WO2021077414A1 - 界面显示方法、控制系统、计算机可读存储介质和无人机 - Google Patents

界面显示方法、控制系统、计算机可读存储介质和无人机 Download PDF

Info

Publication number
WO2021077414A1
WO2021077414A1 PCT/CN2019/113386 CN2019113386W WO2021077414A1 WO 2021077414 A1 WO2021077414 A1 WO 2021077414A1 CN 2019113386 W CN2019113386 W CN 2019113386W WO 2021077414 A1 WO2021077414 A1 WO 2021077414A1
Authority
WO
WIPO (PCT)
Prior art keywords
instruction
sub
icon
drone
interface
Prior art date
Application number
PCT/CN2019/113386
Other languages
English (en)
French (fr)
Inventor
冯纬洲
陈童
吴洪强
盛欣哲
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980038320.7A priority Critical patent/CN112236746A/zh
Priority to PCT/CN2019/113386 priority patent/WO2021077414A1/zh
Publication of WO2021077414A1 publication Critical patent/WO2021077414A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04817Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance using icons
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04845Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range for image manipulation, e.g. dragging, rotation, expansion or change of colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text

Definitions

  • This application relates to the field of drone control technology, and in particular, to an interface display method, a control system, a computer-readable storage medium, and a drone including the above-mentioned control system.
  • drones have a wide range of control functions, which makes it necessary to set multiple corresponding control buttons or control icons on the display interface, which greatly occupies the otherwise small flight interface, which is not conducive to observing the unmanned person from the display interface.
  • the flight situation of the aircraft is not limited.
  • This application provides an interface display method, a control system, a computer-readable storage medium, and an unmanned aerial vehicle including the above-mentioned control system, which integrates multiple sub-instruction icons on the display screen into one instruction icon, It effectively reduces the occlusion of the sub-command icon on the flight interface, and displays different command icons and sub-command icons corresponding to different flight states to make the execution of the command more clear. At the same time, it is helpful to hide the sub-command icon when the command icon is not triggered. To reduce the possibility of operator misoperation and improve user experience.
  • the application of the first aspect of the present application provides an interface display method for a control system including a display screen.
  • the interface display method includes: obtaining the flight status of the drone controlled by the control system; The flight status determines the instruction icon displayed in the interface of the display screen; according to the execution instruction corresponding to the instruction icon, determines and displays the sub-instruction pop-up window corresponding to the instruction icon; wherein, the sub-instruction The pop-up window includes at least one sub-command icon for controlling the flight of the drone.
  • the application of the second aspect of the present application provides a control system, including a display screen, a vibration terminal, and a processor, wherein the processor is used to: obtain the flight status of the drone controlled by the control system; The flight status determines the instruction icon displayed in the interface of the display screen; according to the execution instruction corresponding to the instruction icon, determines and controls the display screen to display a sub-instruction pop-up window corresponding to the instruction icon, wherein the sub-instruction pop-up window corresponding to the instruction icon is determined and controlled.
  • the command pop-up window includes at least one sub-command icon for controlling the flight of the drone.
  • the application of the third aspect of the present application provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the interface display method as described in any one of the applications of the first aspect are implemented .
  • the application of the fourth aspect of the present application provides an unmanned aerial vehicle, including: an airframe; a power system installed in the airframe to provide power for the unmanned aerial vehicle; and an interactive system for The power system is controlled according to the control instructions sent by the control system described in the second application to perform corresponding functions.
  • the interface display method, control system, computer-readable storage medium, and drone provided by this application can realize:
  • the display of the command icon is different, and the sub-command icons are not exactly the same.
  • the display interface only displays the sub-command icons corresponding to the execution commands that may be used in the current flight state This can effectively reduce the number of sub-command icons in the sub-command pop-up window, make the operation more targeted, and help reduce the probability of misoperation.
  • Fig. 1 shows a structural block diagram of a control system and a UAV according to an embodiment of the present application
  • FIG. 2 shows a schematic flowchart of an interface display method according to an embodiment of the present application
  • FIG. 3 shows a schematic flowchart of an interface display method according to an embodiment of the present application
  • FIG. 4 shows a schematic flowchart of an interface display method according to an embodiment of the present application
  • FIG. 5 shows a schematic flowchart of an interface display method according to an embodiment of the present application
  • FIG. 6 shows a schematic flowchart of an interface display method according to an embodiment of the present application
  • FIG. 7 shows a structural block diagram of the control system and the UAV according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a display interface corresponding to a specific control process in an embodiment of the present application
  • FIG. 9 shows a schematic flow diagram corresponding to the control process according to an embodiment of the present application.
  • FIG. 10 shows a schematic flow chart corresponding to the control process according to an embodiment of the present application.
  • Control System 20 UAV; 101 Processor; 102 Display; 103 Transmission Device; 104 Vibration Terminal; 201 Interactive System; 202 Power System; 2011 Controller; 2012 Sensing System; 2013 Transmission Equipment; 203 PTZ; 2031 camera.
  • a component when referred to as being "fixed to” another component, it can be directly on the other component or a central component may also exist. When a component is considered to be “connected” to another component, it can be directly connected to the other component or there may be a centered component at the same time.
  • FIG. 1 is a schematic architecture diagram of an unmanned aerial vehicle system provided according to an embodiment of the present application.
  • the unmanned aerial vehicle system may include a control system 10 of an unmanned aerial vehicle 20 and an unmanned aerial vehicle 20.
  • the UAV 20 may be a single-rotor or multi-rotor UAV.
  • the drone 20 may include a power system 202, an interactive system 201, and a fuselage.
  • the fuselage may include a center frame and one or more arms connected to the center frame, and the one or more arms extend radially from the center frame.
  • the UAV 20 may also include a tripod, wherein the tripod is connected to the fuselage for supporting the UAV 20 when it is landed.
  • the power system 202 may include one or more motors, and the motors are used to provide power to the drone 20, and the power enables the drone 20 to achieve one or more degrees of freedom of movement.
  • the interactive system 201 may include a controller 2011 and a sensing system 2012.
  • the sensing system 2012 is used to measure status information of the drone 20 and/or information of the environment in which the drone 20 is located, where the status information may include attitude information, position information, remaining power information, and the like.
  • the information of the environment may include the depth of the environment, the air pressure of the environment, the humidity of the environment, the temperature of the environment, and so on.
  • the sensing system 2012 may include, for example, at least one of sensors such as a barometer, a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit, a vision sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • GPS Global Positioning System
  • the sensing system 2012 also includes a position sensor for acquiring the distance of the drone 20 from the preset home point and acquiring the minimum distance of the drone 20 from the obstacle below in the vertical direction of the current position.
  • the controller 2011 is used to control various operations of the drone 20.
  • the controller 2011 can control the movement of the drone 20, and for another example, the controller 2011 can control the sensing system 2012 of the drone 20 to collect data.
  • the drone 20 may include a photographing device 2031.
  • the photographing device 2031 may be, for example, a device for capturing images such as a camera or a video camera.
  • the photographing device 2031 may communicate with the controller 2011. The shooting is performed under control, and the controller 2011 may also control the drone 20 according to the image captured by the shooting device 2031.
  • the drone 20 further includes a pan/tilt 203.
  • the pan/tilt 203 may include a motor.
  • the pan/tilt 203 is used to carry the camera 2031.
  • the controller 2011 may control the movement of the pan/tilt 203 through the motor. It should be understood that the pan/tilt 203 may be independent of the drone 20 or a part of the drone 20.
  • the photographing device 2031 may be fixedly connected to the fuselage of the drone 20.
  • the drone 20 further includes a transmission device 2013, and under the control of the controller 2011, the transmission device 2013 can send the data collected by the sensing system 2012 and/or the photographing device 2031 to the control system 10.
  • the control system 10 can include a transmission device 103.
  • the transmission device 103 of the control system 10 can establish a wireless communication connection with the transmission device 2013 of the drone 20.
  • the transmission device 103 of the control system 10 can receive data sent by the transmission device 2013.
  • control The system 10 may also send control instructions to the drone 20 through the transmission device 103 configured by itself.
  • the control system 10 may include a processor 101 and a display screen 102.
  • the processor 101 can control various operations of the control system 10.
  • the processor 101 can control the transmission device 103 to receive the data sent by the drone 20 through the transmission device 2013; for another example, the processor 101 can control the display screen 102 to display the data received by the transmission device 103, where the data can be Including the image of the environment captured by the camera 2031, posture information, position information, power information, and so on.
  • control system 10 of the foregoing part may include one or more processors 101, where the one or more processors 101 may work individually or in cooperation.
  • the processor 101 includes a remote control device, and sends an instruction signal to the transmission device 2013 through the remote control device.
  • the interface display method provided by the embodiment of the present application includes: step S10, acquiring the flight status of the drone controlled by the control system; step S20, determining the instruction icon displayed in the interface of the display screen according to the flight status Step S30, according to the execution instruction corresponding to the instruction icon, determine and display the sub-instruction pop-up window corresponding to the instruction icon; wherein the sub-instruction pop-up window includes at least one sub-instruction icon for controlling the flight of the drone.
  • the display screen mainly the instruction icons displayed on the display interface, are also different, and the corresponding instruction icons are displayed in different flight states.
  • the sub-command pop-up window also corresponds to the flight status
  • the sub-command icon displayed on the sub-command pop-up window also corresponds to the current flight status.
  • the interface display method in this embodiment integrates multiple sub-command icons into one command icon, which effectively reduces the occlusion effect of the sub-command icons on the flight interface, so that the operator can better observe the flight of the drone.
  • different command icons and sub-command icons are displayed corresponding to different flight states to make the execution of the command more clear.
  • the sub-command icon is hidden when the command icon is not triggered, which helps reduce the possibility of operator misoperation and improve user experience .
  • the instruction icon when the drone is in the standby state, the instruction icon is determined to be the first icon; when the drone is in the take-off state, the instruction icon is determined to be the second icon.
  • the first icon is a take-off icon
  • the second icon is a return icon.
  • the drone Corresponding to the different flight status of the drone, it is distinguished by setting different command icons, so that the operator can quickly and intuitively obtain the current flight status of the drone.
  • take-off is the normal operation when the drone is in standby state
  • the return is the normal operation when the drone is in the take-off state.
  • the take-off icon includes the apron plus an upward pointing arrow, indicating the content of the instruction to control the drone to take off.
  • the return-to-home icon includes a downward pointing arrow, and the pointing arrow moves along the extending direction, which can indicate the content of the instruction to control the drone to return to home.
  • the instruction icon can also be determined to be the landing icon.
  • the return icon includes the apron plus a downward pointing arrow to indicate the instruction content for controlling the landing of the UAV.
  • the interface display method provided in this embodiment further incorporates the instruction content corresponding to the landing icon into the instruction content corresponding to the return icon, which simplifies the number of instruction icons corresponding to the take-off state, makes the control easier, and optimizes
  • the control process makes the control process of the drone easy to learn, thereby improving the ability of human-computer interaction, making the interface display of the drone and the corresponding control method intelligent, and helping to promote the consumer-grade drone market development of.
  • the interface display method provided in this embodiment includes after step S30: step S41, determining the drone distance preset according to the execution instruction corresponding to the instruction icon The distance to the home point; step S42, when the distance is not greater than the first distance threshold, display the sub-instruction pop-up window including the landing sub-instruction icon; step S43, when the distance is greater than the first distance threshold, display the sub-instruction including the landing sub-instruction icon and the return home The sub-command pop-up window of the sub-command icon.
