back 3b. In the teeth 3a, the main direction of the magnetic flux is the radial direction at the center of the circumferential direction indicated by the arrow A in FIG. In the core back 3b, the main direction of the magnetic flux is the circumferential direction indicated by the arrow B in FIG. The teeth 3a has a so-called straight teeth shape, and the width, which is the dimension of the teeth 3a in the circumferential direction of the rotating shaft 50, is constant regardless of the position in the radial direction. In the following description, the length which is the dimension of the teeth 3a in the radial direction of the circle centered on the rotation shaft 50 is T l , the width of the teeth 3a is T w , and the width of the core back 3 b is C b. The width T w of the teeth 3a and the width C b of the core back 3b are dimensions in a direction orthogonal to the main direction of the magnetic flux. Further, in the following description, the diameter of the circle connecting the tip portion 311a of the teeth 3a, that is, the inner diameter of the stator 5 is defined as D in , and the diameter of the circle formed by the outer peripheral portion 311b of the core back 3b, that is, the outer diameter of the stator 5. Let it be D out.
 電動機1のトルクは、回転子13の側面積と半径との積に比例するため、回転子13の直径の2乗に比例することが知られている。また、回転子13の直径は、エアギャップ部20の大きさを無視できるのであれば、固定子5の内径と概ね等しいとみなすことができる。さらに、電動機1全体の大きさが指定されているとき、固定子5の外径は電動機1全体の大きさからフレーム6の厚さ分を引くことによって定まる。従って、電動機1全体の大きさが指定されている場合、電動機1が発生させるトルクを大きくするためには、Dout/Dinの値は小さい方が望ましい。一方、直径Dの円柱の慣性モーメントIは、I=ρπDh/32gで算出されるため、回転子13の慣性モーメントは、回転子13の直径の4乗に比例することが知られている。なお、ρは回転子の密度であり、πは円周率であり、gは重力加速度である。したがって、電動機1全体の大きさが指定されている場合、回転子13の慣性モーメントを小さくするためには、Dout/Dinの値は大きい方が望ましい。このように、電動機1が発生させるトルクと回転子13の慣性モーメントとは、トレードオフの関係になっている。 Since the torque of the electric motor 1 is proportional to the product of the side area of the rotor 13 and the radius, it is known to be proportional to the square of the diameter of the rotor 13. Further, the diameter of the rotor 13 can be regarded as substantially equal to the inner diameter of the stator 5 if the size of the air gap portion 20 can be ignored. Further, when the size of the entire motor 1 is specified, the outer diameter of the stator 5 is determined by subtracting the thickness of the frame 6 from the size of the entire motor 1. Therefore, when the size of the entire electric motor 1 is specified, it is desirable that the value of D out / D in is small in order to increase the torque generated by the electric motor 1. On the other hand, since the moment of inertia I of a cylinder having a diameter D is calculated by I = ρπD 4 h / 32 g, it is known that the moment of inertia of the rotor 13 is proportional to the fourth power of the diameter of the rotor 13. .. Note that ρ is the density of the rotor, π is the pi, and g is the gravitational acceleration. Therefore, when the size of the entire motor 1 is specified, it is desirable that the value of D out / D in is large in order to reduce the moment of inertia of the rotor 13. As described above, the torque generated by the electric motor 1 and the moment of inertia of the rotor 13 are in a trade-off relationship.
 上記のように、固定子5の内径は回転子13の外径に等しいとみなせるため、電動機1のトルクは概ね固定子5の内径の2乗に比例し、慣性モーメントは概ね固定子5の内径の4乗に比例する。電動機1の回転加速度は、トルクを慣性モーメントで除算することによって得られるため、回転加速度を重視して電動機1を設計するのであれば、固定子5の内径を小さくするほうが有利となる。このため、実施の形態1においては、Dout/Dinの値を2.1以上に限定している。 As described above, since the inner diameter of the stator 5 can be regarded as equal to the outer diameter of the rotor 13, the torque of the motor 1 is approximately proportional to the square of the inner diameter of the stator 5, and the moment of inertia is approximately the inner diameter of the stator 5. Is proportional to the fourth power of. Since the rotational acceleration of the electric motor 1 is obtained by dividing the torque by the moment of inertia, it is advantageous to reduce the inner diameter of the stator 5 if the electric motor 1 is designed with an emphasis on the rotational acceleration. Therefore, in the first embodiment, the value of D out / D in is limited to 2.1 or more.
 以下、Dout/Dinの値を2.1以上に限定する理由について説明する。ティース3a1本あたりの磁気抵抗は、下記式(1)で表される。 The reason for limiting the D out / D in value to 2.1 or more will be described below. The magnetic resistance per tooth 3a is represented by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Rは、エアギャップ部20の磁気抵抗であり、Rは、ティース3aの磁気抵抗である。Rは、下記式(2)で表される。Rは、下記式(3)で表される。 Here, R g is the reluctance of the air gap portion 20, and R c is the reluctance of the teeth 3a. R g is represented by the following formula (2). R c is represented by the following equation (3).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、gは、エアギャップ部20の長さであり、gは、エアギャップ部20の幅である。また、Tは、ティース3aの長さであり、Tは、ティース3aの幅である。また、μは、真空の透磁率であり、μは固定子鉄心3の透磁率である。ただし、上記式(2)及び式(3)では、磁気回路の抵抗を考慮し、エアギャップ部20の長さgは、物理的な空隙の長さに加え、永久磁石15の長さも含む。ホプキンソンの法則により、磁気回路の起磁力F及び磁束Φは、下記式(4)を満たす。 Here, gl is the length of the air gap portion 20, and g w is the width of the air gap portion 20. Further, T l is the length of the teeth 3a, and T w is the width of the teeth 3a. Further, μ 0 is the magnetic permeability of the vacuum, and μ is the magnetic permeability of the stator core 3. However, in the above equations (2) and (3), in consideration of the resistance of the magnetic circuit, the length gl of the air gap portion 20 includes the length of the permanent magnet 15 in addition to the length of the physical void. .. According to Hopkinson's law, the magnetomotive force F m and the magnetic flux Φ of the magnetic circuit satisfy the following equation (4).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記式(4)をΦで微分すると、下記式(5)が得られる。 By differentiating the above equation (4) with Φ, the following equation (5) is obtained.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記式(5)の左辺は、磁束を1単位量増加させるために必要な起電力の上昇量を意味しており、後述のトルクリニアリティを低下させないためには、この値をなるべく小さくする必要がある。