WO2021079472A1 - 異常検出方法、異常検出プログラム及び異常検出装置 - Google Patents

異常検出方法、異常検出プログラム及び異常検出装置 Download PDF

Info

Publication number
WO2021079472A1
WO2021079472A1 PCT/JP2019/041757 JP2019041757W WO2021079472A1 WO 2021079472 A1 WO2021079472 A1 WO 2021079472A1 JP 2019041757 W JP2019041757 W JP 2019041757W WO 2021079472 A1 WO2021079472 A1 WO 2021079472A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform data
abnormality detection
sensor
abnormality
unit
Prior art date
Application number
PCT/JP2019/041757
Other languages
English (en)
French (fr)
Inventor
顕一郎 成田
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2019/041757 priority Critical patent/WO2021079472A1/ja
Priority to JP2021553240A priority patent/JPWO2021079472A1/ja
Publication of WO2021079472A1 publication Critical patent/WO2021079472A1/ja
Priority to US17/713,452 priority patent/US20220230023A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching

Definitions

  • the present invention relates to an abnormality detection method, an abnormality detection program, and an abnormality detection device.
  • IoT Internet of Things
  • data analysis is performed using statistical methods such as autocorrelation, histogram, FFT (Fast Fourier Transform) analysis, and self-regression analysis.
  • the anomaly point for the monitoring target does not always appear as a statistical singular point, so that the accuracy of the abnormality detection of the monitoring target is high. May decrease.
  • a plurality of waveform data detected by a plurality of sensors arranged in a monitoring target are acquired, and the plurality of waveform data are obtained based on the correlation of the shapes of the acquired plurality of waveform data.
  • the waveform data of a plurality of targets is specified from the inside, the waveform data of the plurality of targets are combined into one, and the waveform data collected into one is divided and clustered in time units, and based on the scale of the cluster,
  • the computer executes the process to detect the abnormality to be monitored.
  • FIG. 1 is a diagram showing a configuration example of the system according to the first embodiment.
  • FIG. 2 is a diagram showing an example of waveform data of the sensor.
  • FIG. 3A is a diagram showing an example of waveform data of the sensor.
  • FIG. 3B is a diagram showing an example of waveform data of the sensor.
  • FIG. 4A is a schematic diagram showing an example of waveform data after regularization.
  • FIG. 4B is a schematic diagram showing an example of the waveform data of the difference.
  • FIG. 5 is a diagram showing an example of a heat map of regular values.
  • FIG. 6 is a diagram showing an example of clustering results.
  • FIG. 7 is a block diagram showing a functional configuration of the abnormality detection device according to the first embodiment.
  • FIG. 7 is a block diagram showing a functional configuration of the abnormality detection device according to the first embodiment.
  • FIG. 8 is a diagram showing an example of the analysis request screen.
  • FIG. 9 is a diagram showing an example of waveform data of the sensor.
  • FIG. 10 is a diagram showing an example of a map of correlation coefficients.
  • FIG. 11 is a diagram showing an example of waveform data to be analyzed.
  • FIG. 12 is a diagram showing an example of clustering results.
  • FIG. 13 is a diagram showing an example of an alert screen.
  • FIG. 14 is an enlarged view of the display area.
  • FIG. 15 is an enlarged view of the display area.
  • FIG. 16 is a flowchart showing the procedure of the abnormality detection process according to the first embodiment.
  • FIG. 17 is a diagram showing an example of a computer hardware configuration.
  • FIG. 1 is a diagram showing a configuration example of the system 1 according to the first embodiment.
  • the system 1 shown in FIG. 1 provides an abnormality detection service that detects an abnormality in the monitoring target 2 from the waveform data of the sensors 3A to 3N arranged in the monitoring target 2.
  • a ship is illustrated as an example of the monitoring target 2 to which such an abnormality detection service is applied, but the monitoring target 2 is not limited to the ship.
  • the monitoring target 2 may be a moving body other than a ship, for example, a person or a vehicle. Further, the monitoring target 2 does not necessarily have to be a moving body, and may be any facility or device other than the moving body.
  • the system 1 may include sensors 3A to 3N, an abnormality detection device 10, and a client terminal 50.
  • the sensors 3A to 3N may be described as "sensor 3".
  • the sensor 3 is arranged in the monitoring target 2.
  • the "arrangement” referred to here may include a form incorporated inside the monitoring target 2 and a form externally attached to the monitoring target 2.
  • the sensor 3 has a ship speed, true wind direction, true wind speed, M / E fuel integration, main engine rotation speed, fuel integration, shaft horsepower, shaft rotation speed, CPP (Controllable Pitch Propeller) blade angle response value, and rudder angle. Sensors such as response value, B / T blade angle response value, and S / T rotation speed may be applicable. Further, the sensor 3 may correspond to sensors such as M / E instantaneous value of fuel, instantaneous fuel, head orientation, latitude, longitude, GPS (Global Positioning System) altitude, GPS movement direction, and GPS movement speed. Further, the sensor 3 may correspond to sensors such as Roll angle, Pitch angle, Yaw angle, front-back acceleration, left-right acceleration, vertical acceleration, Roll angular velocity, and Pitch angular velocity.
  • the sensor 3 and the abnormality detection device 10 may be connected by any communication network regardless of whether they are wired or wireless.
  • the sensor data transmitted from the sensor 3 to the abnormality detection device 10 can be transferred as an MQTT (Message Queuing Telemetry Transport) message.
  • MQTT Message Queuing Telemetry Transport
  • the measured value may be transmitted in real time each time the measured value is obtained, or accumulated over a predetermined period, for example, 1 minute, 1 hour, 12 hours, 1 day, 1 week, 1 month, or the like. It may be transmitted as time-series data of measured values from.
  • the abnormality detection device 10 corresponds to an example of a computer that provides the above-mentioned abnormality detection service.
  • the abnormality detection device 10 can be implemented as package software or online software by installing an abnormality detection program having a function corresponding to the above abnormality detection service on an arbitrary computer.
  • the abnormality detection device 10 does not necessarily have to be mounted on the monitoring target 2, and may be mounted as a computer on the network.
  • the anomaly detection device 10 can provide the above anomaly detection service as an IoT platform or a cloud service packaged with a back-end service. At this time, the IoT platform and the above-mentioned anomaly detection service may be provided by different vendors.
  • the abnormality detection device 10 can also be implemented as a server that provides the above-mentioned function related to the abnormality detection service on-premises.
  • the client terminal 50 corresponds to an example of a computer that receives the above abnormality detection service.
  • Such a client terminal 50 may be any computer that can be mounted on the monitoring target 2, and may not necessarily be a general-purpose computer, and may be a unit that controls the steering or engine of a ship.
  • the client terminal 50 may be a computer used by a person concerned with the monitoring target 2.
  • the client terminal 50 may be any computer such as a mobile terminal device or a wearable terminal, and its location may be a remote location away from the monitoring target 2.
  • the client terminal 50 is taken as an example of the output destination for abnormality detection, but the output destination does not necessarily have to be a computer. That is, the output destination of abnormality detection may be a display device such as an LED (Light Emitting Diode) or a liquid crystal display, as well as a general output device of an audio output device or a print output device.
  • the output destination of abnormality detection may be a display device such as an LED (Light Emitting Diode) or a liquid crystal display, as well as a general output device of an audio output device or a print output device.
  • the singularity analyzed from the waveform data of the sensor using various statistical methods is not necessarily an abnormal point for the monitoring target 2. In this case, even though no abnormality has occurred in the monitoring target 2, the abnormality is detected, so that false detection, so-called false positive, occurs.
  • FIG. 2 is a diagram showing an example of waveform data of the sensor.
  • FIG. 2 shows time-series data of the wind direction as an example of the waveform data of the sensor.
  • the vertical axis of the graph shown in FIG. 2 indicates the angle of the wind direction, and the horizontal axis indicates time.
  • the angle of the wind direction is represented by a case where the direction of the wind blowing from the traveling direction of the ship is 0 ° and is expressed clockwise from there.
  • the waveform data of the sensor includes spike noise.
  • spike noise can be detected as a singular point by performing data analysis using various statistical methods as an example.
  • the rudder of the ship may be temporarily shaken due to disturbance, for example, the influence of waves.
  • the wind direction angle reciprocates between 0 ° and 360 ° due to a temporary shake of the rudder, a sharp change in the measured value is observed even if the actual wind direction is constant. It may appear as spike noise in the waveform. In this case, even though there is no change in the wind direction, an abnormality in the wind direction is detected, so that an erroneous detection occurs.
  • the true wind direction is taken as an example, but the expert in charge differs depending on the type of sensor.
  • the monitoring target 2 is a ship is given, when the monitoring target 2 is an individual other than a ship, for example, a car or a factory, an expert is used for each type of the monitoring target 2 and the sensor mounted on the monitoring target 2. Cooperation is required.
  • the accuracy is limited if the abnormality detection of the monitoring target 2 is performed using the waveform data of a single sensor.
  • invariant analysis a technique called invariant analysis has been proposed in which a large amount of measurement data is collected from a large number of sensors and the relationship between the sensors is modeled in a normal period. Specifically, a correlation model is generated by deriving a conversion function that takes one as an input and outputs the other for each combination of two measurement data and its weight. After that, when new measurement data is acquired, the predicted value of the other measurement data calculated by inputting one measurement data to the conversion function having a weight of a predetermined value or more among the conversion functions included in the correlation model. And the actual measurement value of the other measurement data, the prediction error is calculated. When the prediction error calculated in this way is equal to or greater than a certain value, an abnormality is detected.
  • the accuracy of abnormality detection is the calculation of the predicted value of how close the predicted value of the other measured data calculated using the above conversion function can be closer to the other measured data in the normal state when there is no abnormality.
  • the above conversion function is derived by performing a linear approximation between one measurement data and the other measurement data, if there is no periodicity in each measurement data, the calculation accuracy of the above predicted value can be obtained. It becomes difficult to maintain.
  • the accuracy of calculating the predicted value decreases
  • the accuracy of abnormality detection also decreases.
  • the waveform data of the sensor to which the abnormality detection can be applied is limited to the periodic data, there is one aspect that the versatility is lacking.
  • the abnormality detection device 10 identifies a plurality of correlated waveform data among the plurality of waveform data acquired from each of the plurality of sensors arranged in the monitoring target 2. Then, the abnormality detection device 10 according to the present embodiment detects a singular point between the plurality of waveform data, that is, a time point at which the correlation collapse occurs as an abnormality point.
  • the sensors mounted on the monitoring target 2 represented by a moving body such as a ship or a car there may be ones that have a correlation from the viewpoint of time change.
  • engine output, screw speed, and engine temperature are likely to correlate with each other.
  • 3A and 3B are diagrams showing an example of waveform data of the sensor.
  • 3A and 3B show waveforms 30A to 30C corresponding to the time series data of the measured values of the sensors 3A to 3C which are correlated with each other among the N sensors 3A to 3N arranged in the monitoring target 2. There is.
  • the transitions of changes such as increase and decrease tend to be similar.
  • the singular point between the waveforms 30A to 30C that is, the correlation collapse is highly likely to be an abnormal point of the monitoring target 2.
  • FIG. 3B illustrates the singularity P3 between the waveforms 30A to 30C that are correlated with each other.
  • peak P1 and peak P2 are observed at the same or similar time
  • peak P1 and peak P2 are observed at the same or similar time.
  • Valley P3 is observed at this time.
  • the valley P3 observed in the waveform 30C is a singular point in which the measured values are extremely different between the peak P1 observed in the waveform 30A and the peak P2 observed in the waveform 30B, that is, the correlation is broken. ..
