WO2021079066A1 - Pneumatique comprenant une architecture optimisee - Google Patents

Pneumatique comprenant une architecture optimisee Download PDF

Info

Publication number
WO2021079066A1
WO2021079066A1 PCT/FR2020/051905 FR2020051905W WO2021079066A1 WO 2021079066 A1 WO2021079066 A1 WO 2021079066A1 FR 2020051905 W FR2020051905 W FR 2020051905W WO 2021079066 A1 WO2021079066 A1 WO 2021079066A1
Authority
WO
WIPO (PCT)
Prior art keywords
equal
reinforcement
tire
radially
circumferential
Prior art date
Application number
PCT/FR2020/051905
Other languages
English (en)
Inventor
Vincent TOURNEUX
Daniel Fabing
Patrice Fraysse
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Priority to JP2022523444A priority Critical patent/JP2022554103A/ja
Priority to EP20807470.8A priority patent/EP4048529B1/fr
Priority to CN202080073028.1A priority patent/CN114616108B/zh
Priority to US17/771,084 priority patent/US12109856B2/en
Publication of WO2021079066A1 publication Critical patent/WO2021079066A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/28Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers characterised by the belt or breaker dimensions or curvature relative to carcass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • B60C11/042Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/24Wear-indicating arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/0292Carcass ply curvature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C9/2204Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre obtained by circumferentially narrow strip winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2012Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers
    • B60C2009/2016Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers comprising cords at an angle of 10 to 30 degrees to the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2012Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers
    • B60C2009/2019Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers comprising cords at an angle of 30 to 60 degrees to the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2214Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre characterised by the materials of the zero degree ply cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2223Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre with an interrupted zero degree ply, e.g. using two or more portions for the same ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2252Physical properties or dimension of the zero degree ply cords
    • B60C2009/2276Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2252Physical properties or dimension of the zero degree ply cords
    • B60C2009/228Elongation of the reinforcements at break point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/28Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers characterised by the belt or breaker dimensions or curvature relative to carcass
    • B60C2009/283Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers characterised by the belt or breaker dimensions or curvature relative to carcass characterised by belt curvature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0355Circumferential grooves characterised by depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles

Definitions

  • the present invention relates to a tire intended to be mounted on a vehicle, and more particularly the crown of such a tire.
  • a tire having a geometry of revolution relative to an axis of rotation the geometry of the tire is generally described in a meridian plane containing the axis of rotation of the tire.
  • the radial, axial and circumferential directions respectively denote the directions perpendicular to the axis of rotation of the tire, parallel to the axis of rotation of the tire and perpendicular to the meridian plane.
  • the median circumferential plane called the equator plane, divides the tire into two substantially symmetrical half-tori, the tire possibly having asymmetries in the tread or in the architecture, linked to manufacturing precision or to dimensioning.
  • the expressions “radially inside” and “radially outside” mean respectively “closer to the axis of rotation of the tire, in the radial direction, than” and “further from the axis of rotation of the tire, in the radial direction, that ".
  • the expressions “axially inside” and “axially outside” mean respectively “closer to the equatorial plane, in the axial direction, than” and “further from the equatorial plane, in the axial direction, than”.
  • a “radial distance” is a distance from the axis of rotation of the tire, and an “axial distance” is a distance from the equatorial plane of the tire.
  • a “radial thickness” is measured in the radial direction, and an “axial width” is measured in the axial direction.
  • the expression “in line with” means “for each meridian, radially interior substantially within the limit of the axial coordinates delimited by”.
  • the points of a working layer in line with a groove designate for each meridian, all the points of the working layer radially inside the groove within the limit of the axial coordinates delimited by the groove.
  • the expression “overhanging” means “for each meridian, radially outside substantially within the limit of the axial coordinates delimited by”.
  • the central rib overhanging the central corrugation designates for each meridian, the rib of the tread radially. external to the central corrugation, located substantially within the limit of the axial coordinates delimited by the corrugation.
  • plumb and overhang indicate that there is a relationship between the axial widths and the axial positions of the two objects that this term connects.
  • a tire comprises a crown comprising a tread intended to come into contact with the ground via a tread surface, two beads intended to come into contact with a rim and two sidewalls connecting the crown to the beads.
  • a tire comprises a carcass reinforcement comprising at least one carcass layer, radially inner at the crown and connecting the two beads.
  • the tread of a tire is delimited, in the axial direction, by two side surfaces.
  • the tread is further made up of one or more rubber mixes.
  • rubber mixture denotes a rubber composition comprising at least one elastomer and a filler.
  • the crown comprises at least one crown reinforcement radially inside the tread.
  • the crown reinforcement comprises at least one working reinforcement comprising at least one working layer composed of reinforcing elements parallel to each other forming, with the circumferential direction, an angle of between 15 ° and 50 °.
  • the crown reinforcement can also comprise a hooping reinforcement comprising at least one hooping layer comprising reinforcing elements forming, with the circumferential direction, an angle of between 0 ° and 10 °, the hooping reinforcement usually being but not necessarily radially outside the working layers.
  • a linear curve per piece For a given meridian, for each layer of crown reinforcement reinforcement elements, working, or other, a linear curve per piece, called radially outer curve (CRE) of said layer, passes through the point more radially outside of each reinforcing element.
  • CRE radially outer curve
  • a linear surface per piece For a given meridian, for any layer of crown reinforcement, working, or other reinforcing elements, a linear surface per piece, called the radially interior curve (CRI) of said layer, passes through the most radially point inside each reinforcement element.
  • the radial distances between a layer of reinforcing elements and any other element of the tire are measured on a meridian section, from one or the other of these curves and so as not to integrate the radial thickness of said layer .
  • the radial distance is measured from the radially outer curve CRE at this point; and respectively from the radially internal curve CRI to the other measuring point if the latter is radially internal to the layer of reinforcing elements.
  • cutouts are placed in the tread.
  • a cutout designates either a well, or a groove, or an incision, or a circumferential groove and forms a space opening onto the rolling surface.
  • An incision or a groove has, on the running surface, two main characteristic dimensions: a width W and a length Lo, such that the length Lo is at least equal to 2 times the width W.
  • An incision or a groove is therefore delimited by at least two main side faces determining its length Lo and connected by a bottom face, the two main side faces being spaced from each other by a non-zero distance, called the width W of the incision or groove.
  • the depth of the cutout is the maximum radial distance between the running surface and the bottom of the cutout. The maximum value of cutout depths is called tread depth D.
  • a groove is a substantially circumferential groove, the side faces are substantially circumferential in the sense that their orientation can vary locally around plus or minus 45 ° around the circumferential direction but that all of the patterns belonging to the groove are found all around the tread, forming a substantially continuous assembly, that is to say having discontinuities of less than 10% in length compared to the length of the patterns.
  • the circumferential grooves or a circumferential assembly of grooves arranged over the entire circumference of the tire, constitute the circumferential borders of the ribs.
  • a rib is an element in substantially circumferential and substantially continuous relief, composed of the patterns of the tread either between an axial edge of the tire and a circumferential border, the most axially outer the closest, or between two circumferential borders.
  • the ribs are substantially continuous in the direction or grooves of thickness and / and of width significantly smaller than those of the circumferential grooves, can take place in the rib.
  • the rib is substantially circumferential in the insofar as its circumferential borders can have a variation of axial position according to the meridian considered because a circumferential groove can have lateral faces which are circumferentially undulating.
  • the width of the rib is the minimum axial distance between two points of the two borders of the rib, regardless of the meridian or meridians to which they belong.
  • a tire must meet multiple performance criteria relating to phenomena such as wear, grip on different types of ground, rolling resistance and dynamic behavior. These performance criteria sometimes lead to solutions opposing other criteria. To improve the overall performance compromise, it is possible to undulate the working layers as shown in patent applications EP 35229085A1, EP35229087.
  • the reduction in the breaking strength of the reinforcing elements of the tire has the drawback of reducing the resistance to puncture of the crown by certain objects.
  • ASTM WK20631 American (ASTM WK20631) and Chinese (GB 9743-2007) regulations based on the measurement of the energy required for an indenter to penetrate through the crown of tires.
  • the decrease in puncture resistance resulting from the use of reinforcing elements in a tire with lower breaking strength means that these tires no longer meet these regulations.
  • These tires then become unfit for sale in these countries, for import either as spare parts or fitted to vehicles. Compliance with this regulation is therefore an important commercial issue for all manufacturers, whether or not they are in these countries.
  • breaking energy tests The breaking energy of the tire under the test conditions imposed by the regulation is therefore called “breaking energy performance”.
  • the tests and the associated performance will be named as follows in the remainder of the document. For tires of the same type, i.e. manufactured in the same factory, the same architecture, same tread, the results are scattered by almost 10%.
  • the breaking strength of the reinforcing elements of the working layers is considered to be predominant as shown in patent US8662128, via their reinforcement either by increasing the density or by increasing the density. diameter of the elementary wires of the reinforcing elements of the working layers. It is also possible to add a layer of local reinforcement, the reinforcing elements of which form an angle with the longitudinal axis of between 20 and 90 ° (DE102016202295, DE102013107475) between the carcass reinforcement and the working frame.
  • these solutions are contrary to the inventors' primary objective, which is to gain mass and raw materials, or gain in performance at iso-mass.
  • the main objective of the present invention is therefore to increase the performance in resistance to penetration of a tire without degrading the other performances of the tire.
  • a tread intended to come into contact with a ground via a tread surface, a median circumferential plane passing through the center of the tread, the tread surface comprising grooves, the grooves forming a space opening onto the running surface and being delimited by at least two main side faces connected by a bottom face,
  • the circumferential borders of the central ribs being substantially circumferential grooves, called circumferential grooves, or a circumferential set of grooves
  • a central rib being such that the median circumferential plane passes between its two borders or, if the median circumferential plane passes through a circumferential groove, such that the median circumferential plane passes at a distance from one of the borders of said central rib, at most equal to 15 mm
  • the circumferential grooves or the grooves of the circumferential set of grooves forming the borders of the central rib (s) having a width W defined by the distance between two side faces, at least equal to 5 mm and a depth D defined by the maximum radial distance between the running surface and the bottom face, at least equal to 2 mm
  • a crown reinforcement radially inside the tread, comprising a working reinforcement, and a carcass reinforcement radially inner to the crown reinforcement comprising at least one carcass layer
  • the working reinforcement comprising at least one working layer, each working layer extending radially from a radially inner curve to a radially outer curve, each working layer comprising reinforcing elements, at least partially metallic coated with an elastomeric material, parallel to each other and forming with the circumferential direction of the tire, an angle whose absolute value is at least equal to 15 ° and at most equal to 50 °, the most radially outer working layer comprising at least one central corrugation directly above at least one central rib, of an amplitude at least equal to 1 mm, each central corrugation being such that the portion of the layer working layer of the central corrugation is radially outside the portion of the working layer directly above the bottom faces of the circumferential grooves or the grooves the circumferential set of grooves delimiting the central rib overhanging the central corrugation considered
  • At least one local reinforcement comprising at least one layer of reinforcing elements, mutually parallel and forming with the circumferential direction of the tire, an angle whose absolute value is at most equal to 5 °, being at the plumb with at least one central corrugation of the most radially outer working layer.
  • the principle of the invention is therefore to create at least one undulation around the equatorial plane, on at least the most radially outer working layer in line with at least one rib of the tread.
  • This or these corrugations bring a part of said working layer closer to the tread surface because this part of the corrugation is radially outside the part of said layer in line with the circumferential grooves or the grooves of the circumferential assembly of grooves delimiting said rib which, given its proximity to the equatorial plane, is said to be central.
  • the amplitude of the corrugation is at least equal to the diameter of the reinforcing elements of the local reinforcement frame which will be positioned directly above said corrugation. Care should be taken that the most radially outer crown layer is not radially outer to the most radially outer point of the tire wear indicator so that it does not deteriorate at the end of the tire's life by contact with it. floor.
  • the crown reinforcement comprises only a single working layer and the invention also works in this case.
  • the crown reinforcement can comprise another layer of reinforcing elements such as for example a hooping layer.
  • the amplitude of the ripple of a working layer is measured on one or more meridian cuts.
  • the amplitude is equal to the radial distance between the most radially exterior point of the working layer considered under the rib considered and the most radially interior point of said layer directly above the bottom face of the circumferential grooves or grooves constituting the circumferential borders of said rib.
  • these two points will be of the same nature from the point of view of the geometry of the working layer. They will both be taken either on the neutral fiber, or on the radially internal curve (CRI), or on the radially external curve (CRE) of the working layer considered.
  • the amplitude of this corrugation must be at least equal to 1 mm, in order to have significant effects on the scale of the tire.
  • the radial distance (do), between the radially outer curve (CRE) of the most radially working layer outer surface and the tread surface is at least 1 mm less than the radial distance (de) between the radially outer curve (CRE) of the most radially outer working layer and the tread surface, distance measured plumb of the bottom face of the circumferential groove or of the grooves constituting the circumferential borders of the rib overhanging said corrugation.
  • the breaking energy performance is, among other things, dependent on the mechanical coupling between the layers of the crown reinforcement and the layer or layers of the carcass reinforcement. Indeed, the more the layers of the reinforcements are radially distant from each other, the less the mechanical coupling is important and the lower the perforance in breaking energy. Thus, with an amplitude of at least 1 mm, the mechanical coupling is significantly reduced and the performance in breaking energy significantly altered except to provide, in accordance with the invention, a local reinforcement armature arranged radially between the carcass reinforcement and the most radially outer working layer.
