WO2021077553A1 - 一种多点平行同步驱动太阳能跟踪系统 - Google Patents
一种多点平行同步驱动太阳能跟踪系统 Download PDFInfo
- Publication number
- WO2021077553A1 WO2021077553A1 PCT/CN2019/122814 CN2019122814W WO2021077553A1 WO 2021077553 A1 WO2021077553 A1 WO 2021077553A1 CN 2019122814 W CN2019122814 W CN 2019122814W WO 2021077553 A1 WO2021077553 A1 WO 2021077553A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- main shaft
- worm
- driving
- shaft
- column
- Prior art date
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 63
- 230000007246 mechanism Effects 0.000 claims abstract description 136
- 230000005540 biological transmission Effects 0.000 claims abstract description 71
- 238000009434 installation Methods 0.000 claims description 9
- 238000005452 bending Methods 0.000 claims description 5
- 238000012423 maintenance Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S20/00—Supporting structures for PV modules
- H02S20/30—Supporting structures being movable or adjustable, e.g. for angle adjustment
- H02S20/32—Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S30/00—Arrangements for moving or orienting solar heat collector modules
- F24S30/40—Arrangements for moving or orienting solar heat collector modules for rotary movement
- F24S30/42—Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
- F24S30/425—Horizontal axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S50/00—Arrangements for controlling solar heat collectors
- F24S50/20—Arrangements for controlling solar heat collectors for tracking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the invention belongs to the technical field of photovoltaic brackets, and specifically relates to a multi-point parallel synchronous driving solar tracking system.
- the single-drive tracking system is commonly used in the driving tracking system of photovoltaic brackets, which is driven by a single-point driving mechanism such as a reducer, a push rod, a linear actuator, etc.
- a single-point driving mechanism such as a reducer, a push rod, a linear actuator, etc.
- This forms a free long cantilever structure except for the driving point, which is prone to strong winds.
- the lower free long cantilever is twisted, and the longer the cantilever is, the twist is serious, causing the risk of damage to the components and the bracket.
- the low natural frequency will also increase the risk of resonance.
- the driving mechanism of this kind of driving mechanism is a freely movable part except that the driving point is a fixed locking point under the action of strong wind.
- the present invention provides a multi-point parallel synchronous driving solar tracking system that can achieve multi-point locking, significantly improve wind resistance, and greatly improve stability and reliability.
- this system innovatively provides a multi-point parallel synchronous drive device, which converts the vertical input and output of the traditional worm gear into two parallel outputs of the worm gear.
- the synchronous output effectively utilizes the large holding torque of the drive structure of the worm gear; and, the parallel drive is used as the drive structure, combined with the mechanical drive shaft to realize multi-point parallel synchronous drive, and achieve stable locking under bad weather conditions.
- the present invention adopts the following technical solutions:
- a multi-point parallel synchronous driving solar tracking system includes a main shaft and a plurality of uprights for supporting the main shaft.
- the main shaft is used for fixing solar components, and also includes a multi-point parallel synchronous driving device provided on the main shaft.
- the point-parallel synchronous driving device includes a driving mechanism connected by transmission and several levels of driven mechanisms;
- the first power output end of the driving mechanism is rotatably connected with the main shaft, and the main shaft is used as the power output shaft; the second power output end of the driving mechanism is arranged below the main shaft and is parallel to the main shaft;
- the second power output end of the drive mechanism is drivingly connected with the power input end of the adjacent driven mechanism along the axial direction, and the adjacent two levels of driven mechanism Axial transmission connection; the power output end of the driven mechanism of any stage is connected to the main shaft in rotation;
- the driving mechanism and the driven mechanism are in cooperation with each other to realize multi-point parallel and synchronous driving rotation of the main shaft.
- the driving mechanism includes a worm gear transmission unit I fixed on a column and a transmission gear as a second power output end;
- the worm gear transmission unit I includes a worm I and a worm wheel I as a first power output end;
- the transmission gear meshes with the lower side of the worm I, the worm wheel I meshes with the upper side of the worm I; and the end surface of the transmission gear is parallel to the end surface of the turbine; the worm wheel I is sleeved on the main shaft and rotates with the main shaft connection;
- the driving mechanism is connected to the power input end of the driven mechanism through a driving gear in an axial transmission direction.
- a mechanical drive shaft is fixedly connected to the transmission gear, the mechanical drive shaft is rotatably fixed with the transmission gear between the column and the worm gear unit, and the mechanical drive shaft and the main shaft are parallel to each other;
- the driving mechanism is drivingly connected to the power input end of the adjacent driven mechanism through a mechanical driving shaft, and the adjacent driven mechanisms are drivingly connected to each other through the mechanical driving shaft.
- the driving mechanism further includes a driving motor, and an output shaft of the driving motor is drivingly connected with a worm or a mechanical driving shaft.
- a worm gear housing I with a mounting hole is fixed on both sides of the worm wheel I along the length of the main shaft, and the main shaft is rotatably inserted in the mounting hole;
- the worm gear housing I is fixedly connected with the upright post.
- a pair of mounting side plates are detachably provided on the two sides of the column perpendicular to the main shaft direction;
- the worm gear housing I is fixed on the pair of mounting side plates through a support seat;
- a drive shaft seat is arranged between the bottom of the worm gear housing I and the top of the upright column for rotatably installing a mechanical drive shaft; and the drive shaft seat is fixed between the pair of installation side plates.
- the driven mechanism includes a worm gear transmission unit II and a connecting member as a power input end;
- the worm gear transmission unit II includes a worm II and a worm wheel II as a power output end;
- the connecting pieces are respectively connected to the mechanical drive shaft in the axial direction and to the worm II in the vertical direction, and are used to transmit the axial rotation of the mechanical drive shaft to the worm; the worm wheel II is meshed with the upper side of the worm II; The worm wheel II is sleeved on the main shaft and connected to the main shaft in rotation.
- a worm gear housing II with a mounting hole is fixed on both sides of the worm wheel II along the length direction of the main shaft, and the main shaft is rotatably inserted in the mounting hole;
- the top of the column is detachably connected with the column top seat;
- the column top seat is set as a U-shaped bending piece;
- the connecting piece is placed in the column top seat and passes through the column and in turn along the two sides perpendicular to the main axis.
- the mounting holes on the vertical surface of the column top seat can be detachably connected;
- the worm gear housing II is fixed on the horizontal surface of the top seat of the column;
- the connecting member is a commutator or a universal joint.
- main shafts are arranged in multiple parallel rows, and the uprights are correspondingly arranged in multiple parallel rows; the worms on the main shafts in two adjacent rows are respectively corresponding to the transmission connection.
- the multi-point parallel synchronous drive device is configured as a series of multiple groups, and the transmission gears and connectors in the series-connected multi-point parallel synchronous drive device are all connected by a mechanical drive shaft, or by a plurality of The mechanical drive shafts are connected, and a plurality of mechanical drive shafts are rotationally connected end to end; the number of the drive motors is set to one, and a controller is set correspondingly, and the controller is electrically connected with the drive motors.
- the driven mechanisms of several levels are evenly spaced on one side or both sides of the driving mechanism; and/or,
- the top of the column is fixedly connected with the column top seat, the main shaft is penetrated in the bearing, the bearing is installed in the bearing race, and the column top seat is fixedly connected with the bearing race.
- the present invention has the following beneficial effects:
- the driving mechanism and the driven mechanism are matched with each other, and the mechanical drive shaft is synchronously connected.
- the driving mechanism divides the power into two parallel outputs along the axial direction to drive the adjacent driven mechanism.