  • the distance between the drone and the preset home point is judged to distinguish whether the drone needs to return home.
  • the sub-command pop-up window corresponding to the command icon includes the landing sub-command icon and the return-home sub-command icon. You can either perform landing operations or return home operations.
  • the sub-instruction pop-up window corresponding to the instruction icon includes the landing sub-instruction icon, and the landing operation can be performed. There is no need to perform a return operation. In this way, the displayed sub-command pop-up window is optimized, the display interface is further simplified, unnecessary sub-command icons are hidden, the possibility of operator misoperation is reduced, and the friendliness of the interface display is further improved.
  • the interface display method further includes: step S31, adjusting the display state of the instruction icon according to the execution instruction corresponding to the instruction icon; step S32, on the display screen The instruction icon is displayed in the interface according to the adjusted display status.
  • Steps S31 and S30 are parallel steps, which are triggered according to the execution instruction corresponding to the instruction icon, that is, after the instruction icon is triggered, the sub-instruction pop-up window is displayed and the display state of the instruction icon is adjusted.
  • the instruction icon After the instruction icon receives the touch signal, that is, after the operator triggers the instruction icon by clicking or other actions, at least one of the color, text, graphics, static/dynamic display elements displayed by the instruction icon is switched, and the instruction icon is not displayed.
  • the distinction is made when triggered, so that the operator can more intuitively understand the current status of the drone.
  • the current operation area is mainly the part of the instruction icon on the display interface; after the instruction icon is triggered, the current operation area is mainly the sub instruction icon on the display interface The part where it is.
  • the interface display method further includes: step S50, when a sub-command pop-up window is displayed in the interface of the display screen, if a sub-command corresponding to cancel display is received The cancel command in the pop-up window will display the command icon in the interface.
  • the sub-command pop-up window When the command icon is not triggered, the sub-command pop-up window is hidden in the display interface, which can make the display interface have a wider display field of view, so that the operator can observe more interfaces captured by the drone. After the command icon is triggered, the sub-command pop-up window is changed from the hidden state to the displayed state to provide the sub-command icon corresponding to the flight state for the operator to choose. It is understandable that the display interface may also include a control instruction icon for restoring the sub-instruction pop-up window from the display state to the hidden state, which can facilitate the cancellation operation and provide more operation options.
  • the cancellation instruction specifically includes: triggering a display area outside the sub-instruction pop-up window in the interface.
  • the display areas on the display interface except for the sub-command pop-up window are all cancellation areas.
  • the display interface receives the touch signal, and secondly, it is determined which area on the display interface receives the touch signal. If the touch signal is received by the sub-command pop-up window, the touch signal is not considered as a cancel signal; if If the touch signal is received from the display area outside the sub-command pop-up window, the touch signal is considered to be a cancel signal.
  • the cancel instruction specifically includes: triggering the cancel area in the sub-instruction pop-up window.
  • the display mode of the cancellation area provided by this embodiment is more intuitive, and is more friendly especially for people who are not familiar with the operation interface.
  • the interface display method further includes: step S61, receiving a sub-execution instruction corresponding to the sub-instruction icon, and the sub-execution instruction includes a take-off instruction and a return flight. Instruction and landing instruction; step S65, adjust the display state of the instruction icon according to the sub-execution instruction, and control the drone to operate according to the sub-execution instruction.
  • the display state of the command icon will also change accordingly to distinguish it from when the sub-command icon is not triggered.
  • the command icon becomes a cancel icon, indicating that the drone is executing the sub-execution corresponding to the sub-command icon. instruction.
  • the current action being performed by the drone can be cancelled by triggering the cancel icon.
  • the sub-execution instructions include take-off instructions, return-to-home instructions and landing instructions, and the corresponding take-off instructions, return-to-home instructions and landing instructions can be cancelled by triggering the cancel icon.
  • whether the sub-instruction icon is triggered is determined by whether the trigger gesture conforms to the preset gesture.
  • Setting the trigger gesture of the sub-command icon can reduce the possibility that the operator accidentally touches the sub-command icon and cause the drone to execute the corresponding sub-execution command, and further improves the friendliness of the interface display.
  • the preset gesture is the duration of contacting the sub-command icon, that is, whether the sub-command icon is triggered is determined by the duration of contacting the sub-command icon, for example, when the duration of contacting the sub-command icon exceeds the time threshold, the drone is controlled to execute Sub-execute instructions.
  • the time threshold is set in the range of 0.5 seconds to 2 seconds, preferably 1 second.
  • the preset gesture for determining whether the sub-instruction icon is triggered includes other triggering actions, such as:
  • the preset gesture is a sliding gesture, and it is judged whether to slide to a preset designated position.
  • the preset gesture is a drag gesture, and it is determined whether the sub-command icon is dragged to a preset designated position.
  • the preset gesture is a double-tap gesture, and it is judged whether the sub-command icon is double-tapped within a certain period of time.
  • step S61 and step S65 further include: step S62, obtaining the trigger time Start time and end time; step S63, send a first vibration signal to the vibrating terminal at the start time; step S64, if the trigger time exceeds the time threshold, send a second vibration signal to the vibrating terminal at the end time.
  • the control system connected to the display interface starts timing and the vibration terminal executes the vibration reminder.
  • the duration of the touch reaches the time threshold, the timing ends and the vibration terminal executes the vibration reminder again.
  • This solution provides a feedback mechanism for the triggering of the sub-command icon of the drone.
  • the feedback mechanism does not require the operator to visually confirm the correctness of the operation, so that the operator can devote more energy when operating the sub-command icon. It is placed on observing the flight situation of the drone in the sky, reducing the possibility of losing oneself to the other, so as to take into account the operation and control of the drone and the flight situation of the drone in the sky at the same time, so as to operate and control the drone more responsively
  • the flight is particularly conducive to responding to emergencies during UAV flight.
  • the interface display method provided by this application is more operative, and the probability of accidents after the drone encounters an emergency or sudden situation is reduced, thereby improving the reliability of the interface display method. .
  • the reminder mode triggered by the sub-command icon is an audio reminder.
  • the audio reminder method also does not require visual confirmation, so that when operating the sub-command icon, the operator can focus more on observing the drone's flight situation in the sky, so as to take into account the operation and control of the drone. As well as observing the flight situation of the drone in the sky, so as to operate and control the flight of the drone more responsively, which is especially beneficial to respond to emergency situations in the flight of the drone.
  • the interface display method further includes: determining the first trigger position and the first trigger position corresponding to the start time and the end time respectively. The second trigger position; when the first trigger position and the second trigger position are both within the display range corresponding to the sub-instruction icon, control the drone to execute the sub-execution instruction.
  • This embodiment sets the trigger area of the sub-command icon. By setting the first trigger position and the second trigger position, the trigger probability of the sub-command icon when the touch position changes is increased, and the reliability of the interface display method is improved.
  • first trigger position and the second trigger position may be overlapping areas. It helps to simplify the design of the display interface, provide a more convenient operating environment for the operator, and improve the humanization of the design.
  • step S65 further includes step S71, displaying an instruction icon corresponding to the cancel operation in the interface of the display screen; step S72, responding to the cancel operation corresponding to the The confirmation instruction of the instruction icon controls the drone to hover at the current flying height; step S73, the instruction icon is determined according to the hovering state of the drone and displayed on the interface of the display screen.
  • an instruction icon for canceling the cancellation operation of the sub-execution instruction will be displayed on the display interface, so that the drone can stop performing the current action and hover the drone in the air, which can be dealt with on the one hand.
  • Emergency situations reduce the probability of accidents.
  • the corresponding sub-command icon can be reselected according to the current flight status, instead of returning to the command icon corresponding to the previous flight status, so that the operator can choose It is more suitable for the operation of the current flight status, improves the friendliness of the display interface, and improves the user experience.
  • step S81 if the sub-execution instruction is a return instruction or a landing instruction, obtain the vertical distance of the drone from the current position.
  • the drone flies according to a predetermined return or landing trajectory.
  • the operator does not need to monitor or control the drone's movements in real time. It only confirms when the minimum distance between the drone and the obstacle reaches the second distance threshold. The operation is great simplify.
  • the second distance threshold is set in a range of 0.3 meters to 0.8 meters, preferably 0.5 meters.
  • step S83 is included, in response to the confirmation instruction of the confirmation button, the drone is controlled to descend, otherwise the drone is controlled to keep hovering.
  • the drone By triggering the confirmation command, the drone continues to execute the return instruction or landing instruction, otherwise the drone is controlled to keep hovering, that is, this method adds the confirmation instruction to make the drone suspend the execution of the return instruction or landing instruction before the confirmation is confirmed. , In order to reduce the possibility of misoperation, and at the same time greatly reduce the possibility of accidents caused by the collision of the UAV on the obstacle, thereby having the beneficial effect of improving the safety of the UAV.
  • the method further includes: determining the prompt information corresponding to the sub-execution instruction; determining the prompt position corresponding to the instruction icon in the interface of the display screen; and displaying the prompt information at the prompt position.
  • the display interface can also display the prompt information corresponding to the sub-execution command, which allows the operator to obtain a more accurate UAV's current flight status, and at the same time can also play the role of interpreting the command icon, which can facilitate the operator to view The effect of improving user experience.
  • control system 10 provided by the embodiment of the present application includes: a display screen 102, a vibration terminal 104 and a processor 101. Wherein, the control system 10 is used to execute any of the above-mentioned embodiments.
  • the processor 101 is electrically connected to the display screen 102, and the processor 101 is electrically connected to the vibration terminal 104.
  • the display screen 102 is a touch screen, and the operator performs man-machine interactive operations with the processor through the touch screen.
  • the display screen 102 may not have a human-computer interaction function, but only have a display function, and a button corresponding to the instruction icon is also provided on the control system.
  • control system implemented by other embodiments of the present application implements the interface display method of any one of the above embodiments, and therefore has all the beneficial effects of any one of the above embodiments, and will not be repeated here.
  • the computer-readable storage medium provided by the embodiment of the present application has a computer program stored thereon, and when the computer program is executed by a processor, the steps of any one of the interface display methods in the foregoing embodiments are implemented.
  • the computer-readable storage medium provided by the embodiment of the present application implements the interface display method of any one of the above-mentioned embodiments, and therefore has all the beneficial effects of any one of the above-mentioned embodiments, and will not be repeated here.
  • any process or method description in the flowchart or described in other ways herein can be understood as including one or more executable instructions for implementing specific logical functions or steps of the process. Modules, fragments, or parts of the code, and the scope of the preferred embodiments of the present application includes additional implementations, which may not be in the order shown or discussed, including in a substantially simultaneous manner or in reverse according to the functions involved Order to perform functions, which should be understood by those skilled in the art to which the embodiments of the present application belong.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
  • computer readable media include the following: electrical connections (electronic devices) with one or more wiring, portable computer disk cases (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because it can be performed, for example, by optically scanning the paper or other medium, and then editing, interpreting, or other suitable methods when necessary. Process to obtain the program electronically and then store it in the computer memory.
  • each part of this application can be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if it is implemented by hardware, as in another embodiment, it can be implemented by any one or a combination of the following technologies known in the art: Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate array (PGA), field programmable gate array (FPGA), etc.
  • a person of ordinary skill in the art can understand that all or part of the steps carried in the method of the foregoing embodiments can be implemented by a program instructing relevant hardware to complete.
  • the program can be stored in a computer-readable storage medium, and the program can be executed when the program is executed. , Including one of the steps of the method embodiment or a combination thereof.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.
  • the drone 20 provided by the embodiment of the present application includes: a body; a power system 202 installed in the body to provide power for the drone; and an interactive system 201, which is used for The power system 202 is controlled according to the control instructions sent by the control system 10 provided in the foregoing embodiment to perform corresponding functions.
  • the processor 101 of the control system 10 sends a control command to the interactive system 201 through a remote control signal, and the interactive system 201 is connected to the power system 202. After the interactive system 201 receives the control command, it controls the power system 202 to make the drone 20 Perform the corresponding action.
  • the unmanned aerial vehicle provided in other embodiments of the present application executes the control instructions sent by the control system of any one of the above embodiments, and therefore has all the beneficial effects of any of the above embodiments, and will not be repeated here.
  • the traditional control method on the APP side is to leave a button for each function, and the user triggers a specific function through a specific button.
  • a visual confirmation pop-up window pops up, and the user performs a certain operation to confirm the execution of the function, such as sliding a slider with a finger to a specified position.
  • Existing control methods require more buttons to be placed on the flight interface, which will occupy a small flight interface window.
  • the drag confirmation method requires the user to look at the screen with his eyes to ensure that he is operating correctly, so that it is impossible to observe the situation of the drone in the sky, and it is not conducive to responding to emergency situations.
  • This application provides a new flight control method that combines landing and return into one key to free up space on the flight interface.
  • this application provides a new flight control feedback mechanism, which does not require the user to visually confirm the correctness of the operation.
  • the return button is displayed according to the distance between the aircraft and the home point (home point). If the user needs to land, long press the landing button. As the pressing time becomes longer, a circle of animation around the button gradually closes, prompting the user that the pressing has reached the threshold. In addition, the first time the user clicks the button, it will vibrate to prompt the user to start timing, and when the threshold is reached, vibrate again to prompt the user that the threshold has been reached.
  • FIG. 8 shows a schematic diagram of multiple display interfaces that change according to different instructions during the control process of a specific embodiment.
  • the arrow direction is the progress direction of the control process.
  • the multiple instructions, icons, or pop-up windows in the figure are only indicative positions and sizes, and do not represent the actual situation.
  • the figure shows The content presented is only a specific embodiment of the application, rather than all the embodiments. Based on this specific embodiment, all other embodiments obtained by those skilled in the art without creative work shall fall within the protection scope of this application.
  • the display interface 802 is displayed on the display screen of the drone in the standby state.
  • the instruction icon is the take-off icon. It can be seen that the take-off icon occupies only a small part of the display interface, which reduces the occlusion, so that the display interface can be displayed on the display interface. It has a larger space to display the flight interface of the UAV, which is convenient for the operator to watch, so as to improve the viewing experience of the operator.
  • the display interface 804 displays the interface of the sub-command pop-up window corresponding to the take-off icon after the take-off icon is triggered.
  • the sub-command pop-up window includes the take-off sub-command.
  • the drone can usually execute the command as take-off , And by implying other unnecessary sub-commands, such as landing sub-commands, return-to-home sub-commands, etc., the probability of misoperation can be reduced.
  • the display interface provided in this embodiment reduces unnecessary sub-commands and also eliminates the interference of the prompt sound to the operator. Improved user-friendliness and operability, enabling operators to obtain a better user experience.
  • a cancellation area is set for the sub-command pop-up window. Click the area outside the sub-command pop-up window to cancel the display of the sub-command pop-up window and return to the display interface 802.
  • the cancellation area can also be a display area on the display interface except for the take-off sub-command, which can be more convenient for operation.
  • the display interface 806 shows that after the takeoff sub-command is triggered, the sub-command pop-up window is hidden again, and the take-off icon is changed to the return home icon.
  • the return home icon only occupies the display interface.
  • a small part can make the display interface have a larger space to display the flight interface of the drone, which is convenient for the operator to watch the flight status of the drone, and improves the viewing experience of the operator.
  • the display interface 808 shows that after the return home icon is triggered, when the distance between the drone and the home point is greater than the preset first distance threshold, the sub-command pop-up window corresponding to the home return icon will pop up, where the sub-command pop-up window includes return home Sub-commands and landing sub-commands.
  • the drone can usually execute commands to land and return. By implying other unnecessary sub-commands, such as take-off sub-commands, the probability of misoperation can be reduced.
  • the display interface provided in this embodiment reduces unnecessary sub-commands and also eliminates the interference of the prompt sound to the operator.
  • a cancellation area is set for the sub-command pop-up window. Click the area outside the sub-command pop-up window to cancel the display of the sub-command pop-up window and return to the screen displayed on the display interface 806.
  • the cancel area can also be a display area on the display interface except for the return home sub-instruction and the landing sub-instruction, which can be more convenient for operation.
  • the sub-command pop-up window corresponding to the home return icon will pop up.
  • the sub-command pop-up window includes the return home sub-command, and Implied take-off sub-command and landing sub-command.
  • the sub-command pop-up window is re-hidden, and the return-to-home icon is changed to the instruction icon corresponding to the cancel operation, and the corresponding return sub-command or landing sub-command is displayed.
  • Prompt information Similar to the screens displayed on the display interface 802 and the display interface 806, the instruction icon and prompt message corresponding to the cancel operation only occupy a small part of the display interface, which can make the display interface have more space to display the drone.
  • the flight interface is convenient for the operator to watch the flight status of the UAV and improve the viewing experience of the operator.
  • the screen After the instruction icon corresponding to the cancel operation in the display interface 810 is triggered, the screen returns to the content displayed on the display interface 806, the return to home icon can be triggered again, and the corresponding sub-command pop-up window and sub-command icon are displayed.
  • the screen When the drone is landing or returning home, the minimum distance of the drone from the obstacle below in the vertical direction of the current position is obtained in real time; if the minimum distance is less than the preset second distance threshold, the screen changes to the display interface The content displayed by 812, a confirmation pop-up window is displayed on the display interface.
  • the screen displayed on the display interface 812 is when the drone is in a hovering state, and a confirmation pop-up window pops up on the display interface.
  • the pop-up confirmation pop-up window provides a safety guarantee for the landing process or the return process of the UAV, so as to improve the safety and flight reliability of the UAV.
  • the drone will be controlled to remain hovering, and the display interface will return to the screen displayed on the display interface 806.
  • the return to home icon can be triggered again and the corresponding icon will be displayed.
  • Sub-command pop-up windows and sub-command icons, or the operator can re-control the drone to perform other flight actions, further improving the friendliness and operability of the interface display.
  • Fig. 9 shows the control process of a specific embodiment.
  • the distance between the drone and the home point (Home point) is less than or equal to 20 meters.
  • the sub-command icon in the pop-up sub-command pop-up window is the landing sub-command icon. Since the distance is relatively close, there is no need to set a separate return-to-home sub-command icon.
  • the display interface is optimized, and the control commands are simplified on the other hand, so as to plan the flight route of the UAV more reasonably.
  • the landing sub-instruction icon is triggered by whether the long-press time reaches a preset time threshold.
  • the controller controls the drone to execute the landing sub-command, and the command icon changes to a cross to cancel the landing sub-command at any time, and after clicking the cross , The drone stops executing the landing sub-command and keeps hovering, so that the operator can control the drone in the hovering state.
  • the drone continues to execute the landing sub-instructions, and provides corresponding sound reminders through the operating system, and displays prompt information so that the operator can understand the status of the drone's execution of the landing sub-instructions.
  • the distance corresponding to 0.5 meters refers to the distance between the drone and the obstacle on the landing route, which can be vertical or not.
  • the specific direction is related to the landing route of the drone.
  • a confirmation window will pop up on the display interface, and the operator will confirm whether to continue landing.
  • the automatic judgment can also be made by the operating system, in which the judgment method of the operator for confirmation is more accurate and safer and more reliable, and the automatic judgment by the operating system is faster.
  • FIG. 10 shows the control process of another specific embodiment.
  • the difference from the second specific embodiment is that after the home icon is triggered, the distance between the drone and the home point (Home point) is greater than 20 meters.
  • the sub-command icon in the pop-up sub-command pop-up window is a combination of the landing sub-command icon and the return home icon. This allows the operator to execute the landing sub-command or the return-to-home sub-command, which provides more adequate control commands suitable for the current flight status, so as to plan the flight route of the UAV more reasonably.
  • the controller will control the drone to execute the landing sub-command or return sub-command, and the command icon will change at the same time. It is a cross to cancel the landing sub-command or the return sub-command at any time. After clicking the cross, the drone stops executing the landing sub-command or the return sub-command and keeps hovering, so that the operator can control the hovering state. The drone is controlled.
  • the drone will continue to execute the landing sub-command or return sub-command, and provide corresponding sound reminders through the operating system, and display prompt information, so that the operator can understand that the drone executes the landing sub-command
  • the drone instead of observing the display screen, focusing on the air side of the drone can improve the operator’s attention to the obstacles in the landing route of the drone, and perform corresponding control in time to improve Improve the safety of the use of drones.
  • the distance corresponding to 0.5 meter refers to the distance between the drone on the landing route or the return route from the obstacle, which can be either vertical or It may not be in the vertical direction, and the specific direction is related to the landing route or the return route of the drone.
  • a confirmation window will pop up on the display interface, and the operator will confirm whether to continue landing or return.
  • the automatic judgment can also be made by the operating system, in which the judgment method of the operator for confirmation is more accurate and safer and more reliable, and the automatic judgment by the operating system is faster.
  • the difference from the third embodiment is that the final 0.5 meters can be considered as a landing process. After confirming the confirmation pop-up window, no matter whether the drone previously performed a return action or a landing action. In the final 0.5 meters, the drones are controlled to perform landing actions, which can further simplify the control process. At the same time, for the situation that the control system obtains the minimum distance of the drone from the obstacle below in the vertical direction, it can reduce the probability that obstacles on the landing route interfere with the landing action of the drone, and further improve the safety of the drone. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种界面显示方法、控制系统、计算机可读存储介质和无人机。其中,界面显示方法包括:获取控制系统所控制的无人机的飞行状态(S10);根据飞行状态确定显示屏的界面中显示的指令图标(S20);根据对应于指令图标的执行指令,确定并显示与指令图标相对应的子指令弹窗;其中,子指令弹窗中包括至少一个控制无人机飞行的子指令图标(S30)。该界面显示方法将多个子指令图标集成在一个指令图标中,有效地减少了子指令图标对飞行界面的遮挡影响,并对应不同的飞行状态显示不同的指令图标和子指令图标,使执行指令更加明确,同时在不触发指令图标的时候隐藏子指令图标,有助于减少操作人员误操作的可能性,提高用户体验。

Description

界面显示方法、控制系统、计算机可读存储介质和无人机 技术领域
本申请涉及无人机控制技术领域,具体而言,尤其涉及一种界面显示方法、一种控制系统、一种计算机可读存储介质以及一种包含上述控制系统的无人机。
背景技术
目前,无人机的控制功能繁多,使得显示界面上需要设置多个对应的控制按键或控制图标,极大程度的占用了本来就不大的飞行界面,从而不利于从显示界面上观察无人机的飞行情况。
发明内容
本申请提供了一种界面显示方法、一种控制系统、一种计算机可读存储介质以及一种包含上述控制系统的无人机,将显示屏上的多个子指令图标集成在一个指令图标中,有效地减少了子指令图标对飞行界面的遮挡影响,并对应不同的飞行状态显示不同的指令图标和子指令图标,使执行指令更加明确,同时在不触发指令图标的时候隐藏子指令图标,有助于减少操作人员误操作的可能性,提高用户体验。
为了实现上述目的,本申请第一方面的申请提供了一种界面显示方法,用于包括显示屏的控制系统,界面显示方法包括:获取所述控制系统所控制的无人机的飞行状态;根据所述飞行状态确定所述显示屏的界面中显示的指令图标;根据对应于所述指令图标的执行指令,确定并显示与所述指令图标相对应的子指令弹窗;其中,所述子指令弹窗中包括至少一个控制所述无人机飞行的子指令图标。
本申请第二方面的申请提供了一种控制系统,包括显示屏、振动终端和处理器,其中,所述处理器用于:获取所述控制系统所控制的无人机的飞行状态;根据所述飞行状态确定所述显示屏的界面中显示的指令图标;根据对应于所述指令图标的执行指令,确定并控制显示屏显示与所述指令 图标相对应的子指令弹窗,其中,所述子指令弹窗中包括至少一个控制所述无人机飞行的子指令图标。
本申请第三方面的申请提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面申请中任一项所述界面显示方法的步骤。
本申请第四方面的申请提供了一种无人机,包括:机体;动力系统,安装在所述机体内,用于为所述无人机提供动力;以及交互系统,所述交互系统用于根据第二方面申请所述的控制系统发送的控制指令控制所述动力系统,以执行相应的功能。
本申请提供的界面显示方法、控制系统、计算机可读存储介质以及无人机,可以实现:
1.将执行指令根据无人机的飞行状态进行划分,分为指令图标和指令图标下的子指令图标,在未触发指令图标时隐藏子指令图标,降低多个图标同时显示产生遮挡的问题,相对增大飞行界面的显示面积,从而使得操作人员能够更好的观察无人机的飞行情况的有益效果。
2.对应无人机不同飞行状态,指令图标的显示是不同的,同样子指令图标也不完全相同,显示界面上仅显示当前飞行状态下,所可能用到的执行指令所对应的子指令图标,这样可以有效减少子指令弹窗中子指令图标的数量,使操作更加具有针对性,并有助于降低误操作的概率。
3.通过设置不同的指令图标以及相对应提示信息,可以为操作人员提供良好的提醒作用,提前确认好将要执行的操作,提高界面显示的友好性。
4.提供了一种非视觉的反馈机制,不需要操作人员用视觉确认操作的正确性,使操作人员在操作的时候,可以将更多精力放在观察无人机在天空端的飞行情况上,以同时兼顾对无人机的操作控制以及观察无人机在天空端的飞行情况,从而更有应对性地操作控制无人机的飞行,尤其有助于应对紧急情况。
5.合理设计的指令图标和子指令图标的触发方式以及取消方式,更加贴合人性化设计,降低误操作的可能性,同时提高用户体验。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请 的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请一个实施例所述的控制系统和无人机的结构框图;
图2示出了本申请一个实施例所述的界面显示方法的流程示意图;
图3示出了本申请一个实施例所述的界面显示方法的流程示意图;
图4示出了本申请一个实施例所述的界面显示方法的流程示意图;
图5示出了本申请一个实施例所述的界面显示方法的流程示意图;
图6示出了本申请一个实施例所述的界面显示方法的流程示意图;
图7示出了本申请一个实施例所述的控制系统和无人机的结构框图;
图8示出了本申请一个实施例在具体控制过程所对应的显示界面的示意图;
图9示出了本申请一个实施例所述的控制过程所对应的流程示意图;
图10示出了本申请一个实施例所述的控制过程所对应的流程示意图。
其中,图1和图7中附图标记与部件名称之间的对应关系为:
10控制系统;20无人机;101处理器;102显示屏;103传输装置;104振动终端;201交互系统;202动力系统;2011控制器;2012传感系统;2013传输设备;203云台;2031拍摄装置。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的申请进行清楚地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
图1为根据本申请实施例提供的无人机系统的示意性架构图,所述无人机系统可以包括无人机20的控制系统10和无人机20。其中,所述无人机20可以单旋翼或者多旋翼无人机。
无人机20可以包括动力系统202、交互系统201和机身。其中,当无人机20具体为多旋翼无人机20时,机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。无人机20还可以包括脚架,其中,脚架与机身连接,用于在无人机20着陆时起支撑作用。
动力系统202可以包括一个或多个电机,电机用于为无人机20提供动力,该动力使得无人机20能够实现一个或多个自由度的运动。
交互系统201可以包括控制器2011和传感系统2012。传感系统2012用于测量无人机20的状态信息和/或无人机20所处的环境的信息,其中,所述状态信息可以包括姿态信息、位置信息、剩余电量信息等。所述环境的信息可以包括环境的深度、环境的气压、环境的湿度、环境的温度等等。其中,传感系统2012例如可以包括气压计、陀螺仪、超声传感器、电子罗盘、惯性测量单元、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。其中,传感系统2012还包括位置传感器,用于获取无人机20距离预设返航点的距离和获取无人机20在当前位置的竖直方向上距下方障碍物的最小距离。
控制器2011用于控制无人机20的各种操作。例如,控制器2011可以控制无人机20的移动,再例如,控制器2011可以控制无人机20的传感系统2012采集数据。
在某些实施例中,无人机20可以包括拍摄装置2031,拍摄装置2031例如可以是照相机或摄像机等用于捕获图像的设备,拍摄装置2031可以与控制器2011通信,并在控制器2011的控制下进行拍摄,控制器2011也可以根据拍摄装置2031拍摄的图像控制无人机20。
在某些实施例中,无人机20还包括云台203,云台203可以包括电机,云台203用于携带拍摄装置2031,控制器2011可以通过电机控制云台203的运动。应理解,云台203可以独立于无人机20,也可以为无人机20的一部分。在某些实施例中,所述拍摄装置2031可以固定连接在无人机20的机身上。
无人机20还包括传输设备2013,在控制器2011的控制下,所述传输设备2013可以将传感系统2012和/或拍摄装置2031采集的数据发送到控制系统10。控制系统10可以包括传输装置103,控制系统10的传输装置103可以与无人机20的传输设备2013建立无线通信连接,控制系统10的传输装置103可以接收传输设备2013发送的数据,另外,控制系统10还可以通过自身配置的传输装置103向无人机20发送控制指令。
控制系统10可以包括处理器101和显示屏102。处理器101可以控制控制系统10的各种操作。例如,处理器101可以控制传输装置103接收无人机20通过传输设备2013发送的数据;再例如,处理器101可以控制显示屏102显示被传输装置103接收到的数据,其中,所述数据可以包括拍摄装置2031捕捉的环境的图像、姿态信息、位置信息、电量信息等等。
可以理解的是,前述部分的控制系统10可以包括一个或多个处理器101,其中,所述一个或多个处理器101可以单独地或者协同地工作。另外处理器101包括遥控装置,通过遥控装置向传输设备2013发送指令信号。
应理解,上述对于无人机系统各组成部分的命名仅是出于标识的目的,并不应理解为对本申请的实施例的限制。
如图2所示,本申请的实施例提供的界面显示方法包括:步骤S10,获取控制系统所控制的无人机的飞行状态;步骤S20,根据飞行状态确定显 示屏的界面中显示的指令图标;步骤S30,根据对应于指令图标的执行指令,确定并显示与指令图标相对应的子指令弹窗;其中,子指令弹窗中包括至少一个控制无人机飞行的子指令图标。
具体而言,首先需要获取控制系统所控制的无人机的飞行状态,比如无人机当前的飞行状态是起飞状态还是待机状态,是返航状态还是降落状态。其次,对应不同的飞行状态,显示屏,主要是显示界面上所显示的指令图标也有所区别,在不同的飞行状态显示与之对应的指令图标。另外,子指令弹窗也与飞行状态相对应,同理显示在子指令弹窗上的子指令图标也与当前的飞行状态相对应。
这样,本实施例中的界面显示方法将多个子指令图标集成在一个指令图标中,有效地减少了子指令图标对飞行界面的遮挡影响,从而使得操作人员能够更好的观察无人机的飞行情况。此外,对应不同的飞行状态显示不同的指令图标和子指令图标,使执行指令更加明确,同时在不触发指令图标的时候隐藏子指令图标,有助于减少操作人员误操作的可能性,提高用户体验。
在一些实施例中,进一步地,在无人机处于待机状态时,确定指令图标为第一图标;在无人机处于起飞状态时,确定指令图标为第二图标。在一些实施例中,第一图标为起飞图标,第二图标为返航图标。
对应无人机不同的飞行状态,通过设置不同指令图标进行区分,以使操作人员可以快速、直观地获取无人机的当前飞行状态。另外,起飞为无人机处于待机状态时的常规操作,返航为无人机处于起飞状态时的常规操作,通过设置对应常规操作的指令图标,可以使操作人员明确执行的指令内容,提高人机交互中显示内容的友好性。
例如起飞图标包括停机坪加向上的指示箭头,表示控制无人机起飞的指令内容。返航图标包括向下的指示箭头,且指示箭头沿延伸方向活动,可以表示控制无人机返航的指令内容。另外,在无人机处于起飞状态或返航状态时,也可以确定指令图标为降落图标,返航图标包括停机坪加向下的指示箭头,表示控制无人机降落的指令内容。
而本实施例所提供的界面显示方法进一步将降落图标所对应的指令内 容并入返航图标所对应的指令内容中,简化了起飞状态所对应的指令图标的数量,使得控制更加简便,从而优化了控制过程,使得无人机的操控过程易于学习,从而提高人机交互的能力,使无人机的界面显示和对应的控制方法向智能化迈进,有助于推进消费级的无人机的市场发展。
在一些实施例中,进一步地,如图3所示,本实施例所提供的界面显示方法,在步骤S30后包括:步骤S41,根据对应于指令图标的执行指令,确定无人机距离预设返航点的距离;步骤S42,在距离不大于第一距离阈值时,显示包括降落子指令图标的子指令弹窗;步骤S43,在距离大于第一距离阈值时,显示包括降落子指令图标和返航子指令图标的子指令弹窗。
对于将将降落图标所对应的指令内容并入返航图标所对应的指令内容中的情况,通过判断无人机距离预设返航点的距离来区分无人机是否需要返航。
具体地,当距离大于第一距离阈值时,即无人机距离预设返航点的距离大于第一距离阈值时,指令图标所对应的子指令弹窗包括降落子指令图标和返航子指令图标,既可以执行降落操作也可以执行返航操作。而当距离小于等于第一距离阈值时,即无人机距离预设返航点的距离小于等于第一距离阈值时,指令图标所对应的子指令弹窗包括降落子指令图标,可以执行降落操作,而不需要执行返航操作。以此优化显示出的子指令弹窗,进一步简化显示界面,隐藏不必要的子指令图标,降低操作人员误操作的可能性,进一步提高界面显示的友好性。
在一些实施例中,进一步地,如图4所示,界面显示方法在步骤S20之后还包括:步骤S31,根据对应于指令图标的执行指令,调整指令图标的显示状态;步骤S32,在显示屏的界面中根据调整后的显示状态显示指令图标。其中步骤S31和步骤S30为并列的步骤,通过根据对应于指令图标的执行指令触发,即触发指令图标后,显示子指令弹窗同时调整指令图标的显示状态。
在指令图标接收到触摸信号后,即操作人员通过点击等动作触发指令图标后,通过切换指令图标显示的颜色、文字、图形、静态/动态等显示要素的中的至少一个,以和指令图标未触发时进行区分,使得操作人员可以更加 直观的了解无人机的当前状态。
同时还可以起到切换当前操作区域的作用,在未触发指令图标时,当前操作区域主要为显示界面上指令图标所在的部分;在触发指令图标后,当前操作区域主要为显示界面上子指令图标所在的部分。通过切换当前操作区域,减少操作人员触摸在非操作区域时触发不适当执行指令的可能性,降低操作人员误操作的概率,进一步提高界面显示的友好性。
在一些实施例中,进一步地,如图6所示,界面显示方法在步骤S30之后还包括:步骤S50,在显示屏的界面中显示子指令弹窗时,若接收到对应于取消显示子指令弹窗的取消指令,则在界面中显示指令图标。
在未触发指令图标时,显示界面中隐藏子指令弹窗,可以使得显示界面具有更加开阔的显示视野,以使操作人员观察到更多的无人机拍摄到的界面。在触发指令图标后,子指令弹窗从隐藏状态变更为显示状态,以提供对应飞行状态的子指令图标供操作人员选择。可以理解的是,显示界面还可以包括将子指令弹窗从显示状态恢复为隐藏状态的控制指令图标,可以便于进行取消操作,以提供更多的操作选择。比如在不需要无人机执行子指令图标对应的动作时,可以执行取消指令,则取消显示并重新隐藏子指令弹窗,将当前操作区域重新切换回显示界面上指令图标所在的部分,同时用于取消显示该子指令弹窗的取消指令也不再显示。
进一步地,取消指令具体包括:触发界面中子指令弹窗外的显示区域。
本实施例所提供的取消区域,在显示界面上除子指令弹窗外的显示区域均为取消区域。对于这种显示方式,首先显示界面接收到触摸信号,其次判断是显示界面上的哪个区域接收到该触摸信号,若触摸信号由子指令弹窗接收到,则不认为该触摸信号为取消信号;若触摸信号由子指令弹窗以外的显示区域接收到,则认为该触摸信号为取消信号。
这样,一方面省去了额外设置取消指令对应的按键或窗口,可以进一步简化显示界面;另一方面使用取消区域覆盖了除子指令弹窗外的其它显示区域,减少操作人员触摸在子指令弹窗外其它显示区域时触发不适当执行指令的可能性,降低操作人员误操作的概率,进一步提高界面显示的友好性,同时对于熟悉操作界面的人而言,在执行取消操作时,不需要再去点击特定的取消区域, 显示界面的操作和无人机的控制更加便捷。
在另外一些实施例中,取消指令具体包括:触发子指令弹窗中的取消区域。
本实施例所提供的取消区域的显示方式更加直观,尤其对于不熟悉操作界面的人而言,友好性更高。
在一些实施例中,进一步地,如图5和图6所示,界面显示方法在步骤S30之后还包括:步骤S61,接收对应于子指令图标的子执行指令,子执行指令包括起飞指令、返航指令和降落指令;步骤S65,根据子执行指令调整指令图标的显示状态,并控制无人机根据子执行指令运行。
在子指令图标被触发后,指令图标的显示状态也会相应变化,以和子指令图标未触发时进行区分,比如指令图标变成取消图标,说明无人机正在执行子指令图标所对应的子执行指令。通过触发取消图标可以取消无人机正在执行的当前动作。其中,子执行指令包括起飞指令、返航指令和降落指令,通过触发取消图标可以取消执行相应的起飞指令、返航指令和降落指令。
进一步地,子指令图标是否触发由触发手势是否符合预设手势确定。
通过设置子指令图标的触发手势可以降低操作人员误触碰子指令图标而导致无人机执行相应子执行指令的可能性,进一步提高界面显示的友好性。
进一步地,预设手势为接触子指令图标的持续时间,即子指令图标是否触发由接触子指令图标的持续时间确定,比如,接触子指令图标的持续时间超过时间阈值时,控制无人机执行子执行指令。
其中,通过合理的设置时间阈值,既避免时间过长影响指令的及时性,也避免时间过短导致出现误操作。可选地,时间阈值设置在0.5秒至2秒的范围内,优选为1秒。
在另外一些实施例中,判断子指令图标是否触发的预设手势包括其它的触发动作,例如:
预设手势为滑动手势,判断是否滑动到预设的指定位置。
预设手势为拖曳手势,判断子指令图标是否被拖曳到预设的指定位置。
预设手势为双击手势,判断子指令图标是否在一定时间内被双击。
在一些实施例中,进一步地,如图5所示,对于子指令图标是否触发由接触子指令图标的持续时间确定的情况,步骤S61和步骤S65之间还包括:步骤S62,获取触发时间的起始时刻和终止时刻;步骤S63,在起始时刻向振动终端发送第一振动信号;步骤S64,若触发时间超过时间阈值,则在终止时刻向振动终端发送第二振动信号。
在操作人员触碰到子指令图标后,连接显示界面的控制系统开始计时并由振动终端执行振动提醒。在触碰的持续时间达到时间阈值时,计时结束并由振动终端再一次执行振动提醒。
本方案为无人机的子指令图标的触发提供了一种反馈机制,该反馈机制不需要操作人员用视觉确认操作的正确性,使操作人员在操作子指令图标的时候,可以将更多精力放在观察无人机在天空端的飞行情况上,降低顾此失彼的可能性,以同时兼顾对无人机的操作控制以及无人机在天空端的飞行情况,从而更有应对性地操作控制无人机的飞行,尤其有利于应对无人机飞行中出现的紧急情况。
通过提供振动式的反馈机制,使得本申请所提供的界面显示方法操作性更强,降低无人机遇有紧急情况或突发情况后发生事故的概率,从而提高了该界面显示方法的使用可靠性。
在另外一些实施例中,子指令图标触发的提醒方式为音频提醒。
音频提醒的方式同样不需要进行视觉确认,使操作人员在操作子指令图标的时候,可以将更多精力放在观察无人机在天空端的飞行情况上,以同时兼顾对无人机的操作控制以及观察无人机在天空端的飞行情况,从而更有应对性地操作控制无人机的飞行,尤其有利于应对无人机飞行中出现的紧急情况。
在一些实施例中,进一步地,对于子指令图标是否被触发由接触子指令图标的持续时间确定的情况,界面显示方法还包括:确定分别对应于起始时刻和终止时刻的第一触发位置和第二触发位置;在第一触发位置和第二触发位置均处于子指令图标所对应的显示范围内时,控制无人机执行子执行指令。
本实施例设置了子指令图标的触发区域,通过设置第一触发位置和第 二触发位置,提高触碰位置发生变化时子指令图标的触发概率,提高界面显示方法的使用可靠性。
进一步地,第一触发位置和第二触发位置可以是重合的区域。有助于简化显示界面的设计,为操作人员提供更加方便的操作环境,提高设计的人性化。
在一些实施例中,进一步地,如图6所示,在步骤S65之后还包括,步骤S71,在显示屏的界面中显示对应于取消操作的指令图标;步骤S72,响应于与取消操作对应的指令图标的确认指令,控制无人机以当前飞行高度悬停;步骤S73,根据无人机的悬停状态确定并显示在显示屏的界面中的指令图标。
在子执行指令触发后,显示界面上会显示一个用于取消子执行指令的取消操作的指令图标,以使无人机停止执行当前动作,并使无人机悬停在空中,一方面可以应对紧急情况,减少事故的发生概率。另一方面,显示当前的飞行状态所对应的指令图标,可以根据当前的飞行状态重新选择所对应的子指令图标,而非退回到显示之前的飞行状态所对应的指令图标,使操作人员可以选择更加适于当前的飞行状态的操作,提高显示界面的友好度,提高用户体验。
在一些实施例中,进一步地,如图6所示,在步骤S65之后还包括,步骤S81,若子执行指令为返航指令或降落指令,则获取无人机在当前位置的竖直方向上距下方障碍物的最小距离;步骤S82,若最小距离小于第二距离阈值,则在显示屏的界面中显示包括确认按键的确认弹窗。
无人机按照预定的返航轨迹或降落轨迹飞行,操控人员不需要实时监控或控制无人机的动作,仅在无人机距离障碍物的最小距离达到第二距离阈值时进行确认,操作大为简化。
通过获取无人机在当前位置的竖直方向上距下方障碍物的最小距离,并将上述最小距离和第二距离阈值进行比较,以确认是否继续执行返航指令或降落指令。
此外,通过合理设置最小距离,为相关技术中的一键返航等功能提供了额外的保障手段,以提高无人机的安全性和飞行可靠性。可选地,第二 距离阈值设在0.3米至0.8米的范围内,优选为0.5米。
进一步地,步骤S82之后还包括步骤S83,响应于确认按键的确认指令,控制无人机下降,否则控制无人机保持悬停。
通过触发确认指令,使无人机继续执行返航指令或降落指令,否则控制无人机保持悬停,即本方法通过增加确认指令使无人机在未经过确认前,暂停执行返航指令或降落指令,以降低误操作的可能性,同时极大程度地降低了无人机碰撞在障碍物上发生事故的可能性,进而起到提高无人机安全性的有益效果。
在一些实施例中,进一步地,在步骤S30后还包括:确定对应于子执行指令的提示信息;在显示屏的界面中确定对应于指令图标的提示位置;在提示位置显示提示信息。
显示界面上还可以显示子执行指令所对应的提示信息,可以使操作人员可以获取更加准确的无人机的当前飞行状态,同时还可以起到解释指令图标的作用,可以起到方便操作人员查看的效果,提高用户体验。
本申请的另一些实施例提供了一种控制系统。
如图7所示,本申请的实施例提供的控制系统10包括:包括显示屏102、振动终端104和处理器101。其中,控制系统10用于执行上述的任一实施例。
具体地,处理器101与显示屏102电连接,且处理器101与振动终端104电连接。其中显示屏102为触摸屏,操作人员通过触摸屏与处理器进行人机交互操作。
当然,显示屏102也可以不具有人机交互的功能,仅具有显示的功能,控制系统上也设置有对应指令图标的按钮。
本申请另一些的实施例提供的控制系统,因执行上述实施例中任一项的界面显示方法,因而具有上述任一实施例所具有的一切有益效果,在此不再赘述。
本申请的另一些实施例提供了一种计算机可读存储介质。
本申请的实施例提供的计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如上述实施例中任一项界面显示方法的步 骤。
本申请的实施例提供的计算机可读存储介质,因执行上述实施例中任一项的界面显示方法,因而具有上述任一实施例所具有的一切有益效果,在此不再赘述。
进一步地,可以理解的是,流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在图2至图6所示的流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA), 现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
本申请另一些的实施例提供了一种无人机。
如图7所示,本申请的实施例提供的无人机20,包括:机体;动力系统202,安装在机体内,用于为无人机提供动力;以及交互系统201,交互系统201用于根据上述实施例提供的控制系统10发送的控制指令控制动力系统202,以执行相应的功能。
其中控制系统10的处理器101通过遥控信号发送控制指令给交互系统201,且交互系统201与动力系统202相连接,交互系统201接收到控制指令后,控制动力系统202,以使无人机20执行相应的动作。
本申请另一些的实施例提供的无人机,因执行上述实施例中任一项的控制系统发送的控制指令,因而具有上述任一实施例所具有的一切有益效果,在此不再赘述。
下边以一些具体实施例说明本申请的界面显示方法、控制系统、计算机可读存储介质以及无人机。
目前,在无人机飞行过程中,APP端传统的控制方式是为每个功能留出按钮,用户通过特定按钮触发特定功能。对于需要用户确认的功能再弹出视觉确 认弹窗,由用户执行某种操作表示确认功能执行,例如用手指滑动滑块到指定位置。现有的控制方式需要在飞行界面摆放较多按钮,这样会挤占原本就不大的飞行界面窗口。而拖动的确认方式需要用户用眼睛看着屏幕来确保自己操作正确,这样就无法观察无人机在天空端的情况,且不利于应对紧急情况。
本申请提供了一种新的飞行控制方式,将降落和返航合为一个键,释放飞行界面空间。同时本申请提供一种新的飞行控制反馈机制,不需要用户用视觉确认操作的正确性。使通过APP控制飞机的过程更符合用户直觉。由于将降落和返航键合二为一,释放了飞机界面的空间,用户可以看到更多飞机镜头实况画面。由于提供除了视觉标识之外的震动反馈,用户不需要用眼睛看着手机屏幕就可以进行操作,当飞机在可视范围之内时,会更符合用户操作直觉。
具体而言,在飞行界面上只有一个按键,点击按钮后根据飞机距离home点(返航点)的距离大小决定是否显示返航按钮。如果用户需要进行降落,则长按降落按钮,随着按压的时间变长,按钮周围会有一个圈的动画逐渐合拢,提示用户按压已经达到阈值。除此之外在用户点击到按钮的第一时间会震动提示用户计时开始,在达到阈值的时候再次震动提示用户已经达到阈值。
具体实施例一
图8示出了在一个具体实施例的控制过程中根据指令的不同而发生变化的多个显示界面的示意图。具体地,箭头方向为控制过程的进行方向,值得说明的是,图中的多个指令、图标或是弹窗等仅为示意的位置和尺寸,并不代表实际情况,同样地,图中示出的内容仅为本申请的一个具体实施例,而不是全部的实施例。基于本具体实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应属于本申请保护的范围。
其中,无人机在待机状态下的显示屏幕中显示有显示界面802,其中指令图标为起飞图标,可以看出起飞图标仅占显示界面的很小一部分,减少了遮挡,从而可以使显示界面上具有更大的空间来显示无人机的飞行界面,便于操作人员观看,以提高操作人员的观看体验。在触发802所显示的界面中的起飞图标后,画面变化为显示界面804。
在显示界面804中显示有在触发起飞图标后,弹出起飞图标所对应的子指令弹窗的界面,其中子指令弹窗包括起飞子指令,在待机状态下,无人机通常可以执行指令为起飞,而通过隐含其它不必要子指令,比如降落子指令、返航 子指令等,可以减少误操作的概率。相对于一些相关产品,在点击到不能使用的指令时发出提示音的情况而言,本实施例所提供的显示界面通过减少了不必要子指令,也省去了提示音对操作人员的干扰,提高了使用的友好度和可操作性,使操作人员获得更好的用户体验。本画面中为子指令弹窗设置了取消区域,点击子指令弹窗以外的区域即可取消显示子指令弹窗,并回到显示界面802。其中,取消区域还可以是显示界面上除起飞子指令外的显示区域,可以更加便于操作。在触发显示界面804中的起飞子指令后,无人机起飞并处于起飞状态,画面变化为显示界面806所显示的内容。
在显示界面806中显示有,在触发起飞子指令后,重新隐藏子指令弹窗,并将起飞图标变更为返航图标,同界面802所显示的画面一样的是,返航图标也仅占显示界面的很小一部分,可以使显示界面上具有更大的空间来显示无人机的飞行界面,便于操作人员观看无人机的飞行情况,提高操作人员的观看体验。值得一提的是,返航图标根据无人机距离返航点的距离,对应有两种不同的子指令弹窗,在触发显示界面806中的返航图标后,若无人机距离返航点的距离大于预设的第一距离阈值时,画面变化为显示界面808所显示的内容。
在显示界面808中显示有,在触发返航图标后,无人机距离返航点的距离大于预设的第一距离阈值时,弹出返航图标所对应的子指令弹窗,其中子指令弹窗包括返航子指令和降落子指令,在起飞状态下,无人机通常可以执行指令为降落和返航,而通过隐含其它不必要子指令,比如起飞子指令,可以减少误操作的概率。相对于一些相关产品,在点击到不能使用的指令时发出提示音的情况而言,本实施例所提供的显示界面通过减少了不必要子指令,也省去了提示音对操作人员的干扰,提高了使用的友好度,使操作人员获得更好的用户体验。本画面中为子指令弹窗设置了取消区域,点击子指令弹窗以外的区域即可取消显示子指令弹窗,并回到显示界面806所显示的画面。其中,取消区域还可以是显示界面上除返航子指令和降落子指令外的显示区域,可以更加便于操作。在触发显示界面808中的返航子指令或降落子指令后,画面变化为显示界面810所显示的内容。
另外,在触发返航图标后,若无人机距离返航点的距离小于等于预设的第一距离阈值时,弹出返航图标所对应的子指令弹窗,其中子指令弹窗包括返 航子指令,而隐含了起飞子指令和降落子指令。通过优化显示出的子指令弹窗和对应的子指令图标,进一步简化显示界面,通过隐藏不必要的子指令图标,降低操作人员误操作的可能性,进一步提高界面显示的友好性和可操作性。
在显示界面810中显示有,触发返航子指令或降落子指令后,重新隐藏子指令弹窗,并将返航图标变更为取消操作对应的指令图标,并显示返航子指令或降落子指令所对应的提示信息。同显示界面802和显示界面806所显示的画面近似的是,取消操作对应的指令图标和提示信息也仅占显示界面的很小一部分,可以使显示界面上具有更大的空间来显示无人机的飞行界面,便于操作人员观看无人机的飞行情况,提高操作人员的观看体验。在触发显示界面810中的取消操作对应的指令图标后,画面返回显示界面806所显示的内容,可以重新触发返航图标,并显示相对应的子指令弹窗和子指令图标。在无人机的降落或返航过程中,实时获取无人机在当前位置的竖直方向上距下方障碍物的最小距离;若最小距离小于预设的第二距离阈值,则画面变化为显示界面812所显示的内容,在显示界面中显示确认弹窗。
显示界面812所显示的画面,为无人机处于悬停状态下,显示界面中弹出确认弹窗。通过弹出确认弹窗为无人机的降落过程或是返航过程提供了一种安全保障手段,以提高无人机的安全性和飞行可靠性。其中,触发弹窗上设有确认按键,通过触发确认按键,使无人机继续降落或是继续返航,并回到显示界面810所显示的画面,在降落过程或是返航过程结束后,回到显示界面802所显示的画面,可以重新执行起飞指令。若长时间未触发确认按键或是触发取消操作对应的指令图标,则控制无人机保持悬停状态,显示界面回到显示界面806所显示的画面,可以重新触发返航图标,并显示相对应的子指令弹窗和子指令图标,或操作人员可以重新控制无人机进行其它飞行动作,进一步提高界面显示的友好性和可操作性。
具体实施例二
图9示出了一个具体实施例的控制过程,在触发返航图标后,无人机与返航点(Home点)之间的距离小于等于20米。弹出的子指令弹窗中的子指令图标为降落子指令图标。由于距离较近不需要单独在设置出一个返航子指令图 标,一方面优化显示界面,一方面简化控制指令,以更加合理地规划无人机的飞行路线。
当然可以理解的是,也可以仅显示一个降落子指令图标,然后通过执行不同的操作手势,使无人机执行不同的控制指令,比如点击降落子指令图标被设置为返航的控制指令,而长按降落子指令图标则被设置为降落的控制指令。
本实施例中,是通过长按的时间是否达到预设的时间阈值,来判断是否触发降落子指令图标的,在未达到一秒时,被认为不符合触发降落子指令图标的要求,并在下次长按时,重新计算按压的时间;在达到一秒时,则由控制器控制无人机执行降落子指令,同时指令图标变为叉号,以便随时取消降落子指令,而在点击叉号后,无人机停止执行降落子指令并保持悬停,以使操作人员可以对悬停状态下的无人机进行控制。
另外,在未点击叉号的情况下,无人机持续执行降落子指令,并通过操作系统提供相应的音效提醒,和显示提示信息,以便操作人员了解无人机执行降落子指令的情况,而不需要观察显示画面,将关注点放在无人机的天空端上,可以提高操作人员注意到无人机在降落路线中的障碍物等情况,并及时进行相应的控制,提高了无人机的使用安全性。
在无人机降落到距离障碍物0.5米的时候,其中0.5米所对应的距离是指在降落路线上的无人机距离障碍物的距离,既可以是竖直方向上的,也可以不是竖直方向上的,具体方向和无人机的降落路线相关。显示界面上会弹出确认窗口,由操作人员进行确认是否继续降落。当然,也可以由操作系统进行自动判断,其中操作人员进行确认的判断方式准确性更好,更加安全可靠,而由操作系统自动判断则更为快捷。在无人机降落后,则结束了本次飞行的行程,无人机完成了从起飞到降落的一个整个过程。或在无人机悬停后,可以通过操作人员的控制,重新执行其它的飞行指令,也同样可以认为结束了一次飞行的行程。
具体实施例三
图10示出了另一个具体实施例的控制过程,与具体实施例二的区别在于,在触发返航图标后,无人机与返航点(Home点)之间的距离大于20米。弹出的子指令弹窗中的子指令图标为降落子指令图标加上返航图标的组合。使得 操作人员可以执行操作降落子指令或是返航子指令,提供了更加充分,并适于当前飞行状态的控制命令,以更加合理地规划无人机的飞行路线。
与具体实施例二相同的是,本实施例中,也是通过长按的时间是否达到预设的时间阈值,来判断是否触发降落子指令图标和返航子指令图标的,在未达到一秒时,被认为不符合触发子指令图标的要求,并在下次长按时,重新计算按压的时间;在达到一秒时,则由控制器控制无人机执行降落子指令或返航子指令,同时指令图标变为叉号,以便随时取消降落子指令或返航子指令,而在点击叉号后,无人机停止执行降落子指令或返航子指令并保持悬停,以使操作人员可以对悬停状态下的无人机进行控制。
另外,在未点击叉号的情况下,无人机持续执行降落子指令或返航子指令,并通过操作系统提供相应的音效提醒,和显示提示信息,以便操作人员了解无人机执行降落子指令的情况,而不需要观察显示画面,将关注点放在无人机的天空端上,可以提高操作人员注意到无人机在降落路线中的障碍物等情况,并及时进行相应的控制,提高了无人机的使用安全性。
在无人机降落到距离障碍物0.5米的时候,其中0.5米所对应的距离是指在降落路线或返航路线上的无人机距离障碍物的距离,既可以是竖直方向上的,也可以不是竖直方向上的,具体方向和无人机的降落路线或返航路线相关。显示界面上会弹出确认窗口,由操作人员进行确认是否继续降落或继续返航。当然,也可以由操作系统进行自动判断,其中操作人员进行确认的判断方式准确性更好,更加安全可靠,而由操作系统自动判断则更为快捷。在无人机降落或返航后,则结束了本次飞行的行程,无人机完成了从起飞到降落或返航的一个整个过程。或在无人机悬停后,可以通过操作人员的控制,重新执行其它的飞行指令,也同样可以认为结束了一次飞行的行程。
在其他一些实施例中,与具体实施例三区别在于,最终的0.5米均可被认为是降落的过程,在对确认弹窗进行确认后,无论无人机之前执行的是返航动作还是降落动作,在最终的0.5米时,均控制无人机执行降落动作,这样可以进一步简化控制过程。同时对于控制系统获取的是无人机在竖直方向上距下方障碍物的最小距离的情况,则可以减少降落路线上障碍物干涉无人机降落动作的概率,进一步提高无人机的安全性。
在本申请中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (34)

  1. 一种界面显示方法,用于包括显示屏的控制系统,其特征在于,所述界面显示方法包括:
    获取所述控制系统所控制的无人机的飞行状态;
    根据所述飞行状态确定所述显示屏的界面中显示的指令图标;
    根据对应于所述指令图标的执行指令,确定并显示与所述指令图标相对应的子指令弹窗;
    其中,所述子指令弹窗中包括至少一个控制所述无人机飞行的子指令图标。
  2. 根据权利要求1所述的界面显示方法,其特征在于,所述根据所述飞行状态确定所述显示屏的界面中显示的指令图标,具体包括:
    在所述无人机处于待机状态时,确定所述指令图标为第一图标;
    在所述无人机处于起飞状态时,确定所述指令图标为第二图标。
  3. 根据权利要求2所述的界面显示方法,其特征在于,在所述无人机处于起飞状态时,所述界面显示方法还包括:
    根据对应于所述指令图标的执行指令,确定所述无人机距离预设返航点的距离;
    在所述距离不大于第一距离阈值时,显示包括降落子指令图标的子指令弹窗;
    在所述距离大于所述第一距离阈值时,显示包括降落子指令图标和返航子指令图标的子指令弹窗。
  4. 根据权利要求1所述的界面显示方法,其特征在于,还包括:
    根据对应于所述指令图标的执行指令,调整所述指令图标的显示状态;
    在所述显示屏的界面中根据调整后的所述显示状态显示指令图标。
  5. 根据权利要求1所述的界面显示方法,其特征在于,还包括:
    在所述显示屏的界面中显示所述子指令弹窗时,若接收到对应于取消显示所述子指令弹窗的取消指令,则在所述界面中取消显示所述子指令弹窗,并显示所述指令图标。
  6. 根据权利要求5所述的界面显示方法,其特征在于,所述取消指令具体包括:
    触发所述界面中所述子指令弹窗外的显示区域;和/或
    触发所述子指令弹窗中的取消区域。
  7. 根据权利要求1所述的界面显示方法,其特征在于,还包括:
    接收对应于所述子指令图标的子执行指令;
    根据所述子执行指令调整所述指令图标的显示状态,并控制所述无人机根据所述子执行指令运行,
    其中,所述子执行指令包括起飞指令、返航指令和降落指令。
  8. 根据权利要求7所述的界面显示方法,其特征在于,所述子执行指令由触发所述子指令图标的触发时间确定,所述界面显示方法还包括:
    在所述触发时间超过时间阈值时,控制所述无人机执行所述子执行指令。
  9. 根据权利要求8所述的界面显示方法,其特征在于,还包括:
    获取所述触发时间的起始时刻和终止时刻;
    在所述起始时刻向振动终端发送第一振动信号;和/或
    若所述触发时间超过所述时间阈值,则在所述终止时刻向振动终端发送第二振动信号。
  10. 根据权利要求9所述的界面显示方法,其特征在于,还包括:
    确定分别对应于所述起始时刻和所述终止时刻的第一触发位置和第二触发位置;
    在所述第一触发位置和所述第二触发位置均处于所述子指令图标所对应的显示范围内时,控制所述无人机执行所述子执行指令。
  11. 根据权利要求7所述的界面显示方法,其特征在于,在所述无人机根据所述子执行指令运行后,所述界面显示方法还包括:
    在所述显示屏的界面中显示对应于取消操作的指令图标;
    响应于与取消操作对应的指令图标的确认指令,控制所述无人机以当前飞行高度悬停;
    根据所述无人机的悬停状态确定并显示在所述显示屏的界面中的指令 图标。
  12. 根据权利要求7所述的界面显示方法,其特征在于,在所述无人机根据所述子执行指令运行后,所述界面显示方法还包括:
    若所述子执行指令为返航指令或降落指令,则获取所述无人机在当前位置的竖直方向上距下方障碍物的最小距离;
    若所述最小距离小于第二距离阈值,则在所述显示屏的界面中显示包括确认按键的确认弹窗。
  13. 根据权利要求12所述的界面显示方法,其特征在于,还包括:
    响应于所述确认按键的确认指令,控制所述无人机下降,否则控制所述无人机保持悬停。
  14. 根据权利要求7所述的界面显示方法,其特征在于,还包括:
    确定对应于所述子执行指令的提示信息;
    在所述显示屏的界面中确定对应于所述指令图标的提示位置;
    在所述提示位置显示所述提示信息。
  15. 根据权利要求1所述的界面显示方法,其特征在于,还包括:
    响应于所述子指令图标的确认指令,播放与所述子指令图标对应的音频信息。
  16. 根据权利要求1所述的界面显示方法,其特征在于,所述对应于所述指令图标的执行指令具体包括:
    所述指令图标在预设时间内的点击次数;和/或
    所述指令图标的单次触发时间;和/或
    所述指令图标的触发手势。
  17. 一种控制系统,其特征在于,包括显示屏和处理器,其中,所述处理器用于:
    获取所述控制系统所控制的无人机的飞行状态;
    根据所述飞行状态确定所述显示屏的界面中显示的指令图标;
    根据对应于所述指令图标的执行指令,确定并控制显示屏显示与所述指令图标相对应的子指令弹窗,
    其中,所述子指令弹窗中包括至少一个控制所述无人机飞行的子指令 图标。
  18. 根据权利要求17所述的控制系统,其特征在于,所述处理器根据所述飞行状态确定所述显示屏的界面中显示的指令图标,具体用于:
    在所述无人机处于待机状态时,确定所述指令图标为第一图标;
    在所述无人机处于起飞状态时,确定所述指令图标为第二图标。
  19. 根据权利要求18所述的控制系统,其特征在于,在所述无人机处于起飞状态时,所述处理器还用于:
    根据对应于所述指令图标的执行指令,确定所述无人机距离预设返航点的距离;
    在所述距离小于第一距离阈值时,确定并显示包括降落的子指令图标的子指令弹窗,否则,确定并显示包括降落的子指令图标和返航的子指令图标的子指令弹窗。
  20. 根据权利要求17所述的控制系统,其特征在于,所述处理器还用于:
    根据对应于所述指令图标的执行指令,调整所述指令图标的显示状态;
    在所述显示屏的界面中根据调整后的所述显示状态显示指令图标。
  21. 根据权利要求17所述的控制系统,其特征在于,所述处理器还用于:
    在所述显示屏的界面中显示所述子指令弹窗时,若接收到对应于取消弹窗显示的取消指令,则在所述界面中取消显示所述子指令弹窗,并显示所述指令图标。
  22. 根据权利要求21所述的控制系统,其特征在于,所述取消指令具体包括:
    触发所述界面中所述子指令弹窗外的显示区域;和/或
    触发所述子指令弹窗中的取消区域。
  23. 根据权利要求17所述的控制系统,其特征在于,还包括:
    接收对应于所述子指令图标的子执行指令;
    根据所述子执行指令调整所述指令图标的显示状态,并控制所述无人机根据所述子执行指令运行,
    其中,所述子执行指令包括起飞指令、返航指令和降落指令。
  24. 根据权利要求23所述的控制系统,其特征在于,所述子执行指令由触发所述子指令图标的触发时间确定,所述处理器还用于:
    在所述触发时间超过时间阈值时,控制所述无人机执行所述子执行指令。
  25. 根据权利要求24所述的控制系统,其特征在于,所述控制系统还包括振动终端,所述处理器还用于:
    获取所述触发时间的起始时刻和终止时刻;
    在所述起始时刻向所述振动终端发送第一振动信号;和/或
    若所述触发时间超过所述时间阈值,则在所述终止时刻向所述振动终端发送第二振动信号。
  26. 根据权利要求25所述的控制系统,其特征在于,所述处理器还用于:
    确定分别对应于所述起始时刻和所述终止时刻的第一触发位置和第二触发位置;
    在所述第一触发位置和所述第二触发位置均处于所述子指令图标所对应的显示范围内时,控制所述无人机执行所述子执行指令。
  27. 根据权利要求23所述的控制系统,其特征在于,在所述无人机根据所述子执行指令运行后,所述控制系统还包括:
    在所述显示屏的界面中显示对应于取消操作的指令图标;
    响应于与取消操作对应的指令图标的确认指令,控制所述无人机以当前飞行高度悬停;
    根据所述无人机的悬停状态确定并显示在所述显示屏的界面中的指令图标。
  28. 根据权利要求23所述的控制系统,其特征在于,在所述无人机根据所述子执行指令运行后,所述处理器还用于:
    若所述子执行指令为返航指令或降落指令,则获取所述无人机在当前位置的竖直方向上距下方障碍物的最小距离;
    若所述最小距离小于第二距离阈值,则在所述显示屏的界面中显示包 括确认按键的确认弹窗。
  29. 根据权利要求28所述的控制系统,其特征在于,所述处理器还用于:
    响应于所述确认按键的确认指令,控制所述无人机下降,否则控制所述无人机保持悬停。
  30. 根据权利要求23所述的控制系统,其特征在于,所述处理器还用于:
    确定对应于所述子执行指令的提示信息;
    在所述显示屏的界面中确定对应于所述指令图标的提示位置;
    在所述提示位置显示所述提示信息。
  31. 根据权利要求17所述的控制系统,其特征在于,所述处理器还用于:
    响应于所述子指令图标的确认指令,播放与所述子指令图标对应的音频信息。
  32. 根据权利要求17所述的控制系统,其特征在于,所述对应于所述指令图标的执行指令具体包括:
    所述指令图标在预设时间内的点击次数;和/或
    所述指令图标的单次触发时间;和/或
    所述指令图标的触发手势。
  33. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至16中任一项所述界面显示方法的步骤。
  34. 一种无人机,其特征在于,包括:
    机体;
    动力系统,安装在所述机体内,用于为所述无人机提供动力;以及
    交互系统,所述交互系统用于根据权利要求17至32中任一项所述控制系统发送的控制指令控制所述动力系统,以执行相应的功能。
PCT/CN2019/113386 2019-10-25 2019-10-25 界面显示方法、控制系统、计算机可读存储介质和无人机 WO2021077414A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980038320.7A CN112236746A (zh) 2019-10-25 2019-10-25 界面显示方法、控制系统、计算机可读存储介质和无人机
PCT/CN2019/113386 WO2021077414A1 (zh) 2019-10-25 2019-10-25 界面显示方法、控制系统、计算机可读存储介质和无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/113386 WO2021077414A1 (zh) 2019-10-25 2019-10-25 界面显示方法、控制系统、计算机可读存储介质和无人机

Publications (1)

Publication Number Publication Date
WO2021077414A1 true WO2021077414A1 (zh) 2021-04-29

Family

ID=74111323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113386 WO2021077414A1 (zh) 2019-10-25 2019-10-25 界面显示方法、控制系统、计算机可读存储介质和无人机

Country Status (2)

Country Link
CN (1) CN112236746A (zh)
WO (1) WO2021077414A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115033152A (zh) * 2022-06-22 2022-09-09 中国商用飞机有限责任公司 显示界面的控制方法及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113110093A (zh) * 2021-05-17 2021-07-13 深圳市欧瑞博科技股份有限公司 智能家居控制面板的控制方法、装置、设备及存储介质
CN113703474A (zh) * 2021-08-20 2021-11-26 深圳市道通智能航空技术股份有限公司 无人机指挥中心的操作指引方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983173A (zh) * 2005-12-13 2007-06-20 国际商业机器公司 图形用户界面设计方法和设备
CN104932529A (zh) * 2015-06-05 2015-09-23 北京中科遥数信息技术有限公司 一种无人机自主飞行的云端控制系统
CN105116907A (zh) * 2015-07-20 2015-12-02 清华大学 微型无人机数据传输及控制系统设计方法
CN107301764A (zh) * 2016-04-15 2017-10-27 零度智控(北京)智能科技有限公司 一种遥控方法、装置及终端
CN110275600A (zh) * 2018-03-15 2019-09-24 宗鹏 采用手势控制的无人机操作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106681354B (zh) * 2016-12-02 2019-10-08 广州亿航智能技术有限公司 无人机的飞行控制方法和装置
CN113741543A (zh) * 2017-06-12 2021-12-03 深圳市大疆创新科技有限公司 无人机及返航控制方法、终端、系统和机器可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983173A (zh) * 2005-12-13 2007-06-20 国际商业机器公司 图形用户界面设计方法和设备
CN104932529A (zh) * 2015-06-05 2015-09-23 北京中科遥数信息技术有限公司 一种无人机自主飞行的云端控制系统
CN105116907A (zh) * 2015-07-20 2015-12-02 清华大学 微型无人机数据传输及控制系统设计方法
CN107301764A (zh) * 2016-04-15 2017-10-27 零度智控(北京)智能科技有限公司 一种遥控方法、装置及终端
CN110275600A (zh) * 2018-03-15 2019-09-24 宗鹏 采用手势控制的无人机操作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115033152A (zh) * 2022-06-22 2022-09-09 中国商用飞机有限责任公司 显示界面的控制方法及电子设备

Also Published As

Publication number Publication date
CN112236746A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
US20200302804A1 (en) Method and device for setting a flight route
WO2021077414A1 (zh) 界面显示方法、控制系统、计算机可读存储介质和无人机
CN107577229B (zh) 移动机器人、移动控制系统以及移动控制方法
WO2018095158A1 (zh) 一种飞行器的飞行控制方法、装置和系统
US9691287B1 (en) Graphical method to set vertical and lateral flight management system constraints
US11548768B2 (en) Remote control device for crane, construction machine, and/or industrial truck
US20190250601A1 (en) Aircraft flight user interface
EP3065042B1 (en) Mobile terminal and method for controlling the same
JP6222879B2 (ja) 移動体の制御方法、装置及び移動デバイス
JP6851470B2 (ja) 無人機の制御方法、頭部装着式表示メガネおよびシステム
US20170185261A1 (en) Virtual reality device, method for virtual reality
CN102266672B (zh) 一种远程控制无人驾驶飞机、尤其是旋翼无人驾驶飞机的方法和装置
WO2018133593A1 (zh) 智能终端的控制方法和装置
WO2018058309A1 (zh) 控制方法、控制装置、电子装置及飞行器控制系统
WO2012117508A1 (ja) 情報処理装置、方法およびプログラム
EP4060969A1 (en) Application program sharing method and electronic device
KR102449439B1 (ko) Hmd를 이용한 무인기 조종 장치
JP2005327262A (ja) 情報表示方法及び情報表示システム
CN110825121B (zh) 控制装置与无人机控制方法
WO2018214029A1 (zh) 用于操纵可移动装置的方法和设备
US20210320995A1 (en) Conversation creating method and terminal device
US11804052B2 (en) Method for setting target flight path of aircraft, target flight path setting system, and program for setting target flight path
JP2021526743A (ja) 撮像制御方法、装置及び制御装置、撮像装置
WO2014033109A1 (en) Interactive bridge console system
WO2023143460A1 (zh) 控制飞行组件的方法和装置、终端和可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949765

Country of ref document: EP

Kind code of ref document: A1