  • Such a local reinforcement reinforcement makes it possible, on the one hand, to restore or even increase the performance of the breaking energy test compared to a tire without corrugation and, on the other hand, to create the corrugation by radially separating the tire. radially outermost working layer of the carcass reinforcement layer (s).
  • the invention makes it possible to increase the performance in breaking energy of the order of 15%, but without adding any volume of materials, unlike solutions with local reinforcement reinforcements not positioned in corrugations of the layer of most radially outer work or work layers.
  • the breaking Energy test is carried out by positioning an indenter on a rib and not in a circumferential groove. Positioning in a circumferential groove would reduce the distance from the indenter to the crown reinforcement and to the carcass reinforcement and would therefore reduce the bending forces exerted on these elements during the test. For this reason the indenter is always positioned on a rib. It is therefore not useful to have a local reinforcement beyond the ribs insofar as the reinforcement elements of the local reinforcement frame are long enough to take up forces in a coupled manner with the reinforcement elements of the others. top layers of reinforcing elements.
  • the axial width of a rib would behave the same as a broken part of a layer of reinforcing elements and would not further resist the progression of the indenter.
  • the idea is to position them at an angle with the circumferential direction (XX ') of the tire, the absolute value of which is at plus equal to 5 °.
  • the breaking energy test does not specify in the case where a circumferential groove passes through the center of the tread on which rib among the two central ribs of this type of tread, position the indenter.
  • the two central ribs existing in this arrangement can be defined as a rib such that the median circumferential plane passes at a distance from one of the borders of said central rib at most equal to 15 mm.
  • the reinforcing elements of the local reinforcement or reinforcements are long enough to be further coupled to the other reinforcing elements of the crown or carcass reinforcement layers between which they are placed.
  • the reinforcing elements of the local reinforcement frame may be continuous son or bands of son placed circumferentially.
  • the invention reduces the dispersion of the breaking energy test by at least 25% and therefore allows better control of the performance.
  • each central corrugation of the most radially outer working layer is at least equal to 1.5 mm preferably at least equal to 2 mm, and at most equal to 5 mm, preferably at most equal to 3 mm.
  • a preferred solution is to position the local reinforcement between the carcass reinforcement and the most radially inner working layer. It is therefore preferred that the local reinforcement reinforcement be radially outside the carcass reinforcement radially inside the most radially internal working layer.
  • the most radially outer working layer to include a central corrugation directly above each central rib, each central corrugation being overhanging a reinforcement local reinforcement.
  • the axial width of each local reinforcement frame is at least equal to 5 mm, and at most equal to the axial width of the central rib overhanging said local reinforcement frame.
  • each local reinforcement frame (6) comprises a layer of reinforcing elements, mutually parallel and forming with the circumferential direction (XX ') of the tire, an oriented angle of which the absolute value is at most equal to 0.5 °, preferably at most equal to 0.2 °, preferably equal to 0 °.
  • the local reinforcement frame consists of a continuous reinforcing element placed circumferentially individually or as a strip of several reinforcing elements. In the case of laying a single reinforcing element, the different turns of said reinforcing elements constitute reinforcing elements parallel to each other.
  • each local reinforcement reinforcement reinforcement is made of textile, preferably of the aliphatic polyamide, aromatic polyamide, combination of aliphatic polyamide and aromatic polyamide, polyethylene terephthalate or rayon, parallel to each other, each of these materials having different interests in this context of resistance and elongation at break among other criteria.
  • the reinforcing elements of the local reinforcement frame have a radial thickness at most equal to 1.5 mm.
  • the breaking force of the reinforcing elements of each local reinforcement is at least equal to 20 daN, at most equal to 120 daN and their elongation at break Acc is at least equal to 6%, preferably at most equal to 30%, measured according to standard ASTM D885 / D885M -10A of 2014.
  • each corrugation of the most radially outer working layer overhangs at most one local reinforcement, each local reinforcement being produced by the '' continuous winding of a strip of at least two elements of reinforcement, to generate at most 3 layers of reinforcing elements.
  • the multiple thicknesses can be obtained by successive winding of one or more strips but also by curling which involves an overlap of a strip between two laying turns.
  • the axial distance between two contiguous reinforcing elements of the local reinforcement reinforcement is at least equal to 0.2mm and at most equal to 0.4 mm to maintain optimal performance in breaking energy.
  • One of the advantages of the invention is that, compared to the state of the art where the addition of a local reinforcement is done without coupling it with the ribs of the tread, the reinforcing elements of the carcass layer (s) have a meridian curvature of constant sign directly above the narrowest working layer of the crown reinforcement. This avoids local buckling of the carcass reinforcement layer (s) and therefore preserves its endurance.
  • the invention requires some adjustments during manufacture.
  • the addition of a local reinforcement whose angle is close to 0 ° under a rib will disturb, depending on the laying tension, the flattening of said rib and therefore risk generating irregular wear of the axial edges of the rib. the rib.
  • This problem can be solved by adjusting the laying tension of the reinforcing elements of the local reinforcement reinforcement.
  • the radial distance (d1) between the radially outer curve (CRE) of the most radially outside and the bottom face of the circumferential grooves is at least equal to 1 mm and at most equal to 5 mm, preferably at least equal to 2 mm and at most equal to 4 mm. Below lower limits, the tire could be too sensitive to damage. Beyond the upper limits, the rolling resistance of the tire would be penalized.
  • the amplitude of the corrugation is at least equal to 1 mm but limited to 5 mm due to the radii of curvature to be imposed on the metallic working layers, which are rigid and therefore not very deformable.
  • the tread comprises, for example in a groove or a circumferential groove of the tread, at least one wear indicator, and that the minimum radial distance (du) between the radially outer curve (CRE) of the most radially outer layer of the crown reinforcement and the tread surface is at least equal to the radial distance (df) between the tread surface and the most radially outer point of the wear indicator.
  • CRE radially outer curve
  • df radial distance
  • the minimum radial distance (du) between the radially outer curve (CRE) of the most radially outer layer of the crown reinforcement and the running surface is at most equal to the depth D of the most circumferential groove. close increased by 2 mm and at least equal to the depth D of the nearest circumferential groove reduced by 2 mm.
  • This solution allows a ideal positioning of the most radially outer layer of reinforcement elements of the crown reinforcement and the tread surface.
  • the minimum radial distance (du) between the radially outer curve (CRE) of the most radially outer layer of the crown reinforcement and the tread surface is necessarily measured on the radially outer portion of the crown reinforcement, therefore at level of a ripple.
  • the depth D of a major groove or of a circumferential groove is at least equal to 6 mm, and at most equal to 20 mm.
  • the tread depths between 6 and 10 mm allow a good compromise between the performance in wear and in rolling resistance in many touring tires.
  • the tread depths between 10 and 20 mm are interesting for the same compromises in tires for vehicles carrying heavy loads.
  • the invention is not limited to tires of particular use.
  • the reinforcing elements of said layer are made of textile, preferably of the aliphatic polyamide, aromatic polyamide, combination of aliphatic polyamide and of aromatic polyamide, polyethylene terephthalate or rayon, mutually parallel and forming, with the circumferential direction (XX ') of the tire, an angle B at most equal to 10 ° in absolute value.
  • the crown reinforcement consists of 2 working layers having opposite angles and a hoop layer, like many current crown reinforcements.
  • Figure 1 shows a meridian section of the crown of a tire according to the invention with a corrugation (412) directly above the central rib (251) where the circumferential median plane (P) passes. It illustrates the local reinforcement layer (6) positioned under the corrugation (412) of the radially outermost working layer (41) and the different radial distances do, du, de and df.
  • Figure 2 shows a meridian section of the crown of a tire according to the invention with a corrugation (412) and a local reinforcement layer (6) directly above each central rib (251), on both sides. other from circumferential groove through which passes the circumferential median plane (P). It also illustrates the distances W, D and d1.
  • Figure 3 shows a meridian section of the crown of a tire according to the invention with a corrugation (412) and two local reinforcement layers (61, 62) directly above each central rib (251), respectively under each working layer (41, 42) on either side of the circumferential groove through which the circumferential median plane (P) passes.
  • Figures 4 and 5 show tread patterns of a tread and in particular a circumferential set of grooves (24 ’) forming one of the circumferential boundaries (252) of the central rib (251).
  • FIG. 1 schematically shows the meridian section of the crown of the tire 10 according to the invention.
  • Each meridian plane is associated with a Cartesian coordinate system (XX ’, YY’, ZZ ’).
  • the tire 10 comprises a tread 2 intended to come into contact with a ground via a tread surface 21.
  • In the tread are arranged circumferential grooves and grooves 24 defining ribs 25 whose central rib 251 through which passes the median circumferential plane P.
  • the tire 10 comprises at least one wear indicator 7.
  • the tire 10 further comprises a crown reinforcement 3 comprising a working reinforcement 4 and here for the example, a hooping frame 5.
  • the working frame comprises at least one working layer and here for the example two working layers 41 and 42 each comprising mutually parallel reinforcing elements.
  • the crown reinforcement 3 is radially outside a carcass reinforcement 8.
  • FIG. 1 also shows, directly above this central rib 251, a corrugation 412 of the most radially outer working layer 41 and directly above this. corrugation a local reinforcement layer 6. In this variant, only the most radially outer working layer 41 is corrugated.
  • Figure 2 shows a variant of the invention with a corrugation 412 and a local reinforcement layer 6 directly above each central rib 251, on either side of the circumferential groove where passes the circumferential median plane P
  • the figure shows the grooves each having side faces 241 and 242 and a bottom face 243 and a width W, maximum axial distance between the side faces, possibly different from one groove 24 to another.
  • only the most radially outer working layer 41 is corrugated.
  • Figure 3 shows a variant of the invention similar to that of Figure 2 with 2 central ribs 251 but, in this variant, the two working layers 41 and 42 are corrugated, and under each corrugation is positioned a layer local reinforcement.
  • Figures 1, 2, 3 represent the following radial distances:
  • a meridian section of the tire is obtained by cutting the tire along two meridian planes. This or these cuts are used to determine the different radial distances.
  • Figures 4 and 5 show treads where a rib 251 is delimited on one side by a circumferential groove 24 and on the other side by a circumferential set of grooves 24 '.
  • Figure 4 shows a circumferential set of grooves 24 'for which the circumferential border 252 of the central rib is evident.
  • FIG. 5 represents a circumferential assembly of grooves 24 'for which the axial position of the grooves of said assembly varies.
  • the border 252 of the central rib is not only substantially axial.
  • said border is extrapolated passing through the points of said border 252 closest to the center of the central rib through a circumferential plane.
  • the invention was carried out on a tire A of dimension 295 / 35R20 intended to be fitted to a passenger vehicle.
  • the depths D of the grooves in the tread are between 4 and 7 mm and equal to 7 mm for the circumferential grooves, for variable widths W for the grooves and equal to 15 mm for the grooves.
  • the crown reinforcement is composed of two working layers whose reinforcing elements make an angle of + or - 38 ° with the circumferential direction and of a hooping layer whose reinforcing elements make an angle of + or - 3 ° with the circumferential direction.
  • the most radially outer working layer is corrugated under the central rib of the tread.
  • the amplitude of the ripple under the midrib is 1.2mm.
  • the axial width of the corrugation is equal to 21 mm.
  • the radial distance d1 between the radially outer curve CRE of the most radially outer working layer 41 and the bottom face 243 of the circumferential grooves 25 is between 2 mm and 3.5 mm.
  • the gain in rolling resistance was evaluated on a standard machine for standardized measurements ISO 2850: 2009. The tests show a gain of more than 2% compared to the reference tire B.
  • a measurement of the characteristic Dz of the tire behavior model shows an increase in this characteristic for a pressure at 2.6 bars hot from 2 to 3%.
  • the gain in dry ground grip varies between 0 and 1% depending on the stress conditions.
  • the performance gain in breaking energy of tire A compared to tire B is 15% without any increase in mass.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

L'invention consiste en un pneumatique (10) pour véhicule comprenant une couche de travail (41) la plus radialement extérieure comprenant au moins une ondulation (412) à l'aplomb d'une nervure centrale (251) de la bande de roulement (2). L'ondulation (412) est radialement extérieure aux points de la couche de travail (41) à l'aplomb de la face de fond (243) du sillon circonférentiel (24) le plus proche de l'ondulation (412), et d'une amplitude d'au moins 1 mm. L'ondulation (412) est en surplomb d'au moins une couche de renforcement local (6) comprenant des éléments de renforcement, parallèles entre eux et formant avec la direction circonférentielle (XX') du pneumatique, un angle dont la valeur absolue est au plus égale à 5°.

Description

Pneumatique comprenant une architecture optimisée
[0001] La présente invention concerne un pneumatique destiné à être monté sur un véhicule, et plus particulièrement le sommet d’un tel pneumatique.
[0002] Un pneumatique ayant une géométrie de révolution par rapport à un axe de rotation, la géométrie du pneumatique est généralement décrite dans un plan méridien contenant l’axe de rotation du pneumatique. Pour un plan méridien donné, les directions radiale, axiale et circonférentielle désignent respectivement les directions perpendiculaire à l’axe de rotation du pneumatique, parallèle à l’axe de rotation du pneumatique et perpendiculaire au plan méridien. Le plan circonférentiel médian dit plan équateur divise le pneumatique en deux demi tores sensiblement symétriques, le pneumatique pouvant présenter des dissymétries de bande de roulement, d’architecture, liées à la précision de fabrication ou au dimensionnement.
[0003] Dans ce qui suit, les expressions « radialement intérieur à» et « radialement extérieur à» signifient respectivement « plus proche de l’axe de rotation du pneumatique, selon la direction radiale, que » et « plus éloigné de l’axe de rotation du pneumatique, selon la direction radiale, que ». Les expressions « axialement intérieur à» et « axialement extérieur à» signifient respectivement « plus proche du plan équateur, selon la direction axiale, que » et « plus éloigné du plan équateur, selon la direction axiale, que ». Une « distance radiale » est une distance par rapport à l’axe de rotation du pneumatique, et une « distance axiale » est une distance par rapport au plan équateur du pneumatique. Une « épaisseur radiale » est mesurée selon la direction radiale, et une « largeur axiale » est mesurée selon la direction axiale.
[0004] Dans ce qui suit, l’expression « à l’aplomb de » signifie « pour chaque méridien, radialement intérieur sensiblement dans la limite des coordonnées axiales délimitées par ». Ainsi « les points d’une couche de travail à l’aplomb d’un sillon » désignent pour chaque méridien, l’ensemble des points de la couche de travail radialement intérieurs au sillon dans la limite des coordonnées axiales délimitées par le sillon.
[0005] Dans ce qui suit, l’expression « en surplomb de » signifie « pour chaque méridien, radialement extérieur sensiblement dans la limite des coordonnées axiales délimitées par ». Ainsi « la nervure centrale en surplomb de l’ondulation centrale » désigne pour chaque méridien, la nervure de la bande de roulement radialement extérieure à l’ondulation centrale, située sensiblement dans la limite des coordonnées axiales délimitées par l’ondulation.
[0006] Les termes à l’aplomb et en surplomb indiquent qu’il y a un lien entre les largeurs axiales et les positions axiales des deux objets que ce terme relie.
[0007] Un pneumatique comprend un sommet comprenant une bande roulement destinée à venir en contact avec le sol par l’intermédiaire d’une surface de roulement, deux bourrelets destinés à venir en contact avec une jante et deux flancs reliant le sommet aux bourrelets. En outre, un pneumatique comprend une armature de carcasse comprenant au moins une couche de carcasse, radialement intérieure au sommet et reliant les deux bourrelets.
[0008] De plus, la bande de roulement d’un pneumatique est délimitée, selon la direction axiale, par deux surfaces latérales. La bande de roulement est en outre constituée par un ou plusieurs mélanges caoutchouteux. L’expression « mélange caoutchouteux » désigne une composition de caoutchouc comportant au moins un élastomère et une charge.
[0009] Le sommet comprend au moins une armature de sommet radialement intérieure à la bande de roulement. L’armature de sommet comprend au moins une armature de travail comprenant au moins une couche de travail composée d’éléments de renforcement parallèles entre eux formant, avec la direction circonférentielle, un angle compris entre 15° et 50°. L’armature de sommet peut également comprendre une armature de frettage comprenant au moins une couche de frettage comprenant des éléments de renforcement formant, avec la direction circonférentielle, un angle compris entre 0° et 10°, l’armature de frettage étant le plus souvent mais pas obligatoirement radialement extérieure aux couches de travail.
[0010] Pour un méridien donné, pour chaque couche d’éléments de renforcement d’armature de sommet, de travail, ou autre, une courbe linéaire par morceau, dite courbe radialement extérieure (CRE) de ladite couche, passe par le point le plus radialement extérieur de chaque élément de renforcement. Pour un méridien donné, pour toute couche d’éléments de renforcement d’armature de sommet, de travail, ou autre, une surface linéaire par morceau, dite courbe radialement intérieure (CRI) de la dite couche, passe par le point le plus radialement intérieur de chaque élément de renforcement. Les distances radiales entre une couche d’éléments de renforcement et tout autre élément du pneumatique, sont mesurées sur une coupe méridienne, depuis l’une ou l’autre de ces courbes et de manière à ne pas intégrer l’épaisseur radiale de ladite couche. Si le point de mesure, lié au deuxième élément, est radialement extérieur à la couche d’éléments de renforcement, la distance radiale est mesurée depuis la courbe radialement extérieure CRE à ce point ; et respectivement depuis la courbe radialement intérieure CRI à l’autre point de mesure si celui-ci est radialement intérieur à la couche d’éléments de renforcement. Ceci permet de prendre des distances radiales cohérentes d’un méridien à l’autre, sans avoir à tenir compte des variations locales possibles liées aux formes des sections des éléments de renforcement des couches.
[0011] Afin d’obtenir des performances en adhérence sur sol mouillé, des découpures sont disposées dans la bande de roulement. Une découpure désigne soit un puits, soit une rainure, soit une incision, soit un sillon circonférentiel et forme un espace débouchant sur la surface de roulement.
[0012] Une incision ou une rainure présente, sur la surface de roulement, deux dimensions principales caractéristiques : une largeur W et une longueur Lo, telle que la longueur Lo est au moins égale à 2 fois la largeur W. Une incision ou une rainure est donc délimitée par au moins deux faces latérales principales déterminant sa longueur Lo et reliées par une face de fond, les deux faces latérales principales étant distantes l’une de l’autre d’une distance non nulle, dite largeur W de l’incision ou de la rainure. [0013] La profondeur de la découpure est la distance radiale maximale entre la surface de roulement et le fond de la découpure. La valeur maximale des profondeurs des découpures est nommée profondeur de sculpture D.
[0014] Un sillon est une rainure sensiblement circonférentielle, les faces latérales sont sensiblement circonférentielles en ce sens, que leur orientation peut varier localement autour de plus ou moins 45° autour de la direction circonférentielle mais que l’ensemble des motifs appartenant au sillon se retrouve tout autour de la bande de roulement, formant un ensemble sensiblement continu, c’est-à-dire présentant des discontinuités inférieures à 10% en longueur comparativement à la longueur des motifs.
[0015] Les sillons circonférentiels, ou un ensemble circonférentiel de rainures disposé sur toute la circonférence du pneumatique, constituent les frontières circonférentielles de nervures. Une nervure est un élément en relief sensiblement circonférentiel et sensiblement continu, composée des motifs de la sculpture soit compris entre un bord axial du pneumatique et une frontière circonférentielle, la plus axialement extérieure la plus proche, soit compris entre deux frontières circonférentielles. Les nervures sont sensiblement continues dans le sens ou des rainures d’épaisseur ou/et de largeur notablement plus faible que celles des sillons circonférentiels, peuvent prendre place dans la nervure. Par ailleurs, la nervure est sensiblement circonférentielle dans la mesure où ses frontières circonférentielles peuvent avoir une variation de position axiale selon le méridien considéré car un sillon circonférentiel peut avoir des faces latérales ondulantes circonférentiellement. Dans ce cas la largeur de la nervure, est la distance axiale minimale entre deux points des deux frontières de la nervure, quel que soient le ou les méridiens auxquels ils appartiennent.
[0016] Un pneumatique doit répondre à de multiples critères de performance portant sur des phénomènes comme l’usure, l’adhérence sur différents types de sol, la résistance au roulement, le comportement dynamique. Ces critères de performance conduisent parfois à des solutions s’opposant à d’autres critères. Pour améliorer le compromis global de performance, il est possible d’onduler les couches de travail comme le montre les demandes de brevets EP 35229085A1 , EP35229087.
[0017] Dans le contexte actuel de développement durable, l’économie de ressources et donc de matières premières est un des objectifs majeurs des industriels. Pour les pneumatiques de véhicule de tourisme, une des voies de recherche pour cet objectif, consiste à diminuer la masse et donc la résistance à rupture des éléments de renforcement des différentes couches composant l’armature de sommet ou l’armature de carcasse.
[0018] Cependant la diminution de la résistance à la rupture des éléments de renforcement du pneumatique présente l’inconvénient d’entraîner la baisse de la résistance à la perforation du sommet par certains objets. Ainsi il existe des règlements notamment américain (ASTM WK20631 ) et chinois (GB 9743-2007) basés sur la mesure de l’énergie nécessaire à la pénétration d’un indenteur à travers le sommet des pneumatiques. La baisse de la résistance à la perforation qu’amène l’utilisation d’éléments de renforcement dans un pneumatique ayant une résistance à rupture plus faible, a pour conséquence que ces pneumatiques ne satisfont plus ces règlements. Ces pneumatiques deviennent alors impropres à la vente dans ces pays, à l’importation soit en tant que pièces détachées, soit montés sur des véhicules. La conformité à ce règlement est dès lors un enjeu commercial important pour tous les manufacturiers fabricants ou non dans ces pays.