上記式(5)の右辺第2項を分解すると、Rの成分のうち、Rは磁束に対して変化せず、微分は0となるため、下記式(6)が成り立つ。 The left side of the above equation (5) means the amount of increase in electromotive force required to increase the magnetic flux by one unit, and it is necessary to make this value as small as possible in order not to reduce the torque linearity described later. is there. When the second term on the right side of the above equation (5) is decomposed, among the components of R m , R g does not change with respect to the magnetic flux and the derivative becomes 0, so that the following equation (6) holds.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 したがって、固定子鉄心3についての微分のみを考えれば良いため、上記式(5)は、下記式(7)に書き換えることができる。 Therefore, since it is only necessary to consider the differentiation of the stator core 3, the above equation (5) can be rewritten to the following equation (7).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 固定子鉄心3における磁束密度をBとすると、下記式(8)及び式(9)が成り立つ。 Assuming that the magnetic flux density in the stator core 3 is B, the following equations (8) and (9) hold.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 さらに、固定子鉄心3における磁場をHとすると、磁場Hと磁束密度Bとは、下記式(10)の関係にある。 Further, assuming that the magnetic field in the stator core 3 is H, the magnetic field H and the magnetic flux density B have the relationship of the following equation (10).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 上記式(10)を上記式(3)に代入し、磁束密度Bに対して偏微分すると、下記式(11)となる。 Substituting the above equation (10) into the above equation (3) and partially differentiating it with respect to the magnetic flux density B gives the following equation (11).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 上記式(7)に上記式(9)及び上記式(11)を代入すると、磁束を1単位量増加させるために必要な起磁力の上昇量は、下記式(12)で表される。 Substituting the above equations (9) and (11) into the above equation (7), the amount of increase in the magnetomotive force required to increase the magnetic flux by one unit is expressed by the following equation (12).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、上記式(12)の右辺第1項を下記式(13)で表し、右辺第2項を下記式(14)で表す。 Here, the first term on the right side of the above equation (12) is represented by the following equation (13), and the second term on the right side is represented by the following equation (14).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 R’<R’であれば、磁束を1単位量増加させるために必要な起磁力の上昇量に対する寄与は、エアギャップ部20よりも固定子鉄心3の方が大きいことを意味する。エアギャップ部20よりも固定子鉄心3の方が、磁束を1単位量増加させるために必要な起磁力の上昇量に対する寄与が大きいモータは、固定子鉄心3の磁気抵抗を抑制することで、磁束を効率良く増加させることができる。 If R'g <R'c , it means that the stator core 3 has a larger contribution to the amount of increase in the magnetomotive force required to increase the magnetic flux by one unit than the air gap portion 20. A motor in which the stator core 3 contributes more to the amount of increase in the magnetomotive force required to increase the magnetic flux by one unit than the air gap portion 20 suppresses the magnetic resistance of the stator core 3. The magnetic flux can be increased efficiently.
 通常、下記式(15)に示すように、エアギャップ部20の長さgは、固定子5の内径Dinの1/10程度に設定される。 Normally, as shown in the following formula (15), the length gl of the air gap portion 20 is set to about 1/10 of the inner diameter D in of the stator 5.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 下記式(16)に示すように、エアギャップ部20の幅gは、固定子5の内径Dinの円周長をスロット数Nで除算することで近似できる。 As shown in the following equation (16), the width g w of the air gap portion 20 can be approximated by dividing the circumference length of the inner diameter D in of the stator 5 by the number of slots N s.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ティース3aの長さT及びティース3aの幅Tは、物理的に設定可能な上限が決まっている。ティース3aの長さTは、最大でも固定子5の内径Dinと固定子5の外径Doutとの差の半分までしか確保することができない。また、ティース3aの幅Tは、最大でもエアギャップ部20の幅と同じ長さまでしか確保することができない。したがって、下記式(17)及び下記式(18)が成り立つ。 The length T l of the teeth 3a and the width T w of the teeth 3a have a physically set upper limit. The length T l of the teeth 3a can be secured up to only half of the difference between the inner diameter D in of the stator 5 and the outer diameter D out of the stator 5. Further, the width T w of the teeth 3a can be secured only up to the same length as the width of the air gap portion 20 at the maximum. Therefore, the following equation (17) and the following equation (18) hold.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 ここで、k及びkは、0よりも大きく1よりも小さい定数である。k及びkの値は、設計により異なるが、概ね最大値からアスペクト比を保つように設定されるため、下記式(19)で近似できる。 Here, k 1 and k 2 are constants larger than 0 and smaller than 1. The values of k 1 and k 2 differ depending on the design, but since they are set so as to maintain the aspect ratio from the maximum value, they can be approximated by the following equation (19).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 固定子鉄心3における(∂H/∂B)の値は、磁束密度Bの大きさによって異なるが、固定子5に使用される磁性体コア材である鉄系コア材の多くは、2T前後の磁束密度で飽和することが知られている。実施の形態1においては、慣性モーメントが低く高トルクのモータを実現しようとするため、固定子鉄心3はほとんど飽和している状態となる。鉄系コア材の場合、2T付近における(∂H/∂B)の値は、1.5×10m/H程度であり、これは真空の透磁率μを基準にすると、1/5.3μに相当する。 The value of (∂H / ∂B) in the stator core 3 differs depending on the magnitude of the magnetic flux density B, but most of the iron-based core materials used for the stator 5 are around 2T. It is known to saturate with magnetic flux density. In the first embodiment, since the motor having a low moment of inertia and a high torque is to be realized, the stator core 3 is almost saturated. In the case of an iron-based core material, the value of (∂H / ∂B) near 2T is about 1.5 × 10 5 m / H, which is 1/5 based on the magnetic permeability μ 0 of the vacuum. . Corresponds to 3μ 0.
