WO2021077981A1 - 用于扫描电子显微镜的样品封闭装置 - Google Patents
用于扫描电子显微镜的样品封闭装置 Download PDFInfo
- Publication number
- WO2021077981A1 WO2021077981A1 PCT/CN2020/117523 CN2020117523W WO2021077981A1 WO 2021077981 A1 WO2021077981 A1 WO 2021077981A1 CN 2020117523 W CN2020117523 W CN 2020117523W WO 2021077981 A1 WO2021077981 A1 WO 2021077981A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cabin
- observation
- scanning electron
- housing
- electron microscope
- Prior art date
Links
- 238000004626 scanning electron microscopy Methods 0.000 title 1
- 238000007789 sealing Methods 0.000 claims abstract description 37
- 238000012360 testing method Methods 0.000 claims description 32
- 229920001971 elastomer Polymers 0.000 claims description 29
- 238000012546 transfer Methods 0.000 claims description 23
- 238000011065 in-situ storage Methods 0.000 claims description 19
- 239000007789 gas Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- -1 polypropylene Polymers 0.000 claims description 7
- 229910000838 Al alloy Inorganic materials 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 239000002861 polymer material Substances 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 239000000741 silica gel Substances 0.000 claims description 3
- 229910002027 silica gel Inorganic materials 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 108010066057 cabin-1 Proteins 0.000 description 22
- 238000010586 diagram Methods 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/18—Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
- H01J37/185—Means for transferring objects between different enclosures of different pressure or atmosphere
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/20—Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/2005—Seal mechanisms
- H01J2237/2006—Vacuum seals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/204—Means for introducing and/or outputting objects
Definitions
- This application relates to the technical field of sample sealing, in particular to a sample sealing device for scanning electron microscopes.
- Scanning electron microscope is an instrument used to observe the surface morphology of objects or materials. When using a scanning electron microscope to observe samples, the requirements for samples are higher.
- the surface morphology of the observed material is a microstructure. Because some samples are exposed to the air, they are easily affected by the air when they are transferred to the cavity of the scanning electron microscope, which leads to changes in the microscopic morphology of the material surface, which affects the observation. result.
- the purpose of this application is to provide a sample sealing device for scanning electron microscopes to solve the above-mentioned problems in the background art.
- a sample sealing device for a scanning electron microscope, the sample sealing device comprising: a cabin; an accommodating portion having an accommodating space for accommodating a sample, and The accommodating part is disposed in the cabin in a manner capable of moving relative to the cabin, so that the accommodating part at least partially enters the cabin or moves out of the cabin; the seal is connected to the cabin.
- the accommodating part is connected, and when the accommodating part is at least partially accommodated in the cabin, the sealing between the accommodating part and the cabin is realized; and a driving member is configured for The relative movement of the cabin body and the accommodating part is driven.
- the chamber is used to at least partially contain the accommodating part containing the sample, and the seal is used to achieve the seal between the accommodating part and the chamber, thereby avoiding the influence of air on the observation results of the sample. Conducive to improving the accuracy of observation.
- the sealing element is an airtight rubber ring.
- the accommodating portion communicates with the internal space of the cabin, and the accommodating portion is provided with a one-way air valve, and the one-way air valve is configured to be located in the accommodating portion In the process of entering the cabin, the gas in the cabin is discharged.
- the driving member is a non-magnetic elastic member, and is configured to be in a deformed state due to the compression of the accommodating portion after the accommodating portion enters the cabin, and is configured To restore the deformation when the air pressure outside the cabin is lower than the air pressure in the cabin, and to push the accommodating part out of the cabin during the restoration of the deformation.
- the sample closure device further includes a slide rail, the cabin body is slidably connected to the slide rail, and the driving member is a motor, and the motor drives the cabin body along the slide rail.
- the rail slips.
- the sample closure device further includes a clamping and fixing component for fixing the sample to the accommodating part.
- the clamping and fixing assembly includes a moving end position and a fixed end position arranged coaxially, and the sample is contained in an area between the fixed end position and the moving end position.
- a sample transfer box for a scanning electron microscope comprising a housing with a cavity and an observation cabin, the observation cabin is slidably arranged in the housing, and the housing is provided for observation Observe the gap of the items in the observation cabin, the cavity in the observation cabin is connected to the cavity in the shell, the observation cabin is provided with a one-way air valve, and the observation cabin is provided with the housing and the observation cabin.
- a sealed airtight rubber ring, a non-magnetic elastic member is arranged between the observation cabin and the housing, and the non-magnetic elastic member is used to push the observation cabin out of the housing without leaving the observation cabin.
- the casing includes a main casing and a main casing back cover, the main casing back cover and the main casing are connected by a connecting bolt, and one end of the non-magnetic elastic member is connected to the main casing.
- the back cover can be detachably connected, and the other end of the non-magnetic elastic member is clamped in the groove of the observation cabin.
- the non-magnetic elastic member is a non-magnetic spring.
- the non-magnetic spring is a SUS304L spring, a SUS304H spring or a SUS316L spring.
- the airtight rubber ring is connected to the observation cabin by being clamped in the slot of the observation cabin.
- the housing is made of one or more materials among copper, stainless steel, aluminum alloy, resin or high polymer materials.
- the observation cabin is made of one or more of copper, stainless steel, aluminum alloy, resin or high polymer materials.
- the airtight rubber ring is made of one or more materials among silica gel, reinforced polypropylene, and polytetrafluoroethylene.
- the number of the non-magnetic elastic members is two, and the non-magnetic elastic members are symmetrically arranged on the inner wall of the observation cabin.
- a solid-state battery in-situ observation cabin for a scanning electron microscope which includes a housing in which an airtight cabin is provided, and an airtight cabin for driving displacement of the airtight cabin is provided in the housing.
- a tight cabin driving motor, a clamping and fixing assembly, a driving part for driving the operation of the clamping and fixing assembly, and a test solid-state battery wherein the clamping and fixing assembly is used to clamp and fix the test solid-state battery, and the clamp
- the outer surface of the tight fixing assembly is sleeved with an airtight rubber ring, and an airtight cabin slide rail is also provided in the shell.
- the airtight cabin can slide along the airtight cabin slide rail, and the airtight cabin is connected to the airtight cabin slide rail.
- the clamping and fixing components are arranged oppositely and used to seal the test solid-state battery.
- the clamping and fixing assembly includes a fixed end position and a mobile end position, the fixed end position and the mobile end position are coaxially arranged, and the test solid-state battery is placed in the fixed end position and the mobile end position. The area between.
- the driving member includes a moving end position driving motor.
- the moving end position drive motor is a stator coil motor.
- the airtight cabin driving motor is a stator coil motor.
- both the housing and the airtight compartment are made of non-magnetic conductive materials.
- the shell and the airtight compartment are made of copper.