[0019] Ces tests de pénétration sont appelés couramment « tests de breaking energy ». L’énergie à rupture du pneumatique dans les conditions de test imposées par le règlement est donc nommée « performance en breaking energy ». Les tests et la performance associée seront ainsi nommés dans la suite du document. Pour des pneumatiques de même type, c’est-à-dire fabriqués dans une même usine, de même architecture, de même bande de roulement, les résultats sont dispersés de près de 10%.
[0020] Pour ce type de performance, la résistance à rupture des éléments de renforcement des couches de travail est considérée comme prépondérante comme le montre le brevet US8662128, via leur renforcement soit par l’augmentation de la densité, soit par l’augmentation du diamètre des fils élémentaires des éléments de renforcement des couches de travail. Il est également possible d’ajouter une couche d’une armature de renforcement local, dont les éléments de renforcement font un angle avec l’axe longitudinal compris entre 20 et 90° (DE102016202295, DE102013107475) entre l’armature de carcasse et l’armature de travail. Cependant ces solutions sont contraires à l’objectif premier des inventeurs qui est le gain de masse et de matières premières, ou le gain en performance à iso-masse.
[0021] L’objectif principal de la présente invention est donc d’augmenter la performance en résistance à la pénétration d’un pneumatique sans dégrader les autres performances du pneumatique.
[0022] Cet objectif est atteint par un pneumatique comprenant :
- une bande de roulement destinée à entrer en contact avec un sol par l’intermédiaire d’une surface de roulement, un plan circonférentiel médian passant par le centre de la bande de roulement, la surface de roulement comprenant des rainures, les rainures formant un espace débouchant sur la surface de roulement et étant délimitée par au moins deux faces latérales principales reliées par une face de fond,
- au moins une et au plus deux nervures centrales, délimitées par des frontières circonférentielles, les frontières circonférentielles des nervures centrales étant des rainures sensiblement circonférentielles, appelées sillons circonférentiels, ou un ensemble circonférentiel de rainures, une nervure centrale étant telle que le plan circonférentiel médian passe entre ses deux frontières ou, si le plan circonférentiel médian passe par un sillon circonférentiel, telle que le plan circonférentiel médian passe à une distance d’une des frontières de ladite nervure centrale, au plus égale à 15 mm, les sillons circonférentiels ou les rainures de l’ensemble circonférentiel de rainures formant les frontières du ou des nervures centrales ayant une largeur W définie par la distance entre deux faces latérales, au moins égale à 5 mm et une profondeur D définie par la distance radiale maximale entre la surface de roulement et la face de fond, au moins égale à 2 mm,
- une armature de sommet, radialement intérieure à la bande de roulement, comprenant une armature de travail, et une armature de carcasse radialement intérieure à l’armature de sommet comprenant au moins une couche de carcasse, l’armature de travail comprenant au moins une couche de travail, chaque couche de travail s’étendant radialement depuis une courbe radialement intérieure jusqu’à une courbe radialement extérieure, chaque couche de travail comprenant des éléments de renforcement, au moins partiellement métalliques enrobés par un matériau élastomérique, parallèles entre eux et formant avec la direction circonférentielle du pneumatique, un angle dont la valeur absolue est au moins égale à 15° et au plus égale à 50°, la couche de travail la plus radialement extérieure comprenant au moins une ondulation centrale à l’aplomb d’au moins une nervure centrale, d’une amplitude au moins égale à 1 mm, chaque ondulation centrale étant telle que la portion de la couche de travail de l’ondulation centrale est radialement extérieure à la portion de la couche de travail à l’aplomb des faces de fond des sillons circonférentiels ou des rainures de l’ensemble circonférentiel de rainures délimitant la nervure centrale en surplomb de l’ondulation centrale considérée,
- au moins une armature de renforcement local, comprenant au moins une couche d’éléments de renforcement, parallèles entre eux et formant avec la direction circonférentielle du pneumatique, un angle dont la valeur absolue est au plus égale à 5°, étant à l’aplomb d’au moins une ondulation centrale de la couche de travail la plus radialement extérieure.
[0023] Le principe de l’invention est donc de créer au moins une ondulation autour du plan équateur, sur au moins la couche de travail la plus radialement extérieure à l’aplomb d’au moins une nervure de la bande de roulement. Cette ou ces ondulations rapprochent une partie de ladite couche de travail de la surface de roulement car cette partie de l’ondulation est radialement extérieure à la partie de ladite couche à l’aplomb des sillons circonférentiels ou des rainures de l’ensemble circonférentiel de rainures délimitant ladite nervure qui compte tenu de sa proximité au plan équateur est dite centrale. L’amplitude de l’ondulation est au moins égale au diamètre des éléments de renforcement de l’armature de renforcement local qui viendra se positionner à l’aplomb de ladite ondulation. On veillera à ce que la couche de sommet la plus radialement extérieure ne soit pas radialement extérieure au point le plus radialement extérieur du témoin d’usure du pneumatique afin de ne pas qu’elle ne se détériore en fin de vie du pneumatique par contact avec le sol.
[0024] En approchant, au moins la couche de travail la plus radialement extérieure de la surface de roulement sous les nervures les plus proches du plan équateur, sous des efforts axiaux ou/et transversaux sur lesdites nervures, le volume de gomme déformé est diminué par rapport aux solutions sans ondulation de la couche de travail la plus radialement extérieure. De ce fait, sous efforts transversaux ou circonférentiels, l’amplitude de la déformation de ladite nervure est diminuée et donc le comportement et la résistance au roulement du pneumatique sont améliorés. En ajustant la largeur axiale de la ou des armatures de renforcement local à la dimension des ondulations et donc des nervures qui sont en surplomb, il est possible de limiter au strict nécessaire l’apport en renforcement local.
[0025] L’expérience montre que pour améliorer la performance en tenue dynamique sous effort transversal, un des critères suffisant en lui-même est de diminuer la distance (do) entre la courbe radialement extérieure (CRE) de la couche de travail la plus radialement extérieure, en surplomb de l’ondulation, et la surface de roulement. Ceci permet de réduire les épaisseurs cisaillées de matériaux caoutchouteux de la bande de roulement et de réduire la production de chaleur due à l’hystérèse de ces matériaux. Ces effets sont bénéfiques à la fois pour la rigidité de la bande de roulement qui dépend de la température, et pour les performances en résistance au roulement et en endurance. L’ondulation de la couche de travail permet, en plus, d’accroitre la rigidité sous efforts transversaux ou circonférentiels des pneumatiques par l’augmentation de l’inertie de flexion sur chant du sommet, ce qui induit une amélioration sensible de la performance en comportement. Dans certains pneumatiques, l’armature de sommet ne comprend qu’une seule couche de travail et l’invention fonctionne également dans ce cas. L’armature de sommet peut comprendre d’autre couche d’éléments de renforcement comme par exemple une couche de frettage.
[0026] L’amplitude de l’ondulation d’une couche de travail se mesure sur une ou plusieurs coupes méridiennes. L’amplitude est égale à la distance radiale entre le point le plus radialement extérieur de la couche de travail considérée sous la nervure considérée et le point le plus radialement intérieur de ladite couche à l’aplomb de la face de fond des sillons circonférentiels ou des rainures constituant les frontières circonférentielles de ladite nervure. Pour mesurer l’amplitude de la couche de travail ces deux points seront de même nature du point de vue de la géométrie de la couche de travail. Ils seront pris tous les deux soit sur la fibre neutre, soit sur la courbe radialement intérieure (CRI), soit sur la courbe radialement extérieure (CRE) de la couche de travail considérée.
[0027] L’amplitude de cette ondulation doit être au moins égale à 1 mm, pour avoir des effets significatifs à l’échelle du pneumatique. Ainsi la distance radiale (do), entre la courbe radialement extérieure (CRE) de la couche de travail la plus radialement extérieure et la surface de roulement est inférieure d’au moins 1 mm à la distance radiale (de) entre la courbe radialement extérieure (CRE) de la couche de travail la plus radialement extérieure et la surface de roulement, distance mesurée à l’aplomb de la face de fond du sillon circonférentiel ou des rainures constituant les frontières circonférentielles de la nervure en surplomb de ladite ondulation.
[0028] Néanmoins, la présence de cette ou de ces ondulations a pour effet d’éloigner localement une ou plusieurs couches de l’armature de sommet de la ou des couches de l’armature de carcasse. Or, les inventeurs à l’origine de l’invention ont constaté que la performance en breaking energy était, entre autres, dépendante du couplage mécanique entre les couches de l’armature de sommet et la ou les couches de l’armature de carcasse. En effet, plus les couches des armatures sont éloignées radialement les unes des autres, moins le couplage mécanique est important et moins élevée est la perforance en breaking energy. Ainsi, avec une amplitude d’au moins 1 mm, le couplage mécanique est significativement réduit et la performance en breaking energy significativement altérée sauf à prévoir, conformément à l’invention, une armature de renforcement local agencée radialement entre l’armature de carcasse et la couche de travail la plus radialement extérieure. Une telle armature de renforcement local permet d’une part, de restaurer voire d’augmenter la performance au test de breaking energy par rapport à un pneumatique dépourvu d’ondulation et, d’autre part, de créer l’ondulation en écartant radialement la couche de travail la plus radialement extérieure de la ou des couches de l’armature de carcasse.
[0029] Ainsi, l’invention permet d’augmenter la performance en breaking energy de l’ordre de 15%, mais sans ajouter de volume de matériaux contrairement aux solutions avec des armatures de renforcement local non positionnées dans des ondulations de la couche de travail la plus radialement extérieure ou des couches de travail.