 以上の結果を、エアギャップ部20よりも固定子鉄心3の方が、磁束を1単位量増加させるために必要な起磁力の上昇量に対する寄与が大きくなる条件であるR’<R’に代入すると、下記式(20)となる。 The results, towards the stator core 3 than the air gap portion 20, a condition for contribution to increase amount of required magnetomotive force to increase one unit of magnetic flux is increased R 'g <R' c Substituting into, the following equation (20) is obtained.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 上記式(20)を整理すると、下記式(21)が得られる。 By rearranging the above formula (20), the following formula (21) can be obtained.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 以上から、Dout/Dinが概ね2.1以上であれば、エアギャップ部20の磁気抵抗よりも固定子鉄心3の磁気抵抗の方がトルクリニアリティの低下に大きく影響するため、コア形状の工夫によるリニアリティ改善の効果が特に大きくなることが分かる。 From the above, if D out / D in is approximately 2.1 or more, the reluctance of the stator core 3 has a greater effect on the decrease in torque linearity than the reluctance of the air gap portion 20, and therefore the core shape It can be seen that the effect of improving linearity by devising is particularly large.
 Dout/Dinの値が概ね2.1以上の場合は、鉄心片31の径方向の長さが回転子13の外径よりも大きくなる。このため、ティース3aは、長さTが幅Tよりも大きい形状となる。ティース3aを径方向に通る磁束に対するティース3aの磁気抵抗は、ティース3aの径方向の長さに比例し周方向の幅に反比例するため、ティース3aの長さTが幅Tよりも大きい形状の鉄心片31の場合、ティース3aの磁気抵抗が極めて大きくなる。そのため、回転子13の永久磁石15から発生し、固定子5の電機子巻線4に鎖交する磁束が少なくなり、ティース3aの幅を広く確保できる場合に比べてトルクが減少する傾向がある。また、ティース3aの長さTが幅Tよりも大きい鉄心片31の場合、ティース3aが磁気飽和しやすくなるため、電機子巻線4に供給する電流量に比例してトルク増加量が増えず、電流量が増加すればするほどトルクが増加しにくくなる現象が発生する。電流量が増加すればするほどトルクが増加しにくくなる現象は、「トルクリニアリティの低下」と称されている。 When the value of D out / D in is approximately 2.1 or more, the radial length of the iron core piece 31 becomes larger than the outer diameter of the rotor 13. Therefore, the teeth 3a has a shape in which the length T l is larger than the width T w. Since the magnetic reluctance of the teeth 3a with respect to the magnetic flux passing through the teeth 3a in the radial direction is proportional to the radial length of the teeth 3a and inversely proportional to the width in the circumferential direction, the length T l of the teeth 3a is larger than the width T w. In the case of the iron core piece 31 having a shape, the magnetic resistance of the teeth 3a becomes extremely large. Therefore, the magnetic flux generated from the permanent magnet 15 of the rotor 13 and interlinking with the armature winding 4 of the stator 5 is reduced, and the torque tends to be reduced as compared with the case where the width of the teeth 3a can be secured widely. .. Further, in the case of the iron core piece 31 in which the length T l of the teeth 3a is larger than the width T w , the teeth 3a are likely to be magnetically saturated, so that the amount of torque increase is proportional to the amount of current supplied to the armature winding 4. A phenomenon occurs in which the torque is less likely to increase as the amount of current increases without increasing. The phenomenon in which the torque is less likely to increase as the amount of current increases is called "decrease in torque linearity".
 トルクリニアリティが低下すると、目標トルクを出力するために必要な電流量が増えるため、電機子巻線4の電気抵抗によって発生するジュール損失が大きくなる。 When the torque linearity decreases, the amount of current required to output the target torque increases, so the Joule loss generated by the electrical resistance of the armature winding 4 increases.
 実施の形態1に係る電動機1は、Dout/Dinの値を2.1以上とすることによって慣性モーメントの低減を図るとともに、コアバック3bの幅Cを大きくして磁路の磁気抵抗を低下させ、トルクリニアリティの低下を防いでいる。図4は、実施の形態1に係る電動機のコアバックの幅とティースの幅との比と、トルク効率との関係を示す図である。電動機1全体の大きさに依存しない関係式を得るため、コアバック3bの幅Cはティース3aの幅Tで除算することによって規格化しており、トルクはジュール損失で除算することによって規格化している。なお、ジュール損失1ジュールあたりのトルクの大きさは、トルク効率と称されている。図4においては、トルク効率は最大値を「1」として正規化して示している。 In the electric motor 1 according to the first embodiment, the moment of inertia is reduced by setting the D out / D in value to 2.1 or more, and the width C b of the core back 3b is increased to increase the magnetic resistance of the magnetic path. Is reduced to prevent a decrease in torque linearity. FIG. 4 is a diagram showing the relationship between the ratio between the width of the core back and the width of the teeth of the electric motor according to the first embodiment and the torque efficiency. In order to obtain a relational expression that does not depend on the size of the entire motor 1, the width C b of the core back 3b is standardized by dividing by the width T w of the teeth 3a, and the torque is standardized by dividing by the Joule loss. ing. The magnitude of torque per joule loss is called torque efficiency. In FIG. 4, the torque efficiency is shown normalized with the maximum value set to "1".
 電動機1のトルク効率は、コアバック3bの幅Cとティース3aの幅Tとの比C/Tの値が1.5から1.7の間で最大となる。トルク効率は、ピーク付近ではC/Tの値が多少変化しても大きくは変わらないが、ピークから離れた所では、C/Tの値に対する傾きが大きくなる。実施の形態1に係る電動機1では、C/Tの値を1.1以上にすることにより、トルク効率を90%以上にしている。 The torque efficiency of the electric motor 1 is maximized when the value of the ratio C b / T w of the width C b of the core back 3b and the width T w of the teeth 3a is between 1.5 and 1.7. The torque efficiency does not change significantly even if the C b / T w value changes slightly near the peak, but the slope with respect to the C b / T w value increases at a distance from the peak. In the electric motor 1 according to the first embodiment, the torque efficiency is set to 90% or more by setting the value of C b / T w to 1.1 or more.
 なお、コアバック3bの幅Cを大きくしすぎても、トルク効率は低下する傾向にある。これは、コアバック3bの幅Cを大きくすることにより、電機子巻線4の断面積が減少して電気抵抗が増加し、ジュール損失が増加するためである。すなわち、電機子巻線4の断面積の減少によるジュール損失の増加の影響が、磁気抵抗減少によるトルクリニアリティ改善の効果を上回ると、コアバック3bの幅Cが増加してもトルク効率は低下する。図4に示すように、実施の形態1に係る電動機1は、C/Tの値を2.1以下にすることにより、トルク効率を90%以上にしている。 Even if the width C b of the core back 3 b is made too large, the torque efficiency tends to decrease. This is because increasing the width C b of the core back 3b reduces the cross-sectional area of the armature winding 4, increases the electrical resistance, and increases the Joule loss. That is, if the effect of the increase in Joule loss due to the decrease in the cross-sectional area of the armature winding 4 exceeds the effect of improving the torque linearity due to the decrease in the magnetic resistance, the torque efficiency decreases even if the width C b of the core back 3b increases. To do. As shown in FIG. 4, the electric motor 1 according to the first embodiment has a torque efficiency of 90% or more by setting the value of C b / T w to 2.1 or less.