- the sample transfer box of the scanning electron microscope includes a housing with a cavity and an observation cabin, and the observation cabin is slidably arranged in Inside the housing, the housing is provided with a notch for observing items in the observation cabin, the housing and the observation cabin are respectively a non-magnetic housing and a non-magnetic observation cabin, the cavity in the observation cabin and the inside of the housing The cavity is connected, the observation cabin is provided with a one-way air valve, the observation cabin is provided with an airtight rubber ring for sealing the shell and the observation cabin, and a non-return valve is provided between the observation cabin and the shell.
- a magnetic elastic piece, the non-magnetic elastic piece is used to push the observation cabin out of the housing without leaving the observation cabin,
- the method of using the sample transfer box of the scanning electron microscope includes:
- the sample transfer box of the scanning electron microscope is placed in the chamber of the scanning electron microscope, and the air in the chamber is evacuated, so that the observation chamber is pushed out from the housing through the non-magnetic elastic member, and passes through the gap Observe the samples in the observation cabin;
- Gas is injected into the chamber of the scanning electron microscope to increase the air pressure around the sample enclosure, so that the observation chamber is pressed back into the housing by the increased external air pressure.
- the solid-state battery in-situ observation cabin for a scanning electron microscope includes a housing, and the housing is provided with An airtight cabin, an airtight cabin driving motor for driving the airtight cabin to be displaced, a clamping and fixing assembly, a driving part for driving the clamping and fixing assembly to operate, and testing of solid-state batteries, wherein the clamping and fixing assembly For clamping and fixing the test solid-state battery, an airtight rubber ring is sleeved on the outer surface of the clamping and fixing assembly, and an airtight cabin slide rail is also arranged in the shell, and the airtight cabin can be arranged along the The airtight cabin slides sliding, and the airtight cabin is arranged opposite to the clamping and fixing assembly and is used to seal the test solid-state battery,
- the method of using the solid-state battery in-situ observation cabin for scanning electron microscope includes:
- the airtight cabin is driven by the airtight cabin drive motor to move along the airtight cabin slide rail toward the airtight rubber ring to complete the sealing of the test solid-state battery;
- Figure 1 is a schematic diagram of the structure of a sample closure device according to the present application.
- Fig. 2 is a schematic structural diagram of a sample sealing device according to an embodiment of the present application.
- FIG. 3 is a schematic structural diagram of an observation cabin when it is enclosed in a shell according to an embodiment of the present application
- FIG. 4 is a schematic structural diagram of the observation cabin when it is removed from the housing according to an embodiment of the present application.
- Fig. 5 is a schematic diagram of the overall structure of a sample sealing device according to another embodiment of the present application.
- a sample sealing device for a scanning electron microscope which includes a cabin 10 and a receiving portion 20.
- the accommodating part 20 has an accommodating space, and the sample to be observed can be put into the accommodating space during use.
- the cabin body 10 can move relative to the accommodating portion 20, so that the accommodating portion 20 can be disposed in the cabin body 10 in a relatively movable manner with the cabin body 10, so that the accommodating portion 20 is at least partially accommodated in the cabin body 10 Or move the accommodating portion 20 out of the cabin 10.
- the accommodating portion 20 is connected to the sealing member 30.
- the sample sealing device further includes a driving member 40 configured to drive the relative movement of the cabin body 10 and the accommodating portion 20.
- a driving member 40 configured to drive the relative movement of the cabin body 10 and the accommodating portion 20. It should be understood that although the driving member 40 is shown in FIG. 1 as being connected to the receiving portion 20, it is only an embodiment. In other embodiments, the driving member 40 may also be connected to the cabin body 10, as long as the driving member 40 can realize the relative movement of the cabin body 10 and the accommodating portion 20.
- the sealing member 30 may be an airtight rubber ring, which is detachably arranged on the accommodating portion 20.
- the sealing member 30 can adopt other components according to actual needs, such as components made of polytetrafluoroethylene, soft bakelite, graphite rings, etc., as long as it can be in the accommodating portion 20 and It suffices to achieve a seal between the cabins 10.
- the sealing member 30 is made of an elastic material and has abrasion resistance.
- the accommodating portion 20 may be provided with a one-way air valve, and the accommodating portion 20 and the internal space of the cabin 10 are in communication with each other.
- the driving member 40 may be a non-magnetic elastic member, such as a spring or the like.
- the accommodating portion 20 When the accommodating portion 20 enters the cabin 10, since the accommodating portion 20 is in communication with the cabin 10, the gas in the cabin 10 is squeezed and discharged through the one-way air valve provided on the accommodating portion 20 To the outside of the cabin 10, at the same time, the spring is squeezed by the accommodating portion 20 and deformed. When the gas in the cabin 10 is exhausted, the cabin 10 is in a high vacuum state. At this time, the outside air pressure is higher than the air pressure in the cabin 10, and the spring remains in a deformed state due to the existence of the air pressure difference. When the air pressure outside the cabin 10 is less than the air pressure inside the cabin 10, the spring restores its deformation and pushes the accommodating portion 20 out of the cabin 10 during the restoration of the deformation.
- the above-mentioned sample sealing device for a scanning electron microscope may be a sample transfer box of a scanning electron microscope.
- the cabin body 10 may be a housing 6 with a cavity
- the accommodating portion 20 may be an observation cabin 1
- the sealing member 30 may be an airtight rubber ring 3
- the driving member 40 may be a non-magnetic elastic member 7.
- the observation cabin 1 is slidably arranged in the housing 6, and the housing 6 is provided with a notch 5 for easy observation of the objects in the observation cabin 1.
- FIG. 2 is an exploded view of this embodiment, which is only intended to show the independent form of each component, and does not mean that the positional relationship and connection relationship of these components must be set in the manner shown. In other words, the positional relationship and connection relationship between components should be understood in conjunction with other drawings.
- the casing 6 includes a main casing and a main casing rear cover 8.
- the main casing rear cover 8 and the main casing are connected by connecting bolts, and one end of the non-magnetic elastic member 7 and the main casing rear cover 8 are detachable.
- the other end of the non-magnetic elastic member 7 is clamped in the groove on the observation cabin 1 to facilitate the disassembly and replacement of the non-magnetic elastic member 7.
- the non-magnetic elastic member 7 adopts a non-magnetic spring, which has a long service life.
- the non-magnetic spring is a SUS316L spring, which has good intergranular corrosion resistance.
- the non-magnetic spring 7 is a SUS304H spring or a SUS304L spring.
- the air-tight rubber ring 3 and the observation cabin 1 are connected in a manner that the air-tight rubber ring 3 is clamped in the slot 2 on the observation cabin 1 to facilitate the disassembly and replacement of the air-tight rubber ring 3.
- the housing 6 is made of copper, which has good wear resistance.
- the housing 6 is made of one or more of stainless steel, aluminum alloy, resin or high polymer materials.
- the observation cabin 1 is made of copper, which has good wear resistance.
- the observation cabin 1 is made of one or more of stainless steel, aluminum alloy, resin or high polymer materials.
- the airtight rubber ring 3 is made of polytetrafluoroethylene and has a low friction coefficient.
- the airtight rubber ring 3 is made of silica gel or reinforced polypropylene.
