WO2021077647A1 - Modèle de tissu pulmonaire destiné à être utilisé dans une expérience de chirurgie de ponction - Google Patents

Modèle de tissu pulmonaire destiné à être utilisé dans une expérience de chirurgie de ponction Download PDF

Info

Publication number
WO2021077647A1
WO2021077647A1 PCT/CN2020/075719 CN2020075719W WO2021077647A1 WO 2021077647 A1 WO2021077647 A1 WO 2021077647A1 CN 2020075719 W CN2020075719 W CN 2020075719W WO 2021077647 A1 WO2021077647 A1 WO 2021077647A1
Authority
WO
WIPO (PCT)
Prior art keywords
lung tissue
unit
bionic
lung
model
Prior art date
Application number
PCT/CN2020/075719
Other languages
English (en)
Chinese (zh)
Inventor
周春琳
万梓威
方晨昊
李陈浩文
熊蓉
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2021077647A1 publication Critical patent/WO2021077647A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine

Definitions

  • the invention relates to the field of medical experiments, in particular to a lung tissue model used for puncture surgery experiments.
  • lung cancer is the malignant tumor with the fastest increase in morbidity and mortality worldwide and the highest threat to human health and life.
  • Percutaneous lung biopsy can be used to diagnose lung diseases such as lung cancer.
  • various tumor ablation procedures based on puncture surgery such as microwave ablation, radiofrequency ablation, argon helium knife, etc.
  • radioactive seed implantation have been newly developed in recent years Minimally invasive tumor treatment technology. Therefore, lung puncture surgery is of great significance to the detection and treatment of lung tumors.
  • the present invention provides a lung tissue model for puncture surgery experiments.
  • the specific technical solutions are as follows:
  • a lung tissue model for puncture surgery experiments characterized in that the model includes:
  • An optical positioning unit the optical positioning unit is fixed on the mounting chassis and used for identifying markers through an optical positioning device, thereby obtaining the position of the model, and providing reference information for three-dimensional registration with CT data;
  • the lung tissue unit is used to provide the lung physiological environment and tumor target required for the puncture surgery experiment, which includes the bionic lung tissue and the transparent observation box, and the bionic lung tissue is placed on the transparent In the observation box, the transparent observation box is fixed on the mounting chassis; the bionic lung tissue is formed by layered solidification of human skin color silica gel and special transparent silica gel, and is embedded with airbags for simulating the expansion and expansion of alveoli shrink;
  • a simulated breathing unit which is connected to the airbag embedded in the lung tissue unit through a pipeline, controls the expansion and contraction of the airbag, and simulates the deformation of the lung physiological tissue and the displacement of the tumor target during the breathing process of the patient;
  • the data acquisition and control unit communicates with the airbag in the lung tissue unit and the simulated breathing unit, and controls the simulated breathing unit to simulate the breathing process of the patient while recording the motion parameters of the bionic lung tissue caused.
  • the positioning table plane of the optical positioning unit is at an angle of 30-45 degrees with the mounting chassis, and three installation areas for installing optical positioning markers are set on the positioning table plane, and A small hole is opened directly below the object recognition point for placing aluminum balls, steel balls, and shot balls respectively, so that the optical positioning mark corresponds to the CT image mark and provides reference information for three-dimensional registration.
  • the lung tissue unit further includes a mounting plate, the mounting plate is provided with a positioning structure, the transparent observation box is fixed on the mounting chassis through the mounting plate, and passes through the mounting plate.
  • the positioning structure described above realizes positioning.
  • the bionic lung tissue includes three layers of bionic tissue, wherein the top bionic tissue is human skin color silica gel to simulate skin, and the middle bionic tissue is transparent special bionic silica gel with a hardness of less than 10 degrees, with built-in dark silica gel balls to simulate lungs.
  • the underlying biomimetic tissue is human skin color silica gel, with built-in air sacs to simulate alveoli.
  • the silica gel balls have a special arrangement that enables them to arrange the deeper silica gel balls in the shallower at the two observation positions of the front view and the left view. Behind the silicone pellets, or staggered.
  • the lung tissue unit further includes a miniature inertial measurement unit, and an air pressure sensor connected to the airbag, and the data acquisition and control unit is in communication connection with the miniature inertial measurement unit and the air pressure sensor,
  • the simulated breathing device is controlled to simulate the real breathing process, and the pressure of the airbag and the motion parameters of the bionic lung tissue are obtained through the air pressure sensor and the miniature inertial measurement unit.
  • the simulated breathing unit includes an air pump and a two-position four-way solenoid valve, and the air pump is connected to the lung tissue unit through the two-position four-way solenoid valve, and by changing the two-position four-way solenoid valve