 モータには、JIS C 4003に規定される耐熱クラスFの巻線が広く使われている。耐熱クラスFの巻線の許容温度は155℃である。そして、運転中のモータの周囲温度は40℃であるため、損失により許容できる巻線の温度上昇は115℃となる。さらに、製造ばらつきに起因するモータ特性のばらつきの影響を吸収するためは、15℃のマージンが必要であるため、実際に許容できる巻線温度上昇は100℃である。実施の形態1に係る電動機1は、モータ出力を最大にするために、より大きい電流を通電するが、巻線温度上昇が許容上昇温度の100℃に少し下回る90℃になるように設計されている。よって、図4に示すトルク効率が10%低下して90%を下回ると、巻線温度は10%上昇し、巻線の許容温度を超える。このため、実施の形態1に係る電動機1は、トルク効率が90%以上となるように設計されている。 Heat-resistant class F windings specified in JIS C 4003 are widely used for motors. The permissible temperature of the heat resistant class F winding is 155 ° C. Since the ambient temperature of the motor during operation is 40 ° C., the temperature rise of the winding that can be tolerated due to the loss is 115 ° C. Further, since a margin of 15 ° C. is required to absorb the influence of variations in motor characteristics due to manufacturing variations, the actual allowable increase in winding temperature is 100 ° C. The motor 1 according to the first embodiment is designed so that a larger current is applied in order to maximize the motor output, but the winding temperature rise is 90 ° C., which is slightly lower than the permissible rise temperature of 100 ° C. There is. Therefore, when the torque efficiency shown in FIG. 4 decreases by 10% and falls below 90%, the winding temperature rises by 10% and exceeds the allowable temperature of the winding. Therefore, the electric motor 1 according to the first embodiment is designed so that the torque efficiency is 90% or more.
 また、電動機1のトルクは、基本的にはコア幅Lに比例するが、コア幅Lが著しく短くなると、トルクはコア幅Lに比例した値よりも小さくなる。これは、回転軸50に沿った方向における固定子鉄心3の両端部において、鎖交磁束が回転軸50に沿った方向に漏れるためである。一方、電機子巻線4におけるジュール損失は、コア幅Lが長い場合はトルクと同様にコア幅Lに概ね比例する。一方、コア幅Lを極端に短くすると、電機子巻線4のうち回転軸50に沿った方向における固定子5の両端部において永久磁石15と対向しない部分であるコイルエンド部の抵抗による影響が無視できなくなるため、コア幅Lに比例して減少せず、一定以上のジュール損失が残る。 Further, the torque of the electric motor 1 is basically proportional to the core widths L c, the core width L c is significantly shortened, torque is smaller than the value proportional to the core widths L c. This is because the interlinkage magnetic flux leaks in the direction along the rotation shaft 50 at both ends of the stator core 3 in the direction along the rotation shaft 50. On the other hand, when the core width L c is long, the Joule loss in the armature winding 4 is substantially proportional to the core width L c as well as the torque. On the other hand, when the core width L c is extremely shortened, the influence of the resistance of the coil end portion, which is a portion of the armature winding 4 that does not face the permanent magnet 15 at both ends of the stator 5 in the direction along the rotation axis 50. Cannot be ignored, so that it does not decrease in proportion to the core width L c , and a certain amount of Joule loss remains.
 結果的に、トルクをジュール損失で除算したトルク効率は、コア幅Lがある値以上の場合はコア幅Lに依存せず概ね一定の値と見なすことができるが、コア幅Lがある値よりも短くなると低下する。図5は、実施の形態1に係る電動機のコア幅と固定子の内径との比と、トルク効率との関係を示す図である。図5に示すように、電動機1のコア幅Lと固定子5の内径Dinとの比であるL/Dinの値が1.5以上であれば、トルク効率は100%となっている。したがって、電動機1は、L/Dinの値を1.5以上することにより、トルク効率を100%にしている。 Consequently, the torque obtained by dividing the torque in joules loss efficiency, although not less than a certain value core width L c can be regarded as substantially constant value without depending on the core width L c, the core width L c is It decreases when it becomes shorter than a certain value. FIG. 5 is a diagram showing the relationship between the ratio of the core width of the electric motor according to the first embodiment to the inner diameter of the stator and the torque efficiency. As shown in FIG. 5 , if the value of L c / D in , which is the ratio of the core width L c of the motor 1 to the inner diameter D in of the stator 5, is 1.5 or more, the torque efficiency is 100%. ing. Therefore, in the electric motor 1, the torque efficiency is set to 100% by setting the value of L c / D in to 1.5 or more.
 一方で、L/Dinの値が大きすぎた場合に回転子13がたわんで、回転子13と固定子5とが接触してしまうため、たわみ量δをエアギャップ部20よりも小さく設定する必要がある。図6は、実施の形態1に係る電動機の回転子のたわみ量とエアギャップ部の大きさとの関係を示す図である。通常、エアギャップ部20の大きさは直径Dinの1/10程度に設定されるため、たわみ量δは、Din/10よりも小さくなければならない。鉄鋼であるシャフト11の縦弾性係数Eは、20.6Gpaが一般的な値である。L/Dinの値が14.3のときに、δ/(Din/10)、すなわちエアギャップ部20の大きさに対するシャフト11のたわみ量が同じであり、回転子13が固定子5に接触する。よって実施の形態1においては、L/Dinの上限を14.3にしている。 On the other hand, if the value of L c / D in is too large, the rotor 13 bends and the rotor 13 and the stator 5 come into contact with each other. Therefore, the amount of deflection δ is set smaller than that of the air gap portion 20. There is a need to. FIG. 6 is a diagram showing the relationship between the amount of deflection of the rotor of the electric motor according to the first embodiment and the size of the air gap portion. Normally, the size of the air gap portion 20 is set to about 1/10 of the diameter D in , so the amount of deflection δ must be smaller than D in / 10. The Young's modulus E of the shaft 11 made of steel is generally 20.6 Gpa. When the value of L c / D in is 14.3, δ / (D in / 10), that is, the amount of deflection of the shaft 11 with respect to the size of the air gap portion 20 is the same, and the rotor 13 is the stator 5 Contact. Therefore, in the first embodiment, the upper limit of L c / D in is set to 14.3.
 図7は、実施の形態1に係る電動機のスロット開口角の定義を示す図である。図7に示すように、スロット18を挟む二つのティース3aの角部61を繋ぐ弧62の中心角がスロット開口角Sである。スロット開口角Sが小さすぎる場合、弧62が短くなって二つの角部61の距離が近くなるため、電機子巻線4が発生させた磁束が回転子13を通らずに隣のティース3aへと伝わる、磁束漏れと呼ばれる現象が起こり、トルクリニアリティの低下に繋がる。したがって、実施の形態1に係る電動機1において、スロット開口角Sは、トルクリニアリティの低下が発生しない大きさとされている。 FIG. 7 is a diagram showing a definition of a slot opening angle of the electric motor according to the first embodiment. As shown in FIG. 7, the central angle of the arc 62 connecting the corners 61 of the two teeth 3a sandwiching the slot 18 is the slot opening angle So. If the slot opening angle So is too small, the arc 62 becomes short and the distance between the two corners 61 becomes short, so that the magnetic flux generated by the armature winding 4 does not pass through the rotor 13 and the adjacent teeth 3a A phenomenon called magnetic flux leakage occurs, which leads to a decrease in torque linearity. Therefore, the electric motor 1 according to the first embodiment, the slot opening angle S o is sized to decrease the torque linearity does not occur.