  • the abnormality detection device 10 performs the following processing for each waveform data of N sensors 3A to 3N arranged in the monitoring target 2.
  • FIG. 4A is a schematic diagram showing an example of waveform data after regularization
  • FIG. 4B is a schematic diagram showing an example of waveform data of difference difference.
  • the waveform data after regularization can be obtained as shown in FIG. 4A.
  • a value in which the measured value is regularized may be referred to as a “regular value”.
  • the waveform data of the difference is obtained by performing the calculation of subtracting the regular value at the time t + 1 from the regular value at the next time t + 1 at each time t when sampling is performed by the sensor 3. ..
  • FIG. 5 is a diagram showing an example of a heat map of regular values.
  • regular values from the time "0" to the time "2400" are shown in time series for each of the N sensors 3A to 3N.
  • by displaying the heat map of the regular value shown in FIG. 5 on the client terminal 50 or the like it is possible to accept the selection of a plurality of correlated waveform data.
  • FIG. 5 shows the example shown in FIG.
  • the correlation collapse between the target waveform data can be identified by executing clustering as an example.
  • clustering is performed in this way, the difference of the same time is vectorized by combining the difference of the same time between the target waveform data into one.
  • "d A” the finite differences of the sensor 3A at time t i
  • "d B” the finite differences of the sensor 3B
  • t i the first difference of the sensor 3C
  • t i d a, d B, d C
  • a set t start of elements vectorization is performed every time t i (d A, d B , d C) ⁇ t end (d A, d B, d C) are clustered.
  • FIG. 6 is a diagram showing an example of clustering results. 6, for convenience of explanation, only two axes of differencing d A and differencing d B is excerpted, the number of differencing included in one element may be two or more I will add.
  • FIG. 6 an example in which four clusters of clusters C1 to C4 are obtained is shown, and an element included in cluster C4, which is the smallest of these clusters C1 to C4, is detected as an abnormal point. can do.
  • an example of detecting an element included in the smallest cluster as an abnormal point is given, but an element included in a cluster in which the number of elements is equal to or less than a predetermined threshold value is detected as an abnormal point. You can also.
  • the abnormality detection device 10 is an element that collects the measured values at the same time between the correlated waveform data among the waveform data of the N sensors 3A to 3N. Cluster the set and detect anomalies based on the size of the cluster. In this way, since a plurality of correlated waveform data are used for abnormality detection, it is possible to increase the possibility that an abnormality point for the monitoring target 2 appears as a singular point. Furthermore, since a singular point between a plurality of waveform data, that is, a small cluster corresponding to the correlation collapse is detected as an abnormal point, one measurement data is used and the other measurement data is used as in the above-mentioned invariant analysis.
  • Abnormality detection can be realized without performing prediction processing to calculate. Therefore, as compared with the above-mentioned invariant analysis, it is possible to reduce the influence of the presence or absence of periodicity of the waveform data of the sensor 3 on the accuracy of abnormality detection. Therefore, according to the abnormality detection device 10 according to the present embodiment, it is possible to suppress a decrease in accuracy of abnormality detection.
  • FIG. 7 is a block diagram showing a functional configuration of the abnormality detection device 10 according to the first embodiment.
  • the abnormality detection device 10 includes a communication interface 11, a storage unit 13, and a control unit 15.
  • FIG. 7 shows a solid line showing the relationship between data transfer, only the minimum part is shown for convenience of explanation. That is, the input / output of data relating to each processing unit is not limited to the illustrated example, and the input / output of data other than those shown in the drawing, for example, between the processing unit and the processing unit, between the processing unit and the data, and between the processing unit and the outside. Data may be input and output between the devices.
  • the communication interface 11 is an interface that controls communication with another device, for example, a sensor 3 or a client terminal 50.
  • a network interface card such as a LAN card can be adopted as the communication interface 11.
  • the communication interface 11 notifies the sensor 3 of the sampling frequency of the sensor 3, the timing of uploading the measured value, and the like, and also receives the measured value or the time-series data of the measured value from the sensor 3.
  • the communication interface 11 accepts the setting of the sensor 3 to be the abnormality detection target from the client terminal 50, and also receives the measurement value of the abnormality point of the sensor 3 to be the abnormality detection target, for example, the measured value of the element included in the small-scale cluster. Notify the client terminal 50.
  • the storage unit 13 is a functional unit that stores data used in various programs such as the above-mentioned abnormality detection program, including an OS (Operating System) executed by the control unit 15.
  • the storage unit 13 may correspond to the auxiliary storage device in the abnormality detection device 10.
  • an HDD Hard Disk Drive
  • an optical disk an optical disk
  • an SSD Solid State Drive
  • flash memory such as EPROM (Erasable Programmable Read Only Memory) can also be used as an auxiliary storage device.
  • the storage unit 13 stores the waveform data 13A as an example of the data used in the program executed by the control unit 15.
  • the account information of the service subscriber of the above-mentioned abnormality detection service may be stored in the storage unit 13.
  • the explanation of the waveform data 13A will be given together with the explanation of the control unit 15 in which the waveform data 13A is collected and registered.
  • the control unit 15 is a functional unit that controls the entire abnormality detection device 10.
  • control unit 15 can be implemented by a hardware processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • a CPU and an MPU are illustrated as an example of a processor, but it can be implemented by any processor regardless of a general-purpose type or a specialized type.
  • control unit 15 may be realized by hard-wired logic such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
  • control unit 15 By executing the above-mentioned abnormality detection program, the control unit 15 virtually places the processing unit shown in FIG. 4 on the work area of a RAM such as a DRAM (Dynamic Random Access Memory) mounted as a main storage device (not shown). Realize.
  • a RAM such as a DRAM (Dynamic Random Access Memory) mounted as a main storage device (not shown).
  • control unit 15 includes a collection unit 15A, an acquisition unit 15B, a calculation unit 15C, a specific unit 15D, a correction unit 15E, a clustering unit 15F, and a detection unit 15G. ..
  • the collection unit 15A is a processing unit that collects the waveform data of the sensor 3.
  • the collecting unit 15A can collect measured values in real time from N sensors 3A to 3N arranged in the monitoring target 2.
  • the collecting unit 15A can also collect time-series data of measured values from the sensors 3A to 3N over a predetermined period, for example, 1 minute, 1 hour, 12 hours, 1 day, 1 week, 1 month, and the like. ..
  • the waveform data collected from the sensors 3A to 3N in this way is stored in the storage unit 13 as waveform data 13A.
  • the acquisition unit 15B is a processing unit that acquires the waveform data of the sensor 3 stored in the storage unit 13.
  • the abnormality detection program that realizes the above-mentioned abnormality detection service acquires the waveform data of the sensor 3 from the storage unit 13, but the waveform data of the sensor 3 is obtained via the removable media or the network. It does not matter if it is acquired.
  • the acquisition unit 15B receives a request for analyzing the sensor 3 to be detected as an abnormality.
  • FIG. 8 is a diagram showing an example of the analysis request screen. Although FIG. 8 shows an example in which eight sensors 3 of sensors 3A to 3H are included as an example, the number of sensors 3 may be any number N.
  • the analysis request screen 200 shown in FIG. 8 can be displayed on the client terminal 50 as an example.
  • the analysis request screen 200 includes an area 210 for selecting an abnormality detection target and an area 220 for displaying waveform data of each sensor 3. Of these, the area 210 includes radio buttons corresponding to the sensors 3A to 3H. Further, in the area 220, the waveform data of the sensors 3A to 3H is displayed.
  • the acquisition unit 15B acquires the waveform data of the N sensors 3A to 3N by reading the waveform data 13A stored in the storage unit 13. For example, the acquisition unit 15B acquires waveform data for a predetermined period, for example, 1 hour, 12 hours, and 1 day for each sensor 3. Although the example of acquiring the waveform data of each sensor 3 from the storage unit 13 is given here, the waveform data may be acquired from the sensor 3.
  • the calculation unit 15C is a processing unit that calculates the correlation coefficient.
  • the calculation unit 15C performs the processing described with reference to FIGS. 4A and 4B for each of the waveform data of the sensors 3A to 3N acquired by the acquisition unit 15B.
  • the calculation unit 15C regularizes the measured value included in the waveform data of the sensor 3 in the range of -1 to 1.
  • the waveform data after regularization can be obtained.
  • the calculation unit 15C performs a calculation of subtracting the regular value at the time t + 1 from the regular value at the next time t + 1 at each time t when sampling is performed by the sensor 3.
  • the waveform data of the difference is obtained.
  • waveform data of the difference in the difference can be obtained for each sensor 3.
  • the calculation unit 15C calculates the correlation coefficient between the waveform data of the two grades paired for each pair of the sensors 3.
  • the specific unit 15D is a processing unit that measures the target waveform data from the plurality of waveform data based on the correlation of the shapes of the plurality of waveform data.
  • FIG. 9 is a diagram showing an example of waveform data of the sensor 3.
  • FIG. 9 shows waveform data of the measured values of the sensors 3A to 3E as an example. Further, as shown in the legend of FIG. 9, the measured value of the sensor 3A is indicated by a chain line (thin), the measured value of the sensor 3B is indicated by a broken line (thick), and the measured value of the sensor 3C is indicated by a dotted line (thin). The 3D measured value is shown by the solid line (thin), and the measured value of the sensor 3E is shown by the solid line (middle).
  • the waveform data of the difference in difference can be obtained for each of the sensors 3A to 3E.
  • the correlation coefficient of the waveform data of the difference is calculated for each pair of the sensors 3A to 3E. As a result, a map of the correlation coefficient shown in FIG. 10 is obtained.
  • FIG. 10 is a diagram showing an example of a map of the correlation coefficient.
  • the waveform data of the difference in the difference of the sensor 3A set as the abnormality detection target in the correlation coefficient map shown in FIG. 10 and the other sensors 3B
  • the correlation coefficient with the waveform data of the difference of ⁇ 3E is referred to.
  • the threshold value to be compared with the correlation coefficient is "0.6"
  • the correlation coefficient between the difference waveform data of the sensor 3A and the difference waveform data of the sensors 3B to 3D is the threshold value "0". .6 ”or higher.
  • the correlation coefficient between the difference waveform data of the sensor 3A and the difference waveform data of the sensor 3E is less than the threshold value “0.6”. Therefore, among the waveform data of the sensors 3B to 3E, the waveform data of the sensors 3B to 3D can be identified as having a high possibility of having a positive correlation with the waveform data of the sensors 3A to be detected as an abnormality. On the other hand, it can be identified that the waveform data of the sensor 3E is likely to have no positive correlation with the waveform data of the sensor 3A to be detected as an abnormality. In this case, the waveform data to be analyzed is specified as shown in FIG.
  • FIG. 11 is a diagram showing an example of waveform data to be analyzed. As shown in FIG. 11, while the waveform data of the sensors 3B to 3E is specified as the analysis target, the waveform data of the sensors 3E is excluded from the analysis target.
  • the sensor 3 to be analyzed is specified by using the correlation coefficient, but the sensor to be analyzed using another degree of similarity that evaluates the shape of the waveform is given. It does not matter if 3 is specified.
  • the sensor 3 to be analyzed is automatically specified is given here, the present invention is not limited to this, and the sensor 3 to be analyzed may be manually specified.
  • the heat map of the regular value may be displayed on the client terminal 50, and then the selection of the sensor 3 to be used as the analysis target of the sensor 3A to be the abnormality detection target may be accepted.
  • the correction unit 15E is a processing unit that corrects the waveform data of the difference in the difference of the sensor 3 to be analyzed.