- the driven mechanism It also drives the adjacent driven mechanisms to drive axially, so that the power output ends of several levels of driven mechanisms act together on the main shaft, forming a coordination of multi-point driving the main shaft to rotate synchronously. Therefore, in the present invention, when a strong wind comes, the multiple driving points of the system become multiple fixed locking points, correspondingly, the jitter of the system is greatly reduced, and the stability and reliability are greatly improved, so as to realize the dispersion of wind pressure, Wind torsion greatly improves the reliability and stability of the system.
- the two power lines of the driving mechanism are output in parallel along the main axis, which makes the operation and maintenance of the system in the north-south direction convenient.
- Both the driving mechanism and the driven mechanism of the present invention adopt a worm gear transmission unit, which converts the vertical input and output of the worm gear into two synchronous outputs parallel to the output of the worm gear, while retaining the large holding torque of the worm gear structure, combined with mechanical
- the drive shaft realizes multi-point parallel synchronous drive, which can lock the main shaft under strong wind conditions.
- the two-way parallel drive design can effectively reduce the shielding of the solar modules by the transmission components, especially the double-sided modules, making the system design more flexible.
- the multi-point parallel synchronous driving device is set at intervals according to the actual size of the photovoltaic string that needs to be carried.
- the distance from each driving device to the edge of the corresponding carrying system is no more than 10 meters. The deformation is greatly reduced, the force is reduced, the torque is reduced, and the corresponding system cost is also greatly reduced.
- a single solar tracking system can only meet the maximum of three 1500V photovoltaic strings, while the single system of the present invention can realize the installation of 4 or more 1500V photovoltaic strings (a single 1500V photovoltaic string generally has 30 modules). ), which can ensure the stability of system operation under extreme weather, especially strong wind conditions.
- the single set of solar tracking system mentioned in the present invention refers to a system that can only meet the maximum of three 1500V photovoltaic strings on a single row of main shafts.
- the matching form of the driving mechanism and the driven mechanism of the present invention can also be adapted to the multi-platform tracking system, that is, the driving of the east-west multi-row tracking system. It can be realized by connecting the worms of the adjacent two rows of tracking systems correspondingly The synchronous linkage of the multi-platform tracking system makes the technical application range of the present invention wider and stronger.
- Fig. 1 is a schematic diagram of the structure of the multi-point parallel synchronous driving solar tracking system of the present invention.
- Fig. 2 is an enlarged view of the structure at A in Fig. 1.
- Fig. 3 is an enlarged view of the structure at B in Fig. 1.
- Fig. 4 is a schematic diagram of the structure of the multi-point parallel synchronous driving device in the system of the present invention.
- Fig. 5a and Fig. 5b are enlarged views of the structure at the upright post that separately provides support for the main shaft.
- FIG. 1 to 4 it is a multi-point parallel synchronous driving solar tracking system, including a main shaft 3 and a plurality of uprights 5 for supporting the main shaft 3, the main shaft 3 is used to fix the solar module 6;
- the multi-point parallel synchronous drive device includes a drive mechanism 1 and several levels of driven mechanisms 2 that are connected in transmission;
- the first power output end of the driving mechanism 1 is rotatably connected with the main shaft 3, and the main shaft 3 is used as the power output shaft; the second power output end of the driving mechanism 1 is fixedly arranged below the main shaft 3 and is axially parallel to the main shaft 3;
- the second power output end of the drive mechanism 1 is drivingly connected with the power input end of the adjacent driven mechanism 2 along the axial direction, and the adjacent two-level driven mechanism 2 are in axial transmission connection; any power output end of the driven mechanism 2 is connected to the main shaft 3 in rotation;
- the driving mechanism and several levels of driven mechanisms are in cooperation with each other to realize multi-point parallel and synchronous driving rotation of the main shaft.
- the driving mechanism 1 outputs the power to the main shaft 3 and the adjacent driven mechanism 2 through the first and second power output ends respectively in the axial direction, and the driven mechanism 2 drives the adjacent driven mechanism 2 accordingly.
- Axial transmission so that the power output ends of several levels of the driven mechanism 2 work together on the main shaft 3 to form a multi-point drive for the synchronization of the main shaft 3 rotation.
- the two power lines of the driving mechanism are output in parallel along the main axis, which makes the operation and maintenance of the system in the north-south direction convenient.
- the multi-point parallel synchronous drive devices are set at intervals according to the actual size of the photovoltaic strings that need to be carried. The distance from each drive device to the edge of the corresponding bearing system is no more than 10 meters. Therefore, the deformation of the system under strong wind conditions is greatly reduced. , The force is reduced, the torque is reduced, and the corresponding system cost is greatly reduced.
- the multi-point parallel synchronous driving device includes a driving mechanism 1 and a 2-stage driven mechanism 2 connected by transmission.
- Each system is driven by a multi-point parallel synchronous driving device, which can work in extreme weather (especially strong wind) conditions.
- a single system can realize the installation of 4 or more 1500V photovoltaic strings (a single 1500V photovoltaic string generally has 30 modules).
- the driven mechanism 2 is evenly spaced and distributed on one side or both sides of the driving mechanism 1. Thereby, the stability and reliability of the multi-point parallel synchronous driving of the main shaft 3 can be further improved.
- FIG. 1 to 4 it is a multi-point parallel synchronous driving solar tracking system, including a main shaft 3 and a plurality of uprights 5 for supporting the main shaft 3, and the main shaft 1 is used to fix the solar module 6;
- the multi-point parallel synchronous drive device includes a drive mechanism 1 and several levels of driven mechanisms 2 that are connected in transmission;
- the first power output end of the driving mechanism 1 is rotatably connected with the main shaft 3, and the main shaft 3 is used as the power output shaft; the second power output end of the driving mechanism 1 is arranged below the main shaft 3 and is axially parallel to the main shaft 3;
- the driving mechanism 1 includes a worm gear transmission unit I 10 fixed on a column 5 and a transmission gear 11 as a second power output end;
- the worm gear transmission unit I 10 includes a worm I 100 and a worm wheel I as a first power output end;
- the transmission gear 11 meshes with the lower side of the worm I 100, and the worm wheel I meshes with the upper side of the worm I 100; and the end surface of the transmission gear 11 is parallel to the end surface of the worm wheel I;
- the worm wheel I is sleeved on the main shaft 3 is connected to the main shaft 3 in rotation;
- the driving mechanism 1 is drivingly connected to the power input end of the adjacent driven mechanism 2 through a transmission gear 11 in an axial direction; and the adjacent two-stage driven mechanism 2 The power output end of any of the driven mechanism 2 is connected to the main shaft 3 in rotation;
- the driving mechanism 1 and the several levels of driven mechanisms 2 are in cooperation with each other to realize the multi-point parallel and synchronous driving rotation of the main shaft 3.
- the drive mechanism 1 adopts a worm gear transmission structure, and the power is output to the main shaft 3 and the adjacent driven mechanism 2 through the worm wheel I and the transmission gear 11 respectively in the axial direction, and then the adjacent driven mechanism is driven accordingly 2 Axial transmission, so that the power output ends of several levels of the driven mechanism 2 work together on the main shaft 3 to form a multi-point drive for the synchronization of the main shaft 3 rotation.
- the input shaft and the output shaft are in a vertical relationship, and this embodiment converts the vertical input and output of the worm gear into two synchronous outputs parallel to the output of the worm gear, while retaining the large holding torque of the worm gear structure. Under strong wind conditions, the main shaft 3 can be locked.
- the parallel drive in this embodiment can effectively reduce the shielding of the solar module 6 by the transmission component, especially the double-sided module, and make the system design more flexible.
- the transmission gear 11 is fixedly connected with the mechanical drive shaft 4, and the mechanical drive shaft 4 is rotatably fixed with the transmission gear 11 between the column 5 and the worm gear unit, and the mechanical drive shaft 4 and the main shaft 1 are parallel to each other;
- the driving mechanism 1 is drivingly connected to the power input end of an adjacent driven mechanism 2 through a mechanical driving shaft 4, and the adjacent driven mechanisms 2 are drivingly connected to each other through a mechanical driving shaft 4. Therefore, the synchronous transmission between the driving mechanism 1 and the driven mechanism 2 is realized through the mechanical drive shaft 4.
- the drive mechanism 1 outputs the power to the main shaft 3 and the mechanical drive shaft 4 through the worm gear I and the transmission gear 11 respectively in the axial direction.
- the drive shaft 4 drives the adjacent driven mechanism 2 and then drives the adjacent driven mechanism 2 to drive axially, so that the power output ends of the driven mechanisms 2 of several levels work together on the main shaft 3 to form a multi-point drive main shaft 3 to rotate synchronously Of cooperation.
- the two parallel synchronous outputs of the mechanical drive shaft 4 and the main shaft 3 are designed, so that the mechanical drive shaft 4 is arranged in parallel in the space between the main shaft 3 and the top of the column 5. Make full use of the space, and only need to avoid the main shaft for shielding the double-sided components, making the system layout more convenient.
- the driving mechanism 1 further includes a driving motor, and the output shaft of the driving motor is drivingly connected to the worm I 100, so that the motor drives the worm I 100 to drive the worm wheel I to rotate and drive the transmission gear 11 to rotate; or
- the output shaft of the driving motor is drivingly connected with the mechanical driving shaft 4, so that the motor driving the mechanical driving shaft 4 drives the transmission gear 11 to rotate, and drives the worm I 100 and the worm wheel I to rotate. Therefore, the arrangement of the drive motor is more flexible and convenient.
- a worm gear housing I 101 with mounting holes is fixed on both sides of the worm wheel I along the length direction of the main shaft 3, and the main shaft 3 is rotatably inserted in the mounting hole; the worm gear housing I 101 is fixedly connected to the column 5. More preferably, the column 5 is detachably provided with a pair of mounting side plates 50 along the two sides perpendicular to the direction of the main shaft 3; the worm gear housing I 101 is fixed on the pair of mounting side plates 50 through the supporting seat 102 Between the bottom of the worm gear housing I 101 and the top of the column 5 is provided with a drive shaft seat 51 for rotatably installing the mechanical drive shaft 4; and the drive shaft seat 51 is fixed to the pair of mounting side plates 50 between.
- the worm gear I in the worm gear drive unit I 10 of this embodiment is rotatably sleeved in the main shaft 3, and is fixed by connecting the worm gear housing I 101 to the column 5, so that when the worm wheel I rotates, the main shaft is driven accordingly.
- 3 Fixed-point tracking and rotation; the fixed support of the main shaft 3 and the driving mechanism 1 is realized through the column 5.
- the arrangement is flexible and compact, and does not interfere with the solar installation components.
- the driven mechanism 2 includes a worm gear transmission unit II 20, a connecting piece 21 as a power input end; the worm gear transmission unit includes a worm II 200, a worm wheel II serving as a power output end; the connecting piece 21 are respectively connected to the mechanical drive shaft 4 in the axial direction and to the worm II 200 in the vertical direction, and are used to transmit the axial rotation of the mechanical drive shaft 4 to the worm II 200; the worm wheel II meshes with the upper side of the worm II 200 And the worm gear II is sleeved on the main shaft 3 and connected to the main shaft 3 in rotation.
- This embodiment provides a preferred arrangement form of the driven mechanism 2, and also uses a worm gear transmission structure.
- the drive mechanism outputs power to the main shaft 3, the mechanical drive shaft 4, and the mechanical drive shaft through the worm wheel I and the transmission gear 11 respectively in the axial direction. 4
- the axial rotation is transmitted to the connecting piece 21 and then to the worm II 200, so that the adjacent driven mechanism 2 is driven by the mechanical drive shaft 4 to synchronize the axial transmission, so that the power output ends of several levels of the driven mechanism 2 are shared
- the multi-point parallel synchronous driving device includes a driving mechanism 4 and a 2-stage driven mechanism 5 connected by transmission.
- Each system is driven by a multi-point parallel synchronous driving device, which can be used in extreme weather (especially strong wind) conditions.
- a single system can realize the installation of 4 or more 1500V photovoltaic strings (a single 1500V photovoltaic string generally has 30 modules).
- the multi-point parallel synchronous drive device is set in multiple groups in series, and the transmission gear 11 and the connecting piece 21 in the multi-point parallel synchronous drive device in series are all connected by a mechanical drive shaft 4,
- the transmission gears and the connecting parts can also be connected by multiple mechanical drive shafts, and the multiple mechanical drive shafts are connected by universal joints, which can adapt to different terrains; the number of the drive motors is set to one, and set accordingly A controller, the controller is electrically connected with the driving motor.
- the controller adopts a single-chip microcomputer, and the single-chip microcomputer is electrically connected to the driving motor, All transmission gears and connecting parts (including transmission gears and adjacent connecting parts and between two adjacent connecting parts) in the multi-group multi-point parallel synchronous driving device are connected by a mechanical drive shaft, or Transmission gears and connecting parts can also be connected by multiple mechanical drive shafts. Multiple mechanical drive shafts are connected by universal joints, which can adapt to different terrains, drive synchronously, and reduce installation, operation and maintenance costs.
- the aforementioned electrical connection between the drive motor and the controller is set as a conventional technical means in the field.
- the model of the single-chip microcomputer is STM32E103 series, or other commercially available models can be selected, which can realize the command signal to the drive motor. The function is sufficient, so I won’t go into further details here.
- the main shafts 3 are arranged in multiple parallel rows, and the corresponding columns 5 are also arranged in multiple parallel rows; the worms on the main shafts 3 in two adjacent rows are correspondingly connected for transmission, thereby realizing the multiple rows of the photovoltaic tracking system Synchronous linkage.
- the worm I 100 in the first row of spindle 3 is in a one-to-one correspondence with the worm I 100 in the second row, up to the worm I 100 in the n-th row of spindles, and several stages of worm II 200 in the first row of spindles are connected to the second row, Up to the number of worms II 200 in the n-th row of spindles 3 corresponds to one-to-one transmission connection.
- the transmission connection is realized through the transmission shaft, thereby realizing multi-row synchronous linkage.
- the matching form of the driving mechanism and the driven mechanism of the present invention can also be adapted to the multi-platform tracking system (that is, the driving of the east-west multi-row tracking system).
- the multi-platform tracking system that is, the driving of the east-west multi-row tracking system.
- a worm gear housing II 201 with mounting holes is fixed on both sides of the worm wheel II along the longitudinal direction of the main shaft, and the main shaft 3 is rotatably inserted in the mounting hole; the top of the column 5 and the column top seat 52 detachable connection; the column top seat 52 is set as a U-shaped bending piece; the connecting piece 21 is placed in the column top seat 52 and passes through the column 5 and the column top seat in turn along the two sides perpendicular to the direction of the main shaft 3 52
- the mounting holes on the vertical surface are detachably connected; the worm gear housing II 201 is fixed on the horizontal surface of the column top seat 52.
- the top of the column 5 is provided with several rows of adjustment holes II
- the column top seat is set as a U-shaped bending piece, and a pair of fixing holes II are opposed to each other on the two vertical surfaces of the column top seat;
- the connecting piece 21 is placed in the column top seat 52 and passes through the adjusting hole II and the fixing hole II in sequence to achieve a height-adjustable detachable connection with the column 5 and the column top seat 52.
- This preferred example provides the fixed connection mode of the worm gear drive unit II 20 and the column 5 in the driven mechanism 2, and the cooperative connection mode of the mechanical drive shaft 4 and the worm gear drive unit II 20.
- the structure is compact and the alignment is achieved through the column.
- the fixed support of the main shaft 3 and the driven mechanism 2 enables the mechanical drive shaft 4 to rotate steadily and maintain a constant parallel driving relationship with the main shaft 3.
- the connecting member 21 is a commutator or a universal joint, or an existing component or assembly capable of reversing and transmitting power.
- the connecting member 21 is a commutator, and the mechanical drive shaft 4 is inserted into the commutator.
- the commutator is preferably a gear commutator, which can synchronously transmit the power of the mechanical drive shaft 4 to the worm II 200 of the driven mechanism 2.
- the working principle of the gear commutator is the prior art. Go into details again.
- a preferred arrangement form of the driven mechanism 2 is provided, and the axial power from the mechanical drive shaft 4 is transferred to the worm gear drive unit II 20 through the connecting member 21 that can realize the function of reversing and transmitting power. So as to realize the synchronous rotation of the main shaft 3 and the worm wheel II.
- This embodiment is on the basis of embodiment 1 or 2. It should be noted that, in addition to the column 5 that synchronously supports the main shaft 3, the driving mechanism 1 and the driven mechanism 2, other vertical columns that independently provide support for the main shaft can also be provided. 5. As shown in Figures 5a and 5b, the top of this type of column 5 is fixedly connected to the column top seat 52; the main shaft 3 is inserted in the bearing, and the bearing is installed in the bearing race 30; the column top seat 52 and The bearing race 30 is fixedly connected so as to directly support the main shaft 3 in a rotatable manner.
- the top of the column 5 is provided with up and down adjustable rows of holes III C
- the column top base 51 is set as a U-shaped bending piece
- a set of fixed holes are oppositely provided on the two vertical surfaces of the column top base 51 III D:
- the adjustment of the relative height of the column 5 and the column top seat 52 can be realized through the cooperation of the up and down adjustable rows of holes III C and the set of fixing holes III D.
- the column 2 in the present invention can be applied to different fixing scenarios, supporting and fixing the main shaft 1, the driving mechanism 4, and the driven mechanism 5, and is connected with the foundation or directly used as a foundation to support the main shaft 1.
- the bearing is preferably a polymer bearing.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Photovoltaic Devices (AREA)
Abstract
一种多点平行同步驱动太阳能跟踪系统,包括主轴(3)及用于支撑主轴(3)的多个立柱(5),主轴(3)用于固设太阳能组件(6),还包括设于主轴(3)上的多点平行同步驱动装置,该装置包括传动连接的驱动机构(1)和若干级从动机构(2);驱动机构(1)的第一动力输出端与主轴(3)转动连接,以主轴(3)作为动力输出轴;驱动机构(1)的第二动力输出端设于主轴(3)下方且与主轴(3)呈轴线平行;若干级从动机构(2)沿主轴(3)间隔设置,驱动机构(1)的第二动力输出端与相邻的从动机构(2)的动力输入端沿轴向传动连接,相邻的两级从动机构(2)之间沿轴向传动连接;任一级从动机构(2)的动力输出端均与主轴(3)转动连接;从而,驱动机构(1)与从动机构(2)传动配合实现对主轴(3)的多点平行同步驱动转动。该多点平行同步驱动太阳能跟踪系统能够实现多点锁定,显著提高抗风能力。
Description
本发明属于光伏支架技术领域,具体涉及一种多点平行同步驱动太阳能跟踪系统。
目前光伏支架的驱动跟踪系统中应用普遍的是单驱动跟踪系统,由一个减速机或推杆、线性执行机构等驱动机构单点驱动转动这样除驱动点以外形成自由长悬臂结构,容易产生大风情况下自由长悬臂扭曲,悬臂越长扭曲叠加原严重,造成组件及支架损坏风险,同时由于固有频率低也会增加共振风险。具体的,在单轴跟踪系统中,这种驱动机构的在大风作用下除了驱动点是固定锁定点,其它点均为自由活动部分。由于单套太阳能跟踪系统中从驱动点到系统最边缘的距离一般都在十几米甚至几十米的长度,在阵风作用下,容易产生形变、共振等风险,从而无法实现大风时候的多点共同锁定功能,系统的形变和震动会对系统会造成破坏,长期运行也会对其上承载的太阳能组件产生隐裂等风险。而且,目前在实际应用中,单套太阳能跟踪系统最大只能满足3个1500V光伏组串,对电站设计十分不便利。
因此,本领域技术人员亟需提供一种能够实现多点锁定,显著提高抗风能力,并大幅提升稳定性、可靠性的多点平行同步驱动太阳能跟踪系统。
发明内容
针对上述现有技术中的不足,本发明提供了一种能够实现多点锁定,显著提高抗风能力,并大幅提升稳定性、可靠性的多点平行同步驱动太阳能跟踪系统。该系统相较目前光伏支架的驱动跟踪系统常用的单点驱动装置而言,创新 性提供了一种多点平行同步驱动装置,将传统蜗轮蜗杆的垂直输入输出转变为与蜗轮输出平行的两路同步输出,有效利用了蜗轮蜗杆的驱动结构的大保持力矩;并且,利用平行驱动器作为驱动结构,结合机械驱动轴实现了多点平行同步驱动,实现在恶劣天气条件下的稳固锁定。
为实现上述目的提供多点平行同步驱动太阳能跟踪系统,本发明采用了以下技术方案:
一种多点平行同步驱动太阳能跟踪系统,包括主轴及用于支撑主轴的多个立柱,所述主轴用于固设太阳能组件,还包括设于主轴上的多点平行同步驱动装置,所述多点平行同步驱动装置包括传动连接的驱动机构和若干级从动机构;
所述驱动机构的第一动力输出端与主轴转动连接,以主轴作为动力输出轴;所述驱动机构的第二动力输出端设于主轴下方且与主轴呈轴线平行;
若干级所述从动机构沿主轴间隔设置,所述驱动机构的第二动力输出端与相邻的从动机构的动力输入端沿轴向传动连接,相邻的两级从动机构之间沿轴向传动连接;任一级所述从动机构的动力输出端均与主轴转动连接;
从而,所述驱动机构与从动机构传动配合实现对主轴的多点平行同步驱动转动。
优选的,所述驱动机构包括固定在立柱上的蜗轮蜗杆传动单元Ⅰ、作为第二动力输出端的传动齿轮;所述蜗轮蜗杆传动单元Ⅰ包括蜗杆Ⅰ以及作为第一动力输出端的蜗轮Ⅰ;
所述传动齿轮与蜗杆Ⅰ的下侧啮合,所述蜗轮Ⅰ与蜗杆Ⅰ的上侧啮合;且所述传动齿轮的端面与涡轮的端面相平行;所述蜗轮Ⅰ套设于主轴上与主轴转动连接;
所述驱动机构通传动齿轮与从动机构的动力输入端沿轴向传动连接。
进一步的,所述传动齿轮内固定连接有机械驱动轴,所述机械驱动轴随传 动齿轮可转动的固定在立柱与蜗轮蜗杆单元之间,且所述机械驱动轴与所述主轴相互平行;
所述驱动机构通过机械驱动轴与相邻从动机构的动力输入端传动连接,且相邻从动机构之间通过机械驱动轴传动连接。
进一步的,所述驱动机构还包括驱动电机,所述驱动电机的输出轴与蜗杆或者与机械驱动轴驱动连接。
进一步的,所述蜗轮Ⅰ沿主轴长度方向的两侧固定有带安装孔的蜗轮外壳Ⅰ,所述主轴可转动的穿设在安装孔内;
所述蜗轮外壳Ⅰ与立柱固定连接。
进一步的,所述立柱沿垂直于主轴方向的两侧可拆卸的设置一对安装侧板;
所述蜗轮外壳Ⅰ通过支撑座固定在所述的一对安装侧板上;
所述蜗轮外壳Ⅰ的底部与立柱的顶部之间设置驱动轴座,用于可转动的安装机械驱动轴;且所述驱动轴座固定于所述的一对安装侧板之间。
进一步的,所述从动机构包括蜗轮蜗杆传动单元Ⅱ以及作为动力输入端的连接件;所述蜗轮蜗杆传动单元Ⅱ包括蜗杆Ⅱ、作为动力输出端的蜗轮Ⅱ;
所述连接件分别与机械驱动轴沿轴向连接、与蜗杆Ⅱ沿竖向连接,用于将机械驱动轴的轴向旋转传递至蜗杆;所述蜗轮Ⅱ与蜗杆Ⅱ的上侧啮合;且所述蜗轮Ⅱ套设于主轴上与主轴转动连接。
进一步的,所述蜗轮Ⅱ沿主轴长度方向的两侧固定有带安装孔的蜗轮外壳Ⅱ,所述主轴可转动的穿设在安装孔内;
所述立柱的顶部与立柱顶座可拆卸连接;所述立柱顶座设为U型折弯件;所述连接件置于立柱顶座内且沿垂直于主轴方向的两侧依次穿过立柱及立柱顶座竖直面的安装孔进行可拆卸连接;
所述蜗轮外壳Ⅱ固定在立柱顶座的水平面上;
进一步的,所述连接件为换向器或万向节。
进一步的,所述主轴设为平行的多排,所述立柱也相应的设为平行的多排;相邻两排主轴上的蜗杆之间分别对应传动连接。
进一步的,所述的多点平行同步驱动装置设为串联的多组,该串联的多组多点平行同步驱动装置中的传动齿轮、连接件均由一根机械驱动轴连接,或者由多根机械驱动轴连接,多根机械驱动轴首尾转动连接;所述驱动电机的数量设为1个,且相应设置一控制器,所述控制器与驱动电机电连接。
优选的,若干级所述的从动机构在驱动机构的一侧或两侧均匀间隔分布;和/或,
所述立柱的顶部与立柱顶座固定连接,所述主轴穿设于轴承内,所述轴承安装在轴承座圈内,所述立柱顶座与所述轴承座圈固定连接。
相较于现有技术本发明的有益效果在于:
1)本发明中以驱动机构和从动机构相互配合,通过机械驱动轴进行同步连接,驱动机构将动力分为沿轴向的两路平行输出,带动相邻的从动机构,该从动机构同样带动邻近的从动机构轴向传动,进而使若干级从动机构的动力输出端共同作用于主轴,形成多点驱动主轴同步转动的配合。从而,本发明当大风来临时,系统的多个驱动点就变成了多个固定锁定点,相应的使系统的抖动大幅降低,稳定性、可靠性得到大幅提升,从而可以实现分散风压、风扭,大幅提升系统工作的可靠性及稳定性。并且,驱动机构的两路动力沿主轴方向平行输出,使得系统在南北方向的运维便捷。
2)本发明驱动机构及从动机构均采用了蜗轮蜗杆传动单元,将蜗轮蜗杆的垂直输入输出转化为与蜗轮输出平行的两路同步输出,同时保留了蜗轮蜗杆结构的大保持力矩,结合机械驱动轴实现了多点平行同步驱动,在大风条件下可实现对主轴的锁定作用。并且,两路平行驱动的设计可有效降低传动部件对太阳能组件特别是双面组件的遮挡,使系统设计更加灵活。
3)本发明中多点平行同步驱动装置根据实际所需承载的光伏组串的尺寸间隔设置,每个驱动装置到对应的承载系统边缘距离不超过10米,因此,在大风情况下本系统的变形大幅降低,受力降低,扭矩降低,相应的系统成本也有大幅降低。
4)现有技术中单套太阳能跟踪系统最大只能满足3个1500V光伏组串,而本发明单套系统可以实现安装4个甚至更多1500V光伏组串(单个1500V光伏组串一般30个组件),能在极端天气、尤其是强风条件下,保证系统运行的稳定性。其中,本发明所提及的单套太阳能跟踪系统是指单排主轴上最大只能满足3个1500V光伏组串的系统。
5)本发明中对于单套系统只需设置一个驱动电机和控制器,所有的蜗轮蜗杆、传动齿轮、连接件均由机械驱动轴连接,同步驱动,降低了安装、运行和维护成本。
6)本发明驱动机构和从动机构的配合形式还能适应多平台跟踪系统也即东西向多排跟踪系统的驱动,只需将相邻两排跟踪系统的蜗杆对应进行传动连接,即可实现多平台跟踪系统的同步联动,使本发明技术应用范围更加广泛,适用性更强。
图1为本发明多点平行同步驱动太阳能跟踪系统的结构示意图。
图2为图1中A处的结构放大图。
图3为图1中B处的结构放大图。
图4为本发明系统中多点平行同步驱动装置的结构示意图。
图5a、图5b为单独对主轴提供支撑的立柱处的结构放大图。
图中标注符号的含义如下:
1-驱动机构,10-蜗轮蜗杆传动单元Ⅰ,100-蜗杆Ⅰ,101-蜗轮外壳Ⅰ,102- 支撑座,11-传动齿轮;
2-从动机构;20-蜗轮蜗杆传动单元Ⅱ,200-蜗杆Ⅱ,201-蜗轮外壳Ⅱ,21-连接件;
3-主轴,30-轴承座圈;
4-机械驱动轴;
5-立柱,50-安装侧板,51-驱动轴座,52-立柱顶座,C-上下可调排孔Ⅲ,D-固定孔Ⅲ;
6-太阳能组件。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。
为使图面简洁,各图中只示意性地表示出了与本发明相关的部分,它们并不代表其作为产品的实际结构。
实施例1
如图1~4所示,为一种多点平行同步驱动太阳能跟踪系统,包括主轴3及用于支撑主轴3的多个立柱5,所述主轴3用于固设太阳能组件6;
还包括设于主轴3上的多点平行同步驱动装置,所述多点平行同步驱动装置包括传动连接的驱动机构1和若干级从动机构2;
所述驱动机构1的第一动力输出端与主轴3转动连接,以主轴3作为动力输出轴;所述驱动机构1的第二动力输出端固设于主轴3下方且与主轴3呈轴线平行;
若干级所述从动机构5沿主轴3间隔设置,所述驱动机构1的第二动力输 出端与相邻从动机构2的动力输入端沿轴向传动连接,相邻的两级从动机构2之间沿轴向传动连接;任一所述从动机构2的动力输出端均与主轴3转动连接;
从而,所述驱动机构与若干级从动机构传动配合实现对主轴的多点平行同步驱动转动。
本实施例中,驱动机构1将动力经第一、第二动力输出端分别沿轴向输出至主轴3、相邻的从动机构2,该从动机构2相应带动相邻的从动机构2轴向传动,进而使若干级从动机构2的动力输出端共同作用于主轴3,形成多点驱动主轴3同步转动的配合。应用该技术方案,当大风来临时,系统的多个驱动点就变成了多个固定锁定点,相应的使系统的抖动大幅降低,稳定性、可靠性得到大幅提升,从而可以实现分散风压、风扭,大幅提升系统工作的可靠性及稳定性。并且,驱动机构的两路动力沿主轴方向平行输出,使得系统在南北方向的运维便捷。此外,多点平行同步驱动装置根据实际所需承载的光伏组串的尺寸间隔设置,每个驱动装置到对应的承载系统边缘距离不超过10米,因此,在大风情况下本系统的变形大幅降低,受力降低,扭矩降低,对应系统成本也就大幅降低。在实际应用中,多点平行同步驱动装置包括传动连接的驱动机构1和2级从动机构2,每套系统由多点平行同步驱动装置来驱动,能在极端天气(尤其是强风)条件下,保证系统运行的稳定性;单套系统可以实现安装4个甚至更多1500V光伏组串(单个1500V光伏组串一般30个组件)。
作为优选的实施例,所述从动机构2在驱动机构1的一侧或两侧均匀间隔分布。从而可以进一步提高对主轴3多点平行同步驱动的稳定可靠性。
实施例2
如图1~4所示,为一种多点平行同步驱动太阳能跟踪系统,包括主轴3及用于支撑主轴3的多个立柱5,所述主轴1用于固设太阳能组件6;
还包括设于主轴3上的多点平行同步驱动装置,所述多点平行同步驱动装 置包括传动连接的驱动机构1和若干级从动机构2;
所述驱动机构1的第一动力输出端与主轴3转动连接,以主轴3作为动力输出轴;所述驱动机构1的第二动力输出端设于主轴3下方且与主轴3呈轴线平行;
所述驱动机构1包括固定在立柱5上的蜗轮蜗杆传动单元Ⅰ 10、作为第二动力输出端的传动齿轮11;蜗轮蜗杆传动单元Ⅰ 10包括蜗杆Ⅰ 100、作为第一动力输出端的蜗轮Ⅰ;所述传动齿轮11与蜗杆Ⅰ 100的下侧啮合,所述蜗轮Ⅰ与蜗杆Ⅰ 100的上侧啮合;且所述传动齿轮11的端面与蜗轮Ⅰ的端面相平行;所述蜗轮Ⅰ套设于主轴3上与主轴3转动连接;
若干级所述从动机构2沿主轴3间隔设置,所述驱动机构1通过传动齿轮11与相邻从动机构2的动力输入端沿轴向传动连接;且相邻的两级从动机构2之间沿轴向传动连接;任一所述从动机构2的动力输出端均与主轴3转动连接;
从而,所述驱动机构1与若干级从动机构2传动配合实现对主轴3的多点平行同步驱动转动。
本实施例中,驱动机构1中采用了蜗轮蜗杆传动结构,将动力经蜗轮Ⅰ、传动齿轮11分别沿轴向输出至主轴3、相邻的从动机构2,再相应带动邻近的从动机构2轴向传动,进而使若干级从动机构2的动力输出端共同作用于主轴3,形成多点驱动主轴3同步转动的配合。传统的蜗轮蜗杆传动机构,输入轴与输出轴呈垂直关系,而本实施例将蜗轮蜗杆的垂直输入输出转化为与蜗轮输出平行的两路同步输出,同时保留了蜗轮蜗杆结构的大保持力矩,在大风条件下可实现对主轴3的锁定作用。并且,本实施例的平行驱动可有效降低传动部件对太阳能组件6特别是双面组件的遮挡,使系统设计更加灵活。
在上述实施例中,所述传动齿轮11内固定连接有机械驱动轴4,所述机械驱动轴4随传动齿轮11可转动的固定在立柱5与蜗轮蜗杆单元之间,且所述机械驱动轴4与所述主轴1相互平行;所述驱动机构1通过机械驱动轴4与相 邻从动机构2的动力输入端传动连接,且相邻从动机构2之间通过机械驱动轴4传动连接。从而,通过机械驱动轴4实现驱动机构1及从动机构2之间的同步配合传动,驱动机构1将动力经蜗轮Ⅰ、传动齿轮11分别沿轴向输出至主轴3、机械驱动轴4,机械驱动轴4带动相邻从动机构2、再相应带动邻近的从动机构2轴向传动,进而使若干级从动机构2的动力输出端共同作用于主轴3,形成多点驱动主轴3同步转动的配合。在利用蜗轮蜗杆传动的大力矩的基础上,由于设计了机械驱动轴4与主轴3的两路平行同步输出,使机械驱动轴4平行布置在主轴3下方至立柱5顶部之间的空间内,充分利用空间,对于双面组件遮挡也只需要避开主轴就可以,使系统布置更加方便。
作为优选的实施例,所述驱动机构1还包括驱动电机,所述驱动电机的输出轴与蜗杆Ⅰ 100驱动连接,从而电机驱动蜗杆Ⅰ 100带动蜗轮Ⅰ转动,并带动传动齿轮11转动;或者所述驱动电机的输出轴与机械驱动轴4驱动连接,从而电机驱动机械驱动轴4带动传动齿轮11转动,并带动蜗杆Ⅰ 100、蜗轮Ⅰ转动。从而驱动电机的布置更加灵活方便。
作为优选的另一实施例,所述蜗轮Ⅰ沿主轴3长度方向的两侧固定有带安装孔的蜗轮外壳Ⅰ 101,所述主轴3可转动的穿设在安装孔内;所述蜗轮外壳Ⅰ 101与立柱5固定连接。更优的,所述立柱5沿垂直于主轴3方向的两侧可拆卸的设置一对安装侧板50;所述蜗轮外壳Ⅰ 101通过支撑座102固定在所述的一对安装侧板50上;所述蜗轮外壳Ⅰ 101的底部与立柱5顶部之间设置驱动轴座51,用于可转动的安装机械驱动轴4;且所述驱动轴座51固定于所述的一对安装侧板50之间。
本实施例的蜗轮蜗杆传动单元Ⅰ 10中的蜗轮Ⅰ将主轴3可转动的套设在内,并通过蜗轮外壳Ⅰ 101与立柱5连接而固定,从而,当蜗轮Ⅰ转动时,相应的带动主轴3定点跟踪旋转;通过立柱5实现了对主轴3及驱动机构1的固定支撑。并且,通过在主轴3及立柱5之间的空间内依托立柱5而设置驱动轴 座51,布置灵活紧凑,且不对太阳能安装组件产生干涉。
作为优选的另一实施例,所述从动机构2包括蜗轮蜗杆传动单元Ⅱ 20、作为动力输入端的连接件21;蜗轮蜗杆传动单元包括蜗杆Ⅱ 200、作为动力输出端的蜗轮Ⅱ;所述连接件21分别与机械驱动轴4沿轴向连接、与蜗杆Ⅱ 200沿竖向连接,用于将机械驱动轴4的轴向旋转传递至蜗杆Ⅱ 200;所述蜗轮Ⅱ与蜗杆Ⅱ 200的上侧啮合;且所述蜗轮Ⅱ套设于主轴3上与主轴3转动连接。
本实施例提供了从动机构2的优选设置形式,同样利用了蜗轮蜗杆传动结构,驱动机构将动力经蜗轮Ⅰ、传动齿轮11分别沿轴向输出至主轴3、机械驱动轴4,机械驱动轴4将轴向旋转传递至连接件21进而传递至蜗杆Ⅱ 200,从而,通过机械驱动轴4带动相邻的从动机构2同步轴向传动,进而使若干级从动机构2的动力输出端共同作用于主轴3,形成多点驱动主轴3同步转动的配合。在实际应用中,多点平行同步驱动装置包括传动连接的驱动机构4和2级从动机构5,每套系统由多点平行同步驱动装置来驱动,能在极端天气(尤其是强风)条件下,保证系统运行的稳定性;单套系统可以实现安装4个甚至更多1500V光伏组串(单个1500V光伏组串一般30个组件)。
更优的,所述的多点平行同步驱动装置设为串联的多组,该串联的多组多点平行同步驱动装置中的传动齿轮11、连接件21均由一根机械驱动轴4连接,或者传动齿轮、连接件也可以由多根机械驱动轴连接,多根机械驱动轴首尾通过万向节转动连接,这样可以适应不同的地形;所述驱动电机的数量设为1个,且相应设置一控制器,所述控制器与驱动电机电连接。通过本优选方案,对于单套系统只需设置一个驱动电机和控制器(驱动电机和控制器可依托于立柱5进行支撑固定),所述控制器采用单片机,所述单片机与驱动电机电连接,多组多点平行同步驱动装置中的所有传动齿轮及连接件(包括传动齿轮及相邻的连接件之间及两两相邻的连接件之间)均由一根机械驱动轴连接,,或者传动齿轮、连接件也可以由多根机械驱动轴连接,多根机械驱动轴首尾通过万向节 转动连接,这样可以适应不同的地形,同步驱动,降低了安装、运行和维护成本。此外,前述所提及的驱动电机和控制器的电连接设置为本领域的常规技术手段,单片机的型号为STM32E103系列,或者也可选用市售的其它型号,能实现对驱动电机发出指令信号的功能即可,此处不再做进一步的详细赘述。
更优的,所述主轴3设为平行的多排,相应的立柱5也设为平行的多排;相邻两排主轴3上的蜗杆之间对应传动连接,从而实现光伏跟踪系统的多排同步联动。具体的,第1排主轴3中的蜗杆Ⅰ 100与第2排、直至第n排主轴中的蜗杆Ⅰ 100一一对应传动连接,第1排主轴中的若干级蜗杆Ⅱ 200与第2排、直至第n排主轴3中的若干级蜗杆Ⅱ 200一一对应传动连接。在实际应用中,通过传动轴实现传动连接,从而实现多排同步联动。
从而,本发明驱动机构和从动机构的配合形式还能适应多平台跟踪系统(也即东西向多排跟踪系统的驱动),通过将相邻两排跟踪系统的蜗杆进行传动连接,可以实现多平台跟踪系统的同步联动,使本发明技术应用范围更加广泛,适用性更强。
更优的,所述蜗轮Ⅱ沿主轴长度方向的两侧固定有带安装孔的蜗轮外壳Ⅱ 201,所述主轴3可转动的穿设在安装孔内;所述立柱5的顶部与立柱顶座52可拆卸连接;所述立柱顶座52设为U型折弯件;所述连接件21置于立柱顶座52内且沿垂直于主轴3方向的两侧依次穿过立柱5及立柱顶座52竖直面的安装孔进行可拆卸连接;所述蜗轮外壳Ⅱ 201固定在立柱顶座52的水平面上。更具体的,所述立柱5的顶部设置若干排调节孔Ⅱ,所述立柱顶座设为U型折弯件,在立柱顶座的两个竖直面上相对设置一对固定孔Ⅱ;所述连接件21置于立柱顶座52内且依次穿过调节孔Ⅱ与固定孔Ⅱ实现高度可调的与立柱5及立柱顶座52可拆卸连接。
本优选例提供了从动机构2中蜗轮蜗杆传动单元Ⅱ 20与立柱5的固定连接方式,以及机械驱动轴4与蜗轮蜗杆传动单元Ⅱ 20的配合连接形式,结构布置 紧凑,通过立柱实现了对主轴3及从动机构2的固定支撑,使机械驱动轴4稳步的转动并与主轴3保持恒定的平行驱动关系。
更优的,所述连接件21为换向器或万向节,或者现有的能够实现换向及传递动力功能的部件或组件。如图3所示,所述连接件21为换向器,所述机械驱动轴4穿设于换向器内。该换向器优选为齿轮换向器,该齿轮换向器可将机械驱动轴4的动力同步传递至从动机构2的蜗杆Ⅱ 200,这里齿轮换向器的工作原理为现有技术,不再详细赘述。
本优选例中提供了从动机构2的优选设置形式,通过可实现换向及传递动力功能的连接件21将来自机械驱动轴4的轴向动力经过换向传递至蜗轮蜗杆传动单元Ⅱ 20,从而实现主轴3与蜗轮Ⅱ的同步转动。
实施例3
本实施例在实施例1或2的基础上,应当说明的是,除了对主轴3、驱动机构1和从动机构2进行同步支撑的立柱5以外,还可设置单独对主轴提供支撑的其它立柱5。如图5a、5b所示,该类立柱5的顶部与立柱顶座52固定连接;所述主轴3穿设于轴承内,所述轴承安装在轴承座圈30内;所述立柱顶座52与所述轴承座圈30固定连接,以实现直接对主轴3的可转动支撑。在实际应用中,立柱5的顶部设置上下可调排孔Ⅲ C,所述立柱顶座51设为U型折弯件,在立柱顶座51的两个竖直面上相对设置一组固定孔Ⅲ D;通过上下可调排孔Ⅲ C及该组固定孔Ⅲ D的配合可实现立柱5及立柱顶座52相对高度的调节。
从而,本发明中的立柱2可应用于不同的固定场景,对主轴1、驱动机构4、从动机构5进行支撑固定,并和基础连接或直接作为基础以支撑主轴1。在实际应用中,所述轴承优选高分子轴承。
应当说明的是,上述实施例均可根据需要自由组合。以上所述仅是本发明 的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (10)
- 一种多点平行同步驱动太阳能跟踪系统,包括主轴及用于支撑主轴的多个立柱,所述主轴用于固设太阳能组件,其特征在于:还包括设于主轴上的多点平行同步驱动装置,所述多点平行同步驱动装置包括传动连接的驱动机构和若干级从动机构;所述驱动机构的第一动力输出端与主轴转动连接,以主轴作为动力输出轴;所述驱动机构的第二动力输出端设于主轴下方且与主轴呈轴线平行;若干级所述从动机构沿主轴间隔设置,所述驱动机构的第二动力输出端与相邻的从动机构的动力输入端沿轴向传动连接,相邻的两级从动机构之间沿轴向传动连接;任一级所述从动机构的动力输出端均与主轴转动连接;从而,所述驱动机构与从动机构传动配合实现对主轴的多点平行同步驱动转动。
- 根据权利要求1所述的多点平行同步驱动太阳能跟踪系统,其特征在于:所述驱动机构包括固定在立柱上的蜗轮蜗杆传动单元Ⅰ、作为第二动力输出端的传动齿轮;所述蜗轮蜗杆传动单元Ⅰ包括蜗杆Ⅰ以及作为第一动力输出端的蜗轮Ⅰ;所述传动齿轮与蜗杆Ⅰ的下侧啮合,所述蜗轮Ⅰ与蜗杆Ⅰ的上侧啮合;且所述传动齿轮的端面与涡轮的端面相平行;所述蜗轮Ⅰ套设于主轴上与主轴转动连接;所述驱动机构通过传动齿轮与从动机构的动力输入端沿轴向传动连接。
- 根据权利要求2所述的多点平行同步驱动太阳能跟踪系统,其特征在于:所述传动齿轮内固定连接有机械驱动轴,所述机械驱动轴随传动齿轮可 转动的固定在立柱与蜗轮蜗杆单元之间,且所述机械驱动轴与所述主轴相互平行;所述驱动机构通过机械驱动轴与相邻从动机构的动力输入端传动连接,且相邻从动机构之间通过机械驱动轴传动连接。
- 根据权利要求3所述的多点平行同步驱动太阳能跟踪系统,其特征在于:所述驱动机构还包括驱动电机,所述驱动电机的输出轴与蜗杆或者与机械驱动轴驱动连接。
- 根据权利要求2所述的多点平行同步驱动太阳能跟踪系统,其特征在于:所述蜗轮Ⅰ沿主轴长度方向的两侧固定有带安装孔的蜗轮外壳Ⅰ,所述主轴可转动的穿设在安装孔内;所述蜗轮外壳Ⅰ与立柱固定连接。
- 根据权利要求5所述的多点平行同步驱动太阳能跟踪系统,其特征在于:所述立柱沿垂直于主轴方向的两侧可拆卸的设置一对安装侧板;所述蜗轮外壳Ⅰ通过支撑座固定在所述的一对安装侧板上;所述蜗轮外壳Ⅰ的底部与立柱的顶部之间设置驱动轴座,用于可转动的安装机械驱动轴;且所述驱动轴座固定于所述的一对安装侧板之间。
- 根据权利要求4所述的多点平行同步驱动太阳能跟踪系统,其特征在于:所述从动机构包括蜗轮蜗杆传动单元Ⅱ以及作为动力输入端的连接件; 所述蜗轮蜗杆传动单元Ⅱ包括蜗杆Ⅱ、作为动力输出端的蜗轮Ⅱ;所述连接件分别与机械驱动轴沿轴向连接、与蜗杆Ⅱ沿竖向连接,用于将机械驱动轴的轴向旋转传递至蜗杆;所述蜗轮Ⅱ与蜗杆Ⅱ的上侧啮合;且所述蜗轮Ⅱ套设于主轴上与主轴转动连接。
- 根据权利要求7所述的多点平行同步驱动太阳能跟踪系统,其特征在于:所述蜗轮Ⅱ沿主轴长度方向的两侧固定有带安装孔的蜗轮外壳Ⅱ,所述主轴可转动的穿设在安装孔内;所述立柱的顶部与立柱顶座可拆卸连接;所述立柱顶座设为U型折弯件;所述连接件置于立柱顶座内且沿垂直于主轴方向的两侧依次穿过立柱及立柱顶座竖直面的安装孔进行可拆卸连接;所述蜗轮外壳Ⅱ固定在立柱顶座的水平面上;和/或,所述连接件为换向器或万向节。
- 根据权利要求7所述的多点平行同步驱动太阳能跟踪系统,其特征在于:所述主轴设为平行的多排,所述立柱也相应的设为平行的多排;相邻两排主轴上的蜗杆之间分别对应传动连接;和/或,所述的多点平行同步驱动装置设为串联的多组,该串联的多组多点平行同步驱动装置中的传动齿轮、连接件均由一根机械驱动轴连接,或者由多根机械驱动轴连接,多根机械驱动轴首尾转动连接;所述驱动电机的数量设为1个,且相应设置一控制器,所述控制器与驱动电机电连接。
- 根据权利要求1所述的多点平行同步驱动太阳能跟踪系统,其特征 在于:若干级所述的从动机构在驱动机构的一侧或两侧均匀间隔分布;和/或,所述立柱的顶部与立柱顶座固定连接,所述主轴穿设于轴承内,所述轴承安装在轴承座圈内,所述立柱顶座与所述轴承座圈固定连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911013097.9 | 2019-10-23 | ||
CN201911013097.9A CN112702001A (zh) | 2019-10-23 | 2019-10-23 | 一种多点平行同步驱动太阳能跟踪系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021077553A1 true WO2021077553A1 (zh) | 2021-04-29 |
Family
ID=75505086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/122814 WO2021077553A1 (zh) | 2019-10-23 | 2019-12-03 | 一种多点平行同步驱动太阳能跟踪系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112702001A (zh) |
WO (1) | WO2021077553A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114050685A (zh) * | 2021-10-25 | 2022-02-15 | 北京机械设备研究所 | 一种太阳帆板驱动装置和卫星设备 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN218041321U (zh) * | 2022-05-20 | 2022-12-13 | 江苏中信博新能源科技股份有限公司 | 多点同步联动跟踪支架系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09230018A (ja) * | 1996-02-20 | 1997-09-05 | Radial Antenna Kenkyusho:Kk | 自動追尾アンテナ |
CN109698670A (zh) * | 2017-10-23 | 2019-04-30 | 清源科技(厦门)股份有限公司 | 一种传动系统及包含该传动系统的跟踪支架 |
CN209001897U (zh) * | 2018-09-20 | 2019-06-18 | 湛江芸海能源科技有限公司 | 一种新型光伏支架跟踪系统 |
CN110011609A (zh) * | 2019-05-29 | 2019-07-12 | 江苏中信博新能源科技股份有限公司 | 一种光伏追踪装置及光伏追踪系统 |
CN210469209U (zh) * | 2019-10-23 | 2020-05-05 | 江苏中信博新能源科技股份有限公司 | 一种多点平行同步驱动太阳能跟踪系统 |
-
2019
- 2019-10-23 CN CN201911013097.9A patent/CN112702001A/zh active Pending
- 2019-12-03 WO PCT/CN2019/122814 patent/WO2021077553A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09230018A (ja) * | 1996-02-20 | 1997-09-05 | Radial Antenna Kenkyusho:Kk | 自動追尾アンテナ |
CN109698670A (zh) * | 2017-10-23 | 2019-04-30 | 清源科技(厦门)股份有限公司 | 一种传动系统及包含该传动系统的跟踪支架 |
CN209001897U (zh) * | 2018-09-20 | 2019-06-18 | 湛江芸海能源科技有限公司 | 一种新型光伏支架跟踪系统 |
CN110011609A (zh) * | 2019-05-29 | 2019-07-12 | 江苏中信博新能源科技股份有限公司 | 一种光伏追踪装置及光伏追踪系统 |
CN210469209U (zh) * | 2019-10-23 | 2020-05-05 | 江苏中信博新能源科技股份有限公司 | 一种多点平行同步驱动太阳能跟踪系统 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114050685A (zh) * | 2021-10-25 | 2022-02-15 | 北京机械设备研究所 | 一种太阳帆板驱动装置和卫星设备 |
Also Published As
Publication number | Publication date |
---|---|
CN112702001A (zh) | 2021-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021077554A1 (zh) | 一种多点平行同步驱动装置及其应用 | |
CN210770049U (zh) | 一种多点平行同步驱动装置 | |
CN210469209U (zh) | 一种多点平行同步驱动太阳能跟踪系统 | |
CN210895132U (zh) | 一种多点平行同步驱动太阳能跟踪系统 | |
CN211296653U (zh) | 一种多点平行同步驱动的联动太阳能跟踪系统 | |
KR100779036B1 (ko) | 추적식 태양광 발전 시스템 | |
WO2021077553A1 (zh) | 一种多点平行同步驱动太阳能跟踪系统 | |
CN210111921U (zh) | 一种单轴光伏跟踪支架方阵联动系统 | |
CN104811124A (zh) | 一种旋转立柱 | |
CN214101265U (zh) | 一种平单轴推杆式光伏支架 | |
CN219960453U (zh) | 辅助维修光伏电站的支架 | |
CN203133616U (zh) | 一种多轴连杆式追日结构 | |
CN212992269U (zh) | 一种太阳能板机械调节架 | |
CN217824816U (zh) | 圆弧齿梁式光伏跟踪器 | |
CN106533339A (zh) | 一种简易型圆弧定位可调单轴支架 | |
CN111917365A (zh) | 一种可自动调节光伏支架 | |
CN111030581A (zh) | 太阳能光伏支架 | |
CN113595480B (zh) | 一种太阳能光伏板调节装置 | |
CN220754748U (zh) | 双轴双向联动追光支架及光伏装置 | |
CN113126657A (zh) | 一种多点平行同步驱动太阳能跟踪系统 | |
KR101218076B1 (ko) | 스트링을 이용한 태양광 발전장치 지지대 | |
CN215581007U (zh) | 一种便于调节的光伏发电用支撑组件 | |
CN215769488U (zh) | 一种无独立基础的太阳能联动平单轴跟踪系统 | |
CN207676215U (zh) | 一种追踪光伏装置及光伏系统 | |
CN212481734U (zh) | 一种太阳能安装用具有稳固结构的支架 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19949791 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19949791 Country of ref document: EP Kind code of ref document: A1 |