 望ましいスロット開口角Sの条件は、ティース数によっても異なる。ティース数が多いときは、ティース3a一つあたりが担う磁束量が減り、各々のティース3aの電機子巻線4が持つ固定子起磁力も小さくなるため、スロット開口角Sをそれほど大きくする必要は無くなる。このため、望ましいスロット開口角Sを定めるにあたっては、図7に示すティース3a一つあたりの角度Tで、スロット開口角Sを除算することによって規格化する必要がある。なお、ティース3a一つあたりの角度Tは、隣接する二つのスロット18の各々の周方向の中央が、回転軸50上にある回転中心になす中心角とも言える。図8は、実施の形態1に係る電動機のスロット開口角とティース一つあたりの角度との比と、トルク効率との関係を示す図である。スロット開口角Sとティース3a一つあたりの角度Tとの比であるS/Tの値が0.2以上であれば、トルク効率は90%を上回っている。したがって、電動機1は、S/Tの値を0.2以上とすることにより、トルク効率を90%以上にしている。 Conditions of the desired slot opening angle S o varies depending the number of teeth. When there are many number of teeth is fewer magnetic flux responsible is per one tooth 3a, since each also reduced the stator magnetomotive force with the armature winding 4 of the teeth 3a, necessary to so large a slot opening angle S o Will disappear. Therefore, when defines a desired slot opening angle S o, at an angle T o per one tooth 3a shown in FIG. 7, it is necessary to standardize by dividing the slot opening angle S o. The angle T o per one tooth 3a, the central circumferential each of the two slots 18 adjacent to each, it can be said that the center angle formed on the rotational center located on the rotating shaft 50. FIG. 8 is a diagram showing the relationship between the ratio of the slot opening angle of the electric motor according to the first embodiment to the angle per tooth and the torque efficiency. If the value of the slot which is the ratio of the aperture angle S o and the angle T o per one tooth 3a S o / T o of 0.2 or more, the torque efficiency is above 90%. Therefore, the motor 1, by the values of S o / T o and 0.2 or more, and a torque efficiency to 90% or more.
 一方で、ティース先端幅Tがティース幅Tよりも狭くなるまでS/Tを大きくすると、トルクリニアリティはかえって小さくなる。このとき、磁束が通るティース3aの先端における断面積がティース3aにおける断面積よりも小さいため、ティース先端の磁気飽和が顕著となる。よって、ティース先端幅Tをティース幅T以上にする必要がある。 On the other hand, if the teeth tip width T s to increase the S o / T o until narrower than the tooth width T w, torque linearity rather small. At this time, since the cross-sectional area at the tip of the teeth 3a through which the magnetic flux passes is smaller than the cross-sectional area at the tip of the teeth 3a, the magnetic saturation of the tip of the teeth becomes remarkable. Therefore, it is necessary to set the tooth tip width T s to the tooth width T w or more.
 実施の形態1に係る電動機1は、副次的な効果として、一般的な電動機と比べてコアバック3bの幅Cが大きくなるため、機械的強度が向上し、電磁加震力による振動及び騒音が低減される。また、実施の形態1に係る電動機1は、電機子巻線4のインダクタンスが低くなるため、特に回転子13を高速で回転させる時の端子間電圧が下がり、駆動システムの電圧に制限がある場合などには、より高速域まで高いトルクを維持できる。 As a secondary effect, the electric motor 1 according to the first embodiment has a larger width C b of the core back 3b than that of a general electric motor, so that the mechanical strength is improved, and vibration due to electromagnetic vibration and vibration and vibration due to electromagnetic vibration force are generated. Noise is reduced. Further, in the electric motor 1 according to the first embodiment, since the inductance of the armature winding 4 is low, the voltage between terminals is particularly low when the rotor 13 is rotated at high speed, and the voltage of the drive system is limited. For example, high torque can be maintained up to higher speeds.
 実施の形態1に係る電動機1は、Dout/Dinの値を2.1以上とすることによって、複数のティース3aの各々の長さTlが幅Tよりも大きくなるようにして回転子13の慣性モーメントの低減を図り、かつトルク効率が90%よりも低下することを防ぐようにC/Tの値及びS/Tの値を設定しているため、慣性モーメントを小さくしても効率的にトルクを得ることができる。 In the electric motor 1 according to the first embodiment, the rotor 1 has a D out / D in value of 2.1 or more so that the length Tl of each of the plurality of teeth 3a becomes larger than the width T w. 13 aims to reduce the moment of inertia, and the torque efficiency is to set the value of the value of C b / T w and S o / T o to prevent lower than 90%, reducing the moment of inertia Even so, torque can be obtained efficiently.
実施の形態2.
 本発明の実施の形態2に係る電動機1は、固定子5及び回転子13の構造が実施の形態1に係る電動機1と相違する。図9は、本発明の実施の形態2に係る電動機の回転子及び固定子の回転軸に垂直な断面図である。固定子5の有するティース3aの数は6本であり、隣接する二つのティース3aの間に形成されるスロット18は6個である。また、回転子13は、永久磁石15が回転子鉄心14に埋め込まれている。実施の形態2に係る回転子13は、合計8個の永久磁石15が回転子鉄心14に埋め込まれている。永久磁石15の各々は、回転子13と固定子5の間のエアギャップ部20において、N極磁束が集中する方向と、S極磁束が集中する方向とが直交するように配置されている。図9には、各々の永久磁石15の磁化方向を矢印で表している。N極磁束が集中する方向と、S極磁束が集中する方向とが直交するように永久磁石15が配置されているため、永久磁石15は、エアギャップ部20に面した回転子13の表面に四つの磁極を形成している。実施の形態2に係る電動機1は、回転子鉄心14に埋め込まれた八つの永久磁石15が形成する四つの磁極と、六つのスロット18とを備えているため、4極6スロットの表面永久磁石モータである。
Embodiment 2.
The electric motor 1 according to the second embodiment of the present invention is different from the electric motor 1 according to the first embodiment in the structures of the stator 5 and the rotor 13. FIG. 9 is a cross-sectional view perpendicular to the rotation axis of the rotor and stator of the electric motor according to the second embodiment of the present invention. The number of teeth 3a included in the stator 5 is 6, and the number of slots 18 formed between two adjacent teeth 3a is 6. Further, in the rotor 13, a permanent magnet 15 is embedded in the rotor core 14. In the rotor 13 according to the second embodiment, a total of eight permanent magnets 15 are embedded in the rotor core 14. Each of the permanent magnets 15 is arranged so that the direction in which the N-pole magnetic flux is concentrated and the direction in which the S-pole magnetic flux is concentrated are orthogonal to each other in the air gap portion 20 between the rotor 13 and the stator 5. In FIG. 9, the magnetization direction of each permanent magnet 15 is indicated by an arrow. Since the permanent magnet 15 is arranged so that the direction in which the N-pole magnetic flux is concentrated and the direction in which the S-pole magnetic flux is concentrated are orthogonal to each other, the permanent magnet 15 is placed on the surface of the rotor 13 facing the air gap portion 20. It forms four magnetic poles. The electric motor 1 according to the second embodiment has four magnetic poles formed by eight permanent magnets 15 embedded in the rotor core 14, and six slots 18, so that the surface permanent magnets have four poles and six slots. It is a motor.