- the number of non-magnetic elastic members 7 is two, and the non-magnetic elastic members 7 are symmetrically arranged on the inner wall of the observation cabin 1 to have a good pushing effect on the observation cabin 1.
- the method of using the sample closure device according to this embodiment is as follows.
- the observation cabin 1 is fixed to the bottom of the main housing under the action of the external atmospheric pressure (as shown in Fig. 3).
- the air-tight rubber ring 3 prevents outside air from penetrating into the main casing, ensuring the air-tight effect.
- the assembled and closed sample box is placed in the chamber of the scanning electron microscope, and the air in the chamber is evacuated, so that the observation chamber 1 is pushed out from the main housing through the non-magnetic elastic member 7 (as shown in Figure 4) . At this time, the samples in the observation cabin 1 can be observed.
- gas can be injected into the chamber of the scanning electron microscope to increase the air pressure around the sample enclosure. At this time, the observation cabin 1 will be pressed back into the main housing due to the increased external air pressure.
- the imaging influence of the magnetic material on the observation result of the sample is avoided, thereby facilitating the accuracy of the observation.
- the gas in the main housing is discharged through a one-way air valve, and the outside gas is closed to enter, so that the observation cabin is not opened by the outside air pressure.
- the sample box enters the cavity of the scanning electron microscope, the air pressure decreases, and the non-magnetic elastic member pushes the observation chamber out of the main housing. At this time, the sample can be observed, avoiding the use of motors or electromagnets, and no external control cables are required. .
- the sample closure device includes a slide rail, the cabin body 10 is slidably connected to the slide rail, and the driving member 40 is a motor, and the cabin body 10 can slide along the slide rail under the drive of the motor.
- the sample closure device also includes a clamping and fixing component for fixing the sample to the accommodating portion 20.
- the clamping and fixing assembly may include a moving end position and a fixed end position arranged coaxially, and the sample is contained in the area between the fixed end position and the moving end position.
- the sample sealing device for a scanning electron microscope may be a solid-state battery in-situ observation cabin for a scanning electron microscope.
- the cabin body 10 may be an airtight cabin 201
- the sealing member 30 may be an airtight rubber ring 202
- the driving member 40 may be an airtight cabin driving motor 501 for driving the airtight cabin 201 to be displaced.
- the airtight compartment 201 and the accommodating portion 20 are both arranged in the housing 100.
- the solid-state battery in-situ observation module also includes a clamping and fixing assembly, and the sample is a solid-state battery 700, and the clamping and fixing assembly is used to clamp and fix the test solid-state battery 700.
- An airtight rubber ring 202 is provided on the outer surface of the clamping and fixing assembly, and an airtight cabin slide rail 600 is also provided in the housing 100, and the airtight cabin 201 can slide on the airtight cabin slide rail 600.
- the airtight compartment 201 is arranged opposite to the clamping and fixing assembly, and is used to seal the test solid-state battery 700.
- the clamping and fixing assembly includes a fixed end position 300 and a mobile end position 400, the fixed end position 300 and the mobile end position 400 are coaxially arranged, and the test solid-state battery 700 is placed in the area between the fixed end position 300 and the mobile end position 400 .