  • the position of the spool plays a role in switching between expansion and contraction of the lungs.
  • the lung tissue model for puncture surgery experiments of the present invention integrates a lung tumor bionic model and tumor optical positioning markers, and is particularly suitable for puncture surgery experiments based on optical positioning navigation. At the same time, lung breathing is simulated based on real data. Extremely restored the real environment.
  • Figure 1 is a schematic diagram of the overall structure of the lung tissue model for puncture surgery experiments of the present invention
  • FIG. 2 is a schematic diagram of the structure of the optical positioning table of the present invention.
  • Figure 3 is a schematic diagram of the special arrangement of the bionic lung tissue and the internal silica gel pellets of the present invention
  • Fig. 4 is a schematic diagram of the operation of the simulated breathing apparatus of the present invention.
  • Fig. 5 is a control flow chart of the simulated breathing apparatus of the present invention.
  • the lung tissue model for puncture surgery experiments of the present invention includes a mounting chassis 1, an optical positioning unit 2, a lung tissue unit 3, a simulated breathing unit 4 and a data acquisition and control unit 5.
  • the mounting chassis 1 serves as a model base; the optical positioning unit 2 is fixed on the mounting chassis 1 and is used to identify the marker 21 through the optical positioning device, thereby obtaining the position of the model, and providing reference information for three-dimensional registration with CT data.
  • the lung tissue unit 3 is used to provide the lung physiological environment and tumor targets required for the puncture surgery experiment. It includes a bionic lung tissue and a transparent observation box. The bionic lung tissue is placed in the transparent observation box, and the transparent observation box is fixed in the installation On the chassis; the biomimetic lung tissue is formed by layered solidification of human skin color silicone and special transparent silicone, and is embedded with airbags to simulate the expansion and contraction of alveoli;
  • the simulated breathing unit 4 is connected to the airbag embedded in the lung tissue unit 3 through a pipe to control the expansion and contraction of the airbag, and simulate the deformation of the lung physiological tissue and the displacement of the tumor target during the breathing process of the patient;
  • the data acquisition and control unit 5 communicates with the airbag in the lung tissue unit 3 and the simulated breathing unit 4, and controls the simulated breathing unit 4 to simulate the breathing process of the patient while recording the motion parameters of the bionic lung tissue caused.
  • the positioning platform plane of the optical positioning unit 2 is at an angle of 30-45 degrees with the installation chassis 1.
  • Three installation areas for installing optical positioning markers 21 are set on the positioning platform plane, and are located at the marker recognition point
  • the bionic lung tissue includes three layers of bionic tissue.
  • the top bionic tissue 31 is human skin color silica gel, which simulates the skin
  • the middle bionic tissue 32 is a transparent special bionic silica gel with a hardness of less than 10 degrees, with a built-in dark silica gel ball.
  • 38 simulates lung tumors
  • the underlying bionic tissue 33 is human skin color silica gel
  • the built-in air sacs 36 simulate alveoli.
  • the lung tissue unit also includes a miniature inertial measurement unit 37, an air pressure sensor 35 connected to the airbag 36, and a pipe joint 34 connected to the simulated breathing unit 4.
  • the silica gel balls In order to prevent the scratches caused by the puncture from blocking other silica gel balls 38, the silica gel balls have a special arrangement that allows them to arrange the deeper silica gel balls on the shallower silica gel balls in the front and left viewing positions. Behind, or staggered.
  • the lung tissue unit also includes a mounting plate, the mounting plate is provided with a positioning structure, the transparent observation box is fixed on the mounting chassis 1 through the mounting plate, and positioning is achieved through the positioning structure.
  • the simulated breathing unit 4 includes a two-position four-way solenoid valve 41 and an air pump 42.
  • the air pump 42 is connected to the airbag 36 through the two-position four-way solenoid valve 41.
  • the working process of the lung tissue model used in the puncture surgery experiment of the present invention is given.
  • the lung respiratory volume change period of the patient is actually collected, and Kalman filtering is performed to eliminate the measurement error, and then according to the lung respiratory volume Change and calculate the corresponding air pump speed control signal and breathing alternate signal, use these two signals to control the air pump speed and solenoid valve spool position to simulate real breathing, and use the air pressure sensor and the micro inertial measurement unit (IMU) to obtain the air bag
  • IMU micro inertial measurement unit
  • the relative position of the lung tissue model can be provided to the doctor through the optical positioning camera and CT, and the position reference for three-dimensional registration can be provided.
  • the model itself can be used for robotic or artificial lung tumor puncture surgery experiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Instructional Devices (AREA)