  • the correction unit 15E uses the difference waveform data of the sensor 3A set as the abnormality detection target as the objective variable, and explains the difference waveform data of the sensors 3B to 3D specified as the analysis target by the specific unit 15D.
  • equation (1) can be used as an example of the linear regression model.
  • the correction unit 15E corrects the waveform data of the difference between the sensors 3B to 3D specified as the analysis target. For example, the finite differences d B of the sensor 3B, performs the correction by multiplying the weight alpha 1. Further, the difference d C of the sensor 3C is corrected by multiplying the weight ⁇ 2. Further, the difference d D of the sensor 3D is corrected by multiplying the weight ⁇ 3.
  • weighted difference the difference after the correction by multiplying the weight
  • the above correction is performed because not only the sensors having a high correlation with the sensor 3A set as the abnormality detection target are specified as the analysis target. That is, when a sensor having a low correlation with the sensor 3A set as an abnormality detection target is specified as an analysis target, the waveform data of the difference between the sensors having a low correlation becomes noise during clustering.
  • the above correction is performed from the aspect of suppressing. For example, even if a sensor whose correlation with the sensor 3A set as an abnormality detection target is not so high is specified as an analysis target, a small weight is multiplied by the difference in the regular value of the sensor, so that clustering is performed. Time noise can be suppressed.
  • the clustering unit 15F is a processing unit that clusters a set of elements in which the weighted differences of the same time are combined into one among the waveform data of the sensor 3 specified as the analysis target.
  • the clustering unit 15F weights the same time by combining the weighted difference of the same time between the waveform data of the weighted difference of the sensor to be analyzed corrected by the correction unit 15E.
  • Vectorize the difference For example, when the sensor 3B ⁇ 3D is identified as an analysis target, weighting floor difference sensor 3B "alpha 1 * d B", weighting floor difference sensor 3C "alpha 2 * d C” and weighting floor difference sensor 3D " ⁇ 3 * d D" is, t i ( ⁇ 1 * d B, ⁇ 2 * d C, ⁇ 3 * d D) is vectorized. Such vectorization is performed from the first time t start to the last time tend.
  • the clustering section 15F is a set of elements that vectorization is performed every time t i t start ( ⁇ 1 * d B, ⁇ 2 * d C, ⁇ 3 * d D) ⁇ t end ( ⁇ 1 * DB , ⁇ 2 * d C, ⁇ 3 * d D ) are clustered.
  • the detection unit 15G is a processing unit that detects an abnormality in the monitoring target 2 based on the scale of the cluster.
  • the detection unit 15G can also detect a cluster obtained as a result of clustering by the clustering unit 15F, in which the number of elements is less than a predetermined threshold value, as an abnormal cluster.
  • the detection unit 15G can detect a predetermined number of clusters as abnormal clusters in order from the cluster having the smallest number of elements among the clusters obtained as a result of clustering by the clustering unit 15F.
  • FIG. 12 is a diagram showing an example of clustering results.
  • Figure 12 a set of vectors of weights floor difference of the same time among the waveform data of the weighting floor difference analyzed sensor 3B ⁇ 3D are each time t i is performed element t start ( ⁇ 1 * The results when db, ⁇ 2 * d C, ⁇ 3 * d D ) to tend ( ⁇ 1 * dB , ⁇ 2 * d C, ⁇ 3 * d D ) are clustered are shown. In the example shown in FIG.
  • the set of elements t start ( ⁇ 1 * dB , ⁇ 2 * d C, ⁇ 3 * d D ) to end ( ⁇ 1 * dB , ⁇ 2 * d C, ⁇ 3 *) d D ) is the cluster No. 1-cluster No. It is classified into 10 clusters up to 10. Here, when the threshold value to be compared with the number of elements is "10", the cluster No. which is less than the threshold value "10". 1. Cluster No. 6 and cluster No. Three clusters of 10 are detected as abnormal clusters.
  • the detection unit 15G can output various alerts. For example, the detection unit 15G can emphasize and display the element in which the abnormal cluster is detected in the waveform data to be analyzed, that is, the time and the measured value of the abnormal point corresponding to the correlation collapse. Further, the detection unit 15G can emphasize and display the element in which the abnormal cluster is detected in the waveform data of the abnormality detection target, that is, the time and the measured value of the abnormal point corresponding to the correlation collapse.
  • the detection unit 15G is not limited to drawing the abnormal point by the figure, and may display a numerical value related to the time of the abnormal point and the measured value.
  • FIG. 13 is a diagram showing an example of an alert screen.
  • the alert screen 300 may include a display area 310 in which the waveform data to be analyzed is displayed, and a display area 320 in which the waveform data to be detected as an abnormality is displayed.
  • a display area 310 in which the waveform data to be analyzed is displayed
  • a display area 320 in which the waveform data to be detected as an abnormality is displayed.
  • an enlarged view of the display area 310 is shown in FIG. 14
  • an enlarged view of the display area 320 is shown in FIG.
  • FIG. 14 is an enlarged view of the display area 310.
  • FIG. 14 shows the waveform data of the sensor 3B specified as the analysis target, the waveform data of the sensor 3C, and the waveform data of the sensor 3D. Further, in FIG. 14, a section corresponding to an element in which an abnormal cluster is detected among the waveform data of the sensor 3B, the waveform data of the sensor 3C, and the waveform data of the sensor 3D is shown surrounded by a frame. Further, in FIG. 14, the element in which the abnormal cluster is detected in the waveform data of the sensor 3C, that is, the portion of the measured value corresponding to the correlation collapse (the portion of the peak blurring) is highlighted by a thick line and the sensor.
  • the element in which abnormal clusters are detected in the 3D waveform data that is, the portion of the measured value corresponding to the correlation collapse (the portion of the lower blur of the peak) is highlighted by a thick line. From these displays, it is possible to clearly indicate the corresponding part of the correlation collapse.
  • FIG. 15 is an enlarged view of the display area 320.
  • FIG. 15 shows waveform data of the sensor 3A set as an abnormality detection target. Further, in FIG. 15, the element in which the abnormal cluster is detected in the waveform data of the sensor 3A, that is, the portion of the measured value corresponding to the abnormal point is highlighted by a thick line and surrounded by an elliptical thick line. ing. With such a display, the abnormal point of the monitoring target 2 can be clearly indicated.
  • the waveform data of the sensor 3A includes spikes Q1 to Q6 that seem to be noise, but if you look at the display of the abnormal points shown in FIG. It can be grasped that the abnormality has occurred only in the spike Q5.
  • FIG. 16 is a flowchart showing the procedure of the abnormality detection process according to the first embodiment. As an example, this process is executed when a request for analyzing the sensor 3 to be detected as an abnormality is received.
  • the acquisition unit 15B acquires the waveform data of each sensor 3 by reading the waveform data 13A stored in the storage unit 13 (step S101).
  • the calculation unit 15C performs processing processing such as regularization of the measured value and calculation of the difference for each waveform data of the sensors 3A to 3N acquired in step S101 (step S102).
  • waveform data of the difference in difference can be obtained for each of the sensors 3A to 3N.
  • the calculation unit 15C calculates the correlation coefficient between the waveform data of the two grades paired for each pair of the sensors 3A to 3N (step S103).
  • the specific unit 15D uses the difference waveform data of the sensors 3A set as the abnormality detection target and the other sensors 3B to 3N among the sensors 3B to 3N other than the sensors 3A set as the abnormality detection target.
  • Sensors 3B to 3D whose correlation coefficient with the difference waveform data is equal to or greater than a predetermined threshold value are specified as analysis targets (step S104).
  • the correction unit 15E uses the difference waveform data of the sensor 3A set as the abnormality detection target as the objective variable, and the difference waveform data of the sensors 3B to 3D specified as the analysis target in step S104 as the explanatory variable. Perform regression analysis to calculate the weights of the linear regression model to be performed (step S105).
  • the correction unit 15E is differenced d B of the identified sensors 3B ⁇ 3D as an analysis target, the weights alpha 1 of the linear regression model obtained as a result of the regression analysis in step S105 to d C and d D, alpha 2 And ⁇ 3 are multiplied (step S106).
  • the clustering unit 15F aggregates the weighted difference of the same time among the waveform data of the weighted difference of the sensor to be analyzed corrected in step S106 into one, thereby vectorizing the weighted difference of the same time.
  • the clustering section 15F is a set of elements that vectorization is performed every time t i t start ( ⁇ 1 * d B, ⁇ 2 * d C, ⁇ 3 * d D) ⁇ t end ( ⁇ 1 Clustering * db , ⁇ 2 * d C, ⁇ 3 * d D ) (step S107).
  • the detection unit 15G detects a cluster obtained as a result of clustering by the clustering unit 15F whose number of elements is less than a predetermined threshold value as an abnormal cluster (step S108). Finally, the detection unit 15G outputs various alerts related to the abnormal cluster, for example, the alert screen 300 shown in FIG. 13 to the client terminal 50 (step S109), and ends the process.
  • the abnormality detection device 10 clusters a set of elements in which measured values at the same time are collected among the waveform data having a correlation among the waveform data of a plurality of sensors. And detect anomalies based on the size of the cluster. Therefore, according to the abnormality detection device 10 according to the present embodiment, it is possible to suppress a decrease in accuracy of abnormality detection.
  • each component of each of the illustrated devices does not necessarily have to be physically configured as shown in the figure. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or part of them may be functionally or physically distributed / physically in arbitrary units according to various loads and usage conditions. Can be integrated and configured.
  • the collection unit 15A, the acquisition unit 15B, the calculation unit 15C, the specific unit 15D, the correction unit 15E, the clustering unit 15F, or the detection unit 15G may be connected via a network as an external device of the abnormality detection device 10.
  • another device has a collection unit 15A, an acquisition unit 15B, a calculation unit 15C, a specific unit 15D, a correction unit 15E, a clustering unit 15F or a detection unit 15G, respectively, and is connected to a network to cooperate with each other.
  • the function of the abnormality detection device 10 may be realized.
  • FIG. 17 is a diagram showing an example of a computer hardware configuration.
  • the computer 100 includes an operation unit 110a, a speaker 110b, a camera 110c, a display 120, and a communication unit 130. Further, the computer 100 has a CPU 150, a ROM 160, an HDD 170, and a RAM 180. Each of these 110 to 180 parts is connected via the bus 140.
  • the HDD 170 has the same functions as the collection unit 15A, the acquisition unit 15B, the calculation unit 15C, the specific unit 15D, the correction unit 15E, the clustering unit 15F, and the detection unit 15G shown in the first embodiment.
  • the abnormality detection program 170a that exerts the above is stored.
  • the abnormality detection program 170a is integrated or separated like the components of the collection unit 15A, the acquisition unit 15B, the calculation unit 15C, the specific unit 15D, the correction unit 15E, the clustering unit 15F, and the detection unit 15G shown in FIG. It doesn't matter. That is, not all the data shown in the first embodiment may be stored in the HDD 170, and the data used for processing may be stored in the HDD 170.
  • the CPU 150 reads the abnormality detection program 170a from the HDD 170 and then deploys it to the RAM 180.
  • the abnormality detection program 170a functions as the abnormality detection process 180a as shown in FIG.
  • the abnormality detection process 180a expands various data read from the HDD 170 in the area allocated to the abnormality detection process 180a in the storage area of the RAM 180, and executes various processes using the expanded various data.
  • the process shown in FIG. 16 is included.
  • the CPU 150 not all the processing units shown in the first embodiment need to operate, and the processing units corresponding to the processes to be executed may be virtually realized.
  • each program is stored in a "portable physical medium" such as a flexible disk inserted into the computer 100, a so-called FD, CD-ROM, DVD disk, magneto-optical disk, or IC card. Then, the computer 100 may acquire and execute each program from these portable physical media. Further, each program is stored in another computer or server device connected to the computer 100 via a public line, the Internet, LAN, WAN, etc., so that the computer 100 acquires and executes each program from these. You may do it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Software Systems (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Medical Informatics (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