- the driving member includes a moving end position driving motor 502. More specifically, the mobile end position drive motor 502 and the airtight cabin drive motor 501 are both stator coil motors.
- both the housing 100 and the airtight compartment 201 are made of non-magnetic conductive materials.
- the housing 100 and the airtight compartment 201 are made of copper.
- the method of using the sample closure device according to this embodiment is as follows.
- the observation cabin and the test solid-state battery 700 are assembled in a glove box protected by argon gas, and the test solid-state battery 700 is clamped and fixed by the mobile end drive motor 502 driving the mobile end 400. Then, the airtight cabin 201 is driven by the airtight cabin driving motor 501 to move along the airtight cabin slide rail 600 toward the airtight rubber ring 202 to complete the sealing of the test solid battery 700.
- the assembled and closed observation cabin is placed in the chamber of the scanning electron microscope, the air in the chamber is removed, and the airtight cabin 201 is driven to open again by the airtight cabin driving motor 501.
- the transfer of the test solid-state battery 700 from the glove box to the chamber of the scanning electron microscope is completed.
- the test solid-state battery is installed between the fixed end of the solid-state battery and the mobile end of the solid-state battery through an airtight cabin in the argon glove box. After the airtight cabin is closed, the observation cabin is moved to the scanning electron microscope Inside the chamber, it is ensured that the test solid-state battery is not polluted by air before observation.
- the stator coil motor by using the stator coil motor, the magnetism of the permanent magnet motor is prevented from affecting the imaging of the scanning electron microscope, thereby facilitating the accuracy of observation.
- the control of the stator coil motor it is convenient to open the cover of the observation cabin in the cavity of the scanning electron microscope.
- the use of non-magnetic conductive materials prevents the magnetism of the permanent magnet motor from affecting the imaging of the scanning electron microscope, thereby facilitating the accuracy of observation.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
一种用于扫描电子显微镜的样品封闭装置,该样品封闭装置包括:舱体(10);容置部(20),其具有用于容置样品的容置空间,且容置部(20)以可与舱体(10)相对移动的方式设置于舱体(10)内,以使容置部(20)至少部分地进入舱体(10)内或从舱体(10)内移出;密封件(30),其与容置部(20)连接,并且在容置部(20)至少部分地收容在舱体(10)内时,实现容置部(20)与舱体(10)之间的密封;以及驱动件(40),其被配置为用于驱动舱体(10)与容置部(20)的相对移动。通过使用舱体(10)将容置有样品的容置部(20)至少部分地收容在内,并且使用密封件(30)实现容置部(20)与舱体(10)之间的密封,从而避免了空气对样品的观测结果产生的影响,有利于提高观测的准确性。
Description
相关申请的交叉引用
本申请要求于2019年11月5日提交中国专利局,申请号为201921890783.X,申请名称为“一种扫描电子显微镜的样品转移盒”的中国专利申请、以及于2019年10月21日提交中国专利局,申请号为201921763316.0,申请名称为“一种用于扫描电子显微镜的固态电池原位观测舱”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及样品封闭技术领域,尤其是一种用于扫描电子显微镜的样品封闭装置。
扫描电子显微镜是一种用来观察物体或材料表面形貌的仪器,使用扫描电子显微镜观察样品时对样品的要求较高。所观察的材料表面形貌是微观结构,由于一些样品曝露在空气中,因此向扫描电子显微镜的腔体转移时,容易受到空气的影响,导致材料表面的微观形貌发生变化,从而影响观测的结果。
发明内容
本申请的目的在于提供一种用于扫描电子显微镜的样品封闭装置,以解决上述背景技术中提出的问题。
根据本申请的第一方面,提供一种用于扫描电子显微镜的样品封闭装置,所述样品封闭装置包括:舱体;容置部,其具有用于容置样品的容置空间,且所述容置部以可与所述舱体相对移动的方式设置于所述舱体内,以使所述容置部至少部分地进入所述舱体内或从所述舱体内移出;密封件,其与所述容置部连接,并且在所述容置部至少部分地收容在所述舱体内时,实现所述容置部与所述舱体之间的密封;以及驱动件,其被配置为用于驱动所述舱体与所述容置 部的相对移动。
通过使用舱体将容置有样品的容置部至少部分地收容在内,并且使用密封件实现容置部与舱体之间的密封,从而避免了空气对样品的观测结果产生的影响,有利于提高观测的准确性。
在一个实施例中,所述密封件为气密胶圈。
在一个实施例中,所述容置部与所述舱体的内部空间连通,且所述容置部设置有单向气阀,且所述单向气阀被配置为在所述容置部进入所述舱体的过程中,排出所述舱体内的气体。
在一个实施例中,所述驱动件为非磁性弹性件,且被配置为在所述容置部进入所述舱体后,因所述容置部的挤压而处于形变状态,以及被配置为在所述舱体外部的气压小于所述舱体内的气压时恢复形变,且在恢复形变过程中将所述容置部推出所述舱体。
在一个实施例中,所述样品封闭装置还包括滑轨,所述舱体可滑动地连接到所述滑轨,以及所述驱动件为电动机,所述电动机驱动所述舱体沿所述滑轨滑移。
在一个实施例中,所述样品封闭装置还包括用于将所述样品固定至所述容置部的夹紧固定组件。
在一个实施例中,所述夹紧固定组件包括同轴设置的移动端位和固定端位,所述样品容置于所述固定端位和移动端位之间的区域。