 実施の形態2に係る電動機1は、回転子13の一つの磁極に対して複数の永久磁石15からの磁束が集中する、いわゆるハルバッハ構造をしており、実施の形態1のような表面磁石型モータに比べ、より大きいトルクを得ることができる。 The electric motor 1 according to the second embodiment has a so-called Halbach structure in which magnetic fluxes from a plurality of permanent magnets 15 are concentrated on one magnetic pole of the rotor 13, and is a surface magnet type as in the first embodiment. A larger torque can be obtained than a motor.
 上記の実施形態1,2において、永久磁石15がエアギャップ部20に面した回転子13の表面に形成する磁極数Nと、固定子5のティース数Nは、上述の組み合わせに限定されない。例えば、20極24スロット、8極6スロット又は8極12スロットの電動機においても、同様の効果が得られる。すなわち、永久磁石15がエアギャップ部20に面した回転子13の表面に形成する磁極数Nと、固定子5のティース数Nとが、N/N=5/6、N/N=2/3又はN/N=4/3の関係を満たせばよい。 In embodiments 1 and 2 above, the number of magnetic poles N p of the permanent magnet 15 is formed on the surface of the rotor 13 facing the air gap portion 20, the number of teeth N t of the stator 5 is not limited to the combination of the above .. For example, the same effect can be obtained with an electric motor having 20 poles and 24 slots, 8 poles and 6 slots, or 8 poles and 12 slots. That is, the number of magnetic poles N p formed on the surface of the rotor 13 facing the air gap portion 20 by the permanent magnet 15 and the number N t of teeth of the stator 5 are N p / N t = 5/6, N p. / N t = 2/3 or should satisfy a relation of N p / N t = 4/ 3.
 また、上記の実施の形態1,2において、固定子鉄心3を構成する鉄心片31のティース3aはストレートティースであったが、ティース3aは、内径側と外径側とでティース3aの幅の異なる、テーパティースであっても良い。図10は、本発明の実施の形態1又は実施の形態2の変形例に係る電動機のティースの形状を示す図である。テーパティースの場合は、ティース3a全体の平均の幅を、ティース3aの幅Tとして定義することで、同様の効果を得ることができる。例えば図10の場合は、ティース3aの幅の最も大きい部分がTw1、幅の最も小さい部分がTw2となっているため、ティース3a全体の幅の平均値(Tw1+Tw2)/2をティース3aの幅Tとし、実施の形態1,2と同様に設計すれば良い。 Further, in the above-described first and second embodiments, the teeth 3a of the iron core piece 31 constituting the stator core 3 are straight teeth, but the teeth 3a have the width of the teeth 3a on the inner diameter side and the outer diameter side. It may be different, tapered teeth. FIG. 10 is a diagram showing the shape of the teeth of the electric motor according to the modified example of the first embodiment or the second embodiment of the present invention. In the case of tapered teeth, the same effect can be obtained by defining the average width of the entire teeth 3a as the width T w of the teeth 3a. For example, in the case of FIG. 10, since the portion having the largest width of the teeth 3a is T w1 and the portion having the smallest width is T w2 , the average value of the widths of the entire teeth 3a (T w1 + T w2 ) / 2 is set. The width T w of the teeth 3a may be set, and the design may be performed in the same manner as in the first and second embodiments.
 また、実施の形態1,2において、鉄心片31は電磁鋼板を積層することによって立体的な固定子鉄心3を形成したが、これには限定されない。例えば、磁性体粉末を押し固めることによって立体を形成した、いわゆる圧紛鉄心による固定子鉄心3を用いても良い。 Further, in the first and second embodiments, the iron core piece 31 forms a three-dimensional stator core 3 by laminating electromagnetic steel sheets, but the present invention is not limited to this. For example, a stator core 3 made of a so-called compressed iron core, which is formed by compacting a magnetic powder, may be used.
 また、実施の形態1,2では、一つの鉄心片31が一つのティース3aを有していたが、これには限定されない。例えば、複数のティース3aを有する鉄心片31を複数組み合わせることによって固定子鉄心3が構成されていてもよい。また、複数の鉄心片31の一部同士、例えばコアバック3bのみが、互いに一体に形成されて、単一部品として固定子鉄心3のコアバック3bをなしていてもよい。 Further, in the first and second embodiments, one iron core piece 31 has one tooth 3a, but the present invention is not limited to this. For example, the stator core 3 may be configured by combining a plurality of iron core pieces 31 having a plurality of teeth 3a. Further, a part of the plurality of iron core pieces 31, for example, only the core back 3b may be integrally formed with each other to form the core back 3b of the stator core 3 as a single component.
 また、上述の実施の形態1,2では、コア幅Lは、回転軸50に沿った方向における回転子鉄心14の長さと同じであったが、これには限定されない。例えば、回転軸50に沿った方向における回転子鉄心14の長さよりもコア幅Lの方が短い電動機、すなわち回転子オーバーハングにしてもよい。また、回転軸50に沿った方向における回転子鉄心14の長さよりもコア幅Lの方が長い電動機、すなわち回転子アンダーハングにしてもよい。 Further, in the above-described first and second embodiments, the core width L c is the same as the length of the rotor core 14 in the direction along the rotation axis 50, but is not limited thereto. For example, an electric motor having a core width L c shorter than the length of the rotor core 14 in the direction along the rotation shaft 50, that is, a rotor overhang may be used. Further, an electric motor having a core width L c longer than the length of the rotor core 14 in the direction along the rotation shaft 50, that is, a rotor underhang may be used.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 電動機、3 固定子鉄心、3a ティース、3b コアバック、4 電機子巻線、5 固定子、6 フレーム、6a 一端部、6b 他端部、7 ハウジング、8 ボルト、9 第1の軸受、10 第2の軸受、11 シャフト、12 壁部、13 回転子、14 回転子鉄心、15 永久磁石、16 結線部、17 プーリ、18 スロット、19 エンドカバー、20 エアギャップ部、31 鉄心片、32 つば部、50 回転軸、61 角部、62 弧、311a 先端部、311b 外周部。 1 motor, 3 rotor core, 3a teeth, 3b core back, 4 armature winding, 5 stator, 6 frame, 6a one end, 6b other end, 7 housing, 8 bolts, 9 first bearing, 10 2nd bearing, 11 shaft, 12 wall part, 13 rotor, 14 rotor core, 15 permanent magnet, 16 connection part, 17 pulley, 18 slot, 19 end cover, 20 air gap part, 31 iron core piece, 32 brim Part, 50 rotation shaft, 61 corner, 62 arc, 311a tip, 311b outer circumference.