Abstract

L'invention concerne un modèle de tissu pulmonaire destiné à être utilisé dans une expérience de chirurgie de ponction, le modèle de tissu pulmonaire comprenant : une plaque de base de montage (1) faisant office de base de modèle ; une unité de positionnement optique (2) servant à identifier un marqueur (21) au moyen d'un appareil de positionnement optique, à acquérir la position du modèle et à fournir des informations de référence pour un enregistrement tridimensionnel avec des données CT ; une unité de tissu pulmonaire (3) servant à fournir un environnement physiologique de poumon et une cible de tumeur requise pour l'expérience de chirurgie de ponction ; une unité de simulation de respiration (4) reliée à un ballonnet intégré dans l'unité de tissu pulmonaire par l'intermédiaire d'une canalisation et commandant l'expansion et la contraction du ballonnet pour simuler la déformation du tissu physiologique du poumon et le déplacement de la cible de tumeur dans un processus respiratoire d'un patient ; et une unité d'acquisition et de commande de données (5) servant à commander l'unité de simulation de respiration (4) pour simuler le processus de respiration du patient et enregistrer des paramètres du mouvement induit du tissu pulmonaire bionique. Le modèle de tissu pulmonaire intègre un modèle bionique d'alvéoles pulmonaires, un modèle bionique de tumeur, et le positionnement optique d'un marqueur peut simuler un mouvement respiratoire d'un poumon sur la base de données réelles, et le modèle est approprié pour une utilisation dans une expérience de chirurgie de ponction reposant sur la navigation par positionnement optique.
PCT/CN2020/075719 2019-10-21 2020-02-18 Modèle de tissu pulmonaire destiné à être utilisé dans une expérience de chirurgie de ponction WO2021077647A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911000405.4A CN110706570B (zh) 2019-10-21 2019-10-21 一种用于穿刺手术实验的肺部组织模型
CN201911000405.4 2019-10-21

Publications (1)

Publication Number Publication Date
WO2021077647A1 true WO2021077647A1 (fr) 2021-04-29

Family

ID=69201974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075719 WO2021077647A1 (fr) 2019-10-21 2020-02-18 Modèle de tissu pulmonaire destiné à être utilisé dans une expérience de chirurgie de ponction

Country Status (2)

Country Link
CN (1) CN110706570B (fr)
WO (1) WO2021077647A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110706570B (zh) * 2019-10-21 2021-02-26 浙江大学 一种用于穿刺手术实验的肺部组织模型
CN113066336A (zh) * 2021-04-19 2021-07-02 中国科学院深圳先进技术研究院 腹部器官肿瘤模拟平台
CN114081632A (zh) * 2021-11-22 2022-02-25 南京普爱医疗设备股份有限公司 一种骨科手术机器人综合定位误差检测装置
CN114220327A (zh) * 2021-12-03 2022-03-22 广东省中医院(广州中医药大学第二附属医院、广州中医药大学第二临床医学院、广东省中医药科学院) 用于穿刺扩张试验的仿真呼吸运动组织体模及其使用方法
CN114495671A (zh) * 2022-02-25 2022-05-13 浙江大学湖州研究院 肺部穿刺模拟平台
CN114387862A (zh) * 2022-02-25 2022-04-22 浙江大学湖州研究院 仿真肺组织呼吸运动模拟平台

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100081119A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Configurable respiratory muscle pressure generator
CN102568287A (zh) * 2010-12-24 2012-07-11 中国科学院深圳先进技术研究院 多模态仿生体模
CN102646350A (zh) * 2011-02-22 2012-08-22 上海理工大学 用于虚拟手术力觉信息采集的椎体定位装置
CN204072333U (zh) * 2014-08-12 2015-01-07 江苏久信医疗科技股份有限公司 一种球形定位头架
CN206134074U (zh) * 2016-06-25 2017-04-26 北京大学深圳医院 教学用气管插管装置
CN107019852A (zh) * 2017-03-14 2017-08-08 苏州大学 模拟人体肺部肿瘤运动的跟踪装置
CN107405156A (zh) * 2015-05-19 2017-11-28 马科外科公司 用于演示对解剖体的计划自主操纵的系统和方法
CN109011157A (zh) * 2018-07-03 2018-12-18 中国科学院电工研究所 经颅磁刺激线圈定位装置
CN110706570A (zh) * 2019-10-21 2020-01-17 浙江大学 一种用于穿刺手术实验的肺部组织模型