根据本申请的第二方面,提供一种扫描电子显微镜的样品转移盒,包括带有腔体的壳体和观察舱,所述观察舱滑动设置在壳体内,所述壳体上设置有用于观察观察舱内物品的缺口,所述观察舱内的腔体和壳体内的腔体导通,所述观察舱上设置有单向气阀,所述观察舱上设置有用于壳体和观察舱的密封的气密胶圈,所述观察舱和壳体之间设置有非磁性弹性件,所述非磁性弹性件用于将观察舱从壳体内推出且观察舱不离开壳体。
在一个实施例中,所述壳体包括主壳体和主壳体后盖,所述主壳体后盖和主壳体之间通过连接螺栓连接,所述非磁性弹性件一端和主壳体后盖可拆卸连接,所述非磁性弹性件的另一端卡接在观察舱的凹槽内。
在一个实施例中,所述非磁性弹性件为非磁性弹簧。
在一个实施例中,所述非磁性弹簧为SUS304L弹簧、SUS304H弹簧或者SUS316L弹簧。
在一个实施例中,所述气密胶圈通过卡接在所述观察舱的卡槽内而与所述观察舱连接。
在一个实施例中,所述壳体由铜、不锈钢、铝合金、树脂或者高聚物材料中的一种或多种材料制成。
在一个实施例中,所述观察舱由铜、不锈钢、铝合金、树脂或者高聚物材料中的一种或多种材料制成。
在一个实施例中,所述气密胶圈为硅胶、增强聚丙烯、聚四氟乙烯中的一种或多种材料制成。
在一个实施例中,所述非磁性弹性件的数量为两个,所述非磁性弹性件对称设置在观察舱内壁上。
根据本申请的第三方面,提供一种用于扫描电子显微镜的固态电池原位观测舱,包括壳体,所述壳体内设置有气密舱、用于驱动所述气密舱发生位移的气密舱驱动电机、夹紧固定组件、用于驱动夹紧固定组件运行的驱动件、测试固态电池,其中,所述夹紧固定组件用于对所述测试固态电池进行夹紧固定,所述夹紧固定组件外表面套接有气密胶圈,所述壳体内还设置有气密舱滑轨,所述气密舱可沿所述气密舱滑轨滑移,所述气密舱与所述夹紧固定组件相对设置并且用于对所述测试固态电池进行封闭。
在一个实施例中,所述夹紧固定组件包括固定端位和移动端位,所述固定端位和移动端位同轴设置,所述测试固态电池放置于所述固定端位和移动端位之间的区域。
在一个实施例中,所述驱动件包括移动端位驱动电机。
在一个实施例中,所述移动端位驱动电机为定子线圈电机。
在一个实施例中,所述气密舱驱动电机为定子线圈电机。
在一个实施例中,所述壳体和气密舱均由非磁性导电材料制成。
在一个实施例中,所述壳体和气密舱由铜制成。
根据本申请的第四方面,提供一种扫描电子显微镜的样品转移盒的使用方法,所述扫描电子显微镜的样品转移盒包括带有腔体的壳体和观察舱,所述观察舱滑动设置在壳体内,所述壳体上设置有用于观察观察舱内物品的缺口,所述壳体和观察舱分别为非磁性壳体和非磁性观察舱,所述观察舱内的腔体和壳体内的腔体导通,所述观察舱上设置有单向气阀,所述观察舱上设置有用于壳体和观察舱的密封的气密胶圈,所述观察舱和壳体之间设置有非磁性弹性件,所述非磁性弹性件用于将观察舱从壳体内推出且观察舱不离开壳体,
所述扫描电子显微镜的样品转移盒的使用方法包括:
在受到惰性气体保护的手套箱内,将样品放入所述观察舱中,将所述观察舱推入所述壳体的底部;
将所述扫描电子显微镜的样品转移盒放置于扫描电子显微镜的腔室内,抽除腔室的空气,使得所述观察舱通过所述非磁性弹性件从所述壳体内被推出,通过所述缺口对所述观察舱内的样品进行观测;
向所述扫描电子显微镜的腔室内注入气体以使所述样品封闭装置周围的气压升高,从而使所述观察舱通过升高的外部气压被压回所述壳体中。
根据本申请的第五方面,提供一种用于扫描电子显微镜的固态电池原位观测舱的使用方法,所述用于扫描电子显微镜的固态电池原位观测舱包括外壳,所述外壳内设置有气密舱、用于驱动所述气密舱发生位移的气密舱驱动电机、夹紧固定组件、用于驱动夹紧固定组件运行的驱动件、测试固态电池,其中,所述夹紧固定组件用于对所述测试固态电池进行夹紧固定,所述夹紧固定组件外表面套接有气密胶圈,所述外壳内还设置有气密舱滑轨,所述气密舱可沿所述气密舱滑轨滑移,所述气密舱与所述夹紧固定组件相对设置并且用于对所述测试固态电池进行封闭,
所述用于扫描电子显微镜的固态电池原位观测舱的使用方法包括:
将所述观测舱与所述测试固态电池在受到氩气保护的手套箱内进行装配,通过所述移动端位驱动电机驱动所述移动端位而将所述测试固态电池夹紧固定;
通过所述气密舱驱动电机驱动所述气密舱沿着所述气密舱滑轨朝着所述气 密胶圈的方向运动,完成对所述测试固态电池的封闭;
将所述固态电池原位观测舱放置于扫描电子显微镜的腔室内,抽除腔室的空气,通过所述气密舱驱动电机再次驱动气密舱打开,完成所述测试固态电池从手套箱向扫描电子显微镜腔室内的转移。
本申请的一个或多个实施例的细节在下面的附图和描述中提出,本申请的其它特征和优点将从说明书、附图以及权利要求书中变得明显。
为了更清楚地说明本申请实施例中的技术方案,下面对实施例中需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本申请的样品封闭装置的结构示意图;
图2为根据本申请的一个实施例的样品封闭装置的结构示意图;
图3为根据本申请的一个实施例的观察舱被封闭在壳体中时的结构示意图;
图4为根据本申请的一个实施例的观察舱从壳体中移出时的结构示意图;
图5为根据本申请的另一个实施例的样品封闭装置的总体结构示意图。
其中,10…舱体,20…容置部,30…密封件,40…驱动件,1…观察舱,2…卡槽,3、202…气密胶圈,4…单向气阀,5…缺口,6…壳体,7…非磁性弹性件,8…主壳体后盖,100…外壳,201…气密舱,300…固定端位,400…移动端位,501…气密舱驱动电机,502…移动端位驱动电机,600…气密舱滑轨,700…测试固态电池。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参照图1,根据本申请的一个实施例,提供一种用于扫描电子显微镜的样品封闭装置,其包括舱体10和容置部20。容置部20具有容置空间,在使用时,可将待观测的样品放入该容置空间中。舱体10可与容置部20相对移动,从而可将容置部20以可与舱体10相对移动的方式设置于舱体10内,以使容置部20至少部分地收容在舱体10内或将容置部20从舱体10内移出。容置部20与密封件30连接,当容置部20至少部分地收容在观察舱内时,密封件30可实现容置部20与舱体10之间的密封,以确保容置部20内的样品不与外部空气接触。该样品封闭装置还包括驱动件40,驱动件40被配置为用于驱动舱体10与容置部20的相对移动。应当理解,虽然在图1中将驱动件40示出为与容置部20连接,但其仅为一个实施例。在其他实施例中,驱动件40还可以与舱体10连接,只要能够通过驱动件40实现舱体10与容置部20的相对移动即可。
进一步地,该密封件30可为气密胶圈,其可拆卸地设置在该容置部20上。如本领域技术人员能够理解的,密封件30可根据实际需要而采用其他元件,例如由聚四氟乙烯制成的元件、软性电木、石墨环等,只要其可在容置部20与舱体10之间实现密封即可。优选地,密封件30由弹性材料制成并且具有耐磨性。容置部20可设置有单向气阀,且容置部20与舱体10的内部空间彼此连通。驱动件40可为非磁性弹性件,例如弹簧等。
在容置部20进入舱体10的过程中,由于容置部20与舱体10连通,因此,舱体10内的气体受到挤压并通过设置在容置部20上的单向气阀排出至舱体10外,同时,弹簧受到容置部20的挤压而发生形变。当舱体10内的气体排尽时,舱体10内处于高度真空状态,此时外界气压高于舱体10内的气压,弹簧由于气压差的存在而保持在形变状态。当舱体10外部的气压小于舱体10内的气压时,弹簧恢复形变并且在恢复形变过程中将容置部20推出舱体10。
具体地,请参阅图2-4,在一个实施例中,上述用于扫描电子显微镜的样品封闭装置可为扫描电子显微镜的样品转移盒。其中,舱体10可为带有腔体的壳体6,容置部20可为观察舱1,密封件30可为气密胶圈3,驱动件40可为非磁性弹性件7。具体地,观察舱1滑动设置在壳体6内,壳体6上设置有方便观察观察舱1内物品的缺口5,观察舱1内的腔体和壳体6内的腔体导通,观察舱1 上设置有单向气阀4,观察舱1上设置有用于壳体6和观察舱1密封的气密胶圈3,观察舱1和壳体6之间设置有非磁性弹性件7,非磁性弹性件7用于将观察舱从壳体6内推出且使观察舱1不离开壳体6。应当理解,图2作为本实施例的爆炸视图,其仅旨在示出各部件的独立形态,并不表示这些部件的位置关系及连接关系必须以所示方式设置。换言之,应结合其他附图来理解各部件之间的位置关系及连接关系。
优选地,壳体6包括主壳体和主壳体后盖8,主壳体后盖8和主壳体之间通过连接螺栓连接,非磁性弹性件7一端和主壳体后盖8可拆卸连接,非磁性弹性件7另一端卡接在观察舱1上的凹槽内,方便对非磁性弹性件7进行拆卸和更换。
优选地,非磁性弹性件7采用非磁性弹簧,使用寿命长。
优选地,非磁性弹簧为SUS316L弹簧,耐晶间腐蚀性能好。
在其它实施例中,非磁性弹簧7为SUS304H弹簧或者SUS304L弹簧。
优选地,气密胶圈3和观察舱1的连接方式为气密胶圈3卡接在观察舱1上的卡槽2内,方便对气密胶圈3进行拆卸和更换。