Claims (6)

  1.  環状のコアバック及び前記コアバックから前記コアバックの内周側に突出する複数のティースを備えた固定子鉄心と、隣接する二つの前記ティースの間の空間であるスロットに配置されて複数の前記ティースの各々に集中巻きで巻き付けられた電機子巻線とを有する固定子と、永久磁石を有する回転子とを備え、前記回転子の外側に前記固定子が配置される電動機であって、
     前記固定子の外径Doutと内径Dinとは、Dout/Din≧2.1の関係を満たし、
     複数の前記ティースの各々の幅Tと前記コアバックの幅Cとは、2.1≧C/T≧1.1の関係を満たし、
     前記回転子の回転軸に沿った方向における前記固定子鉄心の長さLと、前記固定子の内径Dinとは、14.3≧L/Din≧1.5の関係を満たすことを特徴とする電動機。
    A plurality of the stator cores having an annular core back and a plurality of teeth protruding from the core back to the inner peripheral side of the core back, and a plurality of the said ones arranged in a slot which is a space between two adjacent teeth. An electric motor having a stator having an armature winding wound around each of the teeth in a concentrated winding and a rotor having a permanent magnet, and the stator being arranged outside the rotor.
    The outer diameter D out and the inner diameter D in of the stator satisfy the relationship of D out / D in ≧ 2.1.
    The width T w of each of the plurality of teeth and the width C b of the core back satisfy the relationship of 2.1 ≧ C b / T w ≧ 1.1.
    The length L c of the stator core in the direction along the rotation axis of the rotor and the inner diameter D in of the stator satisfy the relationship of 14.3 ≧ L c / D in ≧ 1.5. An electric motor featuring.
  2.  複数の前記ティースの各々は、幅Tが一定のストレートティースであることを特徴とする請求項1に記載の電動機。 The electric motor according to claim 1, wherein each of the plurality of the teeth is a straight tooth having a constant width T w.
  3.  前記回転子と前記固定子との隙間であるエアギャップ部に面した前記回転子の表面に前記永久磁石が形成する磁極数Nと、複数の前記ティースの数Nとが、N/N=5/6、N/N=2/3又はN/N=4/3の関係を満たすことを特徴とする請求項1又は2に記載の電動機。 The number of magnetic poles N p formed by the permanent magnet on the surface of the rotor facing the air gap portion which is the gap between the rotor and the stator and the number N t of the plurality of teeth are N p / N t = 5/6, N p / N t = 2/3 or motor according to claim 1 or 2, characterized by satisfying the relation of N p / N t = 4/ 3.
  4.  前記電機子巻線は、少なくとも一組の隣接する前記ティースに三相交流電流のうちの同相の電流を供給することを特徴とする請求項1から3のいずれか1項に記載の電動機。 The electric motor according to any one of claims 1 to 3, wherein the armature winding supplies at least one set of adjacent teeth with a current of the same phase among three-phase alternating currents.
  5.  前記回転軸と垂直な断面において、前記ティースの先端幅Tと前記ティースの幅Tとは、T≧Tの関係満たし、かつ前記スロットを挟む二つの前記ティースの角部を繋ぐ弧の中心角であるスロット開口角Sと、前記ティース一つあたりの角度Tとは、S/T≧0.2の関係を満たすことを特徴とする請求項1から4のいずれか1項に記載の電動機。 In the cross section perpendicular to the rotation axis, the tip width T s of the tooth and the width T w of the tooth satisfy the relationship of T s ≧ T w , and an arc connecting the corners of the two teeth sandwiching the slot. a slot opening angle S o is the central angle, the angle T o per one said tooth is either one of claims 1 to satisfy the relationship of S o / T o ≧ 0.2 4 of The electric motor according to item 1.
  6.  前記固定子鉄心は、磁性体コア材を積層して形成されていることを特徴とする請求項1から5のいずれか1項に記載の電動機。 The electric motor according to any one of claims 1 to 5, wherein the stator core is formed by laminating magnetic core materials.
PCT/JP2019/041996 2019-10-25 2019-10-25 Electric motor WO2021079508A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020538743A JPWO2021079508A1 (en) 2019-10-25 2019-10-25 Electric motor
PCT/JP2019/041996 WO2021079508A1 (en) 2019-10-25 2019-10-25 Electric motor
TW109136099A TW202118193A (en) 2019-10-25 2020-10-19 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/041996 WO2021079508A1 (en) 2019-10-25 2019-10-25 Electric motor