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106861057A (zh) * 2017-03-07 2017-06-20 王玉廷 一种精确放疗用呼吸控制系统
CN107432766A (zh) * 2017-07-04 2017-12-05 厦门强本宇康科技有限公司 一种精准微创手术导航系统
CN108877444A (zh) * 2018-07-12 2018-11-23 上海市肺科医院 放射治疗用模拟肺部肿瘤运动形变的仿真模体
CN209980610U (zh) * 2019-04-10 2020-01-21 山东大学 一种实验室用脑部穿刺精度检测装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100081119A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Configurable respiratory muscle pressure generator
CN102568287A (zh) * 2010-12-24 2012-07-11 中国科学院深圳先进技术研究院 多模态仿生体模
CN102646350A (zh) * 2011-02-22 2012-08-22 上海理工大学 用于虚拟手术力觉信息采集的椎体定位装置
CN204072333U (zh) * 2014-08-12 2015-01-07 江苏久信医疗科技股份有限公司 一种球形定位头架
CN107405156A (zh) * 2015-05-19 2017-11-28 马科外科公司 用于演示对解剖体的计划自主操纵的系统和方法
CN206134074U (zh) * 2016-06-25 2017-04-26 北京大学深圳医院 教学用气管插管装置
CN107019852A (zh) * 2017-03-14 2017-08-08 苏州大学 模拟人体肺部肿瘤运动的跟踪装置
CN109011157A (zh) * 2018-07-03 2018-12-18 中国科学院电工研究所 经颅磁刺激线圈定位装置
CN110706570A (zh) * 2019-10-21 2020-01-17 浙江大学 一种用于穿刺手术实验的肺部组织模型

Also Published As

Publication number Publication date
CN110706570B (zh) 2021-02-26
CN110706570A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2021077647A1 (fr) Modèle de tissu pulmonaire destiné à être utilisé dans une expérience de chirurgie de ponction
US10716525B2 (en) System and method for navigating to target and performing procedure on target utilizing fluoroscopic-based local three dimensional volume reconstruction
CN109223121A (zh) 基于医学影像模型重建、定位的脑出血穿刺手术导航系统
Baumhauer et al. Navigation in endoscopic soft tissue surgery: perspectives and limitations
CN101474075B (zh) 微创手术导航系统
US20130218024A1 (en) Interventional In-Situ Image-Guidance by Fusing Ultrasound and Video
US20160199148A1 (en) Endo-navigation systems and methods for surgical procedures and cpr
CN111356395A (zh) 用于在程序期间帮助可视化的系统和方法
EP2637593A1 (fr) Visualisation de données anatomiques par réalité augmentée
JP2007531553A (ja) 術中ターゲティングのシステムおよび方法
US10524812B2 (en) Method and apparatus for locating and visualizing a target in relation to a focal point of a treatment system
CN107432766A (zh) 一种精准微创手术导航系统
EP2277441A1 (fr) Méthode de génération d'images d'une zone du corps humain pendant une opération chirurgicale au moyen d'un appareil pour procédures chirurgicales minimalement invasives.
US20150265369A1 (en) Interactive systems and methods for real-time laparoscopic navigation
US10154882B2 (en) Global laparoscopy positioning systems and methods
US11222553B2 (en) Enhanced approaches to training for bronchoscopy and thoracic procedures
CN116421313A (zh) 胸腔镜下肺部肿瘤切除手术导航中的增强现实融合方法
Wegner et al. Evaluation and extension of a navigation system for bronchoscopy inside human lungs
Sun et al. Virtually transparent epidermal imagery for laparo-endoscopic single-site surgery
Maier-Hein et al. Precision targeting of liver lesions with a needle-based soft tissue navigation system
Welleweerd et al. Robot-assisted ultrasound-guided biopsy on MR-detected breast lesions
JP2019048044A (ja) ダミーデバイス及び物理3dモデルを使用して患者の器官内の医療デバイスのナビゲーションを可視化すること
CN113257064A (zh) 用于模拟产品训练和/或体验的系统和方法
US20230130653A1 (en) Apparatus and method for positioning a patient's body and tracking the patient's position during surgery
Klein et al. Fiducial-free registration procedure for navigated bronchoscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879409

Country of ref document: EP

Kind code of ref document: A1