[0030] Le test de breaking Energy se fait en positionnant un indenteur sur une nervure et non dans un sillon circonférentiel. Se positionner dans un sillon circonférentiel diminuerait la distance de l’indenteur à l’armature de sommet et à l’armature de carcasse et diminuerait donc les efforts de flexion s’exerçant sur ces éléments au cours du test. Pour cette raison l’indenteur est toujours positionné sur une nervure. Il n’est donc pas utile d’avoir un renforcement local au-delà des nervures dans la mesure où les éléments de renforcement de l’armature de renforcement local sont suffisamment longs pour reprendre des efforts de manière couplée avec les éléments de renforcement des autres couches de sommet d’éléments de renforcement. Dans le cas contraire, des éléments de renforcement très courts, de la largeur axiale d’une nervure aurait le même comportement qu’un élément brisé d’une couche d’éléments de renforcement et ne résisterait pas davantage à la progression de l’indenteur. Afin d’avoir des éléments de renforcement longs mais dont la largeur axiale est limitée par la largeur de la nervure, l’idée est de les positionner avec un angle avec la direction circonférentielle (XX’) du pneumatique, dont la valeur absolue est au plus égale à 5°. [0031] Par ailleurs le test de breaking energy ne précise pas dans le cas où un sillon circonférentiel passe au centre de la bande de roulement sur quelle nervure parmi les deux nervures centrales de ce type de sculpture, positionner l’indenteur. Pour améliorer le résultat du test, il suffit de disposer une couche de renforcement local à l’aplomb d’une ondulation de la couche de travail la plus radialement extérieure à l’aplomb d’une des nervures centrales situées de part et d’autre dudit sillon circonférentiel. Compte tenu de la taille des sillons circonférentiels, on peut définir les deux nervures centrales existant dans cette disposition comme une nervure telle que le plan circonférentiel médian passe à une distance d’une des frontières de ladite nervure centrale au plus égale à 15 mm.
[0032] Avec un angle des éléments de renforcement de la couche de renforcement local avec l’axe circonférentiel restreint à au plus 5° en valeur absolue, les éléments de renforcement de ou des armatures de renforcement local sont suffisamment longs pour être davantage couplés aux autres éléments de renforcement des couches des armatures de sommet ou de carcasse entre lesquels ils sont placés. En effet, dans ce cas, les éléments de renforcement de l’armature local de renforcement peuvent être des fils ou des bandes de fils continus posés circonférentiellement.
[0033] En outre et de manière étonnante, l’invention réduit la dispersion du test de breaking energy d’au moins 25% et donc permet une meilleure maîtrise de la performance.
[0034] Pour avoir des gains en résistance au roulement et en comportement et pas de dégradation de l’endurance, il est avantageux que l’amplitude de chaque ondulation centrale de la couche de travail la plus radialement extérieure soit au moins égale à 1.5 mm de préférence au moins égale à 2 mm, et au plus égale à 5 mm de préférence au plus égale à 3 mm.
[0035] De manière à laisser les couches de travail couplées sur toute leur largeur axiale, une solution préférée est de positionner l’armature de renforcement local entre l’armature de carcasse et la couche de travail la plus radialement intérieure. Il est donc préféré que l’armature de renforcement local soit radialement extérieure à l’armature de carcasse radialement intérieure à la couche de travail la plus radialement intérieure. [0036] Pour fiabiliser davantage la performance du pneumatique en endurance agression sommet, il est avantageux que la couche de travail la plus radialement extérieure comprenne une ondulation centrale à l’aplomb de chaque nervure centrale, chaque ondulation centrale étant en surplomb d’une armature de renforcement local. [0037] Pour être efficace, il est avantageux que la largeur axiale de chaque armature de renforcement local soit au moins égale à 5 mm, et au plus égale à la largeur axiale de la nervure centrale en surplomb de ladite armature de renforcement local.
[0038] La performance est d’autant plus intéressante que chaque armature de renforcement local (6), comprend une couche d’éléments de renforcement, parallèles entre eux et formant avec la direction circonférentielle (XX’) du pneumatique, un angle orienté dont la valeur absolue est au plus égale à 0,5°, de préférence au plus égale à 0.2°, de préférence égale à 0°. Dans de tels cas, l’armature de renforcement local est constituée d’un élément de renforcement continu posé circonférentiellement unitairement ou en bandelette de plusieurs éléments de renforcement. Pour le cas d’une pose d’un unique élément de renforcement, les différents tours dudit éléments de renforcement constituent les éléments de renforcement parallèles entre eux.
[0039] L’utilisation de câbles ou fils métalliques pour la ou les couches de renforcement local est possible. Néanmoins pour diminuer la masse, faciliter la mise à plat et améliorer la performance bruit du pneumatique, Il est avantageux que les éléments de renforcement de chaque armature de renforcement local soit en textile, de préférence, de type polyamide aliphatique, polyamide aromatique, combinaison de polyamide aliphatique et de polyamide aromatique, polytéréphtalate d'éthylène ou rayonne, parallèles entre eux, chacun de ces matériaux ayant des intérêts différents dans ce contexte de résistance et d’allongement à la rupture entre autres critères. Préférentiellement les éléments de renforcement de l’armature de renforcement local sont d’une épaisseur radiale au plus égale à 1.5 mm.
[0040] Pour un bon fonctionnement de l’invention, il est préféré que la force à la rupture des éléments de renforcement de chaque armature de renforcement local soit au moins égale à 20 daN, au plus égale à 120 daN et leur allongement à rupture Acc soit au moins égale à 6%, préférentiellement au plus égal à 30%, mesurés selon la norme ASTM D885/D885M -10A de 2014.
[0041] Pour des gains de productivité, une réalisation de l’invention est que chaque ondulation de la couche de travail la plus radialement extérieure est en surplomb d’au plus une armature de renforcement local, chaque armature de renforcement local étant réalisée par l’enroulement continu d’une bande d’au moins deux éléments de renforcement, pour générer au plus 3 couches d’éléments de renforcement. Les épaisseurs multiples peuvent être obtenues par enroulements successifs d’une ou de plusieurs bandelettes mais aussi par tuilage qui impliquent un chevauchement d’une bandelette entre deux tours de pose.
[0042] Pour éviter des frottements entre les éléments de renforcement de la ou les armatures de renforcement local, la distance axiale entre deux éléments de renforcement contigus de l’armature de renforcement local est au moins égale à 0.2mm et au plus égale à 0.4mm pour garder une performance optimale en breaking energy. [0043] Lorsque le pneumatique a deux couches de travail, une solution réalisable qui permet de minimiser les amplitudes des ondulations de chaque couche de travail, consiste, en ce qu’une première armature de renforcement local soit radialement extérieure à l’armature de carcasse, radialement intérieure à la couche de travail la plus radialement intérieure et une deuxième armature de renforcement local est radialement extérieure à la couche de travail la plus radialement intérieure et radialement intérieure à la couche de travail la plus radialement extérieure.
[0044] Un des avantages de l’invention est, que, par rapport à l’état de l’art où l’ajout d’une armature de renforcement local se fait sans la coupler avec les nervures de la bande de roulement, les éléments de renforcement de la ou les couches de carcasse ont une courbure méridienne de signe constant à l’aplomb de la couche de travail la plus étroite de l’armature de sommet. Ceci permet d’éviter les flambements locaux de la ou les couches de l’armature de carcasse et donc d’en préserver l’endurance.
[0045] L’invention nécessite quelques aménagements lors de la fabrication. L’ajout d’une armature de renforcement local dont l’angle est proche de 0° sous une nervure va perturber, selon la tension de pose, la mise à plat de ladite nervure et donc risquer de générer une usure irrégulière des bords axiaux de la nervure. Ce problème peut être résolu en réglant la tension de pose des éléments de renforcement de l’armature de renforcement local. Plus il y aura de nervures ayant à leurs aplombs des armatures de renforcement local, plus les réglages en fabrication seront complexes. Il est donc avantageux pour réduire cette complexité qu’une ondulation de la couche de travail la plus radialement extérieure soit présente uniquement à l’aplomb des nervures centrales.
[0046] La pose de telles couches de renforcement local avec une tension de pose est plus facilement réalisable sur des pneumatiques fabriqués sur un noyau dur, procédé connu de l’homme de l’art, qui permettra d’assurer facilement la géométrie du pneumatique après cuisson. Néanmoins, poser une telle couche avec une tension de pose est également réalisable sur un procédé avec un tambour d’assemblage.
[0047] En revanche pour les gains en comportement et en résistance au roulement, il est avantageux qu’une ondulation de la couche de travail la plus radialement extérieure soit présente à l’aplomb de toutes les nervures de la bande de roulement.
[0048] Pour maximiser la performance de l’armature de sommet en perforation et pas seulement pour le test de breaking-energy, il est avantageux qu’une armature de renforcement local soit présente à l’aplomb de toutes les ondulations de la couche de travail la plus radialement extérieure.
[0049] Pour une performance optimale en perforation et agression du sommet au niveau des rainures ou des sillons circonférentiels, sans pénaliser la résistance au roulement, la distance radiale (d1) entre la courbe radialement extérieure (CRE) de la couche de travail la plus radialement extérieure et la face de fond des sillons circonférentiels, est au moins égale à 1 mm et au plus égale à 5 mm, préférentiellement au moins égale à 2 mm et au plus égale à 4 mm. En deçà de limites inférieures, le pneumatique pourrait être trop sensible aux agressions. Au-delà des limites supérieures, la résistance au roulement du pneumatique serait pénalisée.
[0050] L’amplitude de l’ondulation est au moins égale à 1 mm mais limitée à 5 mm en raison des rayons de courbures à imposer aux couches de travail métalliques, rigides et donc peu déformables.
[0051] Il est avantageux que la bande de roulement comprenne, par exemple dans une rainure ou un sillon circonférentiel de la bande de roulement, au moins un témoin d’usure, et que la distance radiale minimale (du) entre la courbe radialement extérieure (CRE) de la couche la plus radialement extérieure de l’armature de sommet et la surface de roulement soit au moins égale à la distance radiale (df) entre la surface de roulement et le point le plus radialement extérieur du témoin d’usure. En effet, il est important que l’utilisateur puisse percevoir que le pneumatique est usé, grâce au témoin d’usure et cela avant de voir les éléments de renforcement de la couche la plus radialement extérieure de l’armature de sommet apparaître au niveau de la surface de roulement.
[0052] Avantageusement la distance radiale minimale (du) entre la courbe radialement extérieure (CRE) de la couche la plus radialement extérieure de l’armature de sommet et la surface de roulement est au plus égale à la profondeur D du sillon circonférentiel le plus proche augmentée de 2 mm et au moins égale à la profondeur D du sillon circonférentiel le plus proche diminuée de 2 mm. Cette solution permet un positionnement idéal de la couche d’éléments de renforcement la plus radialement extérieure de l’armature de sommet et la surface de roulement. La distance radiale minimale (du) entre la courbe radialement extérieure (CRE) de la couche la plus radialement extérieure de l’armature de sommet et la surface de roulement, est forcément mesurée sur la portion radialement extérieure de l’armature sommet, donc au niveau d’une ondulation.
[0053] Préférentiellement la profondeur D d’une rainure majeure ou d’un sillon circonférentiel est au moins égale à 6 mm, et au plus égale à 20 mm. Les profondeurs de sculpture entre 6 et 10 mm permettent un bon compromis entre les performances en usure et en résistance au roulement dans de nombreux pneumatiques de tourisme. Les profondeurs de sculpture entre 10 et 20 mm sont intéressantes pour les mêmes compromis dans les pneumatiques pour véhicules portant de lourdes charges. L’invention n’est pas limitée à des pneumatiques d’un usage particulier.
[0054] Dans le cas où la couche d’éléments de renforcement la plus radialement extérieure est une couche de frettage, il est avantageux que les éléments de renforcement de ladite couche soient en textile, de préférence de type polyamide aliphatique, polyamide aromatique, combinaison de polyamide aliphatique et de polyamide aromatique, polytéréphtalate d'éthylène ou rayonne, parallèles entre eux et formant, avec la direction circonférentielle (XX’) du pneumatique, un angle B au plus égal à 10° en valeur absolue.
[0055] Il est préféré que l’armature de sommet consiste en 2 couches de travail ayant des angles opposés et une couche de frettage, comme de nombreuses armatures de sommet actuelles.
[0056] Les caractéristiques et autres avantages de l’invention seront mieux compris à l’aide des figures 1 à 5, lesdites figures n’étant pas représentées à l’échelle mais de façon simplifiée, afin de faciliter la compréhension de l’invention :
• la figure 1 représente une coupe méridienne du sommet d’un pneumatique selon l’invention avec une ondulation (412) à l’aplomb de la nervure centrale (251) où passe le plan médian circonférentiel (P). Elle illustre la couche de renforcement local (6) positionnée sous l’ondulation (412) de la couche de travail (41) la plus radialement extérieure et les différentes distances radiales do, du, de et df.
• la figure 2 représente une coupe méridienne du sommet d’un pneumatique selon l’invention avec une ondulation (412) et une couche de renforcement local (6) à l’aplomb de chaque nervure centrale (251), de part et d’autre du sillon circonférentiel où passe le plan médian circonférentiel (P). Elle illustre également les distances W, D et d1.
• la figure 3 représente une coupe méridienne du sommet d’un pneumatique selon l’invention avec une ondulation (412) et deux couches de renforcement local (61 ,62) à l’aplomb de chaque nervure centrale (251), respectivement sous chaque couche de travail (41, 42) de part et d’autre du sillon circonférentiel où passe le plan médian circonférentiel (P).
• les figures 4 et 5 représentent des motifs de sculpture d’une bande de roulement et notamment un ensemble circonférentiel de rainures (24’) formant une des frontières circonférentielles (252) de la nervure centrale (251).
[0057] De nombreuses combinaisons d’agencement et de dimension des ondulations sous les nervures, et d’ensemble circonférentiel de rainures sont possibles. Les figures et la description ne sauraient toutes les décrire explicitement.
[0058] La figure 1 représente schématiquement la coupe méridienne du sommet du pneumatique 10 selon l’invention. A chaque plan méridien est associé un repère cartésien (XX’, YY’, ZZ’). Le pneumatique 10 comporte une bande de roulement 2 destinée à entrer en contact avec un sol par l’intermédiaire d’une surface de roulement 21. Dans la bande de roulement, sont disposées des rainures et des sillons circonférentiels 24 délimitant des nervures 25 dont la nervure centrale 251 par laquelle passe le plan circonférentiel médian P. Dans au moins un des sillons 24, le pneumatique 10 comprend au moins un témoin d’usure 7. Le pneumatique 10 comprend en outre une armature de sommet 3 comprenant une armature de travail 4 et ici pour l’exemple, une armature de frettage 5. L’armature de travail comprend au moins une couche de travail et ici pour l’exemple deux couches de travail 41 et 42 comprenant chacune des éléments de renforcement parallèles entre eux. L’armature de sommet 3 est radialement extérieure à une armature de carcasse 8. La figure 1 représente également à l’aplomb de cette nervure centrale 251 une ondulation 412 de la couche de travail la plus radialement extérieure 41 et à l’aplomb de cette ondulation une couche de renforcement local 6. Dans cette variante seule la couche de travail 41 la plus radialement extérieure est ondulée.
[0059] La figure 2 représente une variante de l’invention avec une ondulation 412 et une couche de renforcement local 6 à l’aplomb de chaque nervure centrale 251 , de part et d’autre du sillon circonférentiel où passe le plan médian circonférentiel P. La figure représente les sillons ayant chacun des faces latérales 241 et 242 et une face de fond 243 et une largeur W, distance axiale maximale entre les faces latérales, possiblement différente d’un sillon 24 à l’autre. Dans cette variante seule la couche de travail 41 la plus radialement extérieure est ondulée.
[0060] La figure 3 représente une variante de l’invention proche de celle de la figure 2 avec 2 nervures centrales 251 mais, dans cette variante, les deux couches de travail 41 et 42 sont ondulées, et sous chaque ondulation est positionnée une couche de renforcement local.
[0061] Les figures 1, 2, 3 représentent les distances radiales suivantes :
- D : la profondeur d’une rainure, distance radiale maximale entre la surface de roulement 21 et la face de fond 243 du sillon circonférentiel 24,
- de : distance radiale entre la courbe radialement extérieure CRE de la couche de travail 41 la plus radialement extérieure et la surface de roulement 21 , distance à l’aplomb de la face de fond 243 du sillon circonférentiel 24 la plus proche de ladite ondulation 412.
- df : la distance radiale entre la surface de roulement 21 et le point le plus radialement extérieur du témoin d’usure 7.
- do : la distance radiale entre la courbe radialement extérieure CRE de la couche de travail 41 la plus radialement extérieure et la surface de roulement au niveau de l’ondulation 412.
- du : la distance radiale minimale entre la courbe radialement extérieure CRE de la couche la plus radialement extérieure de l’armature de sommet 3 et la surface de roulement 21.
- d1 : la distance radiale entre la courbe radialement extérieure CRE de la couche de travail la plus radialement extérieure 41 et la face de fond 243 des sillons circonférentiels 25.
[0062] Une coupe méridienne du pneumatique est obtenue par découpage du pneumatique selon deux plans méridiens. Cette ou ces coupes servent à déterminer les différentes distances radiales.
[0063] Les figures 4 et 5 représentent des bandes de roulement où une nervure 251 est délimitée d’un côté par un sillon circonférentiel 24 et de l’autre côté par un ensemble circonférentiel de rainures 24’. La figure 4 représente un ensemble circonférentiel de rainures 24’ pour lequel la frontière circonférentielle 252 de la nervure centrale est évidente. La figure 5 représente un ensemble circonférentiel de rainures 24’ pour laquelle la position axiale des rainures dudit ensemble varie. Dans ce cas la frontière 252 de la nervure centrale n’est pas que sensiblement axiale. Dans ce cas, tout comme pour un sillon sensiblement circonférentiel, on extrapole ladite frontière passant par les points de ladite frontière 252 les plus proches du centre de la nervure centrale par un plan circonférentiel.
[0064] L’invention a été réalisée sur un pneumatique A de dimension 295/35R20 destiné à équiper un véhicule de tourisme. Les profondeurs D des rainures de la sculpture sont comprises entre 4 et 7 mm et égale à 7 mm pour les sillons circonférentiels, pour des largeurs W variables pour les rainures et égales à 15 mm pour les sillons. L’armature sommet est composée de deux couches de travail dont les éléments de renforcement font un angle de + ou - 38° avec la direction circonférentielle et d’une couche de frettage dont les éléments de renforcement font un angle de + ou - 3° avec la direction circonférentielle.
[0065] La couche de travail la plus radialement extérieure est ondulée sous la nervure centrale de la bande de roulement. L’amplitude de l’ondulation sous la nervure centrale est de 1 ,2 mm. La largeur axiale de l’ondulation est égale à 21 mm. Dans l’ondulation est positionnée une couche de renforcement local de largeur axiale de 20 mm constituée d’un hybride aramide nylon de diamètre égal à 0.65 mm à un pas de pose de 0.85 mm. La distance radiale d1 entre la courbe radialement extérieure CRE de la couche de travail la plus radialement extérieure 41 et la face de fond 243 des sillons circonférentiels 25, est comprise entre 2 mm et 3,5 mm.
[0066] Les pneumatiques A ont été comparés avec les pneumatiques B de même dimension, possédant les mêmes caractéristiques à cela près que les couches de travail ne sont pas ondulées et qu’il n’y a pas de couche de renforcement local.
[0067] Le gain en résistance au roulement a été évalué sur une machine standard pour des mesures normalisées ISO 2850 :2009. Les tests montrent un gain de plus 2% par rapport au pneumatique B de référence.
[0068] Par ailleurs, une mesure de la caractéristique Dz du modèle de comportement des pneumatiques, dit Pacejka, bien connue de l’homme de l’art, montre une augmentation de cette caractéristique pour une pression à 2.6 bars à chaud de 2 à 3%. Le gain en adhérence sol sec varie entre 0 et 1% selon les conditions de sollicitation. [0069] Le gain en performance en breaking energy du pneumatique A comparativement au pneumatique B est de 15% sans augmentation de masse.

Claims

Revendications
1. Pneumatique (10) pour véhicule comprenant :
- une bande de roulement (2) destinée à entrer en contact avec un sol par l’intermédiaire d’une surface de roulement (21), un plan circonférentiel médian (P) passant par le centre de la bande de roulement (21), la surface de roulement comprenant des rainures, les rainures formant un espace débouchant sur la surface de roulement (21) et étant délimitée par au moins deux faces latérales principales (241 , 242) reliées par une face de fond (243),
- au moins une et au plus deux nervures (251) centrales, délimitées par des frontières circonférentielles (252), les frontières circonférentielles (252) des nervures centrales étant des rainures sensiblement circonférentielles, appelées sillons circonférentiels (24), ou un ensemble circonférentiel de rainures (24’), une nervure centrale étant telle que le plan circonférentiel médian passe entre ses deux frontières ou, si le plan circonférentiel médian passe par un sillon circonférentiel, telle que le plan circonférentiel médian passe à une distance d’une des frontières de ladite nervure (25) centrale, au plus égale à 15 mm, les sillons circonférentiels ou les rainures de l’ensemble circonférentiel de rainures (24’) formant les frontières du ou des nervures centrales ayant une largeur W définie par la distance entre deux faces latérales (241, 242), au moins égale à 5 mm et une profondeur D définie par la distance radiale maximale entre la surface de roulement (21) et la face de fond (243), au moins égale à 2 mm,
- une armature de sommet (3), radialement intérieure à la bande de roulement (2), comprenant une armature de travail (4), et une armature de carcasse (8) radialement intérieure à l’armature de sommet comprenant au moins une couche de carcasse (8), l’armature de travail (4) comprenant au moins une couche de travail (41 , 42), chaque couche de travail (41) s’étendant radialement depuis une courbe radialement intérieure (CRI) jusqu’à une courbe radialement extérieure (CRE), chaque couche de travail (41) comprenant des éléments de renforcement, au moins partiellement métalliques enrobés par un matériau élastomérique, parallèles entre eux et formant avec la direction circonférentielle (XX’) du pneumatique, un angle dont la valeur absolue est au moins égale à 15° et au plus égale à 50°, la couche de travail (41) la plus radialement extérieure comprenant au moins une ondulation centrale (412) à l’aplomb d’au moins une nervure centrale (26), d’une amplitude au moins égale à 1 mm, chaque ondulation centrale (412) étant telle que la portion de la couche de travail (41) de l’ondulation centrale (412) est radialement extérieure à la portion de la couche de travail (41) à l’aplomb des faces de fond (243) des sillons circonférentiels ou des rainures de l’ensemble circonférentiel de rainures délimitant la nervure centrale (251) en surplomb de l’ondulation centrale considérée (412), caractérisé en ce qu’au moins une armature de renforcement local (6), comprenant au moins une couche d’éléments de renforcement, parallèles entre eux et formant avec la direction circonférentielle (XX’) du pneumatique, un angle dont la valeur absolue est au plus égale à 5°, est à l’aplomb d’au moins une ondulation centrale (412) de la couche de travail (41) la plus radialement extérieure.
2. Pneumatique (10) selon la revendication 1 , dans lequel l’amplitude de chaque ondulation centrale (412) de la couche de travail (41) la plus radialement extérieure est au moins égale à 1.5 mm de préférence au moins égale à 2 mm, et au plus égale à 5 mm de préférence au plus égale à 3 mm.
3. Pneumatique (10) selon l’une quelconque des revendications précédentes, dans lequel l’armature de renforcement local (6) est radialement extérieure à l’armature de carcasse (8), radialement intérieure à la couche de travail la plus radialement intérieure (42).
4. Pneumatique (10) selon l’une quelconque des revendications précédentes, dans lequel la couche de travail (41) la plus radialement extérieure comprend une ondulation centrale (412) à l’aplomb de chaque nervure centrale (251), chaque ondulation centrale étant en surplomb d’une armature de renforcement local (6).
5. Pneumatique (10) selon l’une quelconque des revendications précédentes, dans lequel la largeur axiale de chaque armature de renforcement local est au moins égale à 5 mm, et au plus égale à la largeur axiale de la nervure centrale en surplomb de ladite armature de renforcement local (6).
6. Pneumatique (10) selon l’une quelconque des revendications précédentes, dans lequel chaque armature de renforcement local (6), comprend une couche d’éléments de renforcement, parallèles entre eux et formant avec la direction circonférentielle (XX’) du pneumatique, un angle orienté dont la valeur absolue est au plus égale à 0,5°, de préférence au plus égale à 0.2°, de préférence égale à 0°.
7. Pneumatique (10) selon l’une quelconque des revendications précédentes, dans lequel les éléments de renforcement de chaque armature de renforcement local sont en textile, de préférence de type polyamide aliphatique, polyamide aromatique, combinaison de polyamide aliphatique et de polyamide aromatique, polytéréphtalate d'éthylène ou rayonne, parallèles entre eux, et préférentiellement d’une épaisseur radiale au plus égale à 1.5 mm.
8. Pneumatique (10) selon l’une quelconque des revendications précédentes, dans lequel la force à la rupture des éléments de renforcement de chaque armature de renforcement local (6) est au moins égale à 20 daN, au plus égale à 120 daN et leur allongement à rupture Acc au moins égale à 6%, préférentiellement au plus égal à 30%.
9. Pneumatique (10) selon l’une quelconque des revendications précédentes, dans lequel chaque ondulation (412) de la couche de travail (41 ) la plus radialement extérieure est en surplomb d’au plus une armature de renforcement local (6), chaque armature de renforcement local (6) étant réalisée par l’enroulement continu d’une bande d’au moins deux éléments de renforcement, pour générer au plus 3 couches d’éléments de renforcement.
10. Pneumatique (10) selon la revendication précédente, dans lequel la distance axiale entre deux éléments de renforcement contigus de l’armature de renforcement local (6) est au moins égale à 0.2mm et au plus égale à 0.4mm.
11 . Pneumatique (10) selon l’une quelconque des revendications précédentes, comprenant deux couches de travail (41 ,42) et dans lequel une première armature (61 ) de renforcement local est radialement extérieure à l’armature de carcasse (8), radialement intérieure à la couche de travail (41) la plus radialement intérieure et une deuxième armature (62) de renforcement local est radialement extérieure à la couche de travail (41 ) la plus radialement intérieure et radialement intérieure à la couche de travail (42) la plus radialement extérieure.
12. Pneumatique (10) selon l’une quelconque des revendications précédentes, dans lequel les éléments de renforcement de la ou les couches de carcasse (8) ont une courbure méridienne de signe constant à l’aplomb de la couche de travail la plus étroite de l’armature de sommet.
13. Pneumatique (10) selon l’une quelconque des revendications 1 à 12, dans lequel une ondulation (412) de la couche de travail (41) la plus radialement extérieure est présente uniquement à l’aplomb des nervures centrales (251 ).
14. Pneumatique (10) selon l’une quelconque des revendications 1 à 12, dans lequel une ondulation (412) de la couche de travail (41) la plus radialement extérieure est présente à l’aplomb de toutes les nervures (25,251 ) de la bande de roulement (2).
15. Pneumatique (10) selon l’une quelconque des revendications précédentes, dans lequel une armature de renforcement local (6) est présente à l’aplomb de toutes les ondulations (412) de la couche de travail (41 ) la plus radialement extérieure.
PCT/FR2020/051905 2019-10-23 2020-10-22 Pneumatique comprenant une architecture optimisee WO2021079066A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022523444A JP2022554103A (ja) 2019-10-23 2020-10-22 最適化されたアーキテクチャを備えるタイヤ
EP20807470.8A EP4048529B1 (fr) 2019-10-23 2020-10-22 Pneumatique comprenant une architecture optimisee
CN202080073028.1A CN114616108B (zh) 2019-10-23 2020-10-22 包括优化的结构的轮胎
US17/771,084 US12109856B2 (en) 2019-10-23 2020-10-22 Tire comprising an optimized architecture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1911850 2019-10-23
FRFR1911850 2019-10-23

Publications (1)

Publication Number Publication Date
WO2021079066A1 true WO2021079066A1 (fr) 2021-04-29

Family

ID=69173061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/051905 WO2021079066A1 (fr) 2019-10-23 2020-10-22 Pneumatique comprenant une architecture optimisee

Country Status (5)

Country Link
US (1) US12109856B2 (fr)
EP (1) EP4048529B1 (fr)
JP (1) JP2022554103A (fr)
CN (1) CN114616108B (fr)
WO (1) WO2021079066A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2351811A1 (fr) * 1976-05-21 1977-12-16 British Leyland Uk Ltd Pneumatique a bande de roulement raidie
US20110198006A1 (en) * 2010-02-16 2011-08-18 Toyo Tire & Rubber Co., Ltd. Pneumatic Tire
US8662128B2 (en) 2010-09-14 2014-03-04 Sumitomo Rubber Industries, Ltd. Heavy duty tire
DE102013107475A1 (de) 2013-07-15 2015-01-15 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
DE102016202295A1 (de) 2016-02-16 2017-08-17 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
FR3057811A1 (fr) * 2016-10-21 2018-04-27 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une architecture optimisee

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470938B1 (en) * 2000-04-27 2002-10-29 Bridgestone/Firestone North American Tire, Llc Pneumatic tire having layer of rubber disposed between the body and belt package
BR0112757B1 (pt) * 2000-07-24 2009-08-11 pneumático.
FR3020014B1 (fr) * 2014-04-18 2016-05-06 Michelin & Cie Armature de sommet de pneumatique pour avion
FR3035026B1 (fr) * 2015-04-17 2017-03-31 Michelin & Cie Armature de renforcement de pneumatique
FR3057810A1 (fr) 2016-10-21 2018-04-27 Compagnie Generale Des Etablissements Michelin Pneumatique a couches de travail comprenant une architecture optimisee
FR3057812A1 (fr) * 2016-10-21 2018-04-27 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une architecture optimisee
FR3094272A1 (fr) 2019-03-28 2020-10-02 Compagnie Generale Des Etablissements Michelin Pneumatique à couches de travail comprenant une architecture et une sculpture optimisées
FR3094672B1 (fr) 2019-04-05 2021-03-12 Michelin & Cie Pneumatique ayant des architectures sommet et bourrelet optimisées

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2351811A1 (fr) * 1976-05-21 1977-12-16 British Leyland Uk Ltd Pneumatique a bande de roulement raidie
US20110198006A1 (en) * 2010-02-16 2011-08-18 Toyo Tire & Rubber Co., Ltd. Pneumatic Tire
US8662128B2 (en) 2010-09-14 2014-03-04 Sumitomo Rubber Industries, Ltd. Heavy duty tire
DE102013107475A1 (de) 2013-07-15 2015-01-15 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
DE102016202295A1 (de) 2016-02-16 2017-08-17 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
FR3057811A1 (fr) * 2016-10-21 2018-04-27 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une architecture optimisee

Also Published As

Publication number Publication date
US20220363094A1 (en) 2022-11-17
EP4048529B1 (fr) 2024-04-03
EP4048529A1 (fr) 2022-08-31
CN114616108A (zh) 2022-06-10
US12109856B2 (en) 2024-10-08
CN114616108B (zh) 2023-09-08
JP2022554103A (ja) 2022-12-28

Similar Documents

Publication Publication Date Title
EP3529086B1 (fr) Pneumatique comprenant une architecture optimisée
EP3529087B1 (fr) Pneumatique comprenant une architecture optimisée
EP3368350B1 (fr) Pneumatique à couches de travail comprenant des monofilaments et à bande de roulement rainurée
EP3529085B1 (fr) Pneumatique à couches de travail comprenant une architecture optimisée
FR2983779A1 (fr) Combinaison d'une structure de pneu poids lourd avec une sculpture de bande de roulement
EP3946973B1 (fr) Pneumatique a couches de travail comprenant une architecture et une sculpture optimisees
EP3368338B1 (fr) Pneumatique à couches de travail comprenant des monofilaments et à bande de roulement rainurée
EP3634777B1 (fr) Pneumatique comprenant une architecture et une sculpture optimisées
EP4048529B1 (fr) Pneumatique comprenant une architecture optimisee
EP3455089B1 (fr) Pneumatique à couches de travail comprenant des monofilaments et à bande de roulement rainurée
EP3126157A1 (fr) Armature de sommet de pneumatique pour avion
EP3810440B1 (fr) Pneumatique a architecture sommet et sculpture optimisee
EP3368348B1 (fr) Pneumatique à couches de travail comprenant des monofilaments et à bande de roulement rainurée
WO2020002786A1 (fr) Pneumatique a architecture sommet et sculpture optimisee
EP3390078B1 (fr) Pneumatique presentant des proprietes d'usure ameliorees
EP3621825A1 (fr) Pneumatique à architecture et bande de roulement optimisées

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20807470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022523444

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020807470

Country of ref document: EP

Effective date: 20220523