Publications (1)

Publication Number Publication Date
WO2021079508A1 true WO2021079508A1 (en) 2021-04-29

Family

ID=75619756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041996 WO2021079508A1 (en) 2019-10-25 2019-10-25 Electric motor

Country Status (3)

Country Link
JP (1) JPWO2021079508A1 (en)
TW (1) TW202118193A (en)
WO (1) WO2021079508A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114069902A (en) * 2021-11-02 2022-02-18 珠海格力节能环保制冷技术研究中心有限公司 Compressor and air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990263U (en) * 1982-12-08 1984-06-19 三菱重工業株式会社 Motor for hermetic electric compressor
JP2001103721A (en) * 1999-09-30 2001-04-13 Hitachi Ltd Ac generator for vehicle
JP2004099998A (en) * 2002-09-11 2004-04-02 Jfe Steel Kk Magnetic steel sheet for motor stator and split type motor stator
WO2011118214A1 (en) * 2010-03-25 2011-09-29 パナソニック株式会社 Motor and electrical apparatus housing same
JP2014087143A (en) * 2012-10-23 2014-05-12 Hitachi Appliances Inc Permanent magnet synchronous motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279126A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Stator core of electric motor, electric motor, sealed compressor, and refrigeration cycle device
JP2016127681A (en) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 Stator for rotary electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990263U (en) * 1982-12-08 1984-06-19 三菱重工業株式会社 Motor for hermetic electric compressor
JP2001103721A (en) * 1999-09-30 2001-04-13 Hitachi Ltd Ac generator for vehicle
JP2004099998A (en) * 2002-09-11 2004-04-02 Jfe Steel Kk Magnetic steel sheet for motor stator and split type motor stator
WO2011118214A1 (en) * 2010-03-25 2011-09-29 パナソニック株式会社 Motor and electrical apparatus housing same
JP2014087143A (en) * 2012-10-23 2014-05-12 Hitachi Appliances Inc Permanent magnet synchronous motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114069902A (en) * 2021-11-02 2022-02-18 珠海格力节能环保制冷技术研究中心有限公司 Compressor and air conditioner
CN114069902B (en) * 2021-11-02 2023-02-28 珠海格力节能环保制冷技术研究中心有限公司 Compressor and air conditioner

Also Published As

Publication number Publication date
JPWO2021079508A1 (en) 2021-11-18
TW202118193A (en) 2021-05-01

Similar Documents

Publication Publication Date Title
KR102393551B1 (en) Sleeve rotor synchronous reluctance electric machine
US7474028B2 (en) Motor
US7592734B2 (en) Three-phase permanent magnet brushless motor
US10361599B2 (en) Three-phase rotating electrical machine
US20090127960A1 (en) Anisotropic permanent magnet motor
US20070138894A1 (en) Rotor assembly for use in line start permanent magnet synchronous motor
EP1643613A2 (en) Electric motor in which the stator laminations are of different thickness and/or material to the rotor laminations
US9806569B2 (en) Hybrid excitation rotating electrical machine
CN108462268B (en) Rotor of rotating electric machine
JPS62217846A (en) Permanent magnet field-type dc machine
JP2011019398A (en) Stator, hermetically sealed compressor and rotating machine
US20220368183A1 (en) Rotor for a synchronous machine
WO2018016026A1 (en) Motor and air conditioner
WO2021079508A1 (en) Electric motor
JPWO2007132768A1 (en) motor
US10374474B2 (en) Permanent magnet motor
EP3499686A2 (en) Switched reluctance electric machine including pole flux barriers
JP2007159282A (en) Motor
JP2020010539A (en) Rotor and brushless motor
CN113541348A (en) Rotating electrical machine
JP3648921B2 (en) Rotor structure of permanent magnet type synchronous rotating electric machine
JP7459155B2 (en) Rotating electric machine and its field element manufacturing method
JP2020115728A (en) motor
JP2003235185A (en) Divided stator structure of rotating electric machine
CN110785913A (en) Rotating electrical machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020538743

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949991

Country of ref document: EP

Kind code of ref document: A1