优选地,壳体6由铜制成,耐磨性能好。
在其它实施例中,壳体6由不锈钢、铝合金、树脂或者高聚物材料中的一种或多种材料制成。
优选地,观察舱1由铜制成,耐磨性能好。
在其它实施例中,观察舱1由不锈钢、铝合金、树脂或者高聚物材料中的一种或多种材料制成。
优选地,气密胶圈3由聚四氟乙烯制成,摩擦系数低。
在其它实施例中,气密胶圈3由硅胶或者增强聚丙烯制成。
优选地,非磁性弹性件7的数量为两个,非磁性弹性件7对称设置在观察舱1内壁上,对观察舱1的推出效果好。
根据本实施例的样品封闭装置的使用方法如下。
首先,在受到惰性气体保护的手套箱内,将样品放入观察舱1中,再将观察舱1推入主壳体底部,主壳体内的气体通过单向气阀4被排出至主壳体的外 部,在外界大气压作用下,观察舱1被固定于主壳体底部(如图3所示)。气密胶圈3阻隔了外界气体渗入主壳体,保证了气密效果。
然后,将已完成装配和封闭的样品盒放置于扫描电子显微镜的腔室内,抽除腔室内的空气,使得观察舱1通过非磁性弹性件7从主壳体内被推出(如图4所示)。此时,即可对观察舱1内的样品进行观测。
当完成观测后,如需要使观察舱1重新回到主壳体中,则可向扫描电子显微镜的腔室内注入气体,使得样品封闭装置周围的气压升高。此时,观察舱1将由于升高的外部气压而被压回主壳体中。
根据上述实施例,通过使用无磁材料制造的样品盒和弹性件,避免了磁性材料对样品的观测结果产生的成像影响,从而利于观测的准确性。此外,在关闭观察舱时,通过单向气阀排出主壳体内的气体,且封闭外界的气体进入,使观察舱受外界气压作用而不打开。当样品盒进入扫描电子显微镜的腔体后,气压减小,非磁性弹性件将观察舱推出主壳体,此时可对样品进行观测,避免了使用电机或电磁铁,且无需外接控制线缆。
根据本申请的另一个实施例,样品封闭装置包括滑轨,舱体10可滑动地连接到滑轨,且驱动件40为电动机,舱体10可在电动机的驱动下沿滑轨滑移。样品封闭装置还包括用于将样品固定至容置部20的夹紧固定组件。作为一个示例,夹紧固定组件可包括同轴设置的移动端位和固定端位,样品容置于固定端位与移动端位之间的区域中。
具体地,请参阅图5,在一个实施例中,用于扫描电子显微镜的样品封闭装置可为用于扫描电子显微镜的固态电池原位观测舱。其中,舱体10可为气密舱201,密封件30可为气密胶圈202,驱动件40可为用于驱动气密舱201发生位移的气密舱驱动电机501。气密舱201和容置部20均设置在外壳100内。固态电池原位观测舱还包括夹紧固定组件,并且所述样品为固态电池700,夹紧固定组件用于对测试固态电池700进行夹紧固定。夹紧固定组件的外表面设置有气密胶圈202,外壳100内还设置有气密舱滑轨600,气密舱201可在气密舱滑轨600上滑移。气密舱201与夹紧固定组件相对设置,用于对测试固态电池700进行封闭。
优选地,夹紧固定组件包括固定端位300和移动端位400,固定端位300和移动端位400同轴设置,测试固态电池700放置于固定端位300和移动端位400之间的区域。
优选地,驱动件包括移动端位驱动电机502。更具体地,移动端位驱动电机502和气密舱驱动电机501均为定子线圈电机。
优选地,外壳100和气密舱201均由非磁性导电材料制成。优选地,外壳100和气密舱201由铜制成。
根据本实施例的样品封闭装置的使用方法如下。
首先,观测舱与测试固态电池700在受到氩气保护的手套箱内完成装配,通过移动端位驱动电机502驱动移动端位400而将测试固态电池700夹紧固定。然后,通过气密舱驱动电机501驱动气密舱201沿着气密舱滑轨600朝着气密胶圈202的方向运动,完成对测试固态电池700的封闭。
将已完成装配和封闭的观测舱放置于扫描电子显微镜的腔室内,抽除腔室的空气,通过气密舱驱动电机501再次驱动气密舱201打开。由此,完成测试固态电池700从手套箱向扫描电子显微镜腔室内的转移。
根据上述实施例,通过在氩气手套箱内气密舱,将测试固态电池安装于固态电池固定端位和固态电池移动端位之间,关闭气密舱后,将观测舱移至扫描电子显微镜腔室内,从而保证了测试固态电池在观察前不受空气污染。此外,通过使用定子线圈电机,避免了永磁电机的磁性影响扫描电子显微镜的成像,从而利于观测的准确性。再者,通过定子线圈电机的控制,方便对扫描电子显微镜腔内的观测舱进行开盖操作。此外,通过非磁性导电材料的使用,避免了永磁电机的磁性影响扫描电子显微镜的成像,从而利于观测的准确性。
尽管已经示出和描述了本申请的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本申请的原理和精神的情况下对这些实施例进行多种变化、修改、替换和变型,本申请的范围由所附权利要求及其等同物限定。
Claims (25)
- 一种用于扫描电子显微镜的样品封闭装置,其特征在于,所述样品封闭装置包括:舱体(10);容置部(20),其具有用于容置样品的容置空间,且所述容置部(20)以可与所述舱体(10)相对移动的方式设置于所述舱体(10)内,以使所述容置部(20)至少部分地进入所述舱体(10)内或从所述舱体(10)内移出;密封件(30),其与所述容置部(20)连接,并且在所述容置部(20)至少部分地收容在所述舱体(10)内时,实现所述容置部(20)与所述舱体(10)之间的密封;以及驱动件(40),其被配置为用于驱动所述舱体(10)与所述容置部(20)的相对移动。
- 根据权利要求1所述的用于扫描电子显微镜的样品封闭装置,其特征在于,所述密封件(30)为气密胶圈。
- 根据权利要求1或2所述的用于扫描电子显微镜的样品封闭装置,其特征在于,所述容置部(20)与所述舱体(10)的内部空间连通,且所述容置部(20)设置有单向气阀,且所述单向气阀被配置为在所述容置部(20)进入所述舱体(10)的过程中,排出所述舱体(10)内的气体。
- 根据权利要求3所述的用于扫描电子显微镜的样品封闭装置,其特征在于,所述驱动件(40)为非磁性弹性件,且被配置为在所述容置部(20)进入所述舱体(10)后,因所述容置部(20)的挤压而处于形变状态,以及被配置为在所述舱体(10)外部的气压小于所述舱体(10)内的气压时恢复形变,且在恢复形变过程中将所述容置部(20)推出所述舱体(10)。
- 根据权利要求1或2所述的用于扫描电子显微镜的样品封闭装置,其特征在于,所述样品封闭装置还包括滑轨,所述舱体(10)可滑动地连接到所述滑轨,以及所述驱动件(40)为电动机,所述电动机驱动所述舱体(10)沿所述滑轨滑移。
- 根据权利要求5所述的用于扫描电子显微镜的样品封闭装置,其特征在于,所述样品封闭装置还包括用于将所述样品固定至所述容置部(20)的夹紧固定组件。
- 根据权利要求6所述的用于扫描电子显微镜的样品封闭装置,其特征在于,所述夹紧固定组件包括同轴设置的移动端位和固定端位,所述样品容置于所述固定端位和移动端位之间的区域。
- 一种扫描电子显微镜的样品转移盒,包括带有腔体的壳体(6)和观察舱(1),所述观察舱(1)滑动设置在壳体(6)内,所述壳体(6)上设置有用于观察观察舱内物品的缺口(5),其特征在于,所述壳体(6)和观察舱(1)分别为非磁性壳体和非磁性观察舱,所述观察舱(1)内的腔体和壳体(6)内的腔体导通,所述观察舱(1)上设置有单向气阀(4),所述观察舱(1)上设置有用于壳体(6)和观察舱(1)的密封的气密胶圈(3),所述观察舱(1)和壳体(6)之间设置有非磁性弹性件(7),所述非磁性弹性件(7)用于将观察舱(1)从壳体(6)内推出且观察舱(1)不离开壳体(6)。
- 根据权利要求8所述的扫描电子显微镜的样品转移盒,其特征在于,所述壳体(6)包括主壳体和主壳体后盖(8),所述主壳体后盖(8)和主壳体之间通过螺栓连接,所述非磁性弹性件(7)一端和主壳体后盖(8)可拆卸连接,所述非磁性弹性件(7)的另一端卡接在观察舱(1)的凹槽内。
- 根据权利要求8所述的扫描电子显微镜的样品转移盒,其特征在于,所述非磁性弹性件(7)为非磁性弹簧。
- 根据权利要求10所述的扫描电子显微镜的样品转移盒,其特征在于,所述非磁性弹簧为SUS304L弹簧、SUS304H弹簧或者SUS316L弹簧。
- 根据权利要求9所述的扫描电子显微镜的样品转移盒,其特征在于,所述气密胶圈(3)通过卡接在所述观察舱(1)的卡槽内而与所述观察舱(1)连接。
- 根据权利要求10所述的扫描电子显微镜的样品转移盒,其特征在于,所述壳体(6)由铜、不锈钢、铝合金、树脂或者高聚物材料中的一种或多种 材料制成。
- 根据权利要求13所述的扫描电子显微镜的样品转移盒,其特征在于,所述观察舱(1)由铜、不锈钢、铝合金、树脂或者高聚物材料中的一种或多种材料制成。
- 根据权利要求12所述的扫描电子显微镜的样品转移盒,其特征在于,所述气密胶圈(3)由硅胶、增强聚丙烯、聚四氟乙烯中的一种或多种材料制成。
- 根据权利要求14所述的扫描电子显微镜的样品转移盒,其特征在于,所述非磁性弹性件(7)的数量为两个,所述非磁性弹性件(7)对称设置在观察舱(1)的内壁上。