異常検出方法では、モニタリング対象に配置された複数のセンサによって検出された複数の波形データを取得し、取得した複数の波形データの形状の相関に基づいて、複数の波形データの中から複数の対象の波形データを特定し、複数の対象の波形データを1つにまとめるとともに、1つにまとめた波形データを時間単位で区分してクラスタリングし、クラスタの規模に基づいて、モニタリング対象の異常を検出する、処理をコンピュータが実行する。

Description

異常検出方法、異常検出プログラム及び異常検出装置
 本発明は、異常検出方法、異常検出プログラム及び異常検出装置に関する。
 IoT(Internet of Things)技術の発展に伴ってセンサデータの活用が進められている。例えば、モニタリング対象に配置されたセンサの波形データから異常を検出する場合、自己相関やヒストグラム、FFT(Fast Fourier Transform)解析、自己回帰分析といった統計的手法を用いてデータ解析が行われる。
特開2019-105592号公報
 しかしながら、上記の統計的手法を用いてセンサの波形データが解析されたとしても、モニタリング対象にとっての異常点が必ずしも統計上の特異点として発現するとは限らないので、モニタリング対象の異常検出の精度が低下する場合がある。
 1つの側面では、本発明は、異常検出の精度が低下するのを抑制できる異常検出方法、異常検出プログラム及び異常検出装置を提供することを目的とする。
 一態様の異常検出方法では、モニタリング対象に配置された複数のセンサによって検出された複数の波形データを取得し、取得した前記複数の波形データの形状の相関に基づいて、前記複数の波形データの中から複数の対象の波形データを特定し、前記複数の対象の波形データを1つにまとめるとともに、1つにまとめた波形データを時間単位で区分してクラスタリングし、クラスタの規模に基づいて、モニタリング対象の異常を検出する、処理をコンピュータが実行する。
 異常検出の精度が低下するのを抑制できる。
図1は、実施例1に係るシステムの構成例を示す図である。 図2は、センサの波形データの一例を示す図である。 図3Aは、センサの波形データの一例を示す図である。 図3Bは、センサの波形データの一例を示す図である。 図4Aは、正則化後の波形データの一例を示す模式図である。 図4Bは、階差の波形データの一例を示す模式図である。 図5は、正則値のヒートマップの一例を示す図である。 図6は、クラスタリング結果の一例を示す図である。 図7は、実施例1に係る異常検出装置の機能的構成を示すブロック図である。 図8は、解析リクエスト画面の一例を示す図である。 図9は、センサの波形データの一例を示す図である。 図10は、相関係数のマップの一例を示す図である。 図11は、解析対象の波形データの一例を示す図である。 図12は、クラスタリング結果の一例を示す図である。 図13は、アラート画面の一例を示す図である。 図14は、表示エリアの拡大図である。 図15は、表示エリアの拡大図である。 図16は、実施例1に係る異常検出処理の手順を示すフローチャートである。 図17は、コンピュータのハードウェア構成例を示す図である。
 以下に添付図面を参照して本願に係る異常検出方法、異常検出プログラム及び異常検出装置について説明する。なお、この実施例は開示の技術を限定するものではない。そして、各実施例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
[1. システム構成例]
 図1は、実施例1に係るシステム1の構成例を示す図である。図1に示すシステム1は、モニタリング対象2に配置されたセンサ3A~3Nの波形データからモニタリング対象2の異常を検出する異常検出サービスを提供するものである。このような異常検出サービスが適用されるモニタリング対象2のあくまで一例として船舶を例示するが、モニタリング対象2は船舶に限定されない。例えば、モニタリング対象2は、船舶以外の移動体、例えば人や車両などであってもよい。また、モニタリング対象2は、必ずしも移動体でなくともよく、移動体以外の任意の施設や機器であってもかまわない。
 図1に示すように、システム1には、センサ3A~3Nと、異常検出装置10と、クライアント端末50とが含まれ得る。以下、センサ3A~3Nの個体を区別せずともよい場合、センサ3A~3Nのことを「センサ3」と記載する場合がある。
 センサ3は、モニタリング対象2に配置される。ここで言う「配置」には、モニタリング対象2の内部に組み込まれる形態も含まれれば、モニタリング対象2に外付けされる形態も含まれ得る。
 モニタリング対象2とする船舶には、次に挙げる種類のセンサ3が搭載され得る。例えば、センサ3には、船速、真風向、真風速、M/E燃料積算、主機の回転数、燃料積算、軸馬力、軸回転数、CPP(Controllable Pitch Propeller)翼角応答値、舵角応答値、B/T翼角応答値、S/T回転数などのセンサが該当しうる。また、センサ3には、M/E燃料瞬時値、燃料瞬時、船首方位、緯度、経度、GPS(Global Positioning System)高度、GPS移動方向、GPS移動速度などのセンサが該当しうる。さらに、センサ3には、Roll角、Pitch角、Yaw角、前後加速度、左右加速度、上下加速度、Roll角速度、Pitch角速度などのセンサが該当しうる。
 なお、センサ3及び異常検出装置10の間は、有線または無線を問わず、任意の通信網により接続されることとしてかまわない。例えば、センサ3から異常検出装置10へ伝送されるセンサデータは、MQTT(Message Queuing Telemetry Transport)メッセージとして転送できる。この際、測定値が得られる度に測定値がリアルタイムで伝送されることとしてもよいし、所定期間、例えば1分、1時間、12時間、1日間、1週間や1ヶ月などにわたって蓄積してから測定値の時系列データとして伝送することとしてもかまわない。
 異常検出装置10は、上記の異常検出サービスを提供するコンピュータの一例に対応する。
 一実施形態として、異常検出装置10は、パッケージソフトウェア又はオンラインソフトウェアとして、上記の異常検出サービスに対応する機能が実現された異常検出プログラムを任意のコンピュータにインストールさせることによって実装できる。例えば、異常検出装置10は、必ずしもモニタリング対象2に搭載されずともかまわず、ネットワーク上のコンピュータとして実装されることとしてもかまわない。あくまで一例として、異常検出装置10は、上記の異常検出サービスをIoTのプラットフォーム、あるいはバックエンドのサービスとパッケージ化されたクラウドサービスとして提供することができる。この際、IoTプラットフォームおよび上記の異常検出サービスは、異なるベンダーにより提供されることとしてもかまわない。この他、異常検出装置10は、上記の異常検出サービスに関する機能をオンプレミスに提供するサーバとして実装することもできる。
 クライアント端末50は、上記の異常検出サービスの提供を受けるコンピュータの一例に対応する。
 このようなクライアント端末50は、モニタリング対象2に搭載され得る任意のコンピュータであってよく、また、必ずしも汎用のコンピュータでなくともよく、船舶の操舵やエンジンをコントロールするユニット等であってかまわない。この他、クライアント端末50は、モニタリング対象2の関係者により使用されるコンピュータであってもかまわない。この場合、クライアント端末50は、携帯端末装置やウェアラブル端末などの任意のコンピュータでよく、その所在位置はモニタリング対象2から離れた遠隔地であってかまわない。
 なお、図1には、異常検出の出力先の一例として、クライアント端末50を例に挙げたが、出力先は必ずしもコンピュータでなくともかまわない。すなわち、異常検出の出力先は、LED(Light Emitting Diode)あるいは液晶ディスプレイ等の表示装置の他、音声出力装置や印字出力装置の出力装置全般であってかまわない。
[2.1 単一のセンサを用いる異常検出]
 例えば、上記の異常検出サービスに単一のセンサの波形データしか用いられない場合、各種の統計的手法を用いてセンサの波形データが解析されたとしても、モニタリング対象2にとっての異常点が必ずしも統計上の特異点として発現するとは限らない。この場合、モニタリング対象2に異常が発生していたとしても、異常を検出することができないので、検出漏れ、いわゆるフォールスネガティブが発生する。
 さらに、各種の統計的手法を用いてセンサの波形データから解析される特異点は、必ずしもモニタリング対象2にとっての異常点であるとも限らない。この場合、モニタリング対象2に異常が発生していないにもかかわらず、異常が検出されることになるので、誤検出、いわゆるフォールスポジティブが発生する。
 図2は、センサの波形データの一例を示す図である。図2には、センサの波形データのあくまで一例として、風向きの時系列データが示されている。図2に示すグラフの縦軸は、風向きの角度を指し、横軸は、時間を指す。例えば、風向きの角度は、船舶の進行方向から吹く風の向きを0°とし、そこから時計回りに表される場合を例示する。
 図2に丸印で示された通り、センサの波形データには、スパイクノイズが含まれる。このようなスパイクノイズは、あくまで一例として、各種の統計的手法に用いてデータ解析を行うことにより特異点として検出され得る。ところが、風向きが一定の方向であったとしても外乱、例えば波の影響によって船舶の舵が一時的にぶれることがある。例えば、舵の一時的なぶれにより風向きの角度が0°及び360°の境界を往復する場合、たとえ実際の風向きが一定であったとしても測定値の鋭い変化が観測されるので、測定値の波形にスパイクノイズとして現れる場合がある。この場合、風向きに変化がないにもかかわらず、風向きの異常が検出されることになるので、誤検出が発生する。
 このような誤検出を抑制するには、真風向のセンサ、例えば風向風速センサの特性や船舶特有の外乱要因、例えば波による舵への影響などの専門知識を有する専門家等の協力が必要となる場合がある。すなわち、センサの特性や外乱要因などの各種の観点からの分析を専門家等に依頼し、上記の異常検出サービスの開発者等がフォールスポジティブやフォールスネガティブの抑止の観点から専門家にヒアリングするといった作業が必要となる場合がある。例えば、機械学習等により異常検出を行うモデルを生成する場合、上記の異常検出サービスの開発者は、教師データとして用いるセンサの波形データに異常有りや異常無しなどの正解のクラスに対応するラベルを付与する必要がある。ところが、センサの特性や外乱要因などの専門知識がなければ、センサの波形データにおける正常点および異常点を区別するのが困難であるので、教師データに適切なラベルを設定できない。
 なお、ここでは、センサの一例として、真風向を例に挙げたが、センサの種類によって担当の専門家が異なる。例えば、軸回転や燃料消費などのエンジン周りのセンサから異常を検出する場合であれば、エンジン担当の専門家の協力が必要となる。さらに、モニタリング対象2が船舶である例を挙げたが、モニタリング対象2が船舶以外の個体、例えば車や工場である場合、モニタリング対象2及びモニタリング対象2に搭載されるセンサの種類ごとに専門家の協力が必要となる。
 このように、単一のセンサの波形データを用いてモニタリング対象2の異常検出を行うのではその精度に限界があるという側面がある。
[2.2 複数のセンサを用いる異常検出]
 そうであるからと言って、上記の異常検出サービスに複数のセンサの波形データを用いる場合でも、統計上の特異点が必ずしもモニタリング対象2にとっての異常点に対応しないという事実に変わりはないので、依然として、誤検出が発生する余地が残る。さらに、ターゲットとする異常に対応する異常点の検出に有意義であるセンサの波形データだけを抽出するのが困難である。例えば、船舶に搭載されるセンサは40種類以上にも及ぶが、その中からターゲットとする異常に対応する異常点の検出に有用な種類のセンサの波形データだけをピックアップするのは困難である。これらのことから、上記の異常検出サービスに複数のセンサの波形データを用いる場合でも、モニタリング対象2の異常検出の精度が低下するのが困難である。
[2.3 インバリアント分析]
 また、多数のセンサから大量の計測データを収集し、正常な期間におけるセンサ間の関係性をモデル化するインバリアント分析と呼ばれる技術が提案されている。具体的には、2つの計測データの組合せごとに一方を入力として他方を出力する変換関数およびその重みを導出することにより、相関モデルを生成する。その後、新たな計測データが取得されると、相関モデルに含まれる変換関数のうち所定値以上の重みを有する変換関数へ一方の計測データを入力することにより算出された他方の計測データの予測値と、他方の計測データの実測値とから予測誤差が算出される。このように算出された予測誤差が一定値以上である場合、異常が検出される。
 しかしながら、上記のインバリアント分析では、センサの波形データに周期性がなければ、異常検出の精度が低下する側面がある。すなわち、上記のインバリアント分析は、予実比較により異常検出を実現するものである。それ故、異常検出の精度は、上記の変換関数を用いて算出される他方の計測データの予測値を異常がない正常時における他方の計測データにどれだけ近付けることができるかという予測値の算出精度に依存する。ところが、上記の変換関数は、一方の計測データおよび他方の計測データの間で線形近似が行われることにより導出されるので、各々の計測データにおいて周期性がなければ上記の予測値の算出精度を維持するのが困難となる。このように上記の予測値の算出精度が低下するのに伴って異常検出の精度も低下する。さらに、上記のインバリアント分析では、異常検出を適用可能なセンサの波形データが周期性のあるデータに限定されるので、汎用性に欠ける一面もある。
[2.4 課題の各側面のまとめ]
 したがって、上記の2.1~上記の2.3の欄で説明した技術には、いずれも異常検出の精度が低下する側面がある。
[3. 課題解決のアプローチの一側面]
 そこで、本実施例に係る異常検出装置10は、モニタリング対象2に配置された複数のセンサの各々から取得される複数の波形データのうち相関がある複数の波形データを特定する。その上で、本実施例に係る異常検出装置10は、複数の波形データの間の特異点、すなわち相関崩れが発生する時点を異常点として検出する。
[3.1 相関崩れと異常点]
 上記の課題解決のアプローチを採用する着想は、互いに相関がある複数の波形データの間の相関崩れがモニタリング対象2にとっての異常点に対応する可能性が高いという技術的知見があってはじめて得られる。
 船舶や車などの移動体に代表されるモニタリング対象2に搭載されるセンサの中には、時間変化の観点で相関を有するものが存在しうる。例えば、船舶を例に挙げれば、エンジン出力、スクリューの回転数及びエンジン温度には、互いに相関がある可能性が高い。
 図3A及び図3Bは、センサの波形データの一例を示す図である。図3A及び図3Bには、モニタリング対象2に配置されたN個のセンサ3A~3Nのうち互いに相関があるセンサ3A~3Cの測定値の時系列データに対応する波形30A~30Cが示されている。
 図3Aに示すように、波形30A~30Cには、互いに相関があるので、増加や減少等の変化の推移が類似する傾向を有する。このように波形30A~30Cに相関関係が成立する状況下では、波形30A~30Cの間の特異点、すなわち相関崩れは、モニタリング対象2の異常点である可能性が高い。
 図3Bには、互いに相関がある波形30A~30Cの間の特異点P3が例示されている。図3Bに示すように、波形30A及び波形30Bでは、同一又は類似の時間にピークP1及びピークP2が観測される一方で、波形30Cでは、ピークP1及びピークP2が観測される時間と同一又は類似の時間に谷P3が観測される。ここで、波形30Cで観測される谷P3は、波形30Aで観測されるピークP1及び波形30Bで観測されるピークP2との間で測定値が極端に異なる特異点、すなわち相関崩れであると言える。
 このような相関崩れは、モニタリング対象2にとっての異常点に対応する可能性が高い。なぜなら、運用中または稼働中のモニタリング対象2では正常値に比べて異常値の発生回数が極端に少ないという経験則が上記の技術的知見を裏付けているからである。
[3.2 相関関係を有する波形の特定]
 あくまで一例として、本実施例に係る異常検出装置10は、モニタリング対象2に配置されたN個のセンサ3A~3Nの波形データごとに次のような処理を行う。図4Aは、正則化後の波形データの一例を示す模式図であり、図4Bは、階差の波形データの一例を示す模式図である。例えば、あるセンサ3の波形データに含まれる測定値を-1から1までの範囲に正則化することにより、図4Aに示すように、正則化後の波形データが得られる。以下、測定値が正則化された値のことを「正則値」と記載することがある。その後、センサ3によりサンプリングが行われる時間tごとに当該時間tにおける正則値を次の時間t+1における正則値から差し引く計算を行うことにより、図4Bに示すように、階差の波形データが得られる。
 このように得られたN個の正則化後の波形データ又は階差の波形データの相関に基づいてN個の波形データから相関がある複数の波形データが対象の波形データとして特定される。あくまで一例として、正則値のヒートマップから色の変化が類似するセンサ3同士を抽出することができる。図5は、正則値のヒートマップの一例を示す図である。図5には、N個のセンサ3A~3Nごとに時間「0」から時間「2400」までの正則値が時系列に示されている。例えば、図5に示す正則値のヒートマップをクライアント端末50等に表示させることにより、相関がある複数の波形データの選択を受け付けることができる。図5に示す例で言えば、センサ3A、センサ3B及びセンサ3Cの間で時間「0」から時間「1320」までの正則値の変化と、時間「1320」から時間「2400」までの正則値の変化とが近いことが視覚的に明らかである。このことから、センサ3A、センサ3B及びセンサ3Cの選択を受け付けることにより、センサ3A、センサ3B及びセンサ3Cの波形データを対象の波形データとして特定することができる。
[3.3 クラスタリング]
 ここで、対象の波形データの間の相関崩れは、一例として、クラスタリングを実行することによって識別できる。このようにクラスタリングを行う際、対象の波形データの間で同一の時間の階差を1つにまとめることにより、同一時間の階差がベクトル化される。例えば、時間tにおけるセンサ3Aの階差を「d」、センサ3Bの階差を「d」、センサ3Cの階差を「d」としたとき、d、dおよびdは、t(dA,B,)にベクトル化される。このようなベクトル化が先頭の時間tstartから最後尾の時間tendまで行われる。
 その上で、時間tごとにベクトル化が行われた要素の集合tstart(dA,B,)~tend(dA,B,)がクラスタリングされる。このようなクラスタリングによって、距離が近い要素は同じクラスタに分類される。さらに、上述の通り、正常点は異常点に比べて数が多いという経験則がある。これらのことから、正常点に対応するクラスタに所属する要素数は多くなり、異常点に対応するクラスタに所属する要素数は少なくなる。それ故、小規模のクラスタに含まれる要素を異常点として検出することができる。
 図6は、クラスタリング結果の一例を示す図である。図6には、説明の便宜上、階差d及び階差dの2つの軸のみが抜粋されているが、1つの要素に含まれる階差の数は2以上であってもかまわないことを付言しておく。図6に示す例で言えば、クラスタC1~C4の4つのクラスタが得られる例が示されているが、これらクラスタC1~C4のうち最小規模であるクラスタC4に含まれる要素を異常点として検出することができる。なお、ここでは、あくまで一例として、最小規模のクラスタに含まれる要素を異常点として検出する例を挙げたが、要素数が所定の閾値以下であるクラスタに含まれる要素を異常点として検出することもできる。
[3.4 まとめ]
 以上のように、本実施例に係る異常検出装置10は、N個のセンサ3A~3Nの波形データのうち相関がある波形データ同士の間で同一時間の測定値を1つに纏めた要素の集合をクラスタリングし、クラスタの規模に基づき異常を検出する。このように、相関がある複数の波形データを異常検出に用いるので、モニタリング対象2にとっての異常点が特異点として発現する可能性を高めることができる。さらに、複数の波形データの間の特異点、すなわち相関崩れに対応する小規模のクラスタを異常点として検出するので、上記のインバリアント分析のように、一方の計測データを用いて他方の計測データを算出する予測処理を行わずとも異常検出を実現できる。このため、上記のインバリアント分析よりも、センサ3の波形データの周期性の有無が異常検出の精度へ与える影響を低減できる。したがって、本実施例に係る異常検出装置10によれば、異常検出の精度低下を抑制することが可能になる。
[4. 異常検出装置10の構成]
 図7は、実施例1に係る異常検出装置10の機能的構成を示すブロック図である。図7に示すように、異常検出装置10は、通信インタフェイス11と、記憶部13と、制御部15とを有する。なお、図7には、データの授受の関係を表す実線が示されているが、説明の便宜上、最小限の部分について示されているに過ぎない。すなわち、各処理部に関するデータの入出力は、図示の例に限定されず、図示以外のデータの入出力、例えば処理部及び処理部の間、処理部及びデータの間、並びに、処理部及び外部装置の間のデータの入出力が行われることとしてもかまわない。
 通信インタフェイス11は、他の装置、例えばセンサ3やクライアント端末50との間で通信制御を行うインタフェイスである。
 あくまで一例として、通信インタフェイス11には、LANカードなどのネットワークインタフェイスカードを採用することができる。例えば、通信インタフェイス11は、センサ3のサンプリング周波数や測定値のアップロードのタイミングなどをセンサ3へ通知したり、また、センサ3から測定値または測定値の時系列データを受け付けたりする。また、通信インタフェイス11は、クライアント端末50から異常検出対象とするセンサ3の設定を受け付けたり、また、異常検出対象とするセンサ3の異常点、例えば小規模クラスタに含まれる要素の測定値をクライアント端末50へ通知したりする。
 記憶部13は、制御部15で実行されるOS(Operating System)を始め、各種プログラム、例えば上記の異常検出プログラムなどに用いられるデータを記憶する機能部である。あくまで一例として、記憶部13は、異常検出装置10における補助記憶装置に対応し得る。例えば、HDD(Hard Disk Drive)、光ディスクやSSD(Solid State Drive)などが補助記憶装置に対応し得る。この他、EPROM(Erasable Programmable Read Only Memory)などのフラッシュメモリも補助記憶装置に対応し得る。
 記憶部13は、制御部15で実行されるプログラムに用いられるデータの一例として、波形データ13Aを記憶する。この波形データ13A以外にも、上記の異常検出サービスのサービス加入者のアカウント情報などが記憶部13に記憶されることとしてもかまわない。なお、波形データ13Aの説明は、波形データ13Aの収集や登録が行われる制御部15の説明と合わせて行うこととする。
 制御部15は、異常検出装置10の全体制御を行う機能部である。
 一実施形態として、制御部15は、CPU(Central Processing Unit)やMPU(Micro Processing Unit)などのハードウェアプロセッサにより実装することができる。ここでは、プロセッサの一例として、CPUやMPUを例示したが、汎用型および特化型を問わず、任意のプロセッサにより実装することができる。この他、制御部15は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などのハードワイヤードロジックによって実現されることとしてもかまわない。
 制御部15は、上記の異常検出プログラムを実行することにより、図示しない主記憶装置として実装されるDRAM(Dynamic Random Access Memory)などのRAMのワークエリア上に図4に示す処理部を仮想的に実現する。
 例えば、制御部15は、図7に示すように、収集部15Aと、取得部15Bと、算出部15Cと、特定部15Dと、補正部15Eと、クラスタリング部15Fと、検出部15Gとを有する。
 収集部15Aは、センサ3の波形データを収集する処理部である。
 あくまで一例として、収集部15Aは、モニタリング対象2に配置されたN個のセンサ3A~3Nから測定値をリアルタイムで収集することができる。他の一例として、収集部15Aは、センサ3A~3Nから所定期間、例えば1分、1時間、12時間、1日間、1週間や1ヶ月などにわたる測定値の時系列データを収集することもできる。このようにセンサ3A~3Nから収集された波形データが波形データ13Aとして記憶部13に保存される。
 取得部15Bは、記憶部13に蓄積されたセンサ3の波形データを取得する処理部である。ここでは、あくまで一例として、上記の異常検出サービスを実現する異常検出プログラムが記憶部13からセンサ3の波形データを取得する例を挙げるが、リムーバブルメディアやネットワークを経由してセンサ3の波形データが取得されることとしてもかまわない。
 一実施形態として、取得部15Bは、異常検出対象とするセンサ3を解析するリクエストを受け付ける。図8は、解析リクエスト画面の一例を示す図である。図8には、あくまで一例として、センサ3A~3Hの8つのセンサ3が含まれる例を挙げたが、センサ3の数は任意の数Nであってかまわない。図8に示す解析リクエスト画面200は、あくまで一例としてクライアント端末50に表示させることができる。この解析リクエスト画面200には、異常検出対象を選択するエリア210と、各センサ3の波形データを表示するエリア220とが含まれる。このうち、エリア210には、センサ3A~3Hに対応するラジオボタンが含まれる。また、エリア220には、センサ3A~3Hの波形データが表示される。これらセンサ3A~3Hに対応するラジオボタンのうちいずれか1つが選択された状態で解析開始ボタン230に対する操作を受け付けた場合、選択が行われたボタンに対応するセンサ3を異常検出対象とする解析リクエストが受け付けられる。このように解析リクエストが受け付けられると、取得部15Bは、記憶部13に記憶された波形データ13Aを読み出すことにより、N個のセンサ3A~3Nの波形データを取得する。例えば、取得部15Bは、センサ3ごとに所定期間、例えば1時間、12時間、1日分の波形データを取得する。なお、ここでは、記憶部13から各センサ3の波形データを取得する例を挙げたが、センサ3から波形データを取得することとしてもかまわない。
 算出部15Cは、相関係数を算出する処理部である。
 一実施形態として、算出部15Cは、取得部15Bにより取得されたセンサ3A~3Nの波形データごとに図4A及び図4Bを用いて説明した加工処理を行う。例えば、算出部15Cは、センサ3の波形データに含まれる測定値を-1から1までの範囲に正則化する。これにより、図4Aに示すように、正則化後の波形データが得られる。その後、算出部15Cは、センサ3によりサンプリングが行われる時間tごとに当該時間tにおける正則値を次の時間t+1における正則値から差し引く計算を行う。これにより、図4Bに示すように、階差の波形データが得られる。このような正則化および階差の算出などの加工処理がセンサ3ごとに行われる結果、センサ3ごとに階差の波形データが得られる。その上で、算出部15Cは、センサ3のペアごとにペアとなる2つの階差の波形データの間の相関係数を算出する。
 特定部15Dは、複数の波形データの形状の相関に基づいて、複数の波形データの中から対象の波形データを測定する処理部である。
 図9は、センサ3の波形データの一例を示す図である。図9には、あくまで一例として、センサ3A~3Eの測定値の波形データが示されている。さらに、図9の凡例の通り、センサ3Aの測定値は一点鎖線(細)で示し、センサ3Bの測定値は破線(太)で示し、センサ3Cの測定値は点線(細)で示し、センサ3Dの測定値は実線(細)で示し、センサ3Eの測定値は実線(中)で示す。これらセンサ3A~3Eの波形データごとに上記の加工処理が行われることにより、センサ3A~3Eごとに階差の波形データが得られる。その上で、センサ3A~3Eのペアごとに階差の波形データの相関係数が算出される。この結果、図10に示す相関係数のマップが得られる。
 図10は、相関係数のマップの一例を示す図である。ここで、センサ3Aが異常検出対象として設定されたとしたとき、図10に示す相関係数のマップのうち、異常検出対象として設定されたセンサ3Aの階差の波形データと、それ以外のセンサ3B~3Eの階差の波形データとの間の相関係数が参照される。あくまで一例として、相関係数と比較する閾値を「0.6」としたとき、センサ3Aの階差の波形データとセンサ3B~3Dの階差の波形データとの相関係数は、閾値「0.6」以上となる。その一方で、センサ3Aの階差の波形データとセンサ3Eの階差の波形データとの相関係数は、閾値「0.6」未満となる。このため、センサ3B~3Eの波形データのうちセンサ3B~3Dの波形データは、異常検出対象とするセンサ3Aの波形データとの間で正の相関がある可能性が高いと識別できる。一方、センサ3Eの波形データは、異常検出対象とするセンサ3Aの波形データとの間で正の相関がない可能性が高いと識別できる。この場合、解析対象とする波形データは、図11に示す通りに特定される。
 図11は、解析対象の波形データの一例を示す図である。図11に示すように、センサ3B~3Eの波形データが解析対象として特定される一方で、センサ3Eの波形データは解析対象から除外されている。
 なお、ここでは、類似度の一例として相関係数を用いて解析対象とするセンサ3が特定される例を挙げたが、波形の形状を評価する他の類似度を用いて解析対象とするセンサ3が特定されることとしてもかまわない。また、ここでは、解析対象とするセンサ3が自動的に特定される例を挙げたが、これに限定されず、解析対象とするセンサ3が手動で特定されることとしてもよい。例えば、図5を用いて説明した通り、正則値のヒートマップをクライアント端末50に表示させた上で異常検出対象とするセンサ3Aの解析対象として用いるセンサ3の選択を受け付けることとしてもかまわない。
 補正部15Eは、解析対象とするセンサ3の階差の波形データを補正する処理部である。
 あくまで一例として、図9~図11の例にしたがって異常検出対象としてセンサ3Aが設定されると共に解析対象としてセンサ3B~3Dが特定された状況を例示する。この場合、補正部15Eは、異常検出対象として設定されたセンサ3Aの階差の波形データを目的変数とし、特定部15Dにより解析対象として特定されたセンサ3B~3Dの階差の波形データを説明変数とする線形回帰モデルの重みを算出する回帰分析を行う。このような回帰分析には、あくまで一例として、Lasso回帰を用いることができる。例えば、線形回帰モデルの一例として、下記の式(1)を用いることができる。下記の式(1)における「d」は、センサ3Aの階差を指し、「d」は、センサ3Bの階差を指し、「d」は、センサ3Cの階差を指し、「d」は、センサ3Dの階差を指す。また、下記の式(1)における「α」~「α」は、センサ3B~3Dに付与される重みを指す。なお、「ε」は、誤差を指す。
 d=α*d+α*d+α*d+ε・・・(1)
 上記の回帰分析の結果として得られた重み「α」~「α」を用いて、補正部15Eは、解析対象として特定されたセンサ3B~3Dの階差の波形データを補正する。例えば、センサ3Bの階差dには、重みαを乗算する補正を行う。また、センサ3Cの階差dには、重みαを乗算する補正を行う。さらに、センサ3Dの階差dには、重みαを乗算する補正を行う。以下、重みを乗じる補正が行われた後の階差のことを「重み付け階差」と記載する場合がある。
 ここで、上記の補正を行うのは、異常検出対象として設定されたセンサ3Aとの間で相関が高いセンサばかりが解析対象として特定されるとは限らないからである。すなわち、異常検出対象として設定されたセンサ3Aとの間で相関があまり高くないセンサが解析対象として特定された場合、相関があまり高くないセンサの階差の波形データがクラスタリング時のノイズとなるのを抑制する側面から上記の補正が行われる。例えば、異常検出対象として設定されたセンサ3Aとの間で相関があまり高くないセンサが解析対象として特定されたとしても、そのセンサの正則値の階差には小さい重みが乗算されるので、クラスタリング時のノイズを抑えることができる。
 クラスタリング部15Fは、解析対象として特定されたセンサ3の波形データの間で同一の時間の重み付け階差が1つにまとめられた要素の集合にクラスタリングを行う処理部である。
 一実施形態として、クラスタリング部15Fは、補正部15Eにより補正された解析対象のセンサの重み付け階差の波形データの間で同一の時間の重み付け階差を1つにまとめることにより、同一時間の重み付け階差をベクトル化する。例えば、解析対象としてセンサ3B~3Dが特定されたとしたとき、センサ3Bの重み付け階差「α*d」、センサ3Cの重み付け階差「α*d」及びセンサ3Dの重み付け階差「α*d」は、t(α*dB,α*dC,α*d)にベクトル化される。このようなベクトル化が先頭の時間tstartから最後尾の時間tendまで行われる。その上で、クラスタリング部15Fは、時間tごとにベクトル化が行われた要素の集合tstart(α*dB,α*dC,α*d)~tend(α*dB,α*dC,α*d)をクラスタリングする。
 検出部15Gは、クラスタの規模に基づいてモニタリング対象2の異常を検出する処理部である。
 1つの側面として、検出部15Gは、クラスタリング部15Fによるクラスタリングの結果として得られたクラスタのうち要素数が所定の閾値未満であるクラスタを異常クラスタとして検出することもできる。
 他の側面として、検出部15Gは、クラスタリング部15Fによるクラスタリングの結果として得られたクラスタのうち要素数が少ないクラスタから順に所定数のクラスタを異常クラスタとして検出することができる。
 図12は、クラスタリング結果の一例を示す図である。図12には、解析対象のセンサ3B~3Dの重み付け階差の波形データの間で同一の時間の重み付け階差が時間tごとにベクトル化が行われた要素の集合tstart(α*dB,α*dC,α*d)~tend(α*dB,α*dC,α*d)がクラスタリングされた場合の結果が示されている。図12に示す例では、要素の集合tstart(α*dB,α*dC,α*d)~tend(α*dB,α*dC,α*d)は、クラスタNo.1~クラスタNo.10までの10個のクラスタに分類されている。ここで、要素数と比較する閾値を「10」としたとき、閾値「10」未満であるクラスタNo.1、クラスタNo.6及びクラスタNo.10の3つのクラスタが異常クラスタとして検出される。
 ここで、異常クラスタが検出された場合、検出部15Gは、各種のアラートを出力することができる。例えば、検出部15Gは、解析対象の波形データのうち異常クラスタが検出された要素、すなわち相関崩れに対応する異常点の時間や測定値を強調して表示させることができる。また、検出部15Gは、異常検出対象の波形データのうち異常クラスタが検出された要素、すなわち相関崩れに対応する異常点の時間や測定値を強調して表示させることができる。なお、検出部15Gは、図形による異常点の描画に限らず、異常点の時間や測定値に関する数値を表示させることとしてもかまわない。
 図13は、アラート画面の一例を示す図である。図13に示すように、アラート画面300には、解析対象の波形データが表示される表示エリア310と、異常検出対象の波形データが表示される表示エリア320とが含まれ得る。このうち、表示エリア310の拡大図が図14に示されると共に、表示エリア320の拡大図が図15に示されている。
 図14は、表示エリア310の拡大図である。図14には、解析対象として特定されたセンサ3Bの波形データ、センサ3Cの波形データ及びセンサ3Dの波形データが示されている。さらに、図14には、センサ3Bの波形データ、センサ3Cの波形データ及びセンサ3Dの波形データのうち異常クラスタが検出された要素に対応する区間が枠線で囲って示されている。さらに、図14には、センサ3Cの波形データのうち異常クラスタが検出された要素、すなわち相関崩れに対応する測定値の部分(ピークの上ブレ部分)が太線で強調して示されると共に、センサ3Dの波形データのうち異常クラスタが検出された要素、すなわち相関崩れに対応する測定値の部分(ピークの下ブレ部分)が太線で強調して示されている。これらの表示により、相関崩れの対応箇所を明示できる。
 図15は、表示エリア320の拡大図である。図15には、異常検出対象として設定されたセンサ3Aの波形データが示されている。さらに、図15には、センサ3Aの波形データのうち異常クラスタが検出された要素、すなわち異常点に対応する測定値の部分が太線で強調して示されると共に楕円状の太線で囲んで示されている。このような表示により、モニタリング対象2の異常点を明示できる。例えば、図9に楕円状の枠線で示された通り、センサ3Aの波形データには、一見はノイズに見えるスパイクQ1~Q6が含まれるが、図15に示す異常点の表示を見れば、スパイクQ5にしか異常が発生していないことを把握できる。
[5. 処理の流れ]
 図16は、実施例1に係る異常検出処理の手順を示すフローチャートである。この処理は、あくまで一例として、異常検出対象とするセンサ3を解析するリクエストを受け付けた場合に実行される。
 図16に示すように、取得部15Bは、記憶部13に記憶された波形データ13Aを読み出すことにより、各センサ3の波形データを取得する(ステップS101)。続いて、算出部15Cは、ステップS101で取得されたセンサ3A~3Nの波形データごとに測定値の正則化および階差の算出などの加工処理を行う(ステップS102)。これによって、センサ3A~3Nごとに階差の波形データが得られる。
 その上で、算出部15Cは、センサ3A~3Nのペアごとにペアとなる2つの階差の波形データの間の相関係数を算出する(ステップS103)。続いて、特定部15Dは、異常検出対象として設定されたセンサ3A以外のセンサ3B~3Nのうち、異常検出対象として設定されたセンサ3Aの階差の波形データとそれ以外のセンサ3B~3Nの階差の波形データとの間の相関係数が所定の閾値以上であるセンサ3B~3Dを解析対象として特定する(ステップS104)。
 そして、補正部15Eは、異常検出対象として設定されたセンサ3Aの階差の波形データを目的変数とし、ステップS104で解析対象として特定されたセンサ3B~3Dの階差の波形データを説明変数とする線形回帰モデルの重みを算出する回帰分析を行う(ステップS105)。
 その後、補正部15Eは、解析対象として特定されたセンサ3B~3Dの階差d、d及びdにステップS105の回帰分析の結果として得られた線形回帰モデルの重みα、α及びαを乗算する補正を行う(ステップS106)。
 そして、クラスタリング部15Fは、ステップS106で補正された解析対象のセンサの重み付け階差の波形データの間で同一の時間の重み付け階差を1つにまとめることにより、同一時間の重み付け階差をベクトル化する。その上で、クラスタリング部15Fは、時間tごとにベクトル化が行われた要素の集合tstart(α*dB,α*dC,α*d)~tend(α*dB,α*dC,α*d)をクラスタリングする(ステップS107)。
 その後、検出部15Gは、クラスタリング部15Fによるクラスタリングの結果として得られたクラスタのうち要素数が所定の閾値未満であるクラスタを異常クラスタとして検出する(ステップS108)。最後に、検出部15Gは、異常クラスタに関する各種のアラート、例えば図13に示すアラート画面300をクライアント端末50に出力し(ステップS109)、処理を終了する。
[6. 実施例の効果の一側面]
 上述してきたように、本実施例に係る異常検出装置10は、複数のセンサの波形データのうち相関がある波形データ同士の間で同一時間の測定値を1つに纏めた要素の集合をクラスタリングし、クラスタの規模に基づき異常を検出する。したがって、本実施例に係る異常検出装置10によれば、異常検出の精度低下を抑制することが可能である。
 さて、これまで開示の装置に関する実施例について説明したが、本発明は上述した実施例以外にも、種々の異なる形態にて実施されてよいものである。そこで、以下では、本発明に含まれる他の実施例を説明する。
[7. 分散および統合]
 また、図示した各装置の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。例えば、収集部15A、取得部15B、算出部15C、特定部15D、補正部15E、クラスタリング部15Fまたは検出部15Gを異常検出装置10の外部装置としてネットワーク経由で接続するようにしてもよい。また、収集部15A、取得部15B、算出部15C、特定部15D、補正部15E、クラスタリング部15Fまたは検出部15Gを別の装置がそれぞれ有し、ネットワーク接続されて協働することで、上記の異常検出装置10の機能を実現するようにしてもよい。
[8. 異常検出プログラム]
 また、上記の実施例で説明した各種の処理は、予め用意されたプログラムをパーソナルコンピュータやワークステーションなどのコンピュータで実行することによって実現することができる。そこで、以下では、図17を用いて、上記の実施例と同様の機能を有する異常検出プログラムを実行するコンピュータの一例について説明する。
 図17は、コンピュータのハードウェア構成例を示す図である。図17に示すように、コンピュータ100は、操作部110aと、スピーカ110bと、カメラ110cと、ディスプレイ120と、通信部130とを有する。さらに、このコンピュータ100は、CPU150と、ROM160と、HDD170と、RAM180とを有する。これら110~180の各部はバス140を介して接続される。
 HDD170には、図17に示すように、上記の実施例1で示した収集部15A、取得部15B、算出部15C、特定部15D、補正部15E、クラスタリング部15F及び検出部15Gと同様の機能を発揮する異常検出プログラム170aが記憶される。この異常検出プログラム170aは、図7に示した収集部15A、取得部15B、算出部15C、特定部15D、補正部15E、クラスタリング部15F及び検出部15Gの各構成要素と同様、統合又は分離してもかまわない。すなわち、HDD170には、必ずしも上記の実施例1で示した全てのデータが格納されずともよく、処理に用いるデータがHDD170に格納されればよい。
 このような環境の下、CPU150は、HDD170から異常検出プログラム170aを読み出した上でRAM180へ展開する。この結果、異常検出プログラム170aは、図17に示すように、異常検出プロセス180aとして機能する。この異常検出プロセス180aは、RAM180が有する記憶領域のうち異常検出プロセス180aに割り当てられた領域にHDD170から読み出した各種データを展開し、この展開した各種データを用いて各種の処理を実行する。例えば、異常検出プロセス180aが実行する処理の一例として、図16に示す処理などが含まれる。なお、CPU150では、必ずしも上記の実施例1で示した全ての処理部が動作せずともよく、実行対象とする処理に対応する処理部が仮想的に実現されればよい。
 なお、上記の異常検出プログラム170aは、必ずしも最初からHDD170やROM160に記憶されておらずともかまわない。例えば、コンピュータ100に挿入されるフレキシブルディスク、いわゆるFD、CD-ROM、DVDディスク、光磁気ディスク、ICカードなどの「可搬用の物理媒体」に各プログラムを記憶させる。そして、コンピュータ100がこれらの可搬用の物理媒体から各プログラムを取得して実行するようにしてもよい。また、公衆回線、インターネット、LAN、WANなどを介してコンピュータ100に接続される他のコンピュータまたはサーバ装置などに各プログラムを記憶させておき、コンピュータ100がこれらから各プログラムを取得して実行するようにしてもよい。
   1  システム
   3A,3B,・・・,3N  センサ
  10  異常検出装置
  11  通信インタフェイス
  13  記憶部
  13A 波形データ
  15  制御部
  15A 収集部
  15B 取得部
  15C 算出部
  15D 特定部
  15E 補正部
  15F クラスタリング部
  15G 検出部
  50  クライアント端末

Claims (20)

  1.  モニタリング対象に配置された複数のセンサによって検出された複数の波形データを取得し、
     取得した前記複数の波形データの形状の相関に基づいて、前記複数の波形データの中から複数の対象の波形データを特定し、
     前記複数の対象の波形データを1つにまとめるとともに、1つにまとめた波形データを時間単位で区分してクラスタリングし、
     クラスタの規模に基づいて、モニタリング対象の異常を検出する、
     処理をコンピュータが実行する異常検出方法。
  2.  前記複数の波形データの中から設定が行われた第1の波形データと、前記複数の波形データのうち前記第1の波形データ以外の複数の第2の波形データとの間で相関係数を算出する処理を前記コンピュータがさらに実行し、
     前記特定する処理は、前記複数の第2の波形データのうち前記相関係数が所定の閾値以上である第2の波形データを特定することを特徴とする請求項1に記載の異常検出方法。
  3.  前記第1の波形データを目的変数とし、前記特定する処理で特定された第2の波形データを説明変数とする線形回帰モデルの重みに基づいて、前記特定する処理で特定された第2の波形データを補正する処理を前記コンピュータがさらに実行し、
     前記クラスタリングする処理は、補正が行われた第2の波形データを1つにまとめるとともに、1つにまとめた波形データを時間単位で区分してクラスタリングすることを特徴とする請求項2に記載の異常検出方法。
  4.  前記検出する処理は、前記クラスタのうち要素数が所定の閾値未満であるクラスタに含まれる要素を異常点として検出することを特徴とする請求項1に記載の異常検出方法。
  5.  前記検出する処理は、前記クラスタのうち要素数が少ないクラスタから順に所定数のクラスタに含まれる要素を異常点として検出することを特徴とする請求項1に記載の異常検出方法。
  6.  前記複数のセンサは、移動体に配置されることを特徴とする請求項1に記載の異常検出方法。
  7.  前記移動体は、船舶、車両または人であることを特徴とする請求項6に記載の異常検出方法。
  8.  モニタリング対象に配置された複数のセンサによって検出された複数の波形データを取得し、
     取得した前記複数の波形データの形状の相関に基づいて、前記複数の波形データの中から複数の対象の波形データを特定し、
     前記複数の対象の波形データを1つにまとめるとともに、1つにまとめた波形データを時間単位で区分してクラスタリングし、
     クラスタの規模に基づいて、モニタリング対象の異常を検出する、
     処理をコンピュータに実行させる異常検出プログラム。
  9.  前記複数の波形データの中から設定が行われた第1の波形データと、前記複数の波形データのうち前記第1の波形データ以外の複数の第2の波形データとの間で相関係数を算出する処理を前記コンピュータにさらに実行させ、
     前記特定する処理は、前記複数の第2の波形データのうち前記相関係数が所定の閾値以上である第2の波形データを特定することを特徴とする請求項8に記載の異常検出プログラム。
  10.  前記第1の波形データを目的変数とし、前記特定する処理で特定された第2の波形データを説明変数とする線形回帰モデルの重みに基づいて、前記特定する処理で特定された第2の波形データを補正する処理を前記コンピュータにさらに実行させ、
     前記クラスタリングする処理は、補正が行われた第2の波形データを1つにまとめるとともに、1つにまとめた波形データを時間単位で区分してクラスタリングすることを特徴とする請求項9に記載の異常検出プログラム。
  11.  前記検出する処理は、前記クラスタのうち要素数が所定の閾値未満であるクラスタに含まれる要素を異常点として検出することを特徴とする請求項8に記載の異常検出プログラム。
  12.  前記検出する処理は、前記クラスタのうち要素数が少ないクラスタから順に所定数のクラスタに含まれる要素を異常点として検出することを特徴とする請求項8に記載の異常検出プログラム。
  13.  前記複数のセンサは、移動体に配置されることを特徴とする請求項8に記載の異常検出プログラム。
  14.  前記移動体は、船舶、車両または人であることを特徴とする請求項13に記載の異常検出プログラム。
  15.  モニタリング対象に配置された複数のセンサによって検出された複数の波形データを取得する取得部と、
     取得した前記複数の波形データの形状の相関に基づいて、前記複数の波形データの中から複数の対象の波形データを特定する特定部と、
     前記複数の対象の波形データを1つにまとめるとともに、1つにまとめた波形データを時間単位で区分してクラスタリングするクラスタリング部と、
     クラスタの規模に基づいて、モニタリング対象の異常を検出する検出部と、
     を有する異常検出装置。
  16.  前記複数の波形データの中から設定が行われた第1の波形データと、前記複数の波形データのうち前記第1の波形データ以外の複数の第2の波形データとの間で相関係数を算出する算出部(15C)をさらに有し、
     前記特定部は、前記複数の第2の波形データのうち前記相関係数が所定の閾値以上である第2の波形データを特定することを特徴とする請求項15に記載の異常検出装置。
  17.  前記第1の波形データを目的変数とし、前記特定する処理で特定された第2の波形データを説明変数とする線形回帰モデルの重みに基づいて、前記特定する処理で特定された第2の波形データを補正する補正部をさらに有し、
     前記クラスタリング部は、補正が行われた第2の波形データを1つにまとめるとともに、1つにまとめた波形データを時間単位で区分してクラスタリングすることを特徴とする請求項16に記載の異常検出装置。
  18.  前記検出部は、前記クラスタのうち要素数が所定の閾値未満であるクラスタに含まれる要素を異常点として検出することを特徴とする請求項15に記載の異常検出装置。
  19.  前記検出部は、前記クラスタのうち要素数が少ないクラスタから順に所定数のクラスタに含まれる要素を異常点として検出することを特徴とする請求項15に記載の異常検出装置。
  20.  前記複数のセンサは、移動体に配置されることを特徴とする請求項15に記載の異常検出装置。
PCT/JP2019/041757 2019-10-24 2019-10-24 異常検出方法、異常検出プログラム及び異常検出装置 WO2021079472A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/041757 WO2021079472A1 (ja) 2019-10-24 2019-10-24 異常検出方法、異常検出プログラム及び異常検出装置
JP2021553240A JPWO2021079472A1 (ja) 2019-10-24 2019-10-24
US17/713,452 US20220230023A1 (en) 2019-10-24 2022-04-05 Anomaly detection method, storage medium, and anomaly detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/041757 WO2021079472A1 (ja) 2019-10-24 2019-10-24 異常検出方法、異常検出プログラム及び異常検出装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/713,452 Continuation US20220230023A1 (en) 2019-10-24 2022-04-05 Anomaly detection method, storage medium, and anomaly detection device

Publications (1)

Publication Number Publication Date
WO2021079472A1 true WO2021079472A1 (ja) 2021-04-29

Family

ID=75619739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041757 WO2021079472A1 (ja) 2019-10-24 2019-10-24 異常検出方法、異常検出プログラム及び異常検出装置

Country Status (3)

Country Link
US (1) US20220230023A1 (ja)
JP (1) JPWO2021079472A1 (ja)
WO (1) WO2021079472A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210397169A1 (en) * 2020-06-23 2021-12-23 Tokyo Electron Limited Information processing apparatus and monitoring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092355A (ja) * 2008-10-09 2010-04-22 Hitachi Ltd 異常検知方法及びシステム
JP2017068748A (ja) * 2015-10-01 2017-04-06 富士通株式会社 クラスタリングプログラム、クラスタリング方法、および情報処理装置
JP2018533096A (ja) * 2015-07-16 2018-11-08 ファルコンリー インコーポレイテッドFalkonry Inc. 抽象的な関係及びスパースラベルに基づく物理的状況の機械学習
CN109990803A (zh) * 2018-01-02 2019-07-09 西门子(中国)有限公司 检测系统异常的方法、装置及传感器处理的方法、装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269221A (ja) * 1990-03-19 1991-11-29 Hitachi Ltd 回転機器の異常音診断装置
JP2013210945A (ja) * 2012-03-30 2013-10-10 Toshiba Corp 波形分析装置および波形分析方法
US10013634B2 (en) * 2015-11-13 2018-07-03 Tata Consultancy Services Limited Multi-sensor visual analytics
JP6909670B2 (ja) * 2017-08-03 2021-07-28 日立グローバルライフソリューションズ株式会社 異常検知方法および異常検知システム
JP6665849B2 (ja) * 2017-12-14 2020-03-13 マツダ株式会社 鋳造品の機械的特性予測方法、機械的特性予測システム、機械的特性予測プログラム及び機械的特性予測プログラムを記録したコンピュータ読取り可能な記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092355A (ja) * 2008-10-09 2010-04-22 Hitachi Ltd 異常検知方法及びシステム
JP2018533096A (ja) * 2015-07-16 2018-11-08 ファルコンリー インコーポレイテッドFalkonry Inc. 抽象的な関係及びスパースラベルに基づく物理的状況の機械学習
JP2017068748A (ja) * 2015-10-01 2017-04-06 富士通株式会社 クラスタリングプログラム、クラスタリング方法、および情報処理装置
CN109990803A (zh) * 2018-01-02 2019-07-09 西门子(中国)有限公司 检测系统异常的方法、装置及传感器处理的方法、装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210397169A1 (en) * 2020-06-23 2021-12-23 Tokyo Electron Limited Information processing apparatus and monitoring method

Also Published As

Publication number Publication date
JPWO2021079472A1 (ja) 2021-04-29
US20220230023A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
JP6313929B2 (ja) 構造物を監視するための方法及びシステム
US20150233792A1 (en) Methods and Apparatuses for Defect Diagnosis in a Mechanical System
US7243048B2 (en) Fault detection system and method using multiway principal component analysis
US20140046878A1 (en) Method and system for detecting sound events in a given environment
US20180231394A1 (en) Gas turbine sensor failure detection utilizing a sparse coding methodology
US11669080B2 (en) Abnormality detection device, abnormality detection method, and program
JP6828807B2 (ja) データ解析装置、データ解析方法およびデータ解析プログラム
JP2004531815A (ja) 予測的状態監視のための診断システムおよび方法
WO2019125532A1 (en) Programmatic ally identifying a personality of an autonomous vehicle
JP2013210945A (ja) 波形分析装置および波形分析方法
EP3796115B1 (en) Anomaly detection for robotic arms using vibration data
Al-Haddad et al. Improved UAV blade unbalance prediction based on machine learning and ReliefF supreme feature ranking method
US20160358090A1 (en) Method and system for obtaining and analyzing information from a plurality of sources
JP2018147442A (ja) 変化点検出装置および変化点検出方法
EP3712728A1 (en) Apparatus for predicting equipment damage
WO2021079472A1 (ja) 異常検出方法、異常検出プログラム及び異常検出装置
CN110672326B (zh) 轴承故障检测方法与计算机可读存储介质
Siegel Prognostics and health assessment of a multi-regime system using a residual clustering health monitoring approach
JP2020170252A (ja) 画像処理装置、情報処理方法及びプログラム
JP2020123229A (ja) 異常予兆検出システム、異常予兆検出方法
Seryasat et al. Fault diagnosis of ball-bearings using principal component analysis and support-vector machine
US9482597B2 (en) Method and a device for normalizing values of operating parameters of an aeroengine
US20200167553A1 (en) Method, system and apparatus for gesture recognition
Goethals et al. Reliable spurious mode rejection using self learning algorithms
JP2018159569A (ja) 姿勢算出装置、姿勢計測システム、及び姿勢算出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553240

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949910

Country of ref document: EP

Kind code of ref document: A1