WO2021079073A1 - Composite cellulose material and method for making such a material - Google Patents

Composite cellulose material and method for making such a material Download PDF

Info

Publication number
WO2021079073A1
WO2021079073A1 PCT/FR2020/051917 FR2020051917W WO2021079073A1 WO 2021079073 A1 WO2021079073 A1 WO 2021079073A1 FR 2020051917 W FR2020051917 W FR 2020051917W WO 2021079073 A1 WO2021079073 A1 WO 2021079073A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
composite material
cellulosic
material according
layer
Prior art date
Application number
PCT/FR2020/051917
Other languages
French (fr)
Inventor
Jérémie VIGUIE
Laura CROWTHER-ALWYN
David Guerin
William GOURGEON
Caroline LOCRE
Richard Thalhofer
Original Assignee
Centre Technique Du Papier
Cargill, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Technique Du Papier, Cargill, Incorporated filed Critical Centre Technique Du Papier
Priority to US17/770,427 priority Critical patent/US20220389662A1/en
Priority to EP20807083.9A priority patent/EP4048838B1/en
Publication of WO2021079073A1 publication Critical patent/WO2021079073A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/02Patterned paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/54Starch
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/10Packing paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/18Paper- or board-based structures for surface covering
    • D21H27/20Flexible structures being applied by the user, e.g. wallpaper

Definitions

  • the present invention relates to a cellulosic composite material, various products made from such a material such as packaging for food, cosmetic or pharmaceutical products, papers for bags, sachets and pouches, a core for cellular “sandwich” panels or multi-structure.
  • a material such as packaging for food, cosmetic or pharmaceutical products, papers for bags, sachets and pouches, a core for cellular “sandwich” panels or multi-structure.
  • - paper towels or toilet paper, or even wallpaper, printed papers for promotional purposes such as poster papers, for inserts, inserts or leaflets, papers for household use such as paper tablecloths, stationery articles such as book covers or an envelope for example, as well as a method of manufacturing such a material.
  • Grid-type structures or frames are widely present in nature, in particular in the leaves of certain plants where they support the body of the leaves, or else in the wings of certain insects.
  • Man was inspired by it to develop plate or shell structures used in many industrial sectors, particularly in transport (marine, nautical, aeronautics, aerospace) and civil engineering.
  • These structures consist of a skin and a network of reinforcing ribs extending over a surface of the skin, and are of interest for applications that require rigidity, strength and lightness.
  • This arrangement makes it possible to put the material where it is needed: when such a structure is stressed in torsion or in bending, the skin works essentially in so-called membrane deformation mode, while the network of ribs works mainly in bending / torsion. . It is thus possible to obtain parts, most often in the form of ultralight flat or curved panels with very good specific mechanical properties (that is to say in relation to their density).
  • the mechanical properties of deformation in bending (curvature of the structure) and in torsion (twisting of the structure), as well as the buckling behavior of the ribbed structures are in particular determined by the geometry of the network of ribs.
  • the optimization of these properties involves the development of geometries adapted to the stresses [1].
  • specific geometric patterns can confer auxetic behavior [2], i.e. exhibiting a negative Poisson's ratio, to the structures they constitute and significantly improve some of their geometric and mechanical properties.
  • Document FR 2250 853 describes on this subject a process for improving the mechanical properties of a sheet of paper.
  • This process consists in forming in the sheet of paper a reinforcement consisting of a regular network of continuous thin lines of a binder commonly used in the paper industry.
  • the binder in particular a polyvinyl alcohol or a rubber, penetrates into the sheet of paper, and leads to the formation of a reinforcement at the heart of the sheet of paper.
  • the reinforcement integrated into the sheet of paper, gives the latter an increased tensile strength, while preserving the flexibility of the sheet, in particular in bending and in torsion.
  • the frame is formed in the sheet of paper, at the heart of said sheet of paper.
  • the resulting sheet of reinforcing paper exhibits improved mechanical properties in the plane of the sheet, including improved tensile strength.
  • the mechanical properties out of the plane of the sheet such as the bending and torsional strength, remain unchanged and therefore low since they correspond approximately to those of the initial sheet of paper.
  • the reinforcing sheet of paper is therefore not rigid, and therefore, is not suitable for use in areas where the paper is under high stress, in particular under stresses perpendicular to the plane of the sheet of paper such as bending or twisting. This is particularly the case when the paper is used for the manufacture of packaging, in particular for the transport or storage of food products.
  • An aim of the invention is to provide a cellulosic composite material which makes it possible to overcome the drawbacks described above.
  • the invention aims in particular to provide such a cellulosic composite material comprising a layer of a cellulosic material, which exhibits mechanical properties outside the plane of the sheet, in particular the bending strength and the torsional strength, which are increased with respect to said layer of cellulosic material alone.
  • the invention aims most particularly to provide such a cellulosic composite material suitable for use in fields where paper is in high demand, very particularly but not exclusively for the manufacture of packaging for food, cosmetic or pharmaceutical products, paper for bags. , sachets and pockets, a core for honeycomb sandwich panels or multi-ply paper towel or toilet paper, or even wallpaper, printed papers for promotional uses such as poster, insert, insert or flyer papers , papers for household use such as paper tablecloths, stationery articles such as book covers or an envelope for example
  • the invention provides a cellulose composite material comprising: a layer of a cellulosic material, a starch-based reinforcing grid positioned on at least one surface of the layer of cellulosic material, said reinforcing grid comprising a plurality of meshes delimited by grid wires, the cellulosic composite material having a three-dimensional relief comprising folds at the level of the positioning zones of the reinforcement grid, and raised bumps on either side of the plane of the grid delimited by the folds.
  • the cellulosic composite material according to the invention has the following different characteristics taken alone or according to their technically possible combinations: the three-dimensional relief has an overall thickness greater than the sum of the thicknesses of the layer of cellulosic material and the reinforcement grid; the degree of coverage of the reinforcing grid on the surface of the layer of cellulosic material is greater than or equal to 10%, preferably greater than or equal to 20%; the degree of coverage of the reinforcing grid on the surface of the layer of cellulosic material is less than or equal to 60%, preferably less than or equal to 50%; the grid wires form square or rectangular meshes; the grid wires form hexagonal meshes; the grid wires form honeycomb type meshes; the grid threads form bow-tie type stitches; one or more grid wires are sinusoidal; the reinforcing grid is deposited on the layer of paper by screen printing, three-dimensional printing, intaglio, flexography, or spraying via one or more nozzles; the reinforcing grid
  • the invention also relates to articles made from the cellulosic composite material described above.
  • Such articles can be in particular, but not exclusively, a flexible packaging, such as a food packaging for example, a wallpaper, a display panel, preferably of the sandwich type, or else an envelope.
  • a flexible packaging such as a food packaging for example, a wallpaper, a display panel, preferably of the sandwich type, or else an envelope.
  • Another object of the invention relates to a method of manufacturing a cellulosic composite material as described above, from a layer of a cellulosic material.
  • This method is mainly characterized in that it comprises a step consisting in depositing a starch-based reinforcing grid on at least one surface of the cellulosic material, said reinforcing grid comprising a plurality of meshes delimited by grid wires, in order to form a three-dimensional relief comprising folds at the level of the positioning zones of the reinforcing grid, and raised bumps on either side of the plane of the grid delimited by the folds.
  • the manufacturing process according to the invention has the following different characteristics taken alone or according to their technically possible combinations:
  • the reinforcing grid deposited on the cellulosic material comprises a starch suspension;
  • the deposition of the grid is carried out by screen printing, three-dimensional printing, intaglio, flexography, or spraying via one or more nozzles;
  • the composition of the reinforcing grid comprises at least one starch suspension having a dry matter content of between 5% and 65% by weight during the deposition of the reinforcing grid DESCRIPTION OF THE FIGURES
  • Figure 1 is a diagram of a reinforcing grid, in which the grid threads form hexagonal honeycomb-type meshes;
  • Figure 2 is a diagram of a reinforcing grid, in which the grid threads form hexagonal bow-tie type meshes;
  • Figure 3 is a diagram of a reinforcing grid, in which all of the grid wires constituting the meshes are sinusoidal;
  • Figure 4 is a diagram of a reinforcing grid, in which the grid wires are orthogonal in pairs and form square meshes;
  • FIG. 5 is a graph illustrating the evolution of the flexural strength of a cellulosic composite material according to the invention, comprising a sheet of paper and a reinforcing grid with square mesh of starch type dextrin, as a function of the coverage rate from the sheet of paper through the grid;
  • FIG. 6 is a graph illustrating the evolution of the flexural strength of a cellulosic composite material according to the invention, comprising a sheet of paper and a grid of starch square mesh reinforcement of the dextrin and waxy mixture type, depending on the degree of coverage of the sheet of paper by the grid;
  • FIG. 7 is a graph illustrating the flexural strength of the cellulosic composite material for reinforcing grids having different patterns
  • FIG. 8 is a graph illustrating the flexural strength of cellulosic composite materials comprising reinforcing grids of different compositions
  • Figure 9 is a graph illustrating the overall thickness of composite materials from the graph of Figure 8.
  • Figure 10 is a graph illustrating the quantity or basis weight of composite materials from the graph of Figure 8.
  • FIG. 11A is a top photograph of a composite material obtained by depositing a starch reinforcing grid on a layer of Gerstar TM cellulosic material;
  • FIG. 11B is a top grazing photograph of the composite material of Figure 11A
  • FIG. 12 is a graph illustrating the flexural strength of composite materials obtained by depositing a starch reinforcing grid on tracing paper and on blotting paper;
  • Figure 13 is a graph illustrating the overall thickness of composite materials from the graph of Figure 12;
  • Figure 14 is a diagram illustrating the determination of the overall thickness.
  • the invention relates to a cellulosic composite material comprising a layer of cellulosic material and a reinforcing grid positioned on at least one surface of the layer of cellulosic material.
  • the reinforcing grid can be deposited on the whole of this surface, or on only part of this surface.
  • a “composite material” corresponds to a combination of at least two immiscible components.
  • a synergistic effect is obtained by such a combination, so that a composite material has properties, in particular mechanical properties, that each of the components alone does not have, or has to a lesser degree than the composite material.
  • the first component of the cellulosic composite material is the layer of a cellulosic material
  • the second component is the reinforcing grid.
  • the layer of cellulosic material forms the matrix of the cellulosic composite material.
  • Such a matrix ensures the cohesion of the structure of the cellulose composite material, and transmits the forces exerted on the latter to the reinforcing grid.
  • the reinforcing grid is a reinforcement of the cellulose composite material, and ensures good mechanical strength thereof.
  • the deposition of the reinforcing layer on the surface of the layer of cellulosic material thus makes it possible to improve the specific mechanical properties out of the plane of said layer of cellulosic material, in particular by increasing its flexural strength as well as its torsional strength.
  • the layer of cellulosic material is preferably a sheet of paper.
  • the sheet of paper has a basis weight of between 13 g / m 2 and 140 g / m 2 , preferably between 30 g / m 2 and 90 g / m 2 .
  • These grammage ranges correspond to a relatively flexible sheet of paper, typically sheets intended for the manufacture of flexible packaging such as pouches, bags and sachets, which are particularly preferred for making the cellulosic composite material of the invention.
  • the reinforcing grid comprises a plurality of meshes delimited by grid wires.
  • the reinforcement grid includes starch.
  • the starch can be native starch or modified starch, for example dextrin.
  • Starch is a polymer of glucose, usually a mixture of amylopectin (branched) and amylose (linear), naturally present in many plants.
  • two starch modification strategies are usually implemented industrially: the acidic or enzymatic conversion of starch in order to generate polymers of lower molecular mass, for example dextrins, and chemical modification of starch, by reacting the hydroxyl groups of the starch with functional agents to introduce substitution groups.
  • functional agents to introduce substitution groups.
  • They are, for example, in particular starches such as hydroxypropyl ethers or hydroxypropyl starch.
  • the native or modified starch can be combined with other constituents in the reinforcing grid.
  • the starch shrinks when it dries.
  • the shrinkage forces exerted during the drying of the starch-based formulation previously deposited on the surface of the cellulosic layer lead to a deformation gradient in the thickness of the cellulosic layer. This deformation is favored by the rewetting of the cellulose layer which occurs between the removal of the grid and the end of drying.
  • a fold is then formed, which can also be called a "valley fold" in that a valley is formed in the fold on the face on which the reinforcing grid has been deposited, at the places where the retraction of the grid occurs.
  • all thickness is understood to mean the distance between the planes tangent to the upper and lower rough surfaces of the cellulosic layer, and mutually parallel.
  • Ep The determination of the overall thickness, denoted Ep, is illustrated in Figure 14.
  • the deposition of the starch grid on the surface of the cellulosic layer thus makes it possible to obtain a synergistic effect: a local increase in thickness, at the level of the deposit zones of the grid, due to the local addition of material. (starch), as well as an additional effect of increasing the overall thickness, which occurs more globally on the cellulosic layer, and more importantly at the level of the deposition zones of the grid, according to the strain gradient in the thickness of said cellulosic layer.
  • the thickness of the composite material obtained is greater than the sum of the thicknesses of the layer of cellulosic material and of the reinforcing grid.
  • the overall thickness measurement is performed according to the IS012625-3 standard, as the distance between a fixed reference plate on which the sample rests and a parallel probe which exerts a specified load on the surface under test.
  • a precision counterbalanced micrometer which comprises two parallel and flat horizontal keys, between which a test specimen of the material of interest is placed.
  • the upper circular probe has an upper diameter of (35.7 ⁇ 0.1) mm, i.e. a nominal area of 10.0 cm 2 .
  • the pressure between the two micrometer keys is (2.0 ⁇ 0.1) kPa.
  • a starch grid further offers the advantage of being inexpensive.
  • the starch can be in the form of a starch suspension, which simplifies the deposition of the grid, the starch suspension being in fact relatively simple to use and distributing itself suitably over the surface of the layer. of cellulosic material.
  • the starch suspension can be supplemented with a certain number of products, such as in particular rheology modifiers, pigments, plasticizers, surfactants in order to modulate or improve the properties thereof during the use of the grid or during its use.
  • Materials other than starch can be envisaged, without departing from the scope of the invention. These materials must, however, exhibit a shrinkage similar to starch, in order to be able to lead to an increase in the overall thickness. By shrinkage is meant the dimensional variations and associated phenomena observed during drying [3].
  • the degree of coverage of the reinforcing grid on the surface of the layer of cellulosic material is greater than or equal to 10%, preferably greater than or equal to 20%.
  • the coverage rate of the reinforcing grid can be defined as being the ratio between the surface portion of the layer of cellulosic material which is covered by the reinforcing grid, and the portion of said surface which is free, that is to say - say not covered by said reinforcing grid.
  • the degree of coverage of the reinforcing grid on the surface of the layer of cellulosic material is less than or equal to 60%, preferably less than or equal to 50%.
  • a coverage rate greater than 60% does not further improve the out-of-plane mechanical properties, in addition to significantly stiffening the composite material formed, especially in the plane, which is not necessarily desirable depending on the subsequent application of the composite material. .
  • a coverage rate of less than 60% but greater than 50% improves very little the out-of-plane mechanical properties and stiffens the composite material in the plane.
  • the coverage rate is between 10% and 60%, preferably between 10% and 50%, and more preferably between 20% and 50%. These coverage rates make it possible to have a good compromise between an improvement in the overall thickness and in the bending and torsional strength, and the cost of manufacturing the cellulosic composite material using a moderate amount of reinforcing grid composition. .
  • the reinforcing grid is deposited on the layer of paper preferably by screen printing, three-dimensional printing, intaglio, flexography, or spraying via one or more nozzles.
  • Screen printing is a printing technique using as a printing form a canvas, also called a screen, the meshes of which are sealed on the areas which should not be printed.
  • the ink is deposited on the back of the canvas and a doctor blade system makes it possible to force the passage of the ink through the unblocked mesh of the canvas and come into contact with the material to be printed.
  • This technique is advantageous for the deposition of reinforcing grid, since it uses inks of medium viscosities (viscosities between 500 and 5000 mPa.s) and allows to carry out localized deposits which can range from 5 to 120 pm of ink thickness. before drying.
  • hollows are engraved in the printing form (usually a metal plate).
  • the plate is coated with ink and then scraped to leave ink only in the hollows of the printer form.
  • This printing form is pressed onto the paper to allow ink to transfer from the recesses of the printing form to the surface of the sheet.
  • This process is particularly advantageous for depositing ink thicknesses of 10 to 60 ⁇ m before drying, but requires a particularly viscous ink (viscosity between 10,000 and 25,000 mPa.s) and exerts a pressure constraint on the transfer reducing the thickness of the cellulose layer.
  • Flexography makes it possible to print the reinforcing grid using a flexible printing form in relief.
  • the reinforcing grid preferably represents an increase in basis weight after drying of between 2 and 50 g / m 2 , preferably between 5 and 20 g / m 2 . In other words, this corresponds to the amount of reinforcing grid that is positioned on the surface of the layer of cellulosic material.
  • the grid wires preferably have a width in the plane of the grid of between 0.1 mm and 3 mm, preferably between 0.5 mm and 2.5 mm.
  • the meshes of the reinforcing grid can have various patterns. It can be, for example, a square, rectangular, hexagonal, honeycomb type, bow tie type, or even sinusoidal pattern.
  • the reinforcement grid comprises hexagonal pattern meshes.
  • the hexagon has six parallel sides two by two and of the same length, denoted b, equal to 5 mm.
  • the thickness of the threads forming the mesh, denoted e, is equal to 1 mm.
  • the reinforcing grid comprises meshes with a pattern of the bow tie or hourglass type.
  • the length L of a lateral side of the bow tie is equal to 6 mm
  • the length H of the base is equal to 12 mm
  • the angle Q between the base and the lateral side is equal to 45 °
  • the thickness e of the wires forming the mesh is equal to 0.8 mm.
  • the length L of a lateral side of the bow tie is equal to 5 mm
  • the length H of the base is equal to 10 mm
  • the angle Q between the base and the lateral side is equal to 60 °
  • the thickness e of the wires forming the mesh is equal to 0.8 mm.
  • the reinforcing grid comprises meshes with a sinusoidal type pattern.
  • Each stitch is formed by two warp threads which extend opposite one another on the other in a substantially vertical direction, the curvature of one thread being reversed with respect to that of the other thread, and by two weft threads which extend opposite one another. another in a substantially horizontal direction, the curvature of one wire being reversed with respect to that of the other wire.
  • the curved deviation, denoted a, of each wire with respect to an equivalent straight wire is equal to 1.5 mm
  • the space I between two opposite sides of the equivalent square is equal to 5 mm
  • the thickness e of the wires forming the mesh is equal to 0.8 mm.
  • the curved deviation, denoted a, of each wire with respect to an equivalent straight wire is equal to 1.8 mm
  • the space I between two opposite sides of the equivalent square is equal to 6 mm
  • the thickness e of the wires forming the mesh is equal to 1 mm.
  • the invention also relates to a process for manufacturing a cellulosic composite material as described above.
  • the method comprises a step consisting in depositing the reinforcing grid on at least one surface of the cellulosic material.
  • the deposition of the grid is carried out by screen printing, three-dimensional printing, intaglio, flexography, or spraying via one or more nozzles.
  • the composition of the reinforcing grid comprises at least one starch suspension having a dry matter content of between 5% and 65% by weight during the deposition of the reinforcing grid.
  • Example 1 determination of the flexural strength of cellulosic composite materials comprising reinforcing grids at different coverage rates
  • a rectangular mesh reinforcement grid was printed by screen printing on a paper of 55 g / m 2 of dry basis weight, to obtain the corresponding cellulosic composite material.
  • the grid is shown in Figure 4.
  • the thickness of the grid is 20 ⁇ m for a line width, denoted a, between 0.25 mm and 2.5 mm depending on the percentage of coverage between 20% and 75%.
  • the medians of the lines are spaced from each other by 5 mm.
  • the grid has a dimension of 300 mm by 200 mm.
  • the obtained cellulose composite material was dried in an oven at a temperature of 60 ° C for 1 minute and 30 seconds.
  • the results obtained with the reinforcing grid based on low molecular weight dextrin are illustrated in FIG. 5.
  • the graph of FIG. 5 shows the flexural strength (mNm) at 15 ° as a function of the degree of coverage (%). Photographs illustrate the surface appearance of the composite material obtained.
  • the flexural strength of the material measured according to the ISO 2493-1: 2010 standard, goes from 0.07 mNm (zero coverage rate, no reinforcement grid) in the running direction, also known as the machine direction and noted MD, at 0.22 mNm for the cellulosic composite material exhibiting a coverage rate of 50%.
  • the flexural strength increases from 0.04 mNm to 0.12 mNm.
  • the results obtained with the reinforcing grid based on the mixture of 90% dextrin and 10% waxy-type starch are illustrated in FIG. 6, and are similar to those of FIG. 5.
  • the graph of FIG. 6 shows the resistance in flexion (mNm) at 15 ° depending on the coverage rate (%).
  • the flexural strength of the material goes from 0.07 mNm (zero coverage rate, no reinforcement grid) in the MD travel direction, to 0.21 mNm for the cellulose composite material with a coverage rate of 50%.
  • Example 2 determination of the flexural strength of cellulosic composite materials comprising reinforcing grids having different patterns
  • the cellulose composite materials are as follows: material (a): Gerstar TM material without grid, - material (b): rectangular grid, material (c): rectangular grid with a coverage rate of 51%, material (d): honeycomb type hexagonal grid, material (e): bowtie type hexagonal grid, the angle Q between the base and the side side is 45 °, - material (f): bowtie type hexagonal grid, the angle Q between the base and the lateral side is equal to 60 °, and the thickness e of the wire is 1 mm, material (g): hexagonal bow-tie type grid, the angle Q between the base and the side lateral is equal to 60 °, and the thickness e of the wire is 0.8 mm, material (h): sinusoidal grid, the thickness e of the wire is 1 mm, material (i): sinusoidal grid, the thickness e of the wire is 0.8 mm
  • the results are represented in the form of a graph on the figure 7.
  • the graph of figure 7 shows the flexural
  • the improvement in flexural strength of the cellulosic composite material is generally greater with the honeycomb-type grid (d), bowtie-type hexagonal grid (f) grid materials of thickness 1 mm, and with a sinusoidal grid (h) of thickness 1 mm, compared to materials with orthogonal grid.
  • Example 3 determination of the flexural strength of cellulosic composite materials comprising reinforcing grids of different materials
  • Eight cellulosic composite materials comprising grids made from several different compositions, and having meshes of an identical pattern to sinusoidal hexagonal meshes, were tested to determine their flexural strength. The coverage rate is approximately 30% for the eight materials. All eight composite materials include the same cellulosic material: Gerstar TM flexible packaging material.
  • compositions of the different grids are as follows: material (a): Gerstar TM material without grid, material (b): polyvinyl alcohol grid (PVOH), material (c): water grid, material (d): starch grid hydroxypropyl, material (e): grid mixture 90% dextrin and 10% waxy starch, material (f): grid mixture 85% dextrin and 15% waxy starch, material (g): grid mixture 80% dextrin and 20% waxy starch, material (h): dextrin grid.
  • the results are shown as a graph in Figure 8.
  • the graph in Figure 8 shows the flexural strength (mNm) as a function of the different materials.
  • the overall thickness (mm) of the different cellulosic materials is shown in Figure 9, and the basis weight (g / m 2 ) of the different cellulosic materials is shown in Figure 10.
  • the measurements are made in the MD machine direction as well as in the CD cross direction.
  • FIG. 11A A photograph of the composite material obtained by depositing the starch grid is shown in Figure 11A.
  • Figure 11B A grazing view photograph of this same material is shown in Figure 11B.
  • the PVOH and water grids give poorer results than starches: the gain in flexural strength compared to the reference is relatively low. This is because the synergistic effect observed for the starch grids does not occur. There is only a local increase in material thickness at the deposition areas of the grids due to the deposition of material.
  • a starch grid was also placed on other cellulosic materials: slap paper and blotting paper.
  • the results are shown in the graphs of Figures 12 and 13.
  • the graph of Figure 12 shows the flexural strength (mNm) as a function of the different materials.
  • the graph in Figure 13 shows the overall thickness (mm) depending on the different materials.
  • Clq and (e) Clq correspond to the uncoated tracing paper (a) and covered with the grid in a mixture of 90% dextrin and 10% waxy starch (e) respectively
  • Bvd and (e) Bvd correspond to the blotting paper not covered with the grid (a) and covered with the grid in a mixture of 90% dextrin and 10% waxy starch (e) respectively.

Landscapes

  • Laminated Bodies (AREA)
  • Paper (AREA)

Abstract

The present invention relates to a composite cellulose material, comprising: - a layer of a cellulose material, - a starch-based reinforcement grid which is positioned on at least one surface of the layer of cellulose material, the reinforcement grid comprising a plurality of meshes which are delimited by grid wires, the composite cellulose material having a relief in three dimensions comprising folds in the positioning zones of the reinforcement grid, and relief bumps on either side of the plane of the grid which are delimited by the folds.

Description

MATERIAU COMPOSITE CELLULOSIQUE ET PROCEDE DE FABRICATION D’UN TEL MATERIAU CELLULOSIC COMPOSITE MATERIAL AND METHOD FOR MANUFACTURING SUCH MATERIAL
DOMAINE TECHNIQUE DE L'INVENTION TECHNICAL FIELD OF THE INVENTION
La présente invention concerne un matériau composite cellulosique, différents produits fabriqués dans un tel matériau tels qu’un emballage pour produits alimentaires, cosmétiques ou pharmaceutiques, des papiers pour sacs, sachets et poches, une âme pour des panneaux « sandwich » alvéolaires ou structure multi-plis essuie-tout ou papier toilette, ou encore du papier peint, papiers imprimés à usages promotionnels tels que des papiers pour affiche, pour encart, insert ou prospectus, des papiers à usage domestique tels que des nappes en papier, des articles de papeterie tels que des couvertures de livre ou une enveloppe par exemple, ainsi qu’un procédé de fabrication d’un tel matériau. The present invention relates to a cellulosic composite material, various products made from such a material such as packaging for food, cosmetic or pharmaceutical products, papers for bags, sachets and pouches, a core for cellular “sandwich” panels or multi-structure. - paper towels or toilet paper, or even wallpaper, printed papers for promotional purposes such as poster papers, for inserts, inserts or leaflets, papers for household use such as paper tablecloths, stationery articles such as book covers or an envelope for example, as well as a method of manufacturing such a material.
ETAT DE LA TECHNIQUE STATE OF THE ART
Les structures ou armatures de type grille sont largement présentes dans la nature, notamment dans les feuilles de certains végétaux où elles soutiennent le corps des feuilles, ou bien dans les ailes de certains insectes. L’homme s’en est inspiré pour élaborer des structures plaques ou coques utilisées dans de nombreux secteurs industriels, notamment dans les transports (marine, nautisme, aéronautique, aérospatial) et le génie civil. Grid-type structures or frames are widely present in nature, in particular in the leaves of certain plants where they support the body of the leaves, or else in the wings of certain insects. Man was inspired by it to develop plate or shell structures used in many industrial sectors, particularly in transport (marine, nautical, aeronautics, aerospace) and civil engineering.
Ces structures sont constituées d’une peau et d’un réseau de nervures de renfort s’étendant sur une surface de la peau, présentent un intérêt pour les applications qui requièrent à la fois rigidité, solidité et légèreté. Cette disposition permet de mettre la matière là où elle est nécessaire : lorsqu’une telle structure est sollicitée en torsion ou en flexion, la peau travaille essentiellement en mode de déformation dit de membrane, tandis que le réseau de nervures travaille essentiellement en flexion/torsion. Il est ainsi possible d'obtenir des pièces, le plus souvent sous forme de panneaux ultralégers plans ou courbés présentant de très bonnes propriétés mécaniques spécifiques (c’est-à-dire rapportées à leur masse volumique). These structures consist of a skin and a network of reinforcing ribs extending over a surface of the skin, and are of interest for applications that require rigidity, strength and lightness. This arrangement makes it possible to put the material where it is needed: when such a structure is stressed in torsion or in bending, the skin works essentially in so-called membrane deformation mode, while the network of ribs works mainly in bending / torsion. . It is thus possible to obtain parts, most often in the form of ultralight flat or curved panels with very good specific mechanical properties (that is to say in relation to their density).
Les propriétés mécaniques de déformation en flexion (courbure de la structure) et en torsion (vrillage de la structure), ainsi que le comportement au flambement des structures nervurées sont notamment déterminées par la géométrie du réseau de nervures. L’optimisation de ces propriétés passe par le développement de géométries adaptées aux sollicitations [1]. Par exemple, des motifs géométriques spécifiques peuvent conférer un comportement auxétique [2], c’est-à-dire présentant un coefficient de Poisson négatif, aux structures qu’ils constituent et améliorer sensiblement certaines de leurs propriétés géométriques et mécaniques. The mechanical properties of deformation in bending (curvature of the structure) and in torsion (twisting of the structure), as well as the buckling behavior of the ribbed structures are in particular determined by the geometry of the network of ribs. The optimization of these properties involves the development of geometries adapted to the stresses [1]. For example, specific geometric patterns can confer auxetic behavior [2], i.e. exhibiting a negative Poisson's ratio, to the structures they constitute and significantly improve some of their geometric and mechanical properties.
Ces structures nervurées trouvent notamment une application dans l’industrie papetière. Le document FR 2250 853 décrit à ce sujet un procédé pour améliorer les propriétés mécaniques d’une feuille de papier. Ce procédé consiste à former dans la feuille de papier une armature constituée d’un réseau régulier de lignes minces continues d’un liant couramment utilisé dans l’industrie papetière. Le liant, notamment un alcool polyvinylique ou un caoutchouc, pénètre dans la feuille de papier, et conduit à la formation d’une armature au cœur de la feuille de papier. L’armature, intégrée dans la feuille de papier, confère à cette dernière une résistance à la traction accrue, tout en préservant la souplesse de la feuille, notamment en flexion et en torsion. Dans le document FR 2250 853, l’armature est formée dans la feuille de papier, au cœur de ladite feuille de papier. La feuille de papier à armature qui en résulte présente des propriétés mécaniques dans le plan de la feuille améliorées, notamment une meilleure résistance en traction. En revanche, les propriétés mécaniques hors du plan de la feuille, telles que la résistance en flexion et en torsion, restent inchangées et donc faibles puisqu’elles correspondent approximativement à celles de la feuille de papier initiale. La feuille de papier à armature n’est donc pas rigide, et de ce fait, n’est pas adaptée pour une utilisation dans des domaines où le papier est fortement sollicité, en particulier selon des contraintes perpendiculaires au plan de la feuille de papier telles que la flexion ou la torsion. C’est notamment le cas lorsque le papier est utilisé pour la fabrication d’emballages, en particulier pour le transport ou le stockage de produits alimentaires. These ribbed structures find an application in particular in the paper industry. Document FR 2250 853 describes on this subject a process for improving the mechanical properties of a sheet of paper. This process consists in forming in the sheet of paper a reinforcement consisting of a regular network of continuous thin lines of a binder commonly used in the paper industry. The binder, in particular a polyvinyl alcohol or a rubber, penetrates into the sheet of paper, and leads to the formation of a reinforcement at the heart of the sheet of paper. The reinforcement, integrated into the sheet of paper, gives the latter an increased tensile strength, while preserving the flexibility of the sheet, in particular in bending and in torsion. In document FR 2250 853, the frame is formed in the sheet of paper, at the heart of said sheet of paper. The resulting sheet of reinforcing paper exhibits improved mechanical properties in the plane of the sheet, including improved tensile strength. On the other hand, the mechanical properties out of the plane of the sheet, such as the bending and torsional strength, remain unchanged and therefore low since they correspond approximately to those of the initial sheet of paper. The reinforcing sheet of paper is therefore not rigid, and therefore, is not suitable for use in areas where the paper is under high stress, in particular under stresses perpendicular to the plane of the sheet of paper such as bending or twisting. This is particularly the case when the paper is used for the manufacture of packaging, in particular for the transport or storage of food products.
BREVE DESCRIPTION DE L'INVENTION BRIEF DESCRIPTION OF THE INVENTION
Un but de l’invention est de proposer un matériau composite cellulosique permettant de surmonter les inconvénients décrits précédemment. L’invention vise notamment à proposer un tel matériau composite cellulosique comprenant une couche d’un matériau cellulosique, qui présente des propriétés mécaniques hors plan de la feuille, notamment la résistance en flexion et la résistance en torsion, accrues par rapport à ladite couche de matériau cellulosique seule. An aim of the invention is to provide a cellulosic composite material which makes it possible to overcome the drawbacks described above. The invention aims in particular to provide such a cellulosic composite material comprising a layer of a cellulosic material, which exhibits mechanical properties outside the plane of the sheet, in particular the bending strength and the torsional strength, which are increased with respect to said layer of cellulosic material alone.
L’invention vise tout particulièrement à fournir un tel matériau composite cellulosique adapté pour une utilisation dans des domaines où le papier est fortement sollicité, tout particulièrement mais non exclusivement pour la fabrication d’emballages pour produits alimentaires, cosmétiques ou pharmaceutiques, des papiers pour sacs, sachets et poches, une âme pour des panneaux « sandwich » alvéolaires ou structure multi-plis essuie-tout ou papier toilette, ou encore du papier peint, papiers imprimés à usages promotionnels tels que des papiers pour affiche, pour encart, insert ou prospectus, des papiers à usage domestique tels que des nappes en papier, des articles de papeterie tels que des couvertures de livre ou une enveloppe par exemple The invention aims most particularly to provide such a cellulosic composite material suitable for use in fields where paper is in high demand, very particularly but not exclusively for the manufacture of packaging for food, cosmetic or pharmaceutical products, paper for bags. , sachets and pockets, a core for honeycomb sandwich panels or multi-ply paper towel or toilet paper, or even wallpaper, printed papers for promotional uses such as poster, insert, insert or flyer papers , papers for household use such as paper tablecloths, stationery articles such as book covers or an envelope for example
A cette fin, l’invention propose un matériau composite cellulosique comprenant : une couche d’un matériau cellulosique, une grille de renfort à base d’amidon positionnée sur au moins une surface de la couche de matériau cellulosique, ladite grille de renfort comprenant une pluralité de mailles délimitées par des fils de grille, le matériau composite cellulosique présentant un relief en trois dimensions comprenant des plis au niveau des zones de positionnement de la grille de renfort, et des bosses en relief de part et d’autre du plan de la grille délimitées par les plis. To this end, the invention provides a cellulose composite material comprising: a layer of a cellulosic material, a starch-based reinforcing grid positioned on at least one surface of the layer of cellulosic material, said reinforcing grid comprising a plurality of meshes delimited by grid wires, the cellulosic composite material having a three-dimensional relief comprising folds at the level of the positioning zones of the reinforcement grid, and raised bumps on either side of the plane of the grid delimited by the folds.
Selon d’autres aspects, le matériau composite cellulosique selon l’invention présente les différentes caractéristiques suivantes prises seules ou selon leurs combinaisons techniquement possibles : le relief en trois dimensions présente une épaisseur hors tout supérieure à la somme des épaisseurs de la couche de matériau cellulosique et de la grille de renfort ; le taux de couverture de la grille de renfort sur la surface de la couche de matériau cellulosique est supérieur ou égal à 10%, de préférence supérieur ou égal à 20% ; le taux de couverture de la grille de renfort sur la surface de la couche de matériau cellulosique est inférieur ou égal à 60%, de préférence inférieur ou égal à 50% ; les fils de grille forment des mailles carrées ou rectangulaires ; les fils de grille forment des mailles hexagonales ; les fils de grille forment des mailles de type nid d’abeille ; les fils de grille forment des mailles de type nœud papillon ; un ou plusieurs fils de grille sont sinusoïdaux ; la grille de renfort est déposée sur la couche de papier par sérigraphie, impression en trois dimensions, taille douce, flexographie, ou pulvérisation via une ou plusieurs buses ; la grille de renfort est positionnée sur la surface de la couche de matériau cellulosique selon une quantité comprise entre 2 g/m2 et 50 g/m2 après séchage ; les fils de grille présentent une largeur dans le plan de la grille comprise entre 0,1 mm et 3 mm de préférence entre 0,5 mm et 2,5 mm ; le taux de couverture de la grille de renfort sur la surface de la couche de matériau cellulosique est compris entre 10% et 60%, de préférence entre 20% et 50%. According to other aspects, the cellulosic composite material according to the invention has the following different characteristics taken alone or according to their technically possible combinations: the three-dimensional relief has an overall thickness greater than the sum of the thicknesses of the layer of cellulosic material and the reinforcement grid; the degree of coverage of the reinforcing grid on the surface of the layer of cellulosic material is greater than or equal to 10%, preferably greater than or equal to 20%; the degree of coverage of the reinforcing grid on the surface of the layer of cellulosic material is less than or equal to 60%, preferably less than or equal to 50%; the grid wires form square or rectangular meshes; the grid wires form hexagonal meshes; the grid wires form honeycomb type meshes; the grid threads form bow-tie type stitches; one or more grid wires are sinusoidal; the reinforcing grid is deposited on the layer of paper by screen printing, three-dimensional printing, intaglio, flexography, or spraying via one or more nozzles; the reinforcing grid is positioned on the surface of the layer of cellulosic material in an amount between 2 g / m 2 and 50 g / m 2 after drying; the grid wires have a width in the plane of the grid of between 0.1 mm and 3 mm, preferably between 0.5 mm and 2.5 mm; the degree of coverage of the reinforcing grid on the surface of the layer of cellulosic material is between 10% and 60%, preferably between 20% and 50%.
L’invention se rapporte également à des articles fabriqués à partir du matériau composite cellulosique décrit précédemment. The invention also relates to articles made from the cellulosic composite material described above.
De tels articles peuvent être notamment, mais non exclusivement, un emballage flexible, tels qu’un emballage alimentaire par exemple, un papier peint, un panneau d’affichage, de préférence de type sandwich, ou encore une enveloppe. Un autre objet de l’invention concerne un procédé de fabrication d’un matériau composite cellulosique tel que décrit précédemment, à partir d’une couche d’un matériau cellulosique. Ce procédé est principalement caractérisé en ce qu’il comprend une étape consistant à déposer une grille de renfort à base d’amidon sur au moins une surface du matériau cellulosique, ladite grille de renfort comprenant une pluralité de mailles délimitées par des fils de grille, afin de former un relief en trois dimensions comprenant des plis au niveau des zones de positionnement de la grille de renfort, et des bosses en relief de part et d’autre du plan de la grille délimitées par les plis. Such articles can be in particular, but not exclusively, a flexible packaging, such as a food packaging for example, a wallpaper, a display panel, preferably of the sandwich type, or else an envelope. Another object of the invention relates to a method of manufacturing a cellulosic composite material as described above, from a layer of a cellulosic material. This method is mainly characterized in that it comprises a step consisting in depositing a starch-based reinforcing grid on at least one surface of the cellulosic material, said reinforcing grid comprising a plurality of meshes delimited by grid wires, in order to form a three-dimensional relief comprising folds at the level of the positioning zones of the reinforcing grid, and raised bumps on either side of the plane of the grid delimited by the folds.
Selon d’autres aspects, le procédé de fabrication selon l’invention présente les différentes caractéristiques suivantes prises seules ou selon leurs combinaisons techniquement possibles : la grille de renfort déposée sur le matériau cellulosique comprend une suspension d’amidon ; le dépôt de la grille est réalisé par sérigraphie, impression en trois dimensions, taille douce, flexographie, ou pulvérisation via une ou plusieurs buses ; la composition de la grille de renfort comprend au moins une suspension d’amidon présentant un taux de matière sèche compris entre 5% et 65% en poids lors du dépôt de la grille de renfort DESCRIPTION DES FIGURES According to other aspects, the manufacturing process according to the invention has the following different characteristics taken alone or according to their technically possible combinations: the reinforcing grid deposited on the cellulosic material comprises a starch suspension; the deposition of the grid is carried out by screen printing, three-dimensional printing, intaglio, flexography, or spraying via one or more nozzles; the composition of the reinforcing grid comprises at least one starch suspension having a dry matter content of between 5% and 65% by weight during the deposition of the reinforcing grid DESCRIPTION OF THE FIGURES
D’autres avantages et caractéristiques de l’invention apparaîtront à la lecture de la description suivante donnée à titre d’exemple illustratif et non limitatif, en référence aux figures annexées suivantes : Other advantages and characteristics of the invention will become apparent on reading the following description given by way of illustrative and non-limiting example, with reference to the following appended figures:
La figure 1 est un schéma d’une grille de renfort, dans laquelle les fils de grille forment des mailles hexagonales de type nid d’abeille ; Figure 1 is a diagram of a reinforcing grid, in which the grid threads form hexagonal honeycomb-type meshes;
La figure 2 est un schéma d’une grille de renfort, dans laquelle les fils de grille forment des mailles hexagonales de type nœud papillon ; Figure 2 is a diagram of a reinforcing grid, in which the grid threads form hexagonal bow-tie type meshes;
La figure 3 est un schéma d’une grille de renfort, dans laquelle l’ensemble des fils de grille constituant les mailles sont sinusoïdaux ; La figure 4 est un schéma d’une grille de renfort, dans laquelle les fils de grille sont orthogonaux deux à deux et forment des mailles carrées ; Figure 3 is a diagram of a reinforcing grid, in which all of the grid wires constituting the meshes are sinusoidal; Figure 4 is a diagram of a reinforcing grid, in which the grid wires are orthogonal in pairs and form square meshes;
La figure 5 est un graphe illustrant l’évolution de la résistance en flexion d’un matériau composite cellulosique selon l’invention, comprenant une feuille de papier et une grille de renfort à mailles carrées en amidon type dextrine, en fonction du taux de recouvrement de la feuille de papier par la grille ; FIG. 5 is a graph illustrating the evolution of the flexural strength of a cellulosic composite material according to the invention, comprising a sheet of paper and a reinforcing grid with square mesh of starch type dextrin, as a function of the coverage rate from the sheet of paper through the grid;
La figure 6 est un graphe illustrant l’évolution de la résistance en flexion d’un matériau composite cellulosique selon l’invention, comprenant une feuille de papier et une grille de renfort à mailles carrées en amidon type mélange dextrine et waxy, en fonction du taux de recouvrement de la feuille de papier par la grille ; FIG. 6 is a graph illustrating the evolution of the flexural strength of a cellulosic composite material according to the invention, comprising a sheet of paper and a grid of starch square mesh reinforcement of the dextrin and waxy mixture type, depending on the degree of coverage of the sheet of paper by the grid;
La figure 7 est un graphe illustrant la résistance en flexion du matériau composite cellulosique pour des grilles de renfort présentant différents motifs ; La figure 8 est un graphe illustrant la résistance en flexion de matériaux composites cellulosiques comprenant des grilles de renfort de compositions différentes ; FIG. 7 is a graph illustrating the flexural strength of the cellulosic composite material for reinforcing grids having different patterns; FIG. 8 is a graph illustrating the flexural strength of cellulosic composite materials comprising reinforcing grids of different compositions;
La figure 9 est un graphe illustrant l’épaisseur hors tout des matériaux composites d’après le graphe de la figure 8 ; Figure 9 is a graph illustrating the overall thickness of composite materials from the graph of Figure 8;
La figure 10 est un graphe illustrant la quantité ou grammage des matériaux composites d’après le graphe de la figure 8 ; Figure 10 is a graph illustrating the quantity or basis weight of composite materials from the graph of Figure 8;
La figure 11A est une photographie du dessus d’un matériau composite obtenu par dépôt d’une grille de renfort en amidon sur une couche en matériau cellulosique Gerstar™ ; FIG. 11A is a top photograph of a composite material obtained by depositing a starch reinforcing grid on a layer of Gerstar ™ cellulosic material;
La figure 11 B est une photographie rasante du dessus du matériau composite de la figure 11A ; La figure 12 est un graphe illustrant la résistance en flexion de matériaux composites obtenus par dépôt d’une grille de renfort en amidon sur du papier calque et sur du papier buvard ; Figure 11B is a top grazing photograph of the composite material of Figure 11A; FIG. 12 is a graph illustrating the flexural strength of composite materials obtained by depositing a starch reinforcing grid on tracing paper and on blotting paper;
La figure 13 est un graphe illustrant l’épaisseur hors-tout des matériaux composites d’après le graphe de la figure 12 ; La figure 14 est un schéma illustrant la détermination de l’épaisseur hors tout. Figure 13 is a graph illustrating the overall thickness of composite materials from the graph of Figure 12; Figure 14 is a diagram illustrating the determination of the overall thickness.
DESCRIPTION DETAILLEE DE MODES DE REALISATION DE L’INVENTIONDETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
L’invention concerne un matériau composite cellulosique comprenant une couche d’un matériau cellulosique et une grille de renfort positionnée sur au moins une surface de la couche de matériau cellulosique. La grille de renfort peut être déposée sur l’ensemble de cette surface, ou sur une partie seulement de cette surface. Un tel matériau composite cellulosique permet de fabriquer des emballages, tout particulièrement pour des produits alimentaires. The invention relates to a cellulosic composite material comprising a layer of cellulosic material and a reinforcing grid positioned on at least one surface of the layer of cellulosic material. The reinforcing grid can be deposited on the whole of this surface, or on only part of this surface. Such a cellulosic composite material makes it possible to manufacture packaging, most particularly for food products.
On précise qu’un « matériau composite » correspond à une combinaison d’au moins deux composants non miscibles. Un effet de synergie est obtenu par une telle combinaison, de sorte qu’un matériau composite possède des propriétés, notamment mécaniques, que chacun des composants seuls ne possède pas, ou possède à un degré inférieur au matériau composite. En l’espèce, le premier composant du matériau composite cellulosique est la couche d’un matériau cellulosique, et le second composant est la grille de renfort. La couche de matériau cellulosique forme la matrice du matériau composite cellulosique. Une telle matrice assure la cohésion de la structure du matériau composite cellulosique, et transmet les efforts exercés sur ce dernier vers la grille de renfort. La grille de renfort est un renfort du matériau composite cellulosique, et assure une bonne tenue mécanique de celui-ci. It is specified that a “composite material” corresponds to a combination of at least two immiscible components. A synergistic effect is obtained by such a combination, so that a composite material has properties, in particular mechanical properties, that each of the components alone does not have, or has to a lesser degree than the composite material. In this case, the first component of the cellulosic composite material is the layer of a cellulosic material, and the second component is the reinforcing grid. The layer of cellulosic material forms the matrix of the cellulosic composite material. Such a matrix ensures the cohesion of the structure of the cellulose composite material, and transmits the forces exerted on the latter to the reinforcing grid. The reinforcing grid is a reinforcement of the cellulose composite material, and ensures good mechanical strength thereof.
Le dépôt de la couche de renfort en surface de la couche en matériau cellulosique permet ainsi d’améliorer les propriétés mécaniques spécifiques hors du plan de ladite couche en matériau cellulosique, en augmentant en particulier sa résistance en flexion ainsi que sa résistance en torsion. The deposition of the reinforcing layer on the surface of the layer of cellulosic material thus makes it possible to improve the specific mechanical properties out of the plane of said layer of cellulosic material, in particular by increasing its flexural strength as well as its torsional strength.
La couche de matériau cellulosique est de préférence une feuille de papier. The layer of cellulosic material is preferably a sheet of paper.
De préférence, la feuille de papier présente un grammage compris entre 13 g/m2 et 140 g/m2, de préférence entre 30 g/m2 et 90 g/m2. Ces gammes de grammage correspondent à une feuille de papier relativement souple, typiquement des feuilles destinées à la fabrication d’emballages flexibles tels que des poches, sacs et sachets, qui sont particulièrement préférées pour la réalisation du matériau composite cellulosique de l’invention. Preferably, the sheet of paper has a basis weight of between 13 g / m 2 and 140 g / m 2 , preferably between 30 g / m 2 and 90 g / m 2 . These grammage ranges correspond to a relatively flexible sheet of paper, typically sheets intended for the manufacture of flexible packaging such as pouches, bags and sachets, which are particularly preferred for making the cellulosic composite material of the invention.
La grille de renfort comprend une pluralité de mailles délimitées par des fils de grille.The reinforcing grid comprises a plurality of meshes delimited by grid wires.
La grille de renfort comprend de l’amidon. The reinforcement grid includes starch.
L’amidon peut être de l’amidon natif ou de l’amidon modifié, par exemple une dextrine.The starch can be native starch or modified starch, for example dextrin.
L’amidon est un polymère de glucose, généralement un mélange d’amylopectine (ramifié) et d’amylose (linéaire), naturellement présent dans de nombreux végétaux. Dans l'état de l'art, deux stratégies de modification de l'amidon sont habituellement mises en oeuvre industriellement : la conversion acide ou enzymatique de l'amidon afin de générer des polymères de plus faible masse moléculaire, par exemple les dextrines, et la modification chimique de l'amidon, par réaction des groupes hydroxyles de l'amidon avec des agents fonctionnels pour introduire des groupes de substitution. Il s'agit par exemple notamment d'amidons tels que les éthers d'hydroxypropyle ou amidon hydroxypropylé. Starch is a polymer of glucose, usually a mixture of amylopectin (branched) and amylose (linear), naturally present in many plants. In the state of the art, two starch modification strategies are usually implemented industrially: the acidic or enzymatic conversion of starch in order to generate polymers of lower molecular mass, for example dextrins, and chemical modification of starch, by reacting the hydroxyl groups of the starch with functional agents to introduce substitution groups. They are, for example, in particular starches such as hydroxypropyl ethers or hydroxypropyl starch.
L’amidon natif ou modifié peut être associé à d’autres constituants dans la grille de renfort. The native or modified starch can be combined with other constituents in the reinforcing grid.
Suite au dépôt de la grille en amidon en surface de la couche en matériau cellulosique, l’amidon se rétracte lorsqu’il sèche. De manière étonnante, les forces de retrait exercées lors du séchage de la formulation à base d’amidon préalablement déposée en surface de la couche cellulosique conduisent à un gradient de déformation dans l’épaisseur de la couche cellulosique. Cette déformation se trouve favorisée par le remouillage de la couche cellulosique qui se produit entre la dépose de la grille et la fin du séchage. Il se forme alors un pli, que l’on peut également appeler « pli vallée » en ce qu’une vallée est formée dans le pli sur la face sur laquelle a été déposée la grille de renfort, aux endroits où se produit la rétraction de l’amidon, c’est-à-dire au niveau des zones de dépôt de la grille. Ces plis forment avec le plan de la surface de la couche cellulosique un angle qui dépend en particulier de la largeur des lignes (ou fils) de grille et de la quantité déposée. Le terme « pli vallée » est un terme courant en origami qui décrit bien la situation présente. La formation de ces plis au niveau de la grille de renfort forme un relief en trois dimensions, relativement homogène, dû à la déformation du matériau cellulosique situé entre les plis pour former des bosses ou « pics » en relief de part et d’autre du plan de la grille. Cette déformation augmente l’épaisseur dite « hors tout » du matériau composite formé, ainsi que ses propriétés mécaniques hors plan, notamment la résistance en flexion et en torsion. Following the deposition of the starch grid on the surface of the layer of cellulosic material, the starch shrinks when it dries. Surprisingly, the shrinkage forces exerted during the drying of the starch-based formulation previously deposited on the surface of the cellulosic layer lead to a deformation gradient in the thickness of the cellulosic layer. This deformation is favored by the rewetting of the cellulose layer which occurs between the removal of the grid and the end of drying. A fold is then formed, which can also be called a "valley fold" in that a valley is formed in the fold on the face on which the reinforcing grid has been deposited, at the places where the retraction of the grid occurs. starch, that is to say at the level of the deposit zones of the grid. These folds form with the plane of the surface of the cellulosic layer an angle which depends in particular on the width of the grid lines (or wires) and on the quantity deposited. The term "valley fold" is a common term in origami that describes the present situation well. The formation of these folds at the level of the reinforcing grid forms a three-dimensional relief, relatively homogeneous, due to the deformation of the cellulosic material located between the folds to form bumps or "peaks" in relief on either side of the grid plan. This deformation increases the so-called “overall” thickness of the composite material formed, as well as its out-of-plane mechanical properties, in particular the bending and torsional strength.
Plus précisément, on entend par « épaisseur hors tout » la distance entre les plans tangents aux surfaces rugueuses supérieure et inférieure de la couche cellulosique, et parallèles entre eux. La détermination de l’épaisseur hors tout, notée Ep, est illustrée sur la figure 14. More precisely, the term “overall thickness” is understood to mean the distance between the planes tangent to the upper and lower rough surfaces of the cellulosic layer, and mutually parallel. The determination of the overall thickness, denoted Ep, is illustrated in Figure 14.
Le dépôt de la grille d’amidon en surface de la couche cellulosique permet ainsi d’obtenir un effet de synergie : une augmentation locale d’épaisseur, au niveau des zones de dépôt de la grille, du fait de l’ajout local de matière (l’amidon), ainsi qu’un effet supplémentaire d’augmentation de l’épaisseur hors tout, qui se produit de manière plus globale sur la couche cellulosique, et de manière plus importante au niveau des zones de dépôt de la grille, selon le gradient de déformation dans l’épaisseur de ladite couche cellulosique. Autrement dit, l’épaisseur du matériau composite obtenu est supérieure à la somme des épaisseurs de la couche de matériau cellulosique et de la grille de renfort. The deposition of the starch grid on the surface of the cellulosic layer thus makes it possible to obtain a synergistic effect: a local increase in thickness, at the level of the deposit zones of the grid, due to the local addition of material. (starch), as well as an additional effect of increasing the overall thickness, which occurs more globally on the cellulosic layer, and more importantly at the level of the deposition zones of the grid, according to the strain gradient in the thickness of said cellulosic layer. In other words, the thickness of the composite material obtained is greater than the sum of the thicknesses of the layer of cellulosic material and of the reinforcing grid.
Cette augmentation d’épaisseur hors tout se traduit par une amélioration des propriétés mécaniques hors plan du matériau composite, notamment sa résistance en flexion et en torsion, plus importante que ce qui était attendu initialement par le demandeur, et qui serait obtenue par la seule augmentation locale d’épaisseur due à l’ajout de matière. This increase in overall thickness results in an improvement in the out-of-plane mechanical properties of the composite material, in particular its flexural and torsional strength, which is greater than what was initially expected by the applicant, and which would be obtained by the increase alone. local thickness due to the addition of material.
La mesure de l’épaisseur hors tout est réalisée selon la norme IS012625-3, comme étant la distance entre une plaque de référence fixe sur laquelle repose l’échantillon et un palpeur parallèle qui exerce une charge spécifiée sur la surface soumise à essai. The overall thickness measurement is performed according to the IS012625-3 standard, as the distance between a fixed reference plate on which the sample rests and a parallel probe which exerts a specified load on the surface under test.
On utilise un micromètre à contrepoids de précision qui comprend deux touches horizontales parallèles et planes, entre lesquelles on place une éprouvette du matériau d’intérêt. Le palpeur circulaire supérieur présente un diamètre supérieur de (35,7 ± 0,1) mm, soit une surface nominale de 10,0 cm2. La pression entre les deux touches du micromètre est de (2,0 ± 0,1 ) kPa. A precision counterbalanced micrometer is used which comprises two parallel and flat horizontal keys, between which a test specimen of the material of interest is placed. The upper circular probe has an upper diameter of (35.7 ± 0.1) mm, i.e. a nominal area of 10.0 cm 2 . The pressure between the two micrometer keys is (2.0 ± 0.1) kPa.
Une grille en amidon offre de plus l’avantage d’être peu coûteuse. L’amidon peut se présenter sous la forme d’une suspension d’amidon, ce qui simplifie le dépôt de la grille, la suspension d’amidon étant en effet relativement simple à mettre en oeuvre et se répartissant convenablement sur la surface de la couche de matériau cellulosique. La suspension d’amidon peut être additivée d’un certain nombre de produits, tels que notamment des modificateurs de rhéologie, pigments, plastifiants, tensioactifs afin d’en moduler ou améliorer les propriétés lors de la mise en oeuvre de la grille ou lors de son usage. D’autres matériaux que l’amidon sont envisageables, sans sortir du cadre de l’invention. Ces matériaux doivent cependant présenter un retrait similaire à l’amidon, afin de pouvoir conduire à une augmentation de l’épaisseur hors tout. Par retrait, on entend les variations dimensionnelles et phénomènes associés observés lors de la dessiccation [3]. A starch grid further offers the advantage of being inexpensive. The starch can be in the form of a starch suspension, which simplifies the deposition of the grid, the starch suspension being in fact relatively simple to use and distributing itself suitably over the surface of the layer. of cellulosic material. The starch suspension can be supplemented with a certain number of products, such as in particular rheology modifiers, pigments, plasticizers, surfactants in order to modulate or improve the properties thereof during the use of the grid or during its use. Materials other than starch can be envisaged, without departing from the scope of the invention. These materials must, however, exhibit a shrinkage similar to starch, in order to be able to lead to an increase in the overall thickness. By shrinkage is meant the dimensional variations and associated phenomena observed during drying [3].
Le taux de couverture de la grille de renfort sur la surface de la couche de matériau cellulosique est supérieur ou égal à 10%, de préférence supérieur ou égal à 20%. The degree of coverage of the reinforcing grid on the surface of the layer of cellulosic material is greater than or equal to 10%, preferably greater than or equal to 20%.
Le taux de couverture de la grille de renfort peut être défini comme étant le rapport entre la portion de surface de la couche en matériau cellulosique qui est recouverte par la grille de renfort, et la portion de ladite surface qui est libre c’est-à-dire non recouverte par ladite grille de renfort. The coverage rate of the reinforcing grid can be defined as being the ratio between the surface portion of the layer of cellulosic material which is covered by the reinforcing grid, and the portion of said surface which is free, that is to say - say not covered by said reinforcing grid.
Avec un taux de couverture inférieur à 10%, la quantité de grille de renfort déposée est faible et plus difficilement mesurable et répétable. De plus, l’amélioration des propriétés mécaniques de rigidité hors plan, notamment la résistance en flexion et en torsion, est moindre. With a coverage rate of less than 10%, the amount of reinforcement grid deposited is low and more difficult to measure and repeat. In addition, there is less improvement in the out-of-plane mechanical stiffness properties, including bending and torsional strength.
Le taux de couverture de la grille de renfort sur la surface de la couche de matériau cellulosique est inférieur ou égal à 60%, de préférence inférieur ou égal à 50%. The degree of coverage of the reinforcing grid on the surface of the layer of cellulosic material is less than or equal to 60%, preferably less than or equal to 50%.
Un taux de couverture supérieur à 60% n’améliore pas davantage les propriétés mécaniques hors plan, en plus de rigidifier significativement le matériau composite formé, notamment dans le plan, ce qui n’est pas nécessairement souhaitable selon l’application ultérieure du matériau composite. Un taux de couverture inférieur à 60% mais supérieur à 50% n’améliore que très peu les propriétés mécaniques hors plan et rigidifie le matériau composite dans le plan. A coverage rate greater than 60% does not further improve the out-of-plane mechanical properties, in addition to significantly stiffening the composite material formed, especially in the plane, which is not necessarily desirable depending on the subsequent application of the composite material. . A coverage rate of less than 60% but greater than 50% improves very little the out-of-plane mechanical properties and stiffens the composite material in the plane.
Selon un mode de réalisation, le taux de couverture est compris entre 10% et 60%, de préférence entre 10% et 50%, et de manière davantage préférée compris entre 20% et 50%. Ces taux de couverture permettent d’avoir un bon compromis entre une amélioration de l’épaisseur hors tout et de la résistance en flexion et en torsion, et le coût de fabrication du matériau composite cellulosique en utilisant une quantité modérée de composition de grille de renfort. According to one embodiment, the coverage rate is between 10% and 60%, preferably between 10% and 50%, and more preferably between 20% and 50%. These coverage rates make it possible to have a good compromise between an improvement in the overall thickness and in the bending and torsional strength, and the cost of manufacturing the cellulosic composite material using a moderate amount of reinforcing grid composition. .
Avec un taux de couverture supérieur à 90%, la surface des zones non recouvertes par la grille de renfort serait insuffisante pour que puisse se former les bosses dans le matériau cellulosique. With a coverage rate greater than 90%, the area of the areas not covered by the reinforcing grid would be insufficient for the bumps to form in the cellulosic material.
La grille de renfort est déposée sur la couche de papier de préférence par sérigraphie, impression en trois dimensions, taille douce, flexographie, ou pulvérisation via une ou plusieurs buses. The reinforcing grid is deposited on the layer of paper preferably by screen printing, three-dimensional printing, intaglio, flexography, or spraying via one or more nozzles.
La sérigraphie est une technique d’impression utilisant comme forme imprimante une toile, aussi appelée écran, dont les mailles sont obturées sur les zones qui ne doivent pas être imprimées. L’encre est déposée au revers de la toile et un système de racle permet de forcer le passage de l’encre à travers les mailles non obturées de la toile et entrer en contact avec le matériau à imprimer. Cette technique est avantageuse pour le dépôt de grille de renfort, puisqu’elle utilise des encres de viscosités moyennes (viscosités entre 500 et 5000 mPa.s) et permet de réaliser des déposes localisées pouvant aller de 5 à 120pm d’épaisseur d’encre avant séchage. Screen printing is a printing technique using as a printing form a canvas, also called a screen, the meshes of which are sealed on the areas which should not be printed. The ink is deposited on the back of the canvas and a doctor blade system makes it possible to force the passage of the ink through the unblocked mesh of the canvas and come into contact with the material to be printed. This technique is advantageous for the deposition of reinforcing grid, since it uses inks of medium viscosities (viscosities between 500 and 5000 mPa.s) and allows to carry out localized deposits which can range from 5 to 120 pm of ink thickness. before drying.
Selon la technique de la taille douce, des creux sont gravés dans la forme imprimante (généralement une plaque de métal). La plaque est recouverte d’encre puis raclée pour laisser de l’encre uniquement dans les creux de la forme imprimante. Cette forme imprimante est pressée sur le papier pour permettre un transfert de l’encre des creux de la forme imprimante vers la surface de la feuille. Ce procédé est particulièrement avantageux pour déposer des épaisseurs d’encre de 10 à 60pm avant séchage, mais nécessite une encre particulièrement visqueuse (viscosité entre 10 000 et 25 000 mPa.s) et exerce une contrainte de pression au transfert réduisant l’épaisseur de la couche cellulosique. According to the intaglio technique, hollows are engraved in the printing form (usually a metal plate). The plate is coated with ink and then scraped to leave ink only in the hollows of the printer form. This printing form is pressed onto the paper to allow ink to transfer from the recesses of the printing form to the surface of the sheet. This process is particularly advantageous for depositing ink thicknesses of 10 to 60 μm before drying, but requires a particularly viscous ink (viscosity between 10,000 and 25,000 mPa.s) and exerts a pressure constraint on the transfer reducing the thickness of the cellulose layer.
La flexographie permet de réaliser l'impression de la grille de renfort en utilisant une forme imprimante souple en relief. Flexography makes it possible to print the reinforcing grid using a flexible printing form in relief.
La grille de renfort représente de préférence une augmentation de grammage après séchage comprise entre 2 et 50 g/m2, de préférence entre 5 et 20 g/m2. En d’autres termes, ceci correspond à la quantité de grille de renfort qui est positionnée sur la surface de la couche de matériau cellulosique. The reinforcing grid preferably represents an increase in basis weight after drying of between 2 and 50 g / m 2 , preferably between 5 and 20 g / m 2 . In other words, this corresponds to the amount of reinforcing grid that is positioned on the surface of the layer of cellulosic material.
Les fils de grille présentent de préférence une largeur dans le plan de la grille comprise entre 0,1 mm et 3 mm, de préférence entre 0,5 mm et 2,5 mm. The grid wires preferably have a width in the plane of the grid of between 0.1 mm and 3 mm, preferably between 0.5 mm and 2.5 mm.
Les mailles de la grille de renfort peuvent présenter des motifs divers. Il peut s’agir par exemple d’un motif carré, rectangulaire, hexagonal, de type nid d’abeille, de type nœud papillon, ou encore sinusoïdal. The meshes of the reinforcing grid can have various patterns. It can be, for example, a square, rectangular, hexagonal, honeycomb type, bow tie type, or even sinusoidal pattern.
Des exemples de motifs sont représentés sur les figures 1 , 2 et 3. Pour ces différents exemples, les mailles sont dimensionnées pour avoir un taux de couverture d’environ 30%. Examples of patterns are shown in Figures 1, 2 and 3. For these various examples, the meshes are sized to have a coverage rate of approximately 30%.
En référence à la figure 1 , la grille de renfort comprend des mailles à motif hexagonal. L’hexagone comprend six côtés parallèles deux à deux et de même longueur, notée b, égale à 5 mm. L’épaisseur des fils formant la maille, notée e, est égale à 1 mm. Referring to Figure 1, the reinforcement grid comprises hexagonal pattern meshes. The hexagon has six parallel sides two by two and of the same length, denoted b, equal to 5 mm. The thickness of the threads forming the mesh, denoted e, is equal to 1 mm.
En référence à la figure 2, la grille de renfort comprend des mailles à motif de type nœud papillon, ou sablier. With reference to FIG. 2, the reinforcing grid comprises meshes with a pattern of the bow tie or hourglass type.
Selon un premier exemple, la longueur L d’un côté latéral du nœud papillon est égale à 6 mm, la longueur H de la base est égale à 12 mm, l’angle Q entre la base et le côté latéral est égal 45°, et l’épaisseur e des fils formant la maille est égale à 0.8 mm. According to a first example, the length L of a lateral side of the bow tie is equal to 6 mm, the length H of the base is equal to 12 mm, the angle Q between the base and the lateral side is equal to 45 °, and the thickness e of the wires forming the mesh is equal to 0.8 mm.
Selon un deuxième exemple, la longueur L d’un côté latéral du nœud papillon est égale à 5 mm, la longueur H de la base est égale à 10 mm, l’angle Q entre la base et le côté latéral est égal 60°, et l’épaisseur e des fils formant la maille est égale à 0.8 mm. According to a second example, the length L of a lateral side of the bow tie is equal to 5 mm, the length H of the base is equal to 10 mm, the angle Q between the base and the lateral side is equal to 60 °, and the thickness e of the wires forming the mesh is equal to 0.8 mm.
En référence à la figure 3, la grille de renfort comprend des mailles à motif de type sinusoïdal. Chaque maille est formée par deux fils de chaîne qui s’étendent en vis-à-vis l’un de l’autre selon une direction sensiblement verticale, la courbure d’un fil étant inversé par rapport à celle de l’autre fil, et par deux fils de trame qui s’étendent en vis-à-vis l’un de l’autre selon une direction sensiblement horizontale, la courbure d’un fil étant inversé par rapport à celle de l’autre fil. With reference to FIG. 3, the reinforcing grid comprises meshes with a sinusoidal type pattern. Each stitch is formed by two warp threads which extend opposite one another on the other in a substantially vertical direction, the curvature of one thread being reversed with respect to that of the other thread, and by two weft threads which extend opposite one another. another in a substantially horizontal direction, the curvature of one wire being reversed with respect to that of the other wire.
Selon un premier exemple, la déviation courbe, notée a, de chaque fil par rapport à un fil droit équivalent est égale à 1,5 mm, l’espace I entre deux côtés opposés du carré équivalent est égal à 5 mm, et l’épaisseur e des fils formant la maille est égale à 0.8 mm. According to a first example, the curved deviation, denoted a, of each wire with respect to an equivalent straight wire is equal to 1.5 mm, the space I between two opposite sides of the equivalent square is equal to 5 mm, and the thickness e of the wires forming the mesh is equal to 0.8 mm.
Selon un deuxième exemple, la déviation courbe, notée a, de chaque fil par rapport à un fil droit équivalent est égale à 1 ,8 mm, l’espace I entre deux côtés opposés du carré équivalent est égal à 6 mm, et l’épaisseur e des fils formant la maille est égale à 1 mm. According to a second example, the curved deviation, denoted a, of each wire with respect to an equivalent straight wire is equal to 1.8 mm, the space I between two opposite sides of the equivalent square is equal to 6 mm, and the thickness e of the wires forming the mesh is equal to 1 mm.
L’invention se rapporte également à un procédé de fabrication d’un matériau composite cellulosique tel que décrit précédemment. The invention also relates to a process for manufacturing a cellulosic composite material as described above.
Le procédé comprend une étape consistant à déposer la grille de renfort sur au moins une surface du matériau cellulosique. The method comprises a step consisting in depositing the reinforcing grid on at least one surface of the cellulosic material.
Selon un mode de réalisation préféré, le dépôt de la grille est réalisé par sérigraphie, impression en trois dimensions, taille douce, flexographie, ou pulvérisation via une ou plusieurs buses. According to a preferred embodiment, the deposition of the grid is carried out by screen printing, three-dimensional printing, intaglio, flexography, or spraying via one or more nozzles.
De préférence, la composition de la grille de renfort comprend au moins une suspension d’amidon présentant un taux de matière sèche compris entre 5% et 65% en poids lors du dépôt de la grille de renfort. Preferably, the composition of the reinforcing grid comprises at least one starch suspension having a dry matter content of between 5% and 65% by weight during the deposition of the reinforcing grid.
EXEMPLES EXAMPLES
Exemple 1 : détermination de la résistance en flexion de matériaux composites cellulosiques comprenant des grilles de renfort à différents taux de couverture Example 1: determination of the flexural strength of cellulosic composite materials comprising reinforcing grids at different coverage rates
Une grille de renfort de maille rectangulaire a été imprimée par sérigraphie sur un papier de 55 g/m2 de grammage sec, pour obtenir le matériau composite cellulosique correspondant. La grille est représentée sur la figure 4. A rectangular mesh reinforcement grid was printed by screen printing on a paper of 55 g / m 2 of dry basis weight, to obtain the corresponding cellulosic composite material. The grid is shown in Figure 4.
L’épaisseur de la grille est de 20 pm pour une largeur de ligne, notée a, comprise entre 0,25 mm et 2,5 mm selon le pourcentage de couverture compris entre 20% et 75%. Les médianes des lignes sont écartées les unes des autres de 5 mm. La grille a une dimension de 300 mm par 200 mm. The thickness of the grid is 20 μm for a line width, denoted a, between 0.25 mm and 2.5 mm depending on the percentage of coverage between 20% and 75%. The medians of the lines are spaced from each other by 5 mm. The grid has a dimension of 300 mm by 200 mm.
Deux formulations ont été testées pour la grille de renfort : une dextrine, un mélange à base de 90% dextrine et 10% d’amidon type waxy (riche en amylopectine). Two formulations were tested for the reinforcing grid: a dextrin, a mixture based on 90% dextrin and 10% waxy starch (rich in amylopectin).
Le matériau composite cellulosique obtenu a été séché dans un four à une température de 60°C pendant 1 minute et 30 secondes. Les résultats obtenus avec la grille de renfort à base de dextrine de faible poids moléculaire sont illustrés sur la figure 5. Le graphe de la figure 5 montre la résistance en flexion (mNm) à 15° en fonction du taux de couverture (%). Des photographies illustrent l’aspect de surface du matériau composite obtenu. La résistance à la flexion du matériau, mesurée selon la norme ISO 2493-1 :2010, passe de 0,07 mNm (taux de couverture nul, absence de grille de renfort) dans le sens marche, dit également sens machine et noté MD, à 0,22 mNm pour le matériau composite cellulosique présentant un taux de couverture de 50%. The obtained cellulose composite material was dried in an oven at a temperature of 60 ° C for 1 minute and 30 seconds. The results obtained with the reinforcing grid based on low molecular weight dextrin are illustrated in FIG. 5. The graph of FIG. 5 shows the flexural strength (mNm) at 15 ° as a function of the degree of coverage (%). Photographs illustrate the surface appearance of the composite material obtained. The flexural strength of the material, measured according to the ISO 2493-1: 2010 standard, goes from 0.07 mNm (zero coverage rate, no reinforcement grid) in the running direction, also known as the machine direction and noted MD, at 0.22 mNm for the cellulosic composite material exhibiting a coverage rate of 50%.
Dans le sens travers, la résistance à la flexion passe de 0,04 mNm à 0,12 mNm. Les résultats obtenus avec la grille de renfort à base du mélange 90% dextrine et 10% d’amidon type waxy sont illustrés sur la figure 6, et sont similaires à ceux de la figure 5. Le graphe de la figure 6 montre la résistance en flexion (mNm) à 15° en fonction du taux de couverture (%). In the transverse direction, the flexural strength increases from 0.04 mNm to 0.12 mNm. The results obtained with the reinforcing grid based on the mixture of 90% dextrin and 10% waxy-type starch are illustrated in FIG. 6, and are similar to those of FIG. 5. The graph of FIG. 6 shows the resistance in flexion (mNm) at 15 ° depending on the coverage rate (%).
La résistance à la flexion du matériau, mesurée selon la norme ISO 2493-1 :2010, passe de 0,07 mNm (taux de couverture nul, absence de grille de renfort) dans le sens marche MD, à 0,21 mNm pour le matériau composite cellulosique présentant un taux de couverture de 50%. The flexural strength of the material, measured according to the ISO 2493-1: 2010 standard, goes from 0.07 mNm (zero coverage rate, no reinforcement grid) in the MD travel direction, to 0.21 mNm for the cellulose composite material with a coverage rate of 50%.
Dans le sens travers, la résistance à la flexion passe de 0,04 mNm à 0,13 mNm. Exemple 2 : détermination de la résistance en flexion de matériaux composites cellulosiques comprenant des grilles de renfort présentant différents motifs In the transverse direction, the flexural strength increases from 0.04 mNm to 0.13 mNm. Example 2: determination of the flexural strength of cellulosic composite materials comprising reinforcing grids having different patterns
Huit matériaux composites cellulosiques comprenant des grilles fabriquées à partir d’une même composition, et présentant des mailles de motifs différents, ont été testés afin de déterminer leur résistance en flexion. Ils sont comparés au matériau (a) ne comprenant pas de grille, qui est un papier d’emballage flexible commercialisé par la société Ahlstrom- Munksjo. Le taux de couverture est d’environ 30% pour les huit matériaux, sauf le matériau (c). Eight cellulosic composite materials comprising grids made from the same composition, and having meshes of different patterns, were tested to determine their flexural strength. They are compared to the material (a) not comprising a grid, which is a flexible wrapping paper marketed by the company Ahlstrom-Munksjo. The coverage rate is approximately 30% for all eight materials except material (c).
Les matériaux composites cellulosiques sont les suivantes : matériau (a) : matériau Gerstar™ sans grille, - matériau (b) : grille rectangulaire, matériau (c) : grille rectangulaire dont le taux de couverture est de 51%, matériau (d) : grille hexagonale de type nid d’abeille, matériau (e) : grille hexagonale de type nœud papillon, l’angle Q entre la base et le côté latéral est égal 45°, - matériau (f) : grille hexagonale de type nœud papillon, l’angle Q entre la base et le côté latéral est égal 60°, et l’épaisseur e du fil est de 1 mm, matériau (g) : grille hexagonale de type nœud papillon, l’angle Q entre la base et le côté latéral est égal 60°, et l’épaisseur e du fil est de 0.8 mm, matériau (h) : grille sinusoïdale, l’épaisseur e du fil est de 1 mm, matériau (i) : grille sinusoïdale, l’épaisseur e du fil est de 0.8 mm Les résultats sont représentés sous la forme d’un graphique sur la figure 7. Le graphe de la figure 7 montre la résistance en flexion (mNm) en fonction des différents matériaux. Les mesures sont réalisées dans le sens machine MD ainsi que dans le sens traversThe cellulose composite materials are as follows: material (a): Gerstar ™ material without grid, - material (b): rectangular grid, material (c): rectangular grid with a coverage rate of 51%, material (d): honeycomb type hexagonal grid, material (e): bowtie type hexagonal grid, the angle Q between the base and the side side is 45 °, - material (f): bowtie type hexagonal grid, the angle Q between the base and the lateral side is equal to 60 °, and the thickness e of the wire is 1 mm, material (g): hexagonal bow-tie type grid, the angle Q between the base and the side lateral is equal to 60 °, and the thickness e of the wire is 0.8 mm, material (h): sinusoidal grid, the thickness e of the wire is 1 mm, material (i): sinusoidal grid, the thickness e of the wire is 0.8 mm The results are represented in the form of a graph on the figure 7. The graph of figure 7 shows the flexural strength (mNm) as a function of the different materials. The measurements are carried out in the MD machine direction as well as in the transverse direction
CD. Des photographies illustrent l’aspect de surface des différents matériaux composites. CD. Photographs illustrate the surface appearance of the various composite materials.
D’après le graphique, on observe que l’amélioration en résistance en flexion du matériau composite cellulosique est généralement supérieure avec les matériaux à grille de type nid d’abeille (d), à grille hexagonale de type nœud papillon (f) d’épaisseur 1 mm, et à grille sinusoïdale (h) d’épaisseur 1 mm, comparativement aux matériaux à grille orthogonale. From the graph, it is observed that the improvement in flexural strength of the cellulosic composite material is generally greater with the honeycomb-type grid (d), bowtie-type hexagonal grid (f) grid materials of thickness 1 mm, and with a sinusoidal grid (h) of thickness 1 mm, compared to materials with orthogonal grid.
Exemple 3 : détermination de la résistance en flexion de matériaux composites cellulosiques comprenant des grilles de renfort en matériaux différents Example 3: determination of the flexural strength of cellulosic composite materials comprising reinforcing grids of different materials
Huit matériaux composites cellulosiques comprenant des grilles fabriquées à partir de plusieurs compositions différentes, et présentant des mailles d’un motif identique à mailles hexagonales sinusoïdales, ont été testés afin de déterminer leur résistance en flexion. Le taux de couverture est d’environ 30% pour les huit matériaux. Les huit matériaux composites comprennent le même matériau cellulosique : matériau d’emballage flexible Gerstar™. Eight cellulosic composite materials comprising grids made from several different compositions, and having meshes of an identical pattern to sinusoidal hexagonal meshes, were tested to determine their flexural strength. The coverage rate is approximately 30% for the eight materials. All eight composite materials include the same cellulosic material: Gerstar ™ flexible packaging material.
Les compositions des différentes grilles sont les suivantes : matériau (a) : matériau Gerstar™ sans grille, matériau (b) : grille en alcool polyvinylique (PVOH), matériau (c) : grille en eau, matériau (d) : grille en amidon hydroxypropylé, matériau (e) : grille en mélange 90% dextrine et 10% d’amidon waxy, matériau (f) : grille en mélange 85% dextrine et 15% d’amidon waxy, matériau (g) : grille en mélange 80% dextrine et 20% d’amidon waxy, matériau (h) : grille en dextrine. The compositions of the different grids are as follows: material (a): Gerstar ™ material without grid, material (b): polyvinyl alcohol grid (PVOH), material (c): water grid, material (d): starch grid hydroxypropyl, material (e): grid mixture 90% dextrin and 10% waxy starch, material (f): grid mixture 85% dextrin and 15% waxy starch, material (g): grid mixture 80% dextrin and 20% waxy starch, material (h): dextrin grid.
Les résultats sont représentés sous la forme d’un graphique sur la figure 8. Le graphe de la figure 8 montre la résistance en flexion (mNm) en fonction des différents matériaux. The results are shown as a graph in Figure 8. The graph in Figure 8 shows the flexural strength (mNm) as a function of the different materials.
L’épaisseur hors-tout (mm) des différents matériaux cellulosiques est représentée sur la figure 9, et le grammage (g/m2) des différents matériaux cellulosiques est représenté sur la figure 10. The overall thickness (mm) of the different cellulosic materials is shown in Figure 9, and the basis weight (g / m 2 ) of the different cellulosic materials is shown in Figure 10.
Les mesures sont réalisées dans le sens machine MD ainsi que dans le sens travers CD. The measurements are made in the MD machine direction as well as in the CD cross direction.
D’après le graphique de la figure 8, on observe que les cinq grilles en amidon aboutissent à un gain très important en résistance en flexion par rapport à la référence. Ceci s’explique par l’effet de synergie obtenu à la fois par une augmentation locale d’épaisseur du matériau, au niveau des zones de dépôt des grilles du fait de l’ajout local d’amidon, et d’un effet supplémentaire d’augmentation de l’épaisseur hors tout. From the graph of Figure 8, it is observed that the five starch grids result in a very significant gain in flexural strength compared to the reference. This is explained by the synergy effect obtained both by a local increase in the thickness of the material, at the level of the deposit zones of the grids due to the local addition of starch, and by an additional effect of increase in overall thickness.
Une photographie du matériau composite obtenu par dépôt de la grille d’amidon est représentée sur la figure 11A. Une photographie en vue rasante de ce même matériau est représentée sur la figure 11 B. A photograph of the composite material obtained by depositing the starch grid is shown in Figure 11A. A grazing view photograph of this same material is shown in Figure 11B.
Les grilles en PVOH et en eau donnent de moins bons résultats que les amidons : le gain en résistance en flexion par rapport à la référence est relativement faible. Ceci s’explique par le fait que l’effet de synergie observé pour les grilles en amidon ne se produit pas. Il se produit seulement une augmentation locale de l’épaisseur du matériau au niveau des zones de dépôt des grilles du fait du dépôt de matière. The PVOH and water grids give poorer results than starches: the gain in flexural strength compared to the reference is relatively low. This is because the synergistic effect observed for the starch grids does not occur. There is only a local increase in material thickness at the deposition areas of the grids due to the deposition of material.
Une grille d’amidon a également été déposée sur d’autres matériaux cellulosiques : papier claque et papier buvard. Les résultats sont représentés sur les graphes des figures 12 et 13. Le graphe de la figure 12 montre la résistance en flexion (mNm) en fonction des différents matériaux. Le graphe de la figure 13 montre l’épaisseur hors tout (mm) en fonction des différents matériaux. A starch grid was also placed on other cellulosic materials: slap paper and blotting paper. The results are shown in the graphs of Figures 12 and 13. The graph of Figure 12 shows the flexural strength (mNm) as a function of the different materials. The graph in Figure 13 shows the overall thickness (mm) depending on the different materials.
Sur ces figures, (a) Clq et (e) Clq correspondent au papier calque non recouvert (a) et recouvert de là grille en mélange de 90% dextrine et 10% d’amidon waxy (e) respectivement, et (a) Bvd et (e) Bvd correspondent au papier buvard non recouvert de la grille (a) et recouvert de là grille en mélange 90% dextrine et 10% d’amidon waxy (e) respectivement. In these figures, (a) Clq and (e) Clq correspond to the uncoated tracing paper (a) and covered with the grid in a mixture of 90% dextrin and 10% waxy starch (e) respectively, and (a) Bvd and (e) Bvd correspond to the blotting paper not covered with the grid (a) and covered with the grid in a mixture of 90% dextrin and 10% waxy starch (e) respectively.
On observe que le gain en résistance en flexion est similaire à celui obtenu avec le papier d’emballage flexible Gerstar™ du graphe de la figure 8. Cet effet est surprenant pour le papier buvard dans la mesure où, compte tenu des propriétés absorbantes de ce matériau, la suspension d’amidon pénètre partiellement dans l’épaisseur de la feuille. On aurait donc pu s’attendre à ce que les plis observés avec le papier Gerstar™ (qui n’est pas absorbant) ne se forment pas sur du papier buvard. It is observed that the gain in flexural strength is similar to that obtained with the flexible Gerstar ™ wrapping paper of the graph of figure 8. This effect is surprising for the blotting paper insofar as, taking into account the absorbent properties of this paper. material, the starch suspension partially penetrates into the thickness of the sheet. One would therefore have expected that the folds observed with Gerstar ™ paper (which is not absorbent) would not form on blotting paper.
REFERENCES [1]: D. Wang M. M. Abdallan & W. Zhang. Buckling optimization design of curved stiffeners for grid-stiffened composite structures. Composite Structures, vol. 159, p. 656- 666, 2017. REFERENCES [1]: D. Wang M. M. Abdallan & W. Zhang. Buckling optimization design of curved stiffeners for grid-stiffened composite structures. Composite Structures, vol. 159, p. 656-666, 2017.
[2]: A. Rafsanjani, D. Pasini. Bistable auxetic mechanical metamaterials inspired by ancient géométrie motifs. Extrême Mechanics Letters, vol. 9 p. 291-296, 2016. [3] : G. M. Laudone, G. P. Matthews and P. A. C. Gane, “Coating Shrinkage during[2]: A. Rafsanjani, D. Pasini. Bistable auxetic mechanical metamaterials inspired by ancient geometry patterns. Extreme Mechanics Letters, vol. 9 p. 291-296, 2016. [3]: G. M. Laudone, G. P. Matthews and P. A. C. Gane, “Coating Shrinkage during
Evaporation: Observation, Measurement and Modelling within a Network Structure,” Tappi 8th Advanced Coating Fundamentals Symposium, Chicago, 8-10 May 2003, pp. 116-129. Evaporation: Observation, Measurement and Modeling within a Network Structure, ”Tappi 8th Advanced Coating Fundamentals Symposium, Chicago, 8-10 May 2003, pp. 116-129.

Claims

REVENDICATIONS
1. Matériau composite cellulosique comprenant : 1. Cellulose composite material including:
- une couche d’un matériau cellulosique, - a layer of cellulosic material,
- une grille de renfort à base d’amidon positionnée sur au moins une surface de la couche de matériau cellulosique, ladite grille de renfort comprenant une pluralité de mailles délimitées par des fils de grille, le matériau composite cellulosique présentant un relief en trois dimensions comprenant des plis au niveau des zones de positionnement de la grille de renfort, et des bosses en relief de part et d’autre du plan de la grille délimitées par les plis. a starch-based reinforcing grid positioned on at least one surface of the layer of cellulosic material, said reinforcing grid comprising a plurality of meshes delimited by grid wires, the cellulosic composite material having a three-dimensional relief comprising folds at the level of the positioning zones of the reinforcing grid, and raised bumps on either side of the plane of the grid delimited by the folds.
2. Matériau composite cellulosique selon la revendication 1, dans lequel le relief en trois dimensions présente une épaisseur hors tout supérieure à la somme des épaisseurs de la couche de matériau cellulosique et de la grille de renfort. 2. Cellulose composite material according to claim 1, wherein the three-dimensional relief has an overall thickness greater than the sum of the thicknesses of the layer of cellulose material and of the reinforcing grid.
3. Matériau composite cellulosique selon la revendication 1 ou la revendication 2, dans lequel le taux de couverture de la grille de renfort sur la surface de la couche de matériau cellulosique est supérieur ou égal à 10%, de préférence supérieur ou égal à 20%. 3. Cellulosic composite material according to claim 1 or claim 2, wherein the coverage rate of the reinforcing grid on the surface of the layer of cellulosic material is greater than or equal to 10%, preferably greater than or equal to 20%. .
4. Matériau composite cellulosique selon l’une quelconque des revendications précédentes, dans lequel le taux de couverture de la grille de renfort sur la surface de la couche de matériau cellulosique est inférieur ou égal à 60%, de préférence inférieur ou égal à 50%. 4. Cellulose composite material according to any one of the preceding claims, in which the coverage rate of the reinforcing grid on the surface of the layer of cellulose material is less than or equal to 60%, preferably less than or equal to 50%. .
5. Matériau composite cellulosique selon l’une quelconque des revendications précédentes, dans lequel les fils de grille forment des mailles carrées ou rectangulaires. 5. Cellulose composite material according to any one of the preceding claims, wherein the grid wires form square or rectangular meshes.
6. Matériau composite cellulosique selon l’une quelconque des revendications 1 à 4, dans lequel les fils de grille forment des mailles hexagonales. 6. A cellulose composite material according to any one of claims 1 to 4, wherein the grid wires form hexagonal meshes.
7. Matériau composite cellulosique selon la revendication 6, dans lequel les fils de grille forment des mailles de type nid d’abeille. 7. A cellulosic composite material according to claim 6, wherein the grid wires form honeycomb-type meshes.
8. Matériau composite cellulosique selon la revendication 6, dans lequel les fils de grille forment des mailles de type nœud papillon. 8. A cellulosic composite material according to claim 6, wherein the grid son forms bow tie type meshes.
9. Matériau composite cellulosique selon l’une quelconque des revendications précédentes, dans lequel un ou plusieurs fils de grille sont sinusoïdaux. 9. A cellulose composite material according to any preceding claim, wherein one or more grid wires are sinusoidal.
10. Matériau composite cellulosique selon l’une quelconque des revendications précédentes, dans lequel la grille de renfort est déposée sur la couche de papier par sérigraphie, impression en trois dimensions, taille douce, flexographie, ou pulvérisation via une ou plusieurs buses. 10. Cellulose composite material according to any one of the preceding claims, wherein the reinforcing grid is deposited on the layer of paper by screen printing, three-dimensional printing, intaglio, flexography, or spraying via one or more nozzles.
11. Matériau composite cellulosique selon l’une quelconque des revendications précédentes, dans lequel la grille de renfort est positionnée sur la surface de la couche de matériau cellulosique selon une quantité comprise entre 2 g/m2 et 50 g/m2 après séchage. 11. Cellulosic composite material according to any one of the preceding claims, in which the reinforcing grid is positioned on the surface of the layer of cellulosic material in an amount between 2 g / m 2 and 50 g / m 2 after drying.
12. Matériau composite cellulosique selon l’une quelconque des revendications précédentes, dans lequel les fils de grille présentent une largeur dans le plan de la grille comprise entre 0,1 mm et 3 mm de préférence entre 0,5 mm et 2,5 mm. 12. Cellulose composite material according to any one of the preceding claims, in which the grid wires have a width in the plane of the grid of between 0.1 mm and 3 mm, preferably between 0.5 mm and 2.5 mm. .
13. Matériau composite cellulosique selon l’une quelconque des revendications précédentes, dans lequel le taux de couverture de la grille de renfort sur la surface de la couche de matériau cellulosique est compris entre 10% et 60%, de préférence entre 20% et 50%. 13. Cellulosic composite material according to any one of the preceding claims, in which the degree of coverage of the reinforcing grid on the surface of the layer of cellulosic material is between 10% and 60%, preferably between 20% and 50%. %.
14. Emballage flexible caractérisé en ce qu’il comprend un matériau composite cellulosique selon l’une quelconque des revendications 1 à 13. 14. Flexible packaging characterized in that it comprises a cellulose composite material according to any one of claims 1 to 13.
15. Papier peint caractérisé en ce qu’il comprend un matériau composite cellulosique selon l’une quelconque des revendications 1 à 13. 15. Wallpaper characterized in that it comprises a cellulose composite material according to any one of claims 1 to 13.
16. Panneau d’affichage, de préférence de type sandwich, caractérisé en ce qu’il comprend un matériau composite cellulosique selon l’une quelconque des revendications 1 à 13. 16. Display panel, preferably of the sandwich type, characterized in that it comprises a cellulose composite material according to any one of claims 1 to 13.
17. Enveloppe caractérisée en ce qu’elle comprend un matériau composite cellulosique selon l’une quelconque des revendications 1 à 13. 17. Envelope characterized in that it comprises a cellulose composite material according to any one of claims 1 to 13.
18. Procédé de fabrication d’un matériau composite cellulosique selon l’une quelconque des revendications 1 à 13 à partir d’une couche d’un matériau cellulosique, caractérisé en ce qu’il comprend une étape consistant à déposer une grille de renfort à base d’amidon sur au moins une surface du matériau cellulosique, ladite grille de renfort comprenant une pluralité de mailles délimitées par des fils de grille, afin de former un relief en trois dimensions comprenant des plis au niveau des zones de positionnement de la grille de renfort, et des bosses en relief de part et d’autre du plan de la grille délimitées par les plis. 18. A method of manufacturing a cellulosic composite material according to any one of claims 1 to 13 from a layer of a cellulosic material, characterized in that it comprises a step of depositing a reinforcing grid to starch based on at least one surface of the material cellulosic, said reinforcing grid comprising a plurality of meshes delimited by grid wires, in order to form a three-dimensional relief comprising folds at the level of the positioning zones of the reinforcing grid, and raised bumps on both sides other of the plane of the grid delimited by the folds.
19. Procédé de fabrication selon la revendication 18, dans lequel la grille de renfort déposée sur le matériau cellulosique comprend une suspension d’amidon. 19. The manufacturing method according to claim 18, wherein the reinforcing grid deposited on the cellulosic material comprises a starch suspension.
20. Procédé de fabrication selon la revendication 18 ou la revendication 19, dans lequel le dépôt de la grille est réalisé par sérigraphie, impression en trois dimensions, taille douce, flexographie, ou pulvérisation via une ou plusieurs buses. 20. The manufacturing method according to claim 18 or claim 19, wherein the deposition of the grid is carried out by screen printing, three-dimensional printing, intaglio, flexography, or spraying via one or more nozzles.
21. Procédé de fabrication selon l’une quelconque des revendications 18 à 20, dans lequel la composition de la grille de renfort comprend au moins une suspension d’amidon présentant un taux de matière sèche compris entre 5% et 65% en poids lors du dépôt de la grille de renfort. 21. The manufacturing method according to any one of claims 18 to 20, wherein the composition of the reinforcing grid comprises at least one starch suspension having a dry matter content of between 5% and 65% by weight during the production. deposit of the reinforcement grid.
PCT/FR2020/051917 2019-10-23 2020-10-23 Composite cellulose material and method for making such a material WO2021079073A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/770,427 US20220389662A1 (en) 2019-10-23 2020-10-23 Composite cellulose material and method for making such a material
EP20807083.9A EP4048838B1 (en) 2019-10-23 2020-10-23 Cellulosic composite material and method of manufacturing such a material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1911879A FR3102491B1 (en) 2019-10-23 2019-10-23 CELLULOSIC COMPOSITE MATERIAL AND METHOD FOR MANUFACTURING SUCH MATERIAL
FR1911879 2019-10-23

Publications (1)

Publication Number Publication Date
WO2021079073A1 true WO2021079073A1 (en) 2021-04-29

Family

ID=69024419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/051917 WO2021079073A1 (en) 2019-10-23 2020-10-23 Composite cellulose material and method for making such a material

Country Status (4)

Country Link
US (1) US20220389662A1 (en)
EP (1) EP4048838B1 (en)
FR (1) FR3102491B1 (en)
WO (1) WO2021079073A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220389662A1 (en) * 2019-10-23 2022-12-08 Centre Technique Du Papier Composite cellulose material and method for making such a material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1024323A (en) * 1950-09-05 1953-03-31 Tech Pour L Agriculture Soc Et Reinforced paper packaging bag with textile wrap
FR2250853A1 (en) 1973-11-13 1975-06-06 Ferron Maurice Strengthening paper sheet using conventional adhesive - applied to one surface in a grid pattern
CN203846718U (en) * 2014-05-13 2014-09-24 景泰县金龙化工建材有限公司 Combined-type grid rib layer product with surface protective paper

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1208535A (en) * 1915-11-12 1916-12-12 Silas M Ford Method of making lath-board.
WO1998042289A1 (en) * 1997-03-21 1998-10-01 Kimberly-Clark Worldwide, Inc. Dual-zoned absorbent webs
US9485917B2 (en) * 2006-12-15 2016-11-08 Ecovative Design, LLC Method for producing grown materials and products made thereby
FR2924041B1 (en) * 2007-11-26 2010-04-30 Arjowiggins Licensing Sas PROCESS FOR PRODUCING A REINFORCED APPLIED ABRASIVE PRODUCT AND PRODUCT OBTAINED
ITMI20111897A1 (en) * 2011-10-19 2013-04-20 Milano Politecnico BINDING RESIN FOR NONWOVENS, IN PARTICULAR FOR THE PRODUCTION OF BITUMINOUS MEMBRANE SUPPORTS, PROCEDURE FOR ITS PREPARATION AND NON-WOVEN OBTAINED BY USE OF THE ABOVE RESIN.
CN105415788B (en) * 2015-06-23 2017-04-05 湖南工业大学 A kind of MULTILAYER COMPOSITE lightweight anti-impact plate
JP6960381B2 (en) * 2018-08-22 2021-11-05 大王製紙株式会社 Absorbent article
CN109397767A (en) * 2018-12-22 2019-03-01 浙江欣莱科包装科技有限公司 High side pressure strength multi-wall corrugated board
FR3102491B1 (en) * 2019-10-23 2021-10-15 Centre Technique Du Papier CELLULOSIC COMPOSITE MATERIAL AND METHOD FOR MANUFACTURING SUCH MATERIAL
US20220049428A1 (en) * 2020-08-14 2022-02-17 The United States Of America, As Represented By The Secretary Of Agriculture Moisture/oil-resistant fiber/starch composite materials
CN115161829A (en) * 2022-06-29 2022-10-11 素湃科技(上海)有限公司 Natural antibacterial anti-mite composite paper yarn and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1024323A (en) * 1950-09-05 1953-03-31 Tech Pour L Agriculture Soc Et Reinforced paper packaging bag with textile wrap
FR2250853A1 (en) 1973-11-13 1975-06-06 Ferron Maurice Strengthening paper sheet using conventional adhesive - applied to one surface in a grid pattern
CN203846718U (en) * 2014-05-13 2014-09-24 景泰县金龙化工建材有限公司 Combined-type grid rib layer product with surface protective paper

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. RAFSANJANID. PASINI: "Bistable auxetic mechanical metamaterials inspired by ancient géométrie motifs", EXTREME MECHANICS LETTERS, vol. 9, 2016, pages 291 - 296
D. WANG M. M. ABDALLANW. ZHANG: "Buckling optimization design of curved stiffeners for grid-stiffened composite structures", COMPOSITE STRUCTURES, vol. 159, 2017, pages 656 - 666, XP029803775, DOI: 10.1016/j.compstruct.2016.10.013
G. M. LAUDONEG. P. MATTHEWSP. A. C. GANE: "Coating Shrinkage during Evaporation: Observation, Measurement and Modelling within a Network Structure", TAPPI 8TH ADVANCED COATING FUNDAMENTALS SYMPOSIUM, CHICAGO, 8 May 2003 (2003-05-08), pages 116 - 129

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220389662A1 (en) * 2019-10-23 2022-12-08 Centre Technique Du Papier Composite cellulose material and method for making such a material

Also Published As

Publication number Publication date
US20220389662A1 (en) 2022-12-08
EP4048838B1 (en) 2024-04-17
EP4048838A1 (en) 2022-08-31
FR3102491A1 (en) 2021-04-30
FR3102491B1 (en) 2021-10-15

Similar Documents

Publication Publication Date Title
Nechyporchuk et al. On the potential of using nanocellulose for consolidation of painting canvases
EP2271484B1 (en) Embossed sheet comprising a ply of water-soluble material and method for manufacturing such a sheet
CN1240905C (en) Paper or paperboard laminate and method of producing such laminate
EP2286027B1 (en) Low density paperboard
FR2991345A1 (en) FIBROUS STRUCTURES AND METHODS OF PREPARATION
FR2948948A1 (en) FIBROUS STRUCTURES
FR3015212A1 (en)
Kumar et al. Substrate role in coating of microfibrillated cellulose suspensions
CN103649245B (en) For the oxygen blocking spacer of packaging applications
EP4048838B1 (en) Cellulosic composite material and method of manufacturing such a material
BRPI0906103B1 (en) method for coating dry finish cardboard
Merindol et al. Assembly of anisotropic nanocellulose films stronger than the original tree
Mariani et al. Printing and mechanical characterization of cellulose nanofibril materials
PT1381476E (en) Paper articles exhibiting long term storageability
EP2132382B1 (en) Absorbent sheet with unique embossing pattern
US11913174B2 (en) Recyclable paper barrier laminate
EP1331308A1 (en) A creped sheet of absorbent paper, a roll for the embossing and a process incorporating the same
JP2021502443A (en) Packaging material with barrier properties
NZ720850A (en) Paper sheet and a process for the manufacture thereof
CN110431268A (en) Heat-sealable packaging material comprising microfibrillated cellulose and the product being made from it
BR112018073012B1 (en) PACKAGING MATERIAL AND METHOD FOR MANUFACTURING A PACKAGING MATERIAL
KR20220122970A (en) Aqueous adhesive for producing laminated cellulose plate containing single-layer graphene oxide, laminated cellulose plate obtained therefrom, and manufacturing method thereof
Setajit et al. Development of grease resistant packaging paper using cellulose nanocrystals and sodium alginate
WO2008142264A2 (en) Roll of absorbing product sheets of the toilet paper type
KR20210152503A (en) Method for making films from high concentration nanocellulose suspensions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20807083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020807083

Country of ref document: EP

Effective date: 20220523