- 一种用于扫描电子显微镜的固态电池原位观测舱,包括外壳(100),其特征在于,所述外壳(100)内设置有气密舱(201)、用于驱动所述气密舱(201)发生位移的气密舱驱动电机(501)、夹紧固定组件、用于驱动夹紧固定组件运行的驱动件、测试固态电池(700),其中,所述夹紧固定组件用于对所述测试固态电池(700)进行夹紧固定,所述夹紧固定组件外表面套接有气密胶圈(202),所述外壳(100)内还设置有气密舱滑轨(600),所述气密舱(201)可沿所述气密舱滑轨(600)滑移,所述气密舱(201)与所述夹紧固定组件相对设置并且用于对所述测试固态电池(700)进行封闭。
- 根据权利要求17所述的用于扫描电子显微镜的固态电池原位观测舱,其特征在于,所述夹紧固定组件包括固定端位(300)和移动端位(400),所述固定端位(300)和移动端位(400)同轴设置,所述测试固态电池(700)放置于所述固定端位(300)和移动端位(400)之间的区域。
- 根据权利要求17所述的用于扫描电子显微镜的固态电池原位观测舱,其特征在于,所述驱动件包括移动端位驱动电机(502)。
- 根据权利要求19所述的用于扫描电子显微镜的固态电池原位观测舱,其特征在于,所述移动端位驱动电机(502)为定子线圈电机。
- 根据权利要求17所述的用于扫描电子显微镜的固态电池原位观测舱, 其特征在于,所述气密舱驱动电机(501)为定子线圈电机。
- 根据权利要求17所述的用于扫描电子显微镜的固态电池原位观测舱,其特征在于,所述外壳(100)和气密舱(201)均由非磁性导电材料制成。
- 根据权利要求22所述的用于扫描电子显微镜的固态电池原位观测舱,其特征在于,所述外壳(100)和气密舱(201)由铜制成。
- 一种扫描电子显微镜的样品转移盒的使用方法,所述扫描电子显微镜的样品转移盒包括带有腔体的壳体(6)和观察舱(1),所述观察舱(1)滑动设置在壳体(6)内,所述壳体(6)上设置有用于观察观察舱内物品的缺口(5),所述壳体(6)和观察舱(1)分别为非磁性壳体和非磁性观察舱,所述观察舱(1)内的腔体和壳体(6)内的腔体导通,所述观察舱(1)上设置有单向气阀(4),所述观察舱(1)上设置有用于壳体(6)和观察舱(1)的密封的气密胶圈(3),所述观察舱(1)和壳体(6)之间设置有非磁性弹性件(7),所述非磁性弹性件(7)用于将观察舱(1)从壳体(6)内推出且观察舱(1)不离开壳体(6),所述扫描电子显微镜的样品转移盒的使用方法的特征在于,包括:在受到惰性气体保护的手套箱内,将样品放入所述观察舱(1)中,将所述观察舱(1)推入所述壳体(6)的底部;将所述扫描电子显微镜的样品转移盒放置于扫描电子显微镜的腔室内,抽除腔室的空气,使得所述观察舱(1)通过所述非磁性弹性件(7)从所述壳体(6)内被推出,通过所述缺口(5)对所述观察舱(1)内的样品进行观测;向所述扫描电子显微镜的腔室内注入气体以使所述样品封闭装置周围的气压升高,从而使所述观察舱(1)通过升高的外部气压被压回所述壳体(6)中。
- 一种用于扫描电子显微镜的固态电池原位观测舱的使用方法,所述用于扫描电子显微镜的固态电池原位观测舱包括外壳(100),所述外壳(100)内设置有气密舱(201)、用于驱动所述气密舱(201)发生位移的气密舱驱动 电机(501)、夹紧固定组件、用于驱动夹紧固定组件运行的驱动件、测试固态电池(700),其中,所述夹紧固定组件用于对所述测试固态电池(700)进行夹紧固定,所述夹紧固定组件外表面套接有气密胶圈(202),所述外壳(100)内还设置有气密舱滑轨(600),所述气密舱(201)可沿所述气密舱滑轨(600)滑移,所述气密舱(201)与所述夹紧固定组件相对设置并且用于对所述测试固态电池(700)进行封闭,所述用于扫描电子显微镜的固态电池原位观测舱的使用方法的特征在于,包括:将所述观测舱与所述测试固态电池(700)在受到氩气保护的手套箱内进行装配,通过所述移动端位驱动电机(502)驱动所述移动端位(400)而将所述测试固态电池(700)夹紧固定;通过所述气密舱驱动电机(501)驱动所述气密舱(201)沿着所述气密舱滑轨(600)朝着所述气密胶圈(202)的方向运动,完成对所述测试固态电池(700)的封闭;将所述固态电池原位观测舱放置于扫描电子显微镜的腔室内,抽除腔室的空气,通过所述气密舱驱动电机(501)再次驱动气密舱(201)打开,完成所述测试固态电池(700)从手套箱向扫描电子显微镜腔室内的转移。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/609,693 US12040156B2 (en) | 2019-10-21 | 2020-09-24 | Sample protection device for scanning electron microscopy |
KR1020227016463A KR20220113679A (ko) | 2019-10-21 | 2020-09-24 | 주사전자현미경용 시료 밀폐 장치 |
EP20880209.0A EP3940743A4 (en) | 2019-10-21 | 2020-09-24 | SAMPLE CLOSURE DEVICE FOR SCANNING ELECTRON MICROSCOPY |
JP2021537218A JP7136513B2 (ja) | 2019-10-21 | 2020-09-24 | 走査型電子顕微鏡用のサンプル封入装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921763316.0U CN210743910U (zh) | 2019-10-21 | 2019-10-21 | 一种用于扫描电子显微镜的固态电池原位观测舱 |
CN201921763316.0 | 2019-10-21 | ||
CN201921890783.XU CN210668268U (zh) | 2019-11-05 | 2019-11-05 | 一种扫描电子显微镜的样品转移盒 |
CN201921890783.X | 2019-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021077981A1 true WO2021077981A1 (zh) | 2021-04-29 |
Family
ID=75620383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/117523 WO2021077981A1 (zh) | 2019-10-21 | 2020-09-24 | 用于扫描电子显微镜的样品封闭装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12040156B2 (zh) |
EP (1) | EP3940743A4 (zh) |
JP (1) | JP7136513B2 (zh) |
KR (1) | KR20220113679A (zh) |
WO (1) | WO2021077981A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023274562A1 (en) * | 2021-07-02 | 2023-01-05 | Ferrovac Ag | Device for interfacing a sample transfer device to an analytic or sample preparation device and a container for transporting a sample under environmentally controlled conditions |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1238552A (zh) * | 1999-01-12 | 1999-12-15 | 张亚利 | 电子显微镜测试用的辅助装置 |
US9296542B2 (en) * | 2014-06-23 | 2016-03-29 | Shin Hung Yih Technology Co. Ltd. | Vacuum storage container |
CN107430973A (zh) * | 2014-11-12 | 2017-12-01 | 飞纳世界控股有限公司 | 样品台 |
CN107902265A (zh) * | 2017-12-15 | 2018-04-13 | 苏州冠洁纳米抗菌涂料科技有限公司 | 一种密封转移装置 |
CN209388997U (zh) * | 2018-12-20 | 2019-09-13 | 合肥国轩高科动力能源有限公司 | 一种扫描电镜样品台装置 |
CN210668268U (zh) * | 2019-11-05 | 2020-06-02 | 上海耐默光电技术有限公司 | 一种扫描电子显微镜的样品转移盒 |
CN210743910U (zh) * | 2019-10-21 | 2020-06-12 | 上海耐默光电技术有限公司 | 一种用于扫描电子显微镜的固态电池原位观测舱 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11213931A (ja) * | 1998-01-28 | 1999-08-06 | Kanagawa Prefecture | 試料導入装置 |
JP5517559B2 (ja) * | 2009-10-26 | 2014-06-11 | 株式会社日立ハイテクノロジーズ | 荷電粒子線装置及び荷電粒子線装置における三次元情報の表示方法 |
DE112014002100T5 (de) * | 2013-04-23 | 2016-01-14 | Hitachi High-Technologies Corporation | Mit Strahlung geladener Teilchen arbeitende Vorrichtung und Probenpräparationsverfahren unter Verwendung der Vorrichtung |
-
2020
- 2020-09-24 KR KR1020227016463A patent/KR20220113679A/ko unknown
- 2020-09-24 US US17/609,693 patent/US12040156B2/en active Active
- 2020-09-24 EP EP20880209.0A patent/EP3940743A4/en active Pending
- 2020-09-24 WO PCT/CN2020/117523 patent/WO2021077981A1/zh unknown
- 2020-09-24 JP JP2021537218A patent/JP7136513B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1238552A (zh) * | 1999-01-12 | 1999-12-15 | 张亚利 | 电子显微镜测试用的辅助装置 |
US9296542B2 (en) * | 2014-06-23 | 2016-03-29 | Shin Hung Yih Technology Co. Ltd. | Vacuum storage container |
CN107430973A (zh) * | 2014-11-12 | 2017-12-01 | 飞纳世界控股有限公司 | 样品台 |
CN107902265A (zh) * | 2017-12-15 | 2018-04-13 | 苏州冠洁纳米抗菌涂料科技有限公司 | 一种密封转移装置 |
CN209388997U (zh) * | 2018-12-20 | 2019-09-13 | 合肥国轩高科动力能源有限公司 | 一种扫描电镜样品台装置 |
CN210743910U (zh) * | 2019-10-21 | 2020-06-12 | 上海耐默光电技术有限公司 | 一种用于扫描电子显微镜的固态电池原位观测舱 |
CN210668268U (zh) * | 2019-11-05 | 2020-06-02 | 上海耐默光电技术有限公司 | 一种扫描电子显微镜的样品转移盒 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3940743A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023274562A1 (en) * | 2021-07-02 | 2023-01-05 | Ferrovac Ag | Device for interfacing a sample transfer device to an analytic or sample preparation device and a container for transporting a sample under environmentally controlled conditions |
Also Published As
Publication number | Publication date |
---|---|
KR20220113679A (ko) | 2022-08-16 |
JP2022515471A (ja) | 2022-02-18 |
EP3940743A1 (en) | 2022-01-19 |
US12040156B2 (en) | 2024-07-16 |
JP7136513B2 (ja) | 2022-09-13 |
EP3940743A4 (en) | 2022-09-28 |
US20220216031A1 (en) | 2022-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022001107A1 (zh) | 自驱动型样品真空转移系统及方法 | |
WO2021077981A1 (zh) | 用于扫描电子显微镜的样品封闭装置 | |
CN210668268U (zh) | 一种扫描电子显微镜的样品转移盒 | |
CN212387290U (zh) | 自驱动型样品真空转移装置 | |
CN210743910U (zh) | 一种用于扫描电子显微镜的固态电池原位观测舱 | |
CN115234694A (zh) | 防爆阀封堵装置 | |
JP2003059440A (ja) | ホルダ支持装置 | |
US4893980A (en) | Device for moving objects within a sealed chamber | |
US10773228B2 (en) | Self-sealing container for protecting air sensitive samples | |
CN114113657A (zh) | 一种超高真空样品转移腔 | |
CN110886900B (zh) | 一种高真空用微型插板阀装置 | |
CN114572686B (zh) | 一种真空取料装置及取料方法 | |
CN111885947A (zh) | 用于存放实验室检样的具有磁性封闭装置的实验室机柜设备 | |
CN116519229A (zh) | 封堵装置、气密性检测设备及气密性检测方法 | |
US20240274399A1 (en) | Device For Interfacing A Sample Transfer Device To An Analytic Or Sample Preparation Device And A Container For Transporting A Sample Under Environmentally Controlled Conditions | |
CN209865056U (zh) | 放射源匣、放射源匣固定装置及放疗设备 | |
CN112005337B (zh) | 用于样品分析系统的装载锁定腔室组件及相关的质谱仪系统及方法 | |
KR101962922B1 (ko) | Dps 시스템용 탈부착형 플라즈마 세정장치 | |
CN217521943U (zh) | 隔绝空气条件下的样品传输装置 | |
CN117871571A (zh) | 一种用于扫描电镜的样品真空转移装置及其使用方法 | |
CN117672788A (zh) | 超高真空互联样品仓 | |
CN212082751U (zh) | 气密快换装置及气密测试系统 | |
CN216479821U (zh) | 用于电子设备的夹持机构 | |
CN217933841U (zh) | 一种双面超导式薄膜开关 | |
US20220050026A1 (en) | Vacuum transfer for nano indenter and sample measurement method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20880209 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021537218 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020880209 Country of ref document: EP Effective date: 20211011 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |