WO2021075203A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2021075203A1
WO2021075203A1 PCT/JP2020/035390 JP2020035390W WO2021075203A1 WO 2021075203 A1 WO2021075203 A1 WO 2021075203A1 JP 2020035390 W JP2020035390 W JP 2020035390W WO 2021075203 A1 WO2021075203 A1 WO 2021075203A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
route
avoidance
control device
information
Prior art date
Application number
PCT/JP2020/035390
Other languages
French (fr)
Japanese (ja)
Inventor
直之 田代
今井 正人
大司 清宮
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to DE112020004474.2T priority Critical patent/DE112020004474T5/en
Publication of WO2021075203A1 publication Critical patent/WO2021075203A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0013Planning or execution of driving tasks specially adapted for occupant comfort
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes

Definitions

  • This disclosure relates to a vehicle control device.
  • Patent Document 1 discloses a vehicle driving support system including a recognition unit, an acquisition unit, and a support control unit (see the same document, abstract, claim 1, paragraph 0007, etc.).
  • the recognition unit recognizes a three-dimensional object existing in the traveling direction of the own vehicle.
  • the acquisition unit acquires one or more avoidance target trajectories capable of avoiding a collision between the three-dimensional object and the own vehicle based on the traveling state of the own vehicle. To do.
  • the support control unit performs support control for avoiding a collision between the three-dimensional object and the own vehicle based on the avoidance target trajectory acquired by the acquisition unit.
  • the support control unit does not control the turning of the own vehicle and the own vehicle. Controls braking.
  • Patent Document 2 discloses an automatic driving control device that performs automatic driving control for driving a vehicle along a reference traveling locus set in advance with respect to a lane (the same document, abstract, claim 1, paragraph 0006). Etc.).
  • This automatic driving control device includes a steering detection unit, a range setting unit, an automatic driving control unit, a position determination unit, and a warning unit.
  • the steering detection unit detects steering by the driver of the vehicle during the automatic driving control.
  • the range setting unit sets an allowable range including the reference traveling locus in the lane as a range in the lane width direction of the lane, and a first range including the reference traveling locus within the allowable range and the first range. Set the second range on both the left and right sides of the range.
  • the automatic driving control unit executes the automatic driving control. Further, when the steering detection unit detects steering by the driver and the position in the lane width direction of the vehicle is included in the allowable range, the automatic driving control unit is in the automatic driving control. Steering is reflected in the running of the vehicle.
  • the position determination unit determines whether or not the position in the lane width direction of the vehicle is included in the second range when the steering by the driver is detected by the steering detection unit.
  • the caution unit alerts the driver about the running of the vehicle.
  • the support control unit is the own vehicle. It controls the braking of the own vehicle without controlling the turning.
  • the own vehicle traveling in the traveling lane decelerates, and the speed difference between the following vehicle traveling in the overtaking lane and the own vehicle increases. If the own vehicle changes lanes to the overtaking lane in this state, the risk of being hit by a following vehicle traveling in the overtaking lane increases.
  • the automatic driving control unit when the position in the lane width direction of the vehicle is included in the permissible range, the automatic driving control unit reflects the steering of the driver during the automatic driving control in the running of the vehicle. .. In this case, if the vehicle continues to go straight, it is possible to return to the reference driving trajectory, but for example, if the vehicle makes a right or left turn at an intersection, the vehicle cannot turn completely at the intersection. , It is necessary to switch between forward and reverse of the vehicle, and there is a risk of being hit by a following vehicle.
  • the present disclosure provides a vehicle control device having improved vehicle safety as compared with the conventional case.
  • One aspect of the present disclosure is a vehicle control device for controlling a vehicle including an external world sensor for acquiring external world information, a vehicle sensor for acquiring vehicle information, and a storage device for storing map information, and the processing device is used.
  • the processing device estimates the traveling route of the vehicle based on one or more of the outside world information, the vehicle information, and the map information, and determines the position and speed of the peripheral objects of the vehicle and the said.
  • the travelable area of the vehicle is calculated, one or more route candidates capable of avoiding the collision between the peripheral object and the vehicle are generated, one avoidance route is selected from the one or more route candidates, and the avoidance route is selected.
  • the end speed of the avoidance control for traveling the vehicle is set along the same, and the avoidance control is terminated when the vehicle travels on the avoidance route and reaches the end speed after the start of the avoidance control. It is a vehicle control device.
  • the block diagram which shows Embodiment 1 of the vehicle control device which concerns on this disclosure The block diagram which shows the structure of the vehicle control device of FIG.
  • the functional block diagram of the vehicle control device of FIG. The flow chart which shows the flow of processing by the vehicle control device of FIG. An example of the calculation result of the travelable area by the vehicle control device of FIG. An example of the calculation result of the travelable area by the vehicle control device of FIG. An example of the calculation result of the route candidate by the vehicle control device of FIG. An example of the calculation result of the route candidate by the vehicle control device of FIG.
  • FIG. 3 is a plan view illustrating an example of an end condition of avoidance control of FIG. FIG.
  • FIG. 3 is a plan view illustrating an example of an end condition of avoidance control of FIG.
  • FIG. 3 is a plan view illustrating an example of an end condition of avoidance control of FIG.
  • FIG. 5 is a plan view illustrating the setting of the steering avoidance limit distance of the vehicle shown in FIG.
  • the flow chart which shows the process flow of Embodiment 2 of the vehicle control device which concerns on this disclosure.
  • the graph which shows the speed profile of the vehicle in the route candidate of FIG. 11A The flow chart which shows the process flow of Embodiment 3 of the vehicle control device which concerns on this disclosure.
  • An example of the calculation result of the route candidate by the vehicle control device of the fourth embodiment An example of the calculation result of the route candidate by the vehicle control device of the fourth embodiment.
  • An example of the calculation result of the route candidate by the vehicle control device of the fourth embodiment An example of the calculation result of the route candidate by the vehicle control device of the fourth embodiment.
  • FIG. 1 is a block diagram of a vehicle 100 equipped with the vehicle control device 110 according to the first embodiment of the vehicle control device of the present disclosure.
  • FIG. 2A is a block diagram showing the configuration of the vehicle control device 110 of FIG.
  • FIG. 2B is a functional block diagram of the vehicle control device 110 of FIG.
  • FIG. 3 is a flow chart showing a flow of processing by the vehicle control device 110 of FIG.
  • the vehicle control device 110 constitutes, for example, a part of an advanced driver-assistance system (ADAS) that supports the driving operation of the driver of the vehicle 100.
  • ADAS supports the driving operation of the driver of the vehicle 100 by automatically performing a braking operation, steering, or the like for avoiding a collision between the vehicle 100 and a surrounding obstacle, for example.
  • the vehicle control device 110 can be configured by, for example, a computer system such as a microcontroller or firmware.
  • the vehicle control device 110 is provided by, for example, hardware such as a processing device 111 such as a CPU, a memory 112 such as RAM or ROM, a non-volatile memory 113 such as a hard disk, and an input / output interface 114, and software including a vehicle control program 115. It is composed.
  • the input / output interface 114 is connected to each part of the vehicle 100 including, for example, an external sensor 106, a vehicle sensor 107, and various control devices.
  • the vehicle control device 110 of the present embodiment is characterized by having the following configuration.
  • the vehicle control device 110 of the present embodiment is for controlling a vehicle 100 including an outside world sensor 106 for acquiring the outside world information EI, a vehicle sensor 107 for acquiring the vehicle information VI, and a storage device 108a for storing the map information MI. It is a device.
  • the vehicle control device 110 includes a processing device 111.
  • the processing device 111 executes each of the following processes based on one or more of the outside world information EI, the vehicle information VI, and the map information MI. First, the process P1 for estimating the travel path TR of the vehicle 100, the processes P2 and P3 for calculating the position and speed of the peripheral object of the vehicle 100, and the travelable area RA of the vehicle 100, and the collision between the peripheral object and the vehicle 100.
  • the vehicle 100 includes, for example, a driving force generation mechanism 101, a transmission 102, wheels 103, a brake device 104, and a steering device 105. Further, the vehicle 100 includes, for example, an outside world sensor 106, a vehicle sensor 107, a navigation device 108, and a communication device 109. Further, the vehicle 100 includes, for example, a vehicle control device 110, a brake control device 120, a steering control device 130, a driving force control device 140, a transmission control device 150, an input / output device 160, and a lighting device 170. , Is equipped.
  • the driving force generation mechanism 101 is composed of, for example, an engine or a motor, or an engine and a motor, and generates a driving force for driving the vehicle 100.
  • the transmission 102 has a transmission mechanism that switches the driving force generated by the driving force generating mechanism 101 in an appropriate direction to move the vehicle 100 forward or backward.
  • the wheels 103 are rotated by the driving force of the driving force generating mechanism 101 transmitted via the transmission 102.
  • the brake device 104 is controlled by, for example, the brake control device 120, and drives an actuator to brake the wheels 103.
  • the steering device 105 includes, for example, a steering wheel and a steering mechanism.
  • the steering device 105 changes the steering angle of the wheels 103 by the steering mechanism in response to the operation of the steering wheel by the driver, and turns and turns the vehicle 100.
  • the steering wheel and the steering mechanism may be mechanically connected, or a steer-by-wire (SBW) that mechanically separates them may be adopted.
  • SBW steer-by-wire
  • the steering device 105 may drive the actuator of the steering mechanism according to the operation amount of the steering wheel detected by the steering angle sensor 107a.
  • the steering device 105 may have a cutting mechanism that disconnects the mechanical connection between the steering wheel and the steering mechanism in response to the control signal of the vehicle control device 110. Further, the steering device 105 may drive the actuator of the steering mechanism in response to the control signal of the vehicle control device 110.
  • the outside world sensor 106 acquires the outside world information EI including information on peripheral objects existing around the vehicle 100 and information on the environment around the vehicle 100.
  • the external world sensor 106 includes, for example, an imaging device such as a monocular camera or a stereo camera, an ultrasonic sensor, a millimeter-wave radar, and LIDAR (Light Detection and Ringing / Laser Imaging Detection and Ranging).
  • Peripheral objects existing around the vehicle 100 include, for example, other vehicles, pedestrians, roads, road markings, road signs, traffic lights, guardrails, medians, road equipment, electric poles, structures, etc. around the vehicle 100. Including obstacles etc.
  • the external world information EI acquired by the external world sensor 106 includes, for example, information such as the position, shape, size, range, color, three-dimensional point cloud information, traffic light information, and lane boundary line of a peripheral object with respect to the vehicle 100.
  • the position information of peripheral objects is not limited to, for example, two-dimensional position information in the front-rear direction and the left-right direction, and may be three-dimensional position information including height.
  • the outside world information EI may be acquired not only through the outside world sensor 106 but also through the communication device 109.
  • the traffic light information includes, for example, information such as the color of the traffic light in front and the direction of the arrow of the traffic light.
  • the lane boundary information includes information such as overtaking prohibition and overtaking possibility based on the type of lane boundary line.
  • the vehicle sensor 107 includes vehicle information VI including, for example, the position, speed, acceleration, steering angle, steering angular velocity, steering angular acceleration, turn signal operation information, driver's gripping of the steering wheel, and presence / absence of operation of the vehicle 100. To get.
  • vehicle sensor 107 includes, for example, a steering angle sensor 107a and a vehicle speed sensor 107b, and an acceleration sensor and a satellite positioning system (not shown).
  • the satellite positioning system is, for example, a Global Positioning System (GPS) or a Global Navigation Satellite System (GNSS), which is mounted on the navigation device 108.
  • GPS Global Positioning System
  • GNSS Global Navigation Satellite System
  • the steering angle sensor 107a detects the amount of operation of the steering device 105 by the driver, that is, the steering angle, steering angular velocity, steering acceleration, etc. based on the amount of operation of the steering wheel.
  • the vehicle speed sensor 107b is, for example, an output of a wheel speed sensor that detects the rotation speed of the wheels 103, a sensor that detects the rotation speed of the resolver of the motor of the driving force generation mechanism 101, or a sensor that detects the rotation speed of the transmission 102.
  • the speed of the vehicle 100 is calculated based on the above.
  • the navigation device 108 is configured by, for example, the satellite positioning system described above, and acquires the position information of the vehicle 100.
  • the navigation device 108 includes, for example, a storage device 108a for storing the map information MI, the destination of the vehicle 100, the travel route TR, and the like.
  • Map information MI includes, for example, road shape, number of lanes, road signs, road signs, traffic lights, reference driving positions, traffic regulations, lane divisions, position information of lane center lines of straight roads, reference traveling loci at intersections, and tertiary. Contains information such as source point group information.
  • the road shape includes shape data close to the actual road shape represented by, for example, polygons and polylines.
  • Traffic regulation information includes, for example, information such as speed limits and passable vehicles.
  • the lane classification information includes, for example, information such as a main lane, an overtaking lane, a climbing lane, a straight lane, a left turn lane, and a right turn lane.
  • the communication device 109 exchanges information with the server. Further, the communication device 109, for example, performs information communication with a communication terminal installed on the road and other vehicles around the vehicle 100. Further, the communication device 109 provides, for example, information received from a server, a communication terminal, another vehicle, or the like to the driver via the input / output device 160.
  • the brake control device 120 generates a predetermined braking force on the wheels 103 by, for example, driving the actuator of the brake device 104 based on the operation of the driver's brake pedal or the control signal from the vehicle control device 110. Braking the wheel 103.
  • the steering control device 130 drives the actuator of the steering mechanism of the steering device 105 based on the amount of operation of the steering wheel of the steering device 105 by the driver or the control signal from the vehicle control device 110, and determines the steering angle of the wheels 103. Change to the angle of.
  • the driving force control device 140 controls the driving force generated by the driving force generating mechanism 101 based on, for example, the amount of operation of the accelerator pedal by the driver or the control signal from the vehicle control device 110.
  • the transmission control device 150 drives the actuator of the transmission 102 based on, for example, the operation of the shift lever by the driver or the control signal from the vehicle control device 110, and the transmission 102 switches between forward and reverse, or shifts. Change the ratio.
  • the input / output device 160 enables the driver to input information and provides the information to the driver.
  • the input / output device 160 can be configured by, for example, a display device provided with a touch panel.
  • the input / output device 160 accepts, for example, input of a destination by the driver, and displays information on the position, destination and travel route of the vehicle 100, peripheral objects, and the like on the screen.
  • the input / output device 160 includes, for example, a microphone and a speaker.
  • the input / output device 160 may be, for example, a head-up display that projects an image onto a windshield, a rearview mirror, a side mirror, or the like of the vehicle 100, or a head-mounted display that is worn by the driver. Further, the input / output device 160 may be a part of the navigation device 108, for example.
  • the lighting device 170 includes, for example, headlights, turn signals, side lights, tail lights, backward lights, braking lights, and the like.
  • the lighting device 170 lights, turns off, or blinks based on, for example, an operation of a switch, a brake pedal, or a turn signal by the driver, or a control signal from the vehicle control device 110.
  • the external world information EI acquired by the external world sensor 106, the vehicle information VI acquired by the vehicle sensor 107, and the map information MI stored in the storage device 108a are input to the vehicle control device 110 via the input / output interface 114. ..
  • the vehicle control device 110 outputs a control signal CS via the input / output interface 114 based on one or more of the outside world information EI, the vehicle information VI, and the map information MI.
  • the control signal CS output from the vehicle control device 110 is input to the brake control device 120, the steering control device 130, the driving force control device 140, the transmission control device 150, the input / output device 160, and the lighting device 170 of the vehicle 100. ..
  • the driving force generation mechanism 101, the transmission 102, the braking device 104, the steering device 105, the lighting device 170, and the like are operated based on the control signal CS of the vehicle control device 110, and acceleration / deceleration and steering of the vehicle 100 are performed. It is possible to support the driving operation of the driver.
  • the vehicle control device 110 has, for example, a function F1 for acquiring the outside world information EI, a function F2 for acquiring the map information MI, and a function F3 for acquiring the vehicle information VI. .. Further, the vehicle control device 110 has, for example, a function F4 for calculating the travelable area RA, a function F5 for estimating the travel route TR, and a function F6 for generating a route candidate CR. Further, the vehicle control device 110 has, for example, a function F7 for selecting the avoidance route AR, a function F8 for setting the end speed ES of the avoidance control, and a function F9 for executing the avoidance control.
  • a function F1 for acquiring the outside world information EI
  • a function F2 for acquiring the map information MI
  • a function F3 for acquiring the vehicle information VI. . .
  • the vehicle control device 110 has, for example, a function F4 for calculating the travelable area RA, a function F5 for estimating the travel
  • Each function of the vehicle control device 110 shown in FIG. 2B is realized by, for example, the processing device 111, the memory 112, the non-volatile memory 113, the input / output interface 114, the vehicle control program 115, and the like shown in FIG. 2A. More specifically, each function of the vehicle control device 110 is realized, for example, by the processing device 111 loading the vehicle control program 115 stored in the non-volatile memory 113 and various data into the memory 112 and executing the functions. To. Hereinafter, the flow of processing by each function of the vehicle control device 110 will be described with reference to FIG.
  • the vehicle control device 110 When the vehicle control device 110 starts the process shown in FIG. 3, the vehicle control device 110 first executes the process P1 for estimating the travel path TR of the vehicle 100. Specifically, the vehicle control device 110 receives the external world information EI acquired by the external world sensor 106, the map information MI stored in the storage device 108a, and the vehicle information VI acquired by the vehicle sensor 107. Entered via. The vehicle control device 110 acquires each input information by, for example, a function F1 for acquiring the outside world information EI, a function F2 for acquiring the map information MI, and a function F3 for acquiring the vehicle information VI.
  • the function F1 for acquiring the outside world information EI outputs the acquired outside world information EI to, for example, the function F4 for calculating the travelable area RA and the function F5 for estimating the travel route TR.
  • the function F2 for acquiring the map information MI outputs the acquired map information MI to, for example, the function F4 for calculating the travelable area RA and the function F5 for estimating the travel route TR.
  • the function F3 for acquiring the vehicle information VI outputs the acquired vehicle information VI to, for example, the function F4 for calculating the travelable area RA and the function F5 for estimating the travel route TR.
  • the function F5 for estimating the travel route TR estimates the travel route TR based on, for example, one or more of the input external world information EI, map information MI, and vehicle information VI. More specifically, the function F5 estimates the position of the vehicle 100 based on, for example, the map information MI, the position information including the latitude and longitude of the vehicle 100 included in the vehicle information VI, the speed, the steering angle, and the like. .. Further, when the three-dimensional point cloud information is included in both the outside world information EI and the map information MI, the function F5 may estimate the position of the vehicle 100 by matching the three-dimensional point cloud information. The function F5 can estimate the position of the vehicle 100 by effectively combining, for example, the plurality of position estimation methods described above.
  • the function F5 for estimating the travel route TR estimates the travel route TR based on, for example, the estimated position of the vehicle 100, the destination information and the road information included in the map information MI. Further, the function F5 predicts the traveling direction of the vehicle 100 such as a right turn, a left turn, or a straight line based on the operation information of the direction indicator included in the vehicle information VI, and calculates the traveling route TR of the vehicle 100. Further, the function F5 may estimate the travel path TR of the vehicle 100 based on, for example, the steering angle, the speed, the acceleration, and the like included in the vehicle information VI.
  • the function F5 for estimating the travel route TR compares, for example, the lane classifications such as the straight lane, the left turn lane, and the right turn lane included in the map information MI with the position of the vehicle 100 included in the vehicle information VI. Then, the traveling route TR may be estimated.
  • the map information MI includes, for example, information such as a reference locus of a vehicle traveling on a road, position information of a center line of a straight road, and a reference traveling locus of a vehicle traveling at an intersection. In this case, the function F5 may estimate the travel route TR based on the comparison between these information and the position of the vehicle 100 included in the vehicle information VI.
  • the vehicle control device 110 determines the surroundings of the vehicle 100 based on one or more of the outside world information EI, the map information MI, and the vehicle information VI by, for example, the function F4 for calculating the travelable area RA.
  • the process P2 for calculating the position and velocity of the peripheral objects existing in the range of is executed.
  • the function F4 predicts the future position of the peripheral object after a few seconds, for example, based on the calculated position and velocity of the peripheral object.
  • the future position of the peripheral object can be calculated, for example, assuming that the peripheral object moves at a constant velocity.
  • the function F4 calculates a plurality of future positions at predetermined time intervals and stores them in the memory 112 or the non-volatile memory 113 for a certain period of time up to several seconds later, for example.
  • the function F4 is, for example, a vehicle in which a peripheral object is about to enter an intersection, and when the map information MI includes a reference locus of a vehicle traveling at the intersection, the vehicle as a peripheral object moves on the reference locus. You may predict that.
  • the vehicle control device 110 executes the process P3 for calculating the travelable area RA by, for example, the function F4 for calculating the travelable area RA.
  • the function F4 is based on one or more information of the outside world information EI, the map information MI, and the vehicle information VI, the left and right boundary lines of the road on which the vehicle 100 is traveling, and the previous processing P2. Based on the position, speed, future position, and the like of the peripheral objects calculated in the above, the travelable area RA, which is the area in which the vehicle 100 can travel, is calculated.
  • FIG. 4A is a plan view showing an example of the travelable region RA on a straight road with one lane on each side.
  • the region from the vehicle 100 to the rear of the preceding vehicle LV and the region from the vehicle 100 to the oncoming vehicle OV are defined as the travelable region RA inside the left and right boundary lines BL of the road.
  • FIG. 4B is a plan view showing an example of a travelable area RA at an intersection of a road having one lane on each side.
  • the entire intersection and its vicinity are defined as the travelable area RA inside the boundary line BL of the road.
  • the vehicle control device 110 uses the function F6 for generating route candidate CR, for example, external world information EI, vehicle information VI, travel route TR estimated by process P1, and processing.
  • the process P4 for generating the route candidate CR is executed based on the travelable area RA calculated in P3 and the like.
  • FIG. 5A is a plan view showing an example of a route candidate CR on a straight road with one lane on each side.
  • the function F6 for generating the route candidate CR includes a route candidate CR that does not change the steering angle of the vehicle 100 traveling straight ahead and a route candidate CR that turns the vehicle by gradually changing the steering angle on each of the left and right sides.
  • Multiple route candidate CRs including are generated.
  • the left and right route candidate CRs of the vehicle 100 are accompanied by an S-shaped steering that steers in one direction from the straight direction of the vehicle 100 to the left and right, then turns in the opposite direction and returns to the straight direction. It is a route.
  • FIG. 5B is a plan view showing an example of a route candidate CR at an intersection of a road with one lane on each side.
  • the function F6 for generating the route candidate CR generates a route candidate CR having a small turning radius and a route candidate CR having a large turning radius along the traveling path TR of the vehicle 100 turning right at the intersection. Further, in this example, the function F6 generates a route candidate CR having a small turning radius and a route candidate CR having a large turning radius to steer to the left opposite to the traveling path TR of the vehicle 100 turning right at the intersection. ing.
  • the left and right route candidate CRs of the vehicle 100 are only one-way steering routes that steer and turn in one direction from the straight direction of the vehicle 100 to the left and right.
  • the function F6 for generating the route candidate CR makes the lateral acceleration of the vehicle 100 in the left-right direction a numerical value within an allowable range based on, for example, the current speed of the vehicle 100 included in the vehicle information VI.
  • a route candidate CR is generated.
  • the allowable range of the lateral acceleration of the vehicle 100 is set in advance and stored in the non-volatile memory 113, for example.
  • FIG. 6 is a graph showing an example of a determination criterion in the process P5 for determining the permission of avoidance control.
  • the horizontal axis is the relative speed of a peripheral object such as another vehicle with respect to the vehicle 100
  • the vertical axis is the distance from the vehicle 100 to the peripheral object.
  • the curve passing through the origin O is a curve showing a distance at which the vehicle 100 does not steer and can avoid a collision with a peripheral object only by braking, that is, a braking avoidance limit distance Db.
  • the braking avoidance limit distance Db can be obtained by, for example, the following equation (1).
  • Vr is the relative speed between the vehicle 100 and peripheral objects
  • is the deceleration of the vehicle 100 during braking.
  • the straight line passing through the origin O is a straight line indicating a distance at which the vehicle 100 does not decelerate and can avoid a collision with a peripheral object only by steering, that is, a steering avoidance limit distance Ds.
  • the steering avoidance limit distance Ds can be obtained by, for example, the following equation (2).
  • Vr is the relative speed between the vehicle 100 and peripheral objects.
  • Xr is the distance between the vehicle 100 and surrounding objects.
  • k is a constant. This constant k may be changed, for example, according to road conditions such as general roads, expressways, and intersections, and the road environment.
  • the function F7 for selecting the avoidance route AR determines, for example, the permission (YES) for avoidance control when the following two conditions are satisfied.
  • the first condition is, for example, that the distance and relative speed between the vehicle 100 and surrounding objects are included in the braking avoidance limit distance Db or less and the steering avoidance limit distance Ds or less, that is, in the avoidable region A shown in FIG. Is.
  • the second condition is, for example, that one or more route candidate CRs are generated in the previous process P4.
  • the function F7 for selecting the avoidance route AR determines that the avoidance control is permitted (NO) in the process P5 for determining the permission of the avoidance control, and the process shown in FIG. To finish.
  • the function F7 executes the process P6 for determining the permission (YES) for avoidance control and selecting the route candidate CR when the first condition and the second condition are satisfied in the process P5.
  • the vehicle control device 110 selects one avoidance route AR from one or more route candidate CRs generated in the previous process P4 by the function F7 for selecting the avoidance route AR. .. Specifically, the function F7 selects a route in which the route candidate CR is included in the travelable region RA at each future time point from among one or more route candidate CRs.
  • the function F7 selects, for example, the route candidate CR that minimizes the change in steering angle with respect to the current traveling direction of the vehicle 100.
  • the function F7 selects, for example, the route candidate CR that minimizes the front-rear, left-right acceleration of the vehicle 100.
  • the function F7 for selecting the avoidance route AR may select the route candidate CR according to, for example, when the vehicle information VI includes the presence / absence of gripping and operation of the steering wheel by the driver of the vehicle 100. For example, when the driver is holding the steering wheel and the vehicle 100 travels along the route candidate CR accompanied by the S-shaped steering, the driver's arm is burdened. Therefore, the function F7 may select a route candidate CR having only one-sided steering when the driver is holding the steering wheel.
  • the function F7 for selecting the avoidance path AR may change the steering angle, steering angular velocity, or upper limit of steering angular acceleration of the vehicle 100 depending on whether or not the driver of the vehicle 100 grips the steering wheel. .. Specifically, when the driver of the vehicle 100 does not hold the steering wheel, the upper limit value is increased and the route candidate CR is selected as compared with the case where the driver holds the steering wheel “yes”. Alternatively, the upper limit value may be gradually increased in the order of the driver holding the steering wheel, holding his / her hand on the steering wheel, and releasing his / her hand from the steering wheel.
  • the steering device 105 adopts the above-mentioned SBW or has a cutting mechanism for disconnecting the mechanical connection between the steering mechanism and the steering wheel, the above is the same as in the non-grasping state.
  • the upper limit may be increased.
  • the vehicle control device 110 sets the end speed ES, which is a condition for terminating the avoidance control of the next process P8, by the function F8 for setting the end speed ES of the avoidance control.
  • the avoidance control is a control for driving the vehicle 100 along the avoidance route AR, which is one route candidate CR selected in the previous process P6.
  • a setting example of the end speed ES will be described with reference to FIGS. 7A to 7C.
  • the vehicle 100 traveling in the traveling lane of a straight road having two lanes on each side is set as an avoidance route AR for avoiding a collision with a preceding vehicle LV located in front of the same traveling lane.
  • a route with a lane change to the next overtaking lane is selected.
  • the function F8 for setting the end speed ES of the avoidance control sets the end speed ES to 0 [km / h], for example, and avoids the end point of the avoidance route AR in which the collision with the preceding vehicle LV is avoided.
  • the example shown in FIG. 7B is different from the example shown in FIG. 7A in that the following vehicle FV exists in the overtaking lane of the lane change destination of the vehicle 100 based on the avoidance route AR.
  • the function F8 for setting the end speed ES of the avoidance control sets, for example, the end speed ES to the speed of the following vehicle FV, and sets the position where the lane change is completed to the end position EP of the avoidance control.
  • the vehicle 100 traveling on a straight road with one lane on each side has a route that involves changing lanes to the oncoming lane as an avoidance route AR for avoiding a collision with the preceding vehicle LV located in front. It has been selected.
  • the function F8 for setting the end speed ES of avoidance control sets, for example, the end speed ES to a slow speed of, for example, 5 [km / h] or less, or a creep speed of, for example, 10 [km / h] or less. Then, the position where the lane change is completed is set as the end position EP of the avoidance control.
  • the vehicle control device 110 executes the avoidance control based on the avoidance path AR selected in the process P6 and the end speed ES set in the process P7 by the function F9 that executes the avoidance control. More specifically, the function F9 that executes the avoidance control calculates the time change of the speed and the steering angle of the vehicle 100 based on, for example, the avoidance path AR, the end speed ES, and the end position EP. Then, the function F9 outputs the control signal CS based on the calculation result to the brake control device 120, the steering control device 130, the driving force control device 140, and the like, and causes the vehicle 100 to travel along the avoidance path AR.
  • the vehicle control device 110 outputs a control signal CS to the input / output device 160 by the function F9 that executes avoidance control, and the input / output device 160 indicates that the vehicle 100 is in avoidance control. Notifies the driver of the vehicle 100 with. Further, the vehicle control device 110 outputs a control signal CS to the lighting device 170 by the function F9 for executing the avoidance control, and appropriately turns on the direction indicator light and the braking light. Specifically, the function F9 that executes avoidance control blinks the direction indicator lights in the moving direction, turns on the brake lights when decelerating, and blinks the left and right direction indicator lights at the same time when stopped.
  • the vehicle control device 110 executes the process P9 for determining the end speed ES of the avoidance control by the function F9 that executes the avoidance control.
  • the function F9 determines whether or not the speed of the vehicle 100 included in the vehicle information VI is equal to the end speed ES set in the previous process P8.
  • the function F9 returns to the previous process P8, executes avoidance control, and causes the vehicle 100 to travel along the avoidance route AR.
  • the function F9 ends the avoidance control and ends the process shown in FIG.
  • the vehicle control device 110 of the present embodiment includes an outside world sensor 106 that acquires the outside world information EI, a vehicle sensor 107 that acquires the vehicle information VI, and a storage device 108a that stores the map information MI. Control the vehicle 100.
  • the vehicle control device 110 includes a processing device 111, and the processing device 111 performs the following operations based on one or more of the outside world information EI, the vehicle information VI, and the map information MI.
  • the processing device 111 estimates the traveling path TR of the vehicle 100 (processing P1), and calculates the position and speed of the peripheral objects of the vehicle 100 and the travelable area RA of the vehicle 100 (processing P2 and P3).
  • the processing device 111 generates one or more route candidate CRs capable of avoiding a collision between a peripheral object and the vehicle 100 (process P4), and selects one avoidance route AR from one or more route candidate CRs (process P4). P6). Further, the processing device 111 sets the end speed ES of the avoidance control for traveling the vehicle 100 along the avoidance route AR (process P7), and the vehicle travels on the avoidance route AR after the start of the avoidance control (process P8). When the end speed ES is reached, the avoidance control is terminated (process P9).
  • the vehicle control device 110 of the present embodiment can improve the safety of the vehicle 100 as compared with the conventional case.
  • avoidance control for avoiding a collision between a vehicle 100 and an obstacle such as a preceding vehicle LV on a straight road having a plurality of lanes
  • a situation such as a following vehicle FV or an oncoming vehicle OV in the avoidance destination lane.
  • the end speed ES of the avoidance control can be changed according to the above.
  • the risk of collision with obstacles such as the following vehicle FV and the oncoming vehicle OV at the end of the avoidance control of the vehicle 100 can be reduced, and the safety of the vehicle 100 can be improved as compared with the conventional case.
  • the conventional driving support system ends the vehicle control for avoiding a collision and delegates the operation of the vehicle to the driver when the vehicle is stopped.
  • the own vehicle decelerates and the speed difference between the following vehicle and the own vehicle increases. Therefore, if the own vehicle changes lanes while avoiding a collision, the risk of being hit by a following vehicle traveling in the changed lane increases.
  • the processing device 111 changes to the lane of the change destination when the avoidance route AR of the vehicle 100 includes a lane change in the process P7 for setting the end speed ES, for example. Determines the presence or absence of the following vehicle FV. Then, the processing device 111 sets the end speed ES to zero when there is no following vehicle, and sets the end speed ES to the speed of the following vehicle FV when there is a following vehicle FV.
  • the vehicle control device 110 can reduce the risk of a rear-end collision of the following vehicle FV at the end of the avoidance control of the vehicle 100, and can improve the safety of the vehicle 100 as compared with the conventional case. More specifically, if the speed of the vehicle 100 at the start of avoidance control is higher than the speed of the following vehicle FV, even if the vehicle 100 is decelerated to the same speed as the following vehicle FV in the avoidance control, the following vehicle FV collides. Can be avoided. Further, if the speed of the vehicle 100 during the avoidance control is lower than the speed of the following vehicle FV, the vehicle 100 can be accelerated to the same speed as the following vehicle FV in the avoidance control to avoid the rear-end collision of the following vehicle FV. ..
  • the processing device 111 determines, for example, the constant k in the steering avoidance limit distance Ds represented by the above equation (2) in the process P5 for determining the permission of the avoidance control described above. Is changed according to the road conditions and road environment.
  • FIG. 8 is a plan view illustrating the action of setting the constant k in the above equation (2), that is, the steering avoidance limit distance Ds of the vehicle 100 shown in FIG.
  • the processing device 111 determines that when the following vehicle FV exists in a predetermined range of the overtaking lane adjacent to the traveling lane in which the vehicle 100 is traveling, the processing device 111 does not have the following vehicle FV in the predetermined range.
  • the constant k in the above equation (2) is increased.
  • the vehicle 100 travels along the avoidance route AR'that changes lanes and moves to the adjacent lane at an earlier stage than the avoidance route AR before the steering avoidance limit distance Ds increases. Can be made to. Therefore, the intention of changing the lane of the vehicle 100 for avoidance control is transmitted to the following vehicle FV at an early stage, the risk of the vehicle 100 being hit by the following vehicle FV is reduced, and the safety of the vehicle 100 is improved.
  • the constant k in the above equation (2) is increased as compared with the case where the speed of the following vehicle FV is equal to or less than the speed of the vehicle 100.
  • the processing device 111 determines the oncoming vehicle OV in the oncoming lane when the avoidance route AR includes the oncoming lane in the process P7 for setting the end speed ES, for example. Determine the presence or absence. Then, the processing device 111 sets the end speed ES to the driving speed or the creep speed when the oncoming vehicle OV is “none”.
  • the vehicle control device 110 can drive the vehicle 100 slowly when the vehicle 100 is located in the oncoming lane at the end of the avoidance control of the vehicle 100. Therefore, even if an oncoming vehicle suddenly appears at the end of the avoidance control of the vehicle 100 by the vehicle control device 110, the driver of the vehicle 100 can immediately avoid the collision by steering. As a result, the delay in the avoidance operation of the vehicle 100 can be eliminated, the risk of collision with the oncoming vehicle OV can be reduced, and the safety of the vehicle 100 can be improved as compared with the conventional case.
  • the processing device 111 minimizes the steering angle, steering angular velocity, or steering angular acceleration of the vehicle 100, or the acceleration of the vehicle 100.
  • the route candidate CR that becomes is selected as the avoidance route AR.
  • the processing device 111 can travel the vehicle 100 by steering in one direction in the left or right direction when a plurality of route candidate CRs are generated. May be selected as the avoidance route AR.
  • the vehicle control device 110 can reduce the burden on the driver's arm holding the steering wheel as compared with the S-shaped steering that steers in both the left and right directions during the avoidance control of the vehicle 100. it can.
  • the vehicle information VI includes, for example, whether or not the driver of the vehicle 100 holds the steering wheel.
  • the processing device 111 is more than when the grip is "yes".
  • the avoidance path AR is selected by increasing the steering angle, steering angular velocity, or upper limit of steering angular acceleration of the vehicle 100. Then, when the vehicle 100 has the cutting mechanism, the processing device 111 selects the avoidance path AR based on the upper limit value when the grip is “none”.
  • the vehicle control device 110 can reduce the burden on the driver's arm holding the steering wheel during avoidance control of the vehicle 100.
  • the burden on the driver's arm is small, that is, when the driver is holding his / her hand on the steering wheel, when he / she is not holding the steering wheel, or when SBW is adopted, more route candidate CR is selected.
  • the width of the wheel can be widened, and the safety of the vehicle 100 can be improved.
  • the vehicle control device 110 in which the safety of the vehicle 100 is improved as compared with the conventional case.
  • the second embodiment of the vehicle control device of the present disclosure will be described with reference to FIGS. 1 to 8 and FIGS. 9 to 11B.
  • the process P6 for selecting the route candidate CR shown in FIG. 3 is different from the vehicle control device 110 described in the above-described first embodiment. Since the other points of the vehicle control device 110 of the present embodiment are the same as those of the vehicle control device 110 of the first embodiment, the same reference numerals are given to the same parts and the description thereof will be omitted.
  • FIG. 9 is a flow chart showing details of the process P6 for selecting the route candidate CR by the processing device 111 of the vehicle control device 110 according to the present embodiment.
  • 10A to 10C are plan views illustrating a process P62 for calculating the return region CA by the function F7 for selecting the avoidance path AR of the vehicle control device 110.
  • the return area CA is an area capable of returning to the traveling path TR without switching between forward and reverse movement of the vehicle 100.
  • the vehicle control device 110 In this case, in the process P4 for generating the route candidate CR shown in FIG. 3, the vehicle control device 110 generates a plurality of route candidate CRs as shown in FIG. 10A by the function F6 for generating the route candidate CR shown in FIG. To do.
  • the function F7 for selecting the avoidance route AR shown in FIG. 2 determines the permission (YES) for avoidance control, and the route candidate CR shown in FIG.
  • the process P6 for selecting is started.
  • the vehicle control device 110 first executes the process P61 for excluding the route candidate CR outside the travelable area RA by the function F7 for selecting the avoidance route AR, as shown in FIG.
  • the function F7 for selecting the avoidance route AR is, for example, as shown in FIGS. 10B and 10C, at the end position EP of each route candidate CR that remains without being excluded in the above-mentioned process P61.
  • 100 produces an arc based on a swivel radius.
  • the arc and the region inside the arc are designated as the return region CA.
  • the arc and the region inside the arc are not set as the return region CA.
  • the speed of the vehicle 100 traveling along the route candidate CR may be reduced. This example will be described with reference to FIGS. 11A and 11B.
  • FIG. 11A is a plan view showing the end position EP of the route candidate CR when the speed of the vehicle 100 traveling along the route candidate CR shown in FIG. 10C is reduced.
  • the mileage of the vehicle 100 traveling along the route candidate CR is on the horizontal axis
  • the speed of the vehicle 100 is on the vertical axis
  • the speed profile Vp1 of the vehicle 100 before the speed is reduced and the speed are reduced.
  • It is a graph which shows the speed profile Vp2 of the vehicle 100 later.
  • the function F7 for selecting the avoidance route AR for example, generates an arc based on the radius at which the vehicle 100 can turn at the end position EP'of the shortened route candidate CR', as shown in FIG. 11A.
  • the route candidate CR shown in FIG. 10C is updated to the route candidate CR'shown in FIG. 11A, and the arc is changed to the arc shown in FIG. 11A.
  • the area inside the area is referred to as a return area CA.
  • the vehicle control device 110 executes, for example, the process P63 for determining whether or not the route candidate CR exists in the calculated return region CA by the function F7 for selecting the avoidance route AR.
  • the function F7 determines that the route candidate CR exists in the return region CA (YES)
  • the function F7 selects the route candidate CR in the return region CA as the avoidance route AR.
  • Process P64 is executed.
  • the function F7 selects one route candidate CR as the avoidance route AR as in the above-described first embodiment.
  • the vehicle control device 110 ends the process P6 for selecting the route candidate CR shown in FIG. 9, and executes the process P7 for setting the end speed ES shown in FIG.
  • the function F7 for selecting the avoidance route AR determines that the route candidate CR does not exist in the return area CA (NO)
  • the route candidate is in the travelable area RA.
  • the process P65 for determining whether or not CR exists is executed.
  • the function F7 determines that the route candidate CR exists in the travelable area RA (YES) as in the example shown in FIG. 10C
  • the function F7 determines the route candidate CR in the travelable area RA as the avoidance route AR.
  • the process P66 selected as is executed.
  • the function F7 for selecting the avoidance route AR selects one route candidate CR as the avoidance route AR, as in the first embodiment. To do.
  • the function F7 determines that the route candidate CR does not exist in the travelable region RA (NO) due to the presence of, for example, a preceding vehicle or another oncoming vehicle, the route candidate CR shown in FIG. The process P6 for selecting is terminated.
  • the processing device 111 calculates the return region CA capable of returning from the route candidate CR to the travel route TR. Then, the processing device 111 selects the route candidate CR as the avoidance route AR when the route candidate CR is included in the return area CA, and includes the route candidate CR in the travelable area RA when the route candidate CR is not included in the return area CA. The route candidate CR to be selected is selected as the avoidance route AR. With this configuration, the driver can operate the vehicle 100 to return to the planned travel route TR after the completion of the avoidance control for driving the vehicle 100 along the avoidance route AR by the vehicle control device 110.
  • the return area CA is an area capable of returning to the traveling path TR without switching between forward and reverse of the vehicle 100.
  • the processing device 111 reduces the speed of the vehicle 100 traveling along the route candidate CR when the return region CA does not include the route candidate CR. Can be made to. This makes it possible to increase the possibility of generating a route candidate CR'that can return to the travel route TR.
  • a route candidate CR'that can return to the travel route TR not only the speed of the vehicle 100 traveling along the route candidate CR is reduced, but also various route candidate CRs and speed profiles of the vehicle 100 are used. It may be generated. In this case, it may be determined whether or not it is possible to return to the traveling route TR based on the generated route candidate CR and speed profile, and the returnable route candidate CR and speed profile may be selected as the avoidance route AR.
  • the third embodiment of the vehicle control device of the present disclosure will be described with reference to FIGS. 1 to 11B and with reference to FIG.
  • the process P6 for selecting the route candidate CR shown in FIG. 3 is different from the vehicle control device 110 described in the second embodiment. Since the other points of the vehicle control device 110 of the present embodiment are the same as those of the vehicle control device 110 of the second embodiment, the same reference numerals are given to the same parts and the description thereof will be omitted.
  • the process when it is determined that the route candidate CR does not exist is shown in FIG. It is different from the vehicle control device 110 of the second embodiment shown in the above. Specifically, as shown in FIG. 12, in the vehicle control device 110 of the present embodiment, the route candidate CR does not exist in the travelable area RA due to the function F7 for selecting the avoidance route AR in the process P65 (NO). If it is determined, the route candidate CR having the lowest risk outside the travelable area RA is selected as the avoidance route AR.
  • the function F7 for selecting the avoidance route AR determines the degree of danger at the time of a collision, for example, based on the physical properties or types of peripheral objects existing around the vehicle 100.
  • the physical characteristics of peripheral objects include, for example, relative velocity, area, volume, weight, and materials such as metal or wood.
  • the types of peripheral objects include, for example, vehicles, pedestrians, guardrails, roadside trees, medians, fences, and other obstacles.
  • the degree of risk is determined by giving priority to the safety of pedestrians and drivers, for example.
  • the function F7 for selecting the avoidance route AR selects the danger avoidance route that collides with the determined peripheral object having the lowest risk as the avoidance route AR.
  • the processing device 111 determines based on the physical properties or types of peripheral objects when the route candidate CR is not included in the return area CA and the travelable area RA. Calculate the danger avoidance route that collides with the peripheral object with the lowest risk at the time of collision. Then, the processing device 111 calculates the control amount of the danger avoidance control that causes the vehicle 100 to travel along the danger avoidance route.
  • the avoidance control for driving the vehicle 100 along the avoidance route AR is executed to make the vehicle 100 the least dangerous peripheral area. It can collide with an object. Therefore, even when the route candidate CR does not exist in the return region CA and the travelable region RA, the safety of the driver of the vehicle 100 and the pedestrians around the vehicle 100 can be improved.
  • the fourth embodiment of the vehicle control device of the present disclosure will be described with reference to FIGS. 13 and 14A to 14D with reference to FIGS. 1 to 12.
  • the process P6 for selecting the route candidate CR shown in FIG. 13 is different from the process P6 described in the third embodiment shown in FIG. Since the other points of the vehicle control device 110 of the present embodiment are the same as those of the vehicle control device 110 of the third embodiment, the same parts are designated by the same reference numerals and the description thereof will be omitted.
  • FIG. 13 is a flow chart showing the flow of the process P6 for selecting the route candidate CR in the vehicle control device 110 of the present embodiment.
  • the function F7 for selecting the avoidance route AR says that the route candidate CR does not exist (NO) in the process P63 for determining whether or not the route candidate CR exists in the return region CA.
  • the process P68 for determining whether or not the route candidate CR exists in the alternative route SR is executed.
  • the function F7 for selecting the avoidance route AR is used not only for the route candidate CR centered on the travel route TR that turns right at the intersection, but also for the alternative route SR that deviates from the travel route TR and goes straight through the intersection.
  • a route candidate CR is generated.
  • the function F7 for selecting the avoidance route AR includes not only the route candidate CR centered on the travel route TR that goes straight through the intersection, but also the alternative route SR that deviates from the travel route TR and turns left at the intersection and the intersection.
  • a route candidate CR is also generated for the alternative route SR that turns right.
  • the function F7 for selecting the avoidance route AR is used not only for the route candidate CR centered on the travel route TR that turns left at the intersection, but also for the alternative route SR that deviates from the travel route TR and goes straight through the intersection.
  • the route candidate CR is generated.
  • the function F7 for selecting the avoidance route AR since the vehicle 100 is traveling in the right turn lane, the function F7 for selecting the avoidance route AR generates only the route candidate CR centered on the travel route TR that turns right at the intersection, and sets the intersection. Route candidate CR is not generated for the alternative route SR that turns left or the alternative route SR that goes straight at the intersection.
  • Whether or not to generate a route candidate CR in the alternative route SR may be determined by displaying a traffic light in the alternative route SR. For example, in the example shown in FIG. 14B, when the signal of the intersection is a display that allows traveling only in the straight direction, the route candidate CR is not generated in the alternative route SR that turns right at the intersection and the alternative route SR that turns left at the intersection. Thereby, the safety of the vehicle 100 can be improved.
  • the function F7 for selecting the avoidance route AR selects the route candidate CR of the alternative route SR as the avoidance route AR when it is determined that the route candidate CR exists in the alternative route SR (YES).
  • the function F7 for selecting the avoidance route AR determines that the route candidate CR does not exist in the alternative route SR (NO)
  • the route candidate CR exists in the travelable region RA as in the third embodiment.
  • the process P65 for determining whether or not to do so is executed.
  • the processing device 111 generates the route candidate CR in the alternative route SR deviated from the travel route TR when the route candidate CR is not included in the return region CA. ..
  • the vehicle control device 110 of the present embodiment selects the route candidate CR of the alternative route SR as the avoidance route AR and executes the avoidance control of the vehicle 100 even when the route candidate CR does not exist in the return region CA. can do. Therefore, after the avoidance control of the vehicle 100 is completed, the danger can be avoided without the vehicle 100 requiring a turning operation for switching between forward and reverse in the intersection, and the safety of the vehicle 100 can be improved.
  • Vehicle information 100 Vehicle 106 External world sensor 107 Vehicle sensor 108a Storage device 110 Vehicle control device 111 Processing device AR Avoidance route CA Return area CR Route candidate EI External world information ES End speed FV Following vehicle MI Map information OV Oncoming vehicle RA Travelable area SR Alternative route TR Travel route VI Vehicle information

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

Provided is a vehicle control device with which vehicle safety is improved compared with a conventional case. A processing device of the vehicle control device executes each of the following processing steps on the basis of at least one item of information from among external environment information, vehicle information, and map information. Processing P1 to estimate the travel route of a vehicle. Processing P2 to calculate the position and speed of an object at the periphery of the vehicle. Processing P3 to calculate a region through which the vehicle can travel. Processing P4 to generate one or more route candidates with which a collision between the peripheral object and the vehicle can be avoided. Processing P6 to select one avoidance route from among the one or more route candidates. Processing P7 to set an end speed for avoidance control that causes the vehicle to travel along the avoidance route. Processing P8 to execute avoidance control. Processing P9 to end the avoidance control when the vehicle has traveled through the avoidance route and has reached the end speed.

Description

車両制御装置Vehicle control unit
 本開示は、車両制御装置に関する。 This disclosure relates to a vehicle control device.
 従来から衝突回避等の自車両の運転支援技術に関する発明が知られている(下記特許文献1を参照)。特許文献1は、認識部と、取得部と、支援制御部と、を備えた車両の運転支援システムを開示している(同文献、要約、請求項1、第0007段落等を参照)。 Conventionally, inventions related to driving support technology for own vehicles such as collision avoidance have been known (see Patent Document 1 below). Patent Document 1 discloses a vehicle driving support system including a recognition unit, an acquisition unit, and a support control unit (see the same document, abstract, claim 1, paragraph 0007, etc.).
 前記認識部は、自車両の進行方向に存在する立体物を認識する。前記取得部は、前記認識部によって前記立体物の存在が認識された場合、自車両の走行状態に基づいて該立体物と自車両との衝突を回避し得る回避目標軌道を一又は複数、取得する。 The recognition unit recognizes a three-dimensional object existing in the traveling direction of the own vehicle. When the recognition unit recognizes the existence of the three-dimensional object, the acquisition unit acquires one or more avoidance target trajectories capable of avoiding a collision between the three-dimensional object and the own vehicle based on the traveling state of the own vehicle. To do.
 前記支援制御部は、前記取得部により取得された前記回避目標軌道に基づいて前記立体物と自車両との衝突を回避するための支援制御を行う。前記取得部により取得された前記回避目標軌道が、前記立体物を挟んで自車両の左右両方向に存在する場合は、前記支援制御部は、自車両の旋回に関する制御は行わずに、自車両の制動に関する制御を行う。 The support control unit performs support control for avoiding a collision between the three-dimensional object and the own vehicle based on the avoidance target trajectory acquired by the acquisition unit. When the avoidance target track acquired by the acquisition unit exists in both the left and right directions of the own vehicle with the three-dimensional object in between, the support control unit does not control the turning of the own vehicle and the own vehicle. Controls braking.
 また、車両の自動運転制御を行う自動運転制御装置に関する発明が知られている(下記特許文献2を参照)。特許文献2は、車線に対して予め設定された基準走行軌跡に沿って車両を走行させる自動運転制御を行う自動運転制御装置を開示している(同文献、要約、請求項1、第0006段落等を参照)。この自動運転制御装置は、操舵検出部と、範囲設定部と、自動運転制御部と、位置判定部と、注意喚起部と、を備える。 Further, an invention relating to an automatic driving control device that controls automatic driving of a vehicle is known (see Patent Document 2 below). Patent Document 2 discloses an automatic driving control device that performs automatic driving control for driving a vehicle along a reference traveling locus set in advance with respect to a lane (the same document, abstract, claim 1, paragraph 0006). Etc.). This automatic driving control device includes a steering detection unit, a range setting unit, an automatic driving control unit, a position determination unit, and a warning unit.
 操舵検出部は、前記自動運転制御中に前記車両の運転者による操舵を検出する。前記範囲設定部は、前記車線の車線幅方向における範囲として前記車線内に前記基準走行軌跡を含む許容範囲を設定するとともに、前記許容範囲内に前記基準走行軌跡を含む第一範囲と前記第一範囲の左右両側の第二範囲を設定する。 The steering detection unit detects steering by the driver of the vehicle during the automatic driving control. The range setting unit sets an allowable range including the reference traveling locus in the lane as a range in the lane width direction of the lane, and a first range including the reference traveling locus within the allowable range and the first range. Set the second range on both the left and right sides of the range.
 前記自動運転制御部は、前記自動運転制御を実行する。また、前記自動運転制御部は、前記操舵検出部により前記運転者による操舵が検出された場合に前記車両の車線幅方向の位置が前記許容範囲に含まれるときには前記自動運転制御中における前記運転者の操舵を前記車両の走行に反映する。 The automatic driving control unit executes the automatic driving control. Further, when the steering detection unit detects steering by the driver and the position in the lane width direction of the vehicle is included in the allowable range, the automatic driving control unit is in the automatic driving control. Steering is reflected in the running of the vehicle.
 前記位置判定部は、前記操舵検出部により前記運転者による操舵が検出された場合に、前記車両の車線幅方向の位置が前記第二範囲に含まれるか否かを判定する。前記注意喚起部は、前記位置判定部により前記車両の車線幅方向の位置が前記第二範囲に含まれると判定された場合に、前記車両の走行について前記運転者に注意喚起する。 The position determination unit determines whether or not the position in the lane width direction of the vehicle is included in the second range when the steering by the driver is detected by the steering detection unit. When the position determination unit determines that the position in the lane width direction of the vehicle is included in the second range, the caution unit alerts the driver about the running of the vehicle.
国際公開第2013/046300号International Publication No. 2013/046300 特開2017-013644号公報Japanese Unexamined Patent Publication No. 2017-013644
 前記特許文献1に記載された従来の運転支援システムでは、取得部により取得された回避目標軌道が、立体物を挟んで自車両の左右両方向に存在する場合は、支援制御部は、自車両の旋回に関する制御は行わずに、自車両の制動に関する制御を行う。これにより、走行車線を走行中の自車両が減速し、追い越し車線を走行する後続車と自車両との速度差が増大する。この状態で自車両が追い越し車線に車線変更をすると、追い越し車線を走行する後続車に追突されるリスクが増大する。 In the conventional driving support system described in Patent Document 1, when the avoidance target track acquired by the acquisition unit exists in both the left and right directions of the own vehicle with the three-dimensional object in between, the support control unit is the own vehicle. It controls the braking of the own vehicle without controlling the turning. As a result, the own vehicle traveling in the traveling lane decelerates, and the speed difference between the following vehicle traveling in the overtaking lane and the own vehicle increases. If the own vehicle changes lanes to the overtaking lane in this state, the risk of being hit by a following vehicle traveling in the overtaking lane increases.
 前記特許文献2に記載された自動運転制御装置では、自動運転制御部は、車両の車線幅方向の位置が許容範囲に含まれるときには自動運転制御中における運転者の操舵を車両の走行に反映する。この場合、車両が直進を継続する場合には、基準走行軌跡に復帰することが可能であるが、たとえば、車両が交差点で右折したり左折したりする場合には、車両が交差点を曲がりきれず、車両の前進と後進を切り替える操作が必要になり、後続車に追突されるおそれがある。 In the automatic driving control device described in Patent Document 2, when the position in the lane width direction of the vehicle is included in the permissible range, the automatic driving control unit reflects the steering of the driver during the automatic driving control in the running of the vehicle. .. In this case, if the vehicle continues to go straight, it is possible to return to the reference driving trajectory, but for example, if the vehicle makes a right or left turn at an intersection, the vehicle cannot turn completely at the intersection. , It is necessary to switch between forward and reverse of the vehicle, and there is a risk of being hit by a following vehicle.
 本開示は、従来よりも車両の安全性を向上させた車両制御装置を提供する。 The present disclosure provides a vehicle control device having improved vehicle safety as compared with the conventional case.
 本開示の一態様は、外界情報を取得する外界センサと車両情報を取得する車両センサと地図情報を記憶する記憶装置とを備えた車両を制御するための車両制御装置であって、処理装置を備え、前記処理装置は、前記外界情報、前記車両情報、前記地図情報のうちの一以上の情報に基づいて、前記車両の走行経路を推定し、前記車両の周辺物体の位置および速度と、前記車両の走行可能領域を算出し、前記周辺物体と前記車両との衝突を回避し得る一以上の経路候補を生成し、一以上の前記経路候補から一の回避経路を選択し、前記回避経路に沿って前記車両を走行させる回避制御の終了速度を設定し、前記回避制御の開始後に前記車両が前記回避経路を走行して前記終了速度になったときに前記回避制御を終了させることを特徴とする、車両制御装置である。 One aspect of the present disclosure is a vehicle control device for controlling a vehicle including an external world sensor for acquiring external world information, a vehicle sensor for acquiring vehicle information, and a storage device for storing map information, and the processing device is used. The processing device estimates the traveling route of the vehicle based on one or more of the outside world information, the vehicle information, and the map information, and determines the position and speed of the peripheral objects of the vehicle and the said. The travelable area of the vehicle is calculated, one or more route candidates capable of avoiding the collision between the peripheral object and the vehicle are generated, one avoidance route is selected from the one or more route candidates, and the avoidance route is selected. It is characterized in that the end speed of the avoidance control for traveling the vehicle is set along the same, and the avoidance control is terminated when the vehicle travels on the avoidance route and reaches the end speed after the start of the avoidance control. It is a vehicle control device.
 本開示によれば、従来よりも車両の安全性を向上させた車両制御装置を提供することができる。 According to the present disclosure, it is possible to provide a vehicle control device having improved vehicle safety as compared with the conventional case.
本開示に係る車両制御装置の実施形態1を示すブロック図。The block diagram which shows Embodiment 1 of the vehicle control device which concerns on this disclosure. 図1の車両制御装置の構成を示すブロック図。The block diagram which shows the structure of the vehicle control device of FIG. 図1の車両制御装置の機能ブロック図。The functional block diagram of the vehicle control device of FIG. 図1の車両制御装置による処理の流れを示すフロー図。The flow chart which shows the flow of processing by the vehicle control device of FIG. 図1の車両制御装置による走行可能領域の算出結果の一例。An example of the calculation result of the travelable area by the vehicle control device of FIG. 図1の車両制御装置による走行可能領域の算出結果の一例。An example of the calculation result of the travelable area by the vehicle control device of FIG. 図1の車両制御装置による経路候補の算出結果の一例。An example of the calculation result of the route candidate by the vehicle control device of FIG. 図1の車両制御装置による経路候補の算出結果の一例。An example of the calculation result of the route candidate by the vehicle control device of FIG. 図3の回避制御の許可を判定する処理を説明するグラフ。The graph explaining the process of determining the permission of the avoidance control of FIG. 図3の回避制御の終了条件の一例を説明する平面図。FIG. 3 is a plan view illustrating an example of an end condition of avoidance control of FIG. 図3の回避制御の終了条件の一例を説明する平面図。FIG. 3 is a plan view illustrating an example of an end condition of avoidance control of FIG. 図3の回避制御の終了条件の一例を説明する平面図。FIG. 3 is a plan view illustrating an example of an end condition of avoidance control of FIG. 図6に示す車両の操舵回避限界距離の設定を説明する平面図。FIG. 5 is a plan view illustrating the setting of the steering avoidance limit distance of the vehicle shown in FIG. 本開示に係る車両制御装置の実施形態2の処理の流れを示すフロー図。The flow chart which shows the process flow of Embodiment 2 of the vehicle control device which concerns on this disclosure. 実施形態2の車両制御装置の走行経路と経路候補の算出結果の一例。An example of the calculation result of the travel route and the route candidate of the vehicle control device of the second embodiment. 実施形態2の車両制御装置による復帰領域の演算を説明する平面図。The plan view explaining the calculation of the return area by the vehicle control device of Embodiment 2. 実施形態2の車両制御装置による復帰領域の演算を説明する平面図。The plan view explaining the calculation of the return area by the vehicle control device of Embodiment 2. 実施形態2の車両制御装置の経路候補の算出結果の一例。An example of the calculation result of the route candidate of the vehicle control device of the second embodiment. 図11Aの経路候補における車両の速度プロファイルを示すグラフ。The graph which shows the speed profile of the vehicle in the route candidate of FIG. 11A. 本開示に係る車両制御装置の実施形態3の処理の流れを示すフロー図。The flow chart which shows the process flow of Embodiment 3 of the vehicle control device which concerns on this disclosure. 本開示に係る車両制御装置の実施形態4の処理の流れを示すフロー図。The flow chart which shows the process flow of Embodiment 4 of the vehicle control device which concerns on this disclosure. 実施形態4の車両制御装置による経路候補の算出結果の一例。An example of the calculation result of the route candidate by the vehicle control device of the fourth embodiment. 実施形態4の車両制御装置による経路候補の算出結果の一例。An example of the calculation result of the route candidate by the vehicle control device of the fourth embodiment. 実施形態4の車両制御装置による経路候補の算出結果の一例。An example of the calculation result of the route candidate by the vehicle control device of the fourth embodiment. 実施形態4の車両制御装置による経路候補の算出結果の一例。An example of the calculation result of the route candidate by the vehicle control device of the fourth embodiment.
 以下、図面を参照して本開示に係る車両制御装置の実施形態を説明する。 Hereinafter, embodiments of the vehicle control device according to the present disclosure will be described with reference to the drawings.
[実施形態1]
 図1は、本開示の車両制御装置の実施形態1に係る車両制御装置110を搭載した車両100のブロック図である。図2Aは、図1の車両制御装置110の構成を示すブロック図である。図2Bは、図1の車両制御装置110の機能ブロック図である。図3は、図1の車両制御装置110による処理の流れを示すフロー図である。
[Embodiment 1]
FIG. 1 is a block diagram of a vehicle 100 equipped with the vehicle control device 110 according to the first embodiment of the vehicle control device of the present disclosure. FIG. 2A is a block diagram showing the configuration of the vehicle control device 110 of FIG. FIG. 2B is a functional block diagram of the vehicle control device 110 of FIG. FIG. 3 is a flow chart showing a flow of processing by the vehicle control device 110 of FIG.
 車両制御装置110は、たとえば、車両100の運転者の運転操作を支援する先進運転支援システム(Advanced Driver-Assistance Systems:ADAS)の一部を構成する。ADASは、たとえば、車両100と周囲の障害物との衝突を回避するためのブレーキ操作や操舵などを自動的に行うことで、車両100の運転者の運転操作を支援する。車両制御装置110は、たとえば、マイクロコントローラやファームウェアなどのコンピュータシステムによって構成することができる。 The vehicle control device 110 constitutes, for example, a part of an advanced driver-assistance system (ADAS) that supports the driving operation of the driver of the vehicle 100. ADAS supports the driving operation of the driver of the vehicle 100 by automatically performing a braking operation, steering, or the like for avoiding a collision between the vehicle 100 and a surrounding obstacle, for example. The vehicle control device 110 can be configured by, for example, a computer system such as a microcontroller or firmware.
 車両制御装置110は、たとえば、CPUなどの処理装置111、RAMやROMなどのメモリ112、ハードディスクなどの不揮発性メモリ113、および入出力インタフェース114などのハードウェアと、車両制御プログラム115を含むソフトウェアによって構成される。入出力インタフェース114は、たとえば、外界センサ106、車両センサ107、および各種の制御装置を含む車両100の各部に接続されている。詳細については後述するが、本実施形態の車両制御装置110は、次のような構成を備えることを特徴としている。 The vehicle control device 110 is provided by, for example, hardware such as a processing device 111 such as a CPU, a memory 112 such as RAM or ROM, a non-volatile memory 113 such as a hard disk, and an input / output interface 114, and software including a vehicle control program 115. It is composed. The input / output interface 114 is connected to each part of the vehicle 100 including, for example, an external sensor 106, a vehicle sensor 107, and various control devices. Although the details will be described later, the vehicle control device 110 of the present embodiment is characterized by having the following configuration.
 本実施形態の車両制御装置110は、外界情報EIを取得する外界センサ106と車両情報VIを取得する車両センサ107と地図情報MIを記憶する記憶装置108aとを備えた車両100を制御するための装置である。車両制御装置110は、処理装置111を備えている。処理装置111は、外界情報EI、車両情報VI、地図情報MIのうちの一以上の情報に基づいて、以下の各処理を実行する。まず、車両100の走行経路TRを推定する処理P1と、車両100の周辺物体の位置および速度と、車両100の走行可能領域RAを算出する処理P2,P3と、周辺物体と車両100との衝突を回避し得る一以上の経路候補CRを生成する処理P4と、一以上の経路候補CRから一の回避経路ARを選択する処理P6である。さらに、回避経路ARに沿って車両100を走行させる回避制御の終了速度ESを設定する処理P7と、回避制御の開始後に車両が回避経路ARを走行して終了速度ESになったときに回避制御を終了させる処理P9である。 The vehicle control device 110 of the present embodiment is for controlling a vehicle 100 including an outside world sensor 106 for acquiring the outside world information EI, a vehicle sensor 107 for acquiring the vehicle information VI, and a storage device 108a for storing the map information MI. It is a device. The vehicle control device 110 includes a processing device 111. The processing device 111 executes each of the following processes based on one or more of the outside world information EI, the vehicle information VI, and the map information MI. First, the process P1 for estimating the travel path TR of the vehicle 100, the processes P2 and P3 for calculating the position and speed of the peripheral object of the vehicle 100, and the travelable area RA of the vehicle 100, and the collision between the peripheral object and the vehicle 100. This is a process P4 for generating one or more route candidate CRs capable of avoiding the above, and a process P6 for selecting one avoidance route AR from one or more route candidate CRs. Further, the process P7 for setting the end speed ES of the avoidance control for traveling the vehicle 100 along the avoidance route AR, and the avoidance control when the vehicle travels on the avoidance route AR and reaches the end speed ES after the start of the avoidance control. Is the process P9 for terminating.
 以下では、まず車両制御装置110の制御対象である車両100の構成の一例を説明し、次に車両制御装置110の構成の一例を詳細に説明する。 In the following, an example of the configuration of the vehicle 100 to be controlled by the vehicle control device 110 will be described first, and then an example of the configuration of the vehicle control device 110 will be described in detail.
 車両100は、たとえば、駆動力発生機構101と、変速機102と、車輪103と、ブレーキ装置104と、ステアリング装置105と、を備えている。また、車両100は、たとえば、外界センサ106と、車両センサ107と、ナビゲーション装置108と、通信装置109と、を備えている。さらに、車両100は、たとえば、車両制御装置110と、ブレーキ制御装置120と、ステアリング制御装置130と、駆動力制御装置140と、変速機制御装置150と、入出力装置160と、灯火装置170と、を備えている。 The vehicle 100 includes, for example, a driving force generation mechanism 101, a transmission 102, wheels 103, a brake device 104, and a steering device 105. Further, the vehicle 100 includes, for example, an outside world sensor 106, a vehicle sensor 107, a navigation device 108, and a communication device 109. Further, the vehicle 100 includes, for example, a vehicle control device 110, a brake control device 120, a steering control device 130, a driving force control device 140, a transmission control device 150, an input / output device 160, and a lighting device 170. , Is equipped.
 駆動力発生機構101は、たとえば、エンジンもしくはモータ、またはエンジンおよびモータによって構成され、車両100を駆動させる駆動力を発生させる。変速機102は、駆動力発生機構101が発生させた駆動力を適切な方向へ切り替え、車両100を前進または後進させる変速機構を有している。車輪103は、変速機102を介して伝達された駆動力発生機構101の駆動力によって回転する。ブレーキ装置104は、たとえば、ブレーキ制御装置120によって制御され、アクチュエータを駆動させて車輪103を制動する。 The driving force generation mechanism 101 is composed of, for example, an engine or a motor, or an engine and a motor, and generates a driving force for driving the vehicle 100. The transmission 102 has a transmission mechanism that switches the driving force generated by the driving force generating mechanism 101 in an appropriate direction to move the vehicle 100 forward or backward. The wheels 103 are rotated by the driving force of the driving force generating mechanism 101 transmitted via the transmission 102. The brake device 104 is controlled by, for example, the brake control device 120, and drives an actuator to brake the wheels 103.
 ステアリング装置105は、たとえば、ステアリングホイールと、操舵機構とを備えている。ステアリング装置105は、たとえば、運転者によるステアリングホイールの操作に応じて、操舵機構により車輪103の舵角を変化させ、車両100を旋回および転回させる。ステアリングホイールと操舵機構は、機械的に接続されていてもよく、これらを機械的に分離したステア・バイ・ワイヤ(SBW)を採用してもよい。 The steering device 105 includes, for example, a steering wheel and a steering mechanism. The steering device 105, for example, changes the steering angle of the wheels 103 by the steering mechanism in response to the operation of the steering wheel by the driver, and turns and turns the vehicle 100. The steering wheel and the steering mechanism may be mechanically connected, or a steer-by-wire (SBW) that mechanically separates them may be adopted.
 ステアリング装置105は、ステアリングホイールと操舵機構とが分離されている場合、操舵角センサ107aによって検出したステアリングホイールの操作量に応じて、操舵機構のアクチュエータを駆動させるようにしてもよい。なお、ステアリング装置105は、車両制御装置110の制御信号に応じて、ステアリングホイールと操舵機構との機械的な接続を切断する切断機構を有してもよい。また、ステアリング装置105は、車両制御装置110の制御信号に応じて、操舵機構のアクチュエータを駆動させてもよい。 When the steering wheel and the steering mechanism are separated, the steering device 105 may drive the actuator of the steering mechanism according to the operation amount of the steering wheel detected by the steering angle sensor 107a. The steering device 105 may have a cutting mechanism that disconnects the mechanical connection between the steering wheel and the steering mechanism in response to the control signal of the vehicle control device 110. Further, the steering device 105 may drive the actuator of the steering mechanism in response to the control signal of the vehicle control device 110.
 外界センサ106は、車両100の周囲に存在する周辺物体の情報や車両100の周囲の環境の情報などを含む外界情報EIを取得する。外界センサ106は、たとえば、単眼カメラやステレオカメラなどの撮像装置、超音波センサ、ミリ波レーダー、およびLIDAR(Light Detection and Ranging/Laser Imaging Detection and Ranging)などを含む。車両100の周囲に存在する周辺物体は、たとえば、車両100の周囲の他の車両、歩行者、道路、道路標示、道路標識、信号、ガードレール、中央分離帯、路上設備、電柱、建造物、その他の障害物などを含む。 The outside world sensor 106 acquires the outside world information EI including information on peripheral objects existing around the vehicle 100 and information on the environment around the vehicle 100. The external world sensor 106 includes, for example, an imaging device such as a monocular camera or a stereo camera, an ultrasonic sensor, a millimeter-wave radar, and LIDAR (Light Detection and Ringing / Laser Imaging Detection and Ranging). Peripheral objects existing around the vehicle 100 include, for example, other vehicles, pedestrians, roads, road markings, road signs, traffic lights, guardrails, medians, road equipment, electric poles, structures, etc. around the vehicle 100. Including obstacles etc.
 外界センサ106によって取得される外界情報EIは、たとえば、周辺物体の車両100に対する位置、形状、大きさ、範囲、色彩、三次元点群情報、信号機情報、車線境界線などの情報を含む。周辺物体の位置情報は、たとえば、前後方向および左右方向の二次元の位置情報に限定されず、高さを含めた三次元の位置情報であってもよい。また、外界情報EIは、外界センサ106だけでなく、通信装置109を介して取得してもよい。信号機情報は、たとえば、前方の信号機の色、信号機の矢印の方向などの情報を含む。車線境界線の情報は、車線境界線の種別に基づく追い越し禁止や追い越し可などの情報を含む。 The external world information EI acquired by the external world sensor 106 includes, for example, information such as the position, shape, size, range, color, three-dimensional point cloud information, traffic light information, and lane boundary line of a peripheral object with respect to the vehicle 100. The position information of peripheral objects is not limited to, for example, two-dimensional position information in the front-rear direction and the left-right direction, and may be three-dimensional position information including height. Further, the outside world information EI may be acquired not only through the outside world sensor 106 but also through the communication device 109. The traffic light information includes, for example, information such as the color of the traffic light in front and the direction of the arrow of the traffic light. The lane boundary information includes information such as overtaking prohibition and overtaking possibility based on the type of lane boundary line.
 車両センサ107は、たとえば、車両100の位置、速度、加速度、操舵角、操舵角速度、操舵角加速度、方向指示器の操作情報、運転者によるステアリングホイールの把持および操作の有無などを含む車両情報VIを取得する。車両センサ107は、たとえば、操舵角センサ107aおよび車速センサ107bならびに図示を省略する加速度センサおよび衛星測位システムを含む。本実施形態において、衛星測位システムは、たとえば、全地球測位システム(GPS)や全地球航法衛星システム(GNSS)であり、ナビゲーション装置108に搭載されている。 The vehicle sensor 107 includes vehicle information VI including, for example, the position, speed, acceleration, steering angle, steering angular velocity, steering angular acceleration, turn signal operation information, driver's gripping of the steering wheel, and presence / absence of operation of the vehicle 100. To get. The vehicle sensor 107 includes, for example, a steering angle sensor 107a and a vehicle speed sensor 107b, and an acceleration sensor and a satellite positioning system (not shown). In the present embodiment, the satellite positioning system is, for example, a Global Positioning System (GPS) or a Global Navigation Satellite System (GNSS), which is mounted on the navigation device 108.
 操舵角センサ107aは、運転者によるステアリング装置105の操作量、すなわちステアリングホイールの操作量に基づく操舵角、操舵角速度、操舵加速度などを検出する。
車速センサ107bは、たとえば、車輪103の回転速度を検出する車輪速センサ、駆動力発生機構101のモータのレゾルバの回転速度を検出するセンサ、または、変速機102の回転速度を検出するセンサの出力などに基づいて、車両100の速度を算出する。
The steering angle sensor 107a detects the amount of operation of the steering device 105 by the driver, that is, the steering angle, steering angular velocity, steering acceleration, etc. based on the amount of operation of the steering wheel.
The vehicle speed sensor 107b is, for example, an output of a wheel speed sensor that detects the rotation speed of the wheels 103, a sensor that detects the rotation speed of the resolver of the motor of the driving force generation mechanism 101, or a sensor that detects the rotation speed of the transmission 102. The speed of the vehicle 100 is calculated based on the above.
 ナビゲーション装置108は、たとえば、前述の衛星測位システムによって構成され、車両100の位置情報を取得する。ナビゲーション装置108は、たとえば、地図情報MI、車両100の目的地、および走行経路TRなどを記憶するための記憶装置108aを備えている。 The navigation device 108 is configured by, for example, the satellite positioning system described above, and acquires the position information of the vehicle 100. The navigation device 108 includes, for example, a storage device 108a for storing the map information MI, the destination of the vehicle 100, the travel route TR, and the like.
 地図情報MIは、たとえば、道路形状、車線数、道路標示、道路標識、信号機、基準走行位置、交通規制、車線区分、直線道路の車線中心線の位置情報、交差点において基準となる走行軌跡、三次元点群情報などの情報を含んでいる。道路形状は、たとえば、ポリゴンやポリライン等で表現される実際の道路形状に近い形状データを含む。交通規制の情報は、たとえば、制限速度や通行可能車種などの情報を含む。車線区分の情報は、たとえば、本線、追い越し車線、登坂車線、直進車線、左折車線、右折車線などの情報を含む。 Map information MI includes, for example, road shape, number of lanes, road signs, road signs, traffic lights, reference driving positions, traffic regulations, lane divisions, position information of lane center lines of straight roads, reference traveling loci at intersections, and tertiary. Contains information such as source point group information. The road shape includes shape data close to the actual road shape represented by, for example, polygons and polylines. Traffic regulation information includes, for example, information such as speed limits and passable vehicles. The lane classification information includes, for example, information such as a main lane, an overtaking lane, a climbing lane, a straight lane, a left turn lane, and a right turn lane.
 通信装置109は、たとえば、サーバーとの情報の授受を行う。また、通信装置109は、たとえば、道路に設置された通信端末や車両100の周囲の他の車両との情報通信を行う。また、通信装置109は、たとえば、サーバー、通信端末または他の車両などから受信した情報を、入出力装置160を介して運転者へ提供する。 The communication device 109, for example, exchanges information with the server. Further, the communication device 109, for example, performs information communication with a communication terminal installed on the road and other vehicles around the vehicle 100. Further, the communication device 109 provides, for example, information received from a server, a communication terminal, another vehicle, or the like to the driver via the input / output device 160.
 ブレーキ制御装置120は、たとえば、運転者のブレーキペダルの操作や、車両制御装置110からの制御信号に基づいてブレーキ装置104のアクチュエータを駆動させることで、車輪103に所定の制動力を発生させて車輪103を制動する。ステアリング制御装置130は、運転者によるステアリング装置105のステアリングホイールの操作量または車両制御装置110からの制御信号に基づいて、ステアリング装置105の操舵機構のアクチュエータを駆動させ、車輪103の舵角を所定の角度に変化させる。 The brake control device 120 generates a predetermined braking force on the wheels 103 by, for example, driving the actuator of the brake device 104 based on the operation of the driver's brake pedal or the control signal from the vehicle control device 110. Braking the wheel 103. The steering control device 130 drives the actuator of the steering mechanism of the steering device 105 based on the amount of operation of the steering wheel of the steering device 105 by the driver or the control signal from the vehicle control device 110, and determines the steering angle of the wheels 103. Change to the angle of.
 駆動力制御装置140は、たとえば、運転者によるアクセルペダルの操作量または車両制御装置110からの制御信号に基づいて、駆動力発生機構101で発生させる駆動力を制御する。変速機制御装置150は、たとえば、運転者によるシフトレバーの操作または車両制御装置110からの制御信号に基づいて変速機102のアクチュエータを駆動させ、変速機102において、前進と後進を切り替え、または変速比を変更する。 The driving force control device 140 controls the driving force generated by the driving force generating mechanism 101 based on, for example, the amount of operation of the accelerator pedal by the driver or the control signal from the vehicle control device 110. The transmission control device 150 drives the actuator of the transmission 102 based on, for example, the operation of the shift lever by the driver or the control signal from the vehicle control device 110, and the transmission 102 switches between forward and reverse, or shifts. Change the ratio.
 入出力装置160は、運転者による情報の入力を可能にするとともに運転者へ情報を提供する。入出力装置160は、たとえば、タッチパネルを備えた表示装置によって構成することができる。入出力装置160は、たとえば、運転者による目的地の入力を受け付けたり、車両100の位置、目的地および走行経路、ならびに周辺物体の情報などを画面上に表示したりする。 The input / output device 160 enables the driver to input information and provides the information to the driver. The input / output device 160 can be configured by, for example, a display device provided with a touch panel. The input / output device 160 accepts, for example, input of a destination by the driver, and displays information on the position, destination and travel route of the vehicle 100, peripheral objects, and the like on the screen.
 また、入出力装置160は、たとえば、マイクやスピーカーを含んでいる。なお、入出力装置160は、たとえば、車両100のウィンドシールド、ルームミラー、サイドミラーなどへの画像を投影するヘッドアップディスプレイ、または運転者が装着するヘッドマウントディスプレイであってもよい。また、入出力装置160は、たとえば、ナビゲーション装置108の一部であってもよい。 Further, the input / output device 160 includes, for example, a microphone and a speaker. The input / output device 160 may be, for example, a head-up display that projects an image onto a windshield, a rearview mirror, a side mirror, or the like of the vehicle 100, or a head-mounted display that is worn by the driver. Further, the input / output device 160 may be a part of the navigation device 108, for example.
 灯火装置170は、たとえば、前照灯、方向指示灯、車幅灯、尾灯、後退灯、制動灯などを含む。灯火装置170は、たとえば、運転者によるスイッチ、ブレーキペダル、または方向指示器などの操作や、車両制御装置110からの制御信号に基づいて、点灯、消灯、または点滅する。 The lighting device 170 includes, for example, headlights, turn signals, side lights, tail lights, backward lights, braking lights, and the like. The lighting device 170 lights, turns off, or blinks based on, for example, an operation of a switch, a brake pedal, or a turn signal by the driver, or a control signal from the vehicle control device 110.
 外界センサ106によって取得された外界情報EI、車両センサ107によって取得された車両情報VI、および記憶装置108aに記憶された地図情報MIは、入出力インタフェース114を介して車両制御装置110に入力される。車両制御装置110は、外界情報EI、車両情報VI、地図情報MIのうちの一以上の情報に基づいて、入出力インタフェース114を介して制御信号CSを出力する。 The external world information EI acquired by the external world sensor 106, the vehicle information VI acquired by the vehicle sensor 107, and the map information MI stored in the storage device 108a are input to the vehicle control device 110 via the input / output interface 114. .. The vehicle control device 110 outputs a control signal CS via the input / output interface 114 based on one or more of the outside world information EI, the vehicle information VI, and the map information MI.
 車両制御装置110から出力された制御信号CSは、車両100のブレーキ制御装置120、ステアリング制御装置130、駆動力制御装置140、変速機制御装置150、入出力装置160、灯火装置170に入力される。これにより、車両制御装置110の制御信号CSに基づいて、駆動力発生機構101、変速機102、ブレーキ装置104、ステアリング装置105、灯火装置170などが操作され、車両100の加減速や操舵などの運転者の運転操作を支援することができる。 The control signal CS output from the vehicle control device 110 is input to the brake control device 120, the steering control device 130, the driving force control device 140, the transmission control device 150, the input / output device 160, and the lighting device 170 of the vehicle 100. .. As a result, the driving force generation mechanism 101, the transmission 102, the braking device 104, the steering device 105, the lighting device 170, and the like are operated based on the control signal CS of the vehicle control device 110, and acceleration / deceleration and steering of the vehicle 100 are performed. It is possible to support the driving operation of the driver.
 次に、本実施形態の車両制御装置110の構成を詳細に説明する。 Next, the configuration of the vehicle control device 110 of the present embodiment will be described in detail.
 図2Bに示すように、車両制御装置110は、たとえば、外界情報EIを取得する機能F1と、地図情報MIを取得する機能F2と、車両情報VIを取得する機能F3と、を有している。また、車両制御装置110は、たとえば、走行可能領域RAを算出する機能F4と、走行経路TRを推定する機能F5と、経路候補CRを生成する機能F6とを有している。さらに、車両制御装置110は、たとえば、回避経路ARを選択する機能F7と、回避制御の終了速度ESを設定する機能F8と、回避制御を実行する機能F9とを有している。 As shown in FIG. 2B, the vehicle control device 110 has, for example, a function F1 for acquiring the outside world information EI, a function F2 for acquiring the map information MI, and a function F3 for acquiring the vehicle information VI. .. Further, the vehicle control device 110 has, for example, a function F4 for calculating the travelable area RA, a function F5 for estimating the travel route TR, and a function F6 for generating a route candidate CR. Further, the vehicle control device 110 has, for example, a function F7 for selecting the avoidance route AR, a function F8 for setting the end speed ES of the avoidance control, and a function F9 for executing the avoidance control.
 図2Bに示す車両制御装置110の各機能は、たとえば、図2Aに示す処理装置111、メモリ112、不揮発性メモリ113、入出力インタフェース114、車両制御プログラム115などによって実現されている。より具体的には、車両制御装置110の各機能は、たとえば、処理装置111が不揮発性メモリ113に記憶された車両制御プログラム115や各種のデータをメモリ112にロードして実行することにより実現される。以下では、図3を参照して、車両制御装置110の各機能による処理の流れを説明する。 Each function of the vehicle control device 110 shown in FIG. 2B is realized by, for example, the processing device 111, the memory 112, the non-volatile memory 113, the input / output interface 114, the vehicle control program 115, and the like shown in FIG. 2A. More specifically, each function of the vehicle control device 110 is realized, for example, by the processing device 111 loading the vehicle control program 115 stored in the non-volatile memory 113 and various data into the memory 112 and executing the functions. To. Hereinafter, the flow of processing by each function of the vehicle control device 110 will be described with reference to FIG.
(走行経路TRを推定する処理P1)
 車両制御装置110は、図3に示す処理を開始すると、まず車両100の走行経路TRを推定する処理P1を実行する。具体的には、車両制御装置110に、外界センサ106によって取得された外界情報EI、記憶装置108aに記憶された地図情報MI、車両センサ107によって取得された車両情報VIが、入出力インタフェース114を介して入力される。車両制御装置110は、入力された各情報を、たとえば、外界情報EIを取得する機能F1と、地図情報MIを取得する機能F2と、車両情報VIを取得する機能F3とによって取得する。
(Process P1 for estimating the travel route TR)
When the vehicle control device 110 starts the process shown in FIG. 3, the vehicle control device 110 first executes the process P1 for estimating the travel path TR of the vehicle 100. Specifically, the vehicle control device 110 receives the external world information EI acquired by the external world sensor 106, the map information MI stored in the storage device 108a, and the vehicle information VI acquired by the vehicle sensor 107. Entered via. The vehicle control device 110 acquires each input information by, for example, a function F1 for acquiring the outside world information EI, a function F2 for acquiring the map information MI, and a function F3 for acquiring the vehicle information VI.
 外界情報EIを取得する機能F1は、たとえば、取得した外界情報EIを、走行可能領域RAを算出する機能F4と、走行経路TRを推定する機能F5へ出力する。地図情報MIを取得する機能F2は、たとえば、取得した地図情報MIを、走行可能領域RAを算出する機能F4と、走行経路TRを推定する機能F5とへ出力する。車両情報VIを取得する機能F3は、たとえば、取得した車両情報VIを、走行可能領域RAを算出する機能F4と、走行経路TRを推定する機能F5とへ出力する。 The function F1 for acquiring the outside world information EI outputs the acquired outside world information EI to, for example, the function F4 for calculating the travelable area RA and the function F5 for estimating the travel route TR. The function F2 for acquiring the map information MI outputs the acquired map information MI to, for example, the function F4 for calculating the travelable area RA and the function F5 for estimating the travel route TR. The function F3 for acquiring the vehicle information VI outputs the acquired vehicle information VI to, for example, the function F4 for calculating the travelable area RA and the function F5 for estimating the travel route TR.
 走行経路TRを推定する機能F5は、たとえば、入力された外界情報EI、地図情報MI、車両情報VIのうち一以上の情報に基づいて、走行経路TRを推定する。より具体的には、機能F5は、たとえば、地図情報MIと、車両情報VIに含まれる車両100の緯度および経度を含む位置情報、速度、操舵角などに基づいて、車両100の位置を推定する。また、外界情報EIおよび地図情報MIの双方に三次元点群情報が含まれる場合、機能F5は、これらの三次元点群情報をマッチングすることにより、車両100の位置を推定してもよい。機能F5は、たとえば、前述の複数の位置推定方法を効果的に組み合わせて車両100の位置の推定を行うことができる。 The function F5 for estimating the travel route TR estimates the travel route TR based on, for example, one or more of the input external world information EI, map information MI, and vehicle information VI. More specifically, the function F5 estimates the position of the vehicle 100 based on, for example, the map information MI, the position information including the latitude and longitude of the vehicle 100 included in the vehicle information VI, the speed, the steering angle, and the like. .. Further, when the three-dimensional point cloud information is included in both the outside world information EI and the map information MI, the function F5 may estimate the position of the vehicle 100 by matching the three-dimensional point cloud information. The function F5 can estimate the position of the vehicle 100 by effectively combining, for example, the plurality of position estimation methods described above.
 さらに、走行経路TRを推定する機能F5は、たとえば、推定した車両100の位置と、地図情報MIに含まれる目的地情報および道路情報に基づいて、走行経路TRを推定する。また、機能F5は、たとえば、車両情報VIに含まれる方向指示器の操作情報に基づいて、車両100の右折、左折または直進などの進行方向を予測し、車両100の走行経路TRを算出する。また、機能F5は、たとえば、車両情報VIに含まれる操舵角、速度、加速度などに基づいて、車両100の走行経路TRを推定してもよい。 Further, the function F5 for estimating the travel route TR estimates the travel route TR based on, for example, the estimated position of the vehicle 100, the destination information and the road information included in the map information MI. Further, the function F5 predicts the traveling direction of the vehicle 100 such as a right turn, a left turn, or a straight line based on the operation information of the direction indicator included in the vehicle information VI, and calculates the traveling route TR of the vehicle 100. Further, the function F5 may estimate the travel path TR of the vehicle 100 based on, for example, the steering angle, the speed, the acceleration, and the like included in the vehicle information VI.
 また、走行経路TRを推定する機能F5は、たとえば、地図情報MIに含まれる直進車線、左折車線、および右折車線などの車線区分と、車両情報VIに含まれる車両100の位置とを比較することで、走行経路TRを推定してもよい。地図情報MIは、たとえば、道路を走行する車両の参照軌跡、直線道路の中心線の位置情報、交差点を走行する車両の基準走行軌跡などの情報を含む。この場合、機能F5は、これらの情報と、車両情報VIに含まれる車両100の位置との比較に基づいて、走行経路TRを推定してもよい。 Further, the function F5 for estimating the travel route TR compares, for example, the lane classifications such as the straight lane, the left turn lane, and the right turn lane included in the map information MI with the position of the vehicle 100 included in the vehicle information VI. Then, the traveling route TR may be estimated. The map information MI includes, for example, information such as a reference locus of a vehicle traveling on a road, position information of a center line of a straight road, and a reference traveling locus of a vehicle traveling at an intersection. In this case, the function F5 may estimate the travel route TR based on the comparison between these information and the position of the vehicle 100 included in the vehicle information VI.
(周辺物体の位置と速度を算出する処理P2)
 次に、車両制御装置110は、たとえば、走行可能領域RAを算出する機能F4により、外界情報EI、地図情報MI、車両情報VIのうちの一以上の情報に基づいて、車両100の周囲の所定の範囲に存在する周辺物体の位置と速度を算出する処理P2を実行する。さらに、機能F4は、算出した周辺物体の位置と速度に基づいて、たとえば、数秒後の周辺物体の将来位置を予測する。
(Processing P2 to calculate the position and velocity of surrounding objects)
Next, the vehicle control device 110 determines the surroundings of the vehicle 100 based on one or more of the outside world information EI, the map information MI, and the vehicle information VI by, for example, the function F4 for calculating the travelable area RA. The process P2 for calculating the position and velocity of the peripheral objects existing in the range of is executed. Further, the function F4 predicts the future position of the peripheral object after a few seconds, for example, based on the calculated position and velocity of the peripheral object.
 周辺物体の将来位置は、たとえば、周辺物体が等速運動を行うと仮定して算出することができる。また、機能F4は、たとえば、数秒後までの一定期間にわたって、所定の時間間隔で複数の将来位置を算出して、メモリ112または不揮発性メモリ113に記憶する。また、機能F4は、たとえば、周辺物体が交差点に進入しようとしている車両であり、地図情報MIが交差点を走行する車両の参照軌跡を含む場合、周辺物体である車両がその参照軌跡上を移動することを予測してもよい。 The future position of the peripheral object can be calculated, for example, assuming that the peripheral object moves at a constant velocity. Further, the function F4 calculates a plurality of future positions at predetermined time intervals and stores them in the memory 112 or the non-volatile memory 113 for a certain period of time up to several seconds later, for example. Further, the function F4 is, for example, a vehicle in which a peripheral object is about to enter an intersection, and when the map information MI includes a reference locus of a vehicle traveling at the intersection, the vehicle as a peripheral object moves on the reference locus. You may predict that.
(走行可能領域RAを算出する処理P3)
 次に、車両制御装置110は、たとえば、走行可能領域RAを算出する機能F4により、走行可能領域RAを算出する処理P3を実行する。具体的には、機能F4は、外界情報EI、地図情報MI、車両情報VIのうちの一以上の情報に基づいて、車両100が走行している道路の左右の境界線、および前の処理P2で算出した周辺物体の位置、速度、将来位置などに基づいて、車両100が走行することが可能な領域である走行可能領域RAを算出する。
(Processing P3 for calculating the travelable area RA)
Next, the vehicle control device 110 executes the process P3 for calculating the travelable area RA by, for example, the function F4 for calculating the travelable area RA. Specifically, the function F4 is based on one or more information of the outside world information EI, the map information MI, and the vehicle information VI, the left and right boundary lines of the road on which the vehicle 100 is traveling, and the previous processing P2. Based on the position, speed, future position, and the like of the peripheral objects calculated in the above, the travelable area RA, which is the area in which the vehicle 100 can travel, is calculated.
 図4Aは、片側一車線の直線道路における走行可能領域RAの一例を示す平面図である。この例では、道路の左右の境界線BLの内側で、車両100から先行車LVの後方までの領域と、車両100から対向車OVまでの領域が走行可能領域RAとされている。図4Bは、片側一車線の道路の交差点における走行可能領域RAの一例を示す平面図である。
この例では、交差点およびその近傍に他の車両や周辺物体が存在しないため、道路の境界線BLの内側で交差点全体とその近傍が走行可能領域RAとされている。
FIG. 4A is a plan view showing an example of the travelable region RA on a straight road with one lane on each side. In this example, the region from the vehicle 100 to the rear of the preceding vehicle LV and the region from the vehicle 100 to the oncoming vehicle OV are defined as the travelable region RA inside the left and right boundary lines BL of the road. FIG. 4B is a plan view showing an example of a travelable area RA at an intersection of a road having one lane on each side.
In this example, since there are no other vehicles or peripheral objects in or near the intersection, the entire intersection and its vicinity are defined as the travelable area RA inside the boundary line BL of the road.
(経路候補CRを生成する処理P4) 次に、車両制御装置110は、経路候補CRを生成する機能F6により、たとえば、外界情報EI、車両情報VI、処理P1で推定された走行経路TR、処理P3で算出された走行可能領域RAなどに基づいて、経路候補CRを生成する処理P4を実行する。 (Process P4 for generating route candidate CR) Next, the vehicle control device 110 uses the function F6 for generating route candidate CR, for example, external world information EI, vehicle information VI, travel route TR estimated by process P1, and processing. The process P4 for generating the route candidate CR is executed based on the travelable area RA calculated in P3 and the like.
 図5Aは、片側一車線の直線道路における経路候補CRの一例を示す平面図である。この例では、経路候補CRを生成する機能F6は、直進する車両100の操舵角を変化させない経路候補CRと、左右それぞれ、段階的に操舵角を変化させて車両を旋回させた経路候補CRを含む複数の経路候補CRを生成している。この例において、車両100の左右の経路候補CRは、車両100の直進方向から左右一方向に転舵して旋回した後に、その逆方向へ転舵して直進方向に戻るS字転舵をともなう経路である。 FIG. 5A is a plan view showing an example of a route candidate CR on a straight road with one lane on each side. In this example, the function F6 for generating the route candidate CR includes a route candidate CR that does not change the steering angle of the vehicle 100 traveling straight ahead and a route candidate CR that turns the vehicle by gradually changing the steering angle on each of the left and right sides. Multiple route candidate CRs including are generated. In this example, the left and right route candidate CRs of the vehicle 100 are accompanied by an S-shaped steering that steers in one direction from the straight direction of the vehicle 100 to the left and right, then turns in the opposite direction and returns to the straight direction. It is a route.
 図5Bは、片側一車線の道路の交差点における経路候補CRの一例を示す平面図である。この例では、経路候補CRを生成する機能F6は、交差点を右折する車両100の走行経路TRに沿う旋回半径の小さい経路候補CRと、旋回半径の大きい経路候補CRとを生成している。さらに、この例では、機能F6は、交差点を右折する車両100の走行経路TRとは反対の左方向に転舵する旋回半径の小さい経路候補CRと、旋回半径の大きい経路候補CRとを生成している。この例において、車両100の左右の経路候補CRは、車両100の直進方向から左右一方向に転舵して旋回する一方向の転舵のみの経路である。 FIG. 5B is a plan view showing an example of a route candidate CR at an intersection of a road with one lane on each side. In this example, the function F6 for generating the route candidate CR generates a route candidate CR having a small turning radius and a route candidate CR having a large turning radius along the traveling path TR of the vehicle 100 turning right at the intersection. Further, in this example, the function F6 generates a route candidate CR having a small turning radius and a route candidate CR having a large turning radius to steer to the left opposite to the traveling path TR of the vehicle 100 turning right at the intersection. ing. In this example, the left and right route candidate CRs of the vehicle 100 are only one-way steering routes that steer and turn in one direction from the straight direction of the vehicle 100 to the left and right.
 この処理P4において、経路候補CRを生成する機能F6は、たとえば、車両情報VIに含まれる車両100の現在の速度に基づいて、車両100の左右方向の横加速度が許容範囲内の数値となるように、経路候補CRを生成する。なお、車両100の横加速度の許容範囲は、たとえば、あらかじめ設定されて不揮発性メモリ113に記憶されている。 In this process P4, the function F6 for generating the route candidate CR makes the lateral acceleration of the vehicle 100 in the left-right direction a numerical value within an allowable range based on, for example, the current speed of the vehicle 100 included in the vehicle information VI. In addition, a route candidate CR is generated. The allowable range of the lateral acceleration of the vehicle 100 is set in advance and stored in the non-volatile memory 113, for example.
(回避制御の許可を判定する処理P5)
 次に、車両制御装置110は、たとえば、回避経路ARを選択する機能F7により、回避制御の許可を判定する処理P5を実行する。図6は、回避制御の許可を判定する処理P5における判定基準の一例を示すグラフである。このグラフにおいて、横軸は、他の車両などの周辺物体の車両100に対する相対速度であり、縦軸は、車両100から周辺物体までの距離である。
(Process P5 for determining permission for avoidance control)
Next, the vehicle control device 110 executes the process P5 for determining the permission of the avoidance control by, for example, the function F7 for selecting the avoidance route AR. FIG. 6 is a graph showing an example of a determination criterion in the process P5 for determining the permission of avoidance control. In this graph, the horizontal axis is the relative speed of a peripheral object such as another vehicle with respect to the vehicle 100, and the vertical axis is the distance from the vehicle 100 to the peripheral object.
 図6に示すグラフにおいて、原点Oを通る曲線は、車両100が転舵せず、制動のみで周辺物体との衝突回避が可能な距離、すなわち制動回避限界距離Dbを示す曲線である。
この制動回避限界距離Dbは、たとえば、以下の式(1)により求めることができる。なお、以下の式(1)において、Vrは、車両100と周辺物体との相対速度であり、αは、車両100の制動時の減速度である。
In the graph shown in FIG. 6, the curve passing through the origin O is a curve showing a distance at which the vehicle 100 does not steer and can avoid a collision with a peripheral object only by braking, that is, a braking avoidance limit distance Db.
The braking avoidance limit distance Db can be obtained by, for example, the following equation (1). In the following equation (1), Vr is the relative speed between the vehicle 100 and peripheral objects, and α is the deceleration of the vehicle 100 during braking.
           Db=Vr/2α ・・・(1) Db = Vr 2 / 2α ・ ・ ・ (1)
 また、図6に示すグラフにおいて、原点Oを通る直線は、車両100が減速せず、操舵のみで周辺物体との衝突回避が可能な距離、すなわち操舵回避限界距離Dsを示す直線である。この操舵回避限界距離Dsは、たとえば、以下の式(2)により求めることができる。なお、以下の式(2)において、Vrは、車両100と周辺物体との相対速度である。Xrは、車両100と周辺物体との距離である。kは、定数である。この定数kは、たとえば、一般道、高速道路、交差点などの道路条件や、道路環境に応じて変更してもよい。 Further, in the graph shown in FIG. 6, the straight line passing through the origin O is a straight line indicating a distance at which the vehicle 100 does not decelerate and can avoid a collision with a peripheral object only by steering, that is, a steering avoidance limit distance Ds. The steering avoidance limit distance Ds can be obtained by, for example, the following equation (2). In the following equation (2), Vr is the relative speed between the vehicle 100 and peripheral objects. Xr is the distance between the vehicle 100 and surrounding objects. k is a constant. This constant k may be changed, for example, according to road conditions such as general roads, expressways, and intersections, and the road environment.
           Ds=k(Xr/Vr) ・・・(2) Ds = k (Xr / Vr) ... (2)
 回避制御の許可を判定する処理P5において、回避経路ARを選択する機能F7は、たとえば、次の二つの条件を満たす場合に、回避制御の許可(YES)を判定する。第1の条件は、たとえば、車両100と周辺物体との距離と相対速度が、制動回避限界距離Db以下かつ操舵回避限界距離Ds以下、すなわち図6に示す回避可能領域Aに含まれる、という条件である。第2の条件は、たとえば、前の処理P4において、一以上の経路候補CRが生成されている、という条件である。 In the process P5 for determining the permission of avoidance control, the function F7 for selecting the avoidance route AR determines, for example, the permission (YES) for avoidance control when the following two conditions are satisfied. The first condition is, for example, that the distance and relative speed between the vehicle 100 and surrounding objects are included in the braking avoidance limit distance Db or less and the steering avoidance limit distance Ds or less, that is, in the avoidable region A shown in FIG. Is. The second condition is, for example, that one or more route candidate CRs are generated in the previous process P4.
 上記第1の条件および第2の条件を満たさない場合、回避経路ARを選択する機能F7は、回避制御の許可を判定する処理P5において、不許可(NO)と判定し、図3に示す処理を終了する。一方、機能F7は、処理P5において、上記第1の条件および第2の条件を満たす場合に、回避制御の許可(YES)を判定して、経路候補CRを選択する処理P6を実行する。 When the first condition and the second condition are not satisfied, the function F7 for selecting the avoidance route AR determines that the avoidance control is permitted (NO) in the process P5 for determining the permission of the avoidance control, and the process shown in FIG. To finish. On the other hand, the function F7 executes the process P6 for determining the permission (YES) for avoidance control and selecting the route candidate CR when the first condition and the second condition are satisfied in the process P5.
(経路候補CRを選択する処理P6)
 車両制御装置110は、経路候補CRを選択する処理P6において、回避経路ARを選択する機能F7により、前の処理P4で生成された一以上の経路候補CRから、一の回避経路ARを選択する。具体的には、機能F7は、一以上の経路候補CRの中から、経路候補CRが将来の各時点における走行可能領域RAに含まれている経路を選択する。
(Process P6 for selecting route candidate CR)
In the process P6 for selecting the route candidate CR, the vehicle control device 110 selects one avoidance route AR from one or more route candidate CRs generated in the previous process P4 by the function F7 for selecting the avoidance route AR. .. Specifically, the function F7 selects a route in which the route candidate CR is included in the travelable region RA at each future time point from among one or more route candidate CRs.
 ここで二以上の経路候補CRが選択された場合には、機能F7は、たとえば、現在の車両100の進行方向に対して操舵角の変化が最小となる経路候補CRを選択する。ここでも二以上の経路候補CRが選択された場合には、機能F7は、たとえば、車両100の前後左右の加速度が最小となる経路候補CRを選択する。これにより、後述する回避制御時に、車両100の乗り心地を向上させることができる。 When two or more route candidate CRs are selected here, the function F7 selects, for example, the route candidate CR that minimizes the change in steering angle with respect to the current traveling direction of the vehicle 100. Again, when two or more route candidate CRs are selected, the function F7 selects, for example, the route candidate CR that minimizes the front-rear, left-right acceleration of the vehicle 100. As a result, the ride quality of the vehicle 100 can be improved during avoidance control, which will be described later.
 また、回避経路ARを選択する機能F7は、たとえば、車両100の運転者によるステアリングホイールの把持および操作の有無が車両情報VIに含まれる場合、それに応じて経路候補CRを選択してもよい。たとえば、運転者がステアリングホイールを把持している場合に、車両100がS字転舵をともなう経路候補CRに沿って走行すると、運転者の腕に負担がかかる。そのため、機能F7は、運転者がステアリングホイールを把持している場合に、片側転舵のみの経路候補CRを選択してもよい。 Further, the function F7 for selecting the avoidance route AR may select the route candidate CR according to, for example, when the vehicle information VI includes the presence / absence of gripping and operation of the steering wheel by the driver of the vehicle 100. For example, when the driver is holding the steering wheel and the vehicle 100 travels along the route candidate CR accompanied by the S-shaped steering, the driver's arm is burdened. Therefore, the function F7 may select a route candidate CR having only one-sided steering when the driver is holding the steering wheel.
 さらに、回避経路ARを選択する機能F7は、車両100の運転者によるステアリングホイールの把持の有無に応じて、車両100の操舵角、操舵角速度、もしくは操舵角加速度の上限値を変化させてもよい。具体的には、車両100の運転者によるステアリングホイールの把持が「無」の場合、ステアリングホイールの把持が「有」の場合よりも、上記上限値を増加させて、経路候補CRを選択する。または、運転者がステアリングホイールを把持している状態、ステアリングホイールに手を添えている状態、ステアリングホイールから手を放している状態の順に、上記上限値を段階的に増加させてもよい。 Further, the function F7 for selecting the avoidance path AR may change the steering angle, steering angular velocity, or upper limit of steering angular acceleration of the vehicle 100 depending on whether or not the driver of the vehicle 100 grips the steering wheel. .. Specifically, when the driver of the vehicle 100 does not hold the steering wheel, the upper limit value is increased and the route candidate CR is selected as compared with the case where the driver holds the steering wheel “yes”. Alternatively, the upper limit value may be gradually increased in the order of the driver holding the steering wheel, holding his / her hand on the steering wheel, and releasing his / her hand from the steering wheel.
 また、ステアリング装置105が前述のSBWを採用している場合や、操舵機構とステアリングホイールとの機械的接続を切断する切断機構を有している場合には、上記非把持状態と同様に、上記上限値を増加させてもよい。 Further, when the steering device 105 adopts the above-mentioned SBW or has a cutting mechanism for disconnecting the mechanical connection between the steering mechanism and the steering wheel, the above is the same as in the non-grasping state. The upper limit may be increased.
(回避制御の終了速度ESを設定する処理P7)
 次に、車両制御装置110は、回避制御の終了速度ESを設定する機能F8により、次の処理P8の回避制御を終了させる条件である終了速度ESを設定する。なお、回避制御は、前の処理P6で選択された一の経路候補CRである回避経路ARに沿って車両100を走行させる制御である。以下、図7Aから図7Cを参照して、終了速度ESの設定例を説明する。
(Process P7 for setting the end speed ES of avoidance control)
Next, the vehicle control device 110 sets the end speed ES, which is a condition for terminating the avoidance control of the next process P8, by the function F8 for setting the end speed ES of the avoidance control. The avoidance control is a control for driving the vehicle 100 along the avoidance route AR, which is one route candidate CR selected in the previous process P6. Hereinafter, a setting example of the end speed ES will be described with reference to FIGS. 7A to 7C.
 図7Aに示す例では、片側二車線の直線道路の走行車線を走行する車両100が、同じ走行車線の前方に位置する先行車LVとの衝突を回避するための回避経路ARとして、走行車線の隣の追い越し車線への車線変更を伴う経路が選択されている。この例では、車両100の車線変更先の追い越し車線の所定の範囲に、後続車が存在しない。この場合、回避制御の終了速度ESを設定する機能F8は、たとえば、終了速度ESを0[km/h]に設定し、先行車LVとの衝突が回避される回避経路ARの終点を回避制御の終了位置EPに設定する。 In the example shown in FIG. 7A, the vehicle 100 traveling in the traveling lane of a straight road having two lanes on each side is set as an avoidance route AR for avoiding a collision with a preceding vehicle LV located in front of the same traveling lane. A route with a lane change to the next overtaking lane is selected. In this example, there is no following vehicle in a predetermined range of the overtaking lane to which the vehicle 100 changes lanes. In this case, the function F8 for setting the end speed ES of the avoidance control sets the end speed ES to 0 [km / h], for example, and avoids the end point of the avoidance route AR in which the collision with the preceding vehicle LV is avoided. Set to the end position EP of.
 図7Bに示す例では、回避経路ARに基づく車両100の車線変更先の追い越し車線に後続車FVが存在している点が、図7Aに示す例と異なっている。この場合、回避制御の終了速度ESを設定する機能F8は、たとえば、終了速度ESを後続車FVの速度に設定し、車線変更が完了した位置を回避制御の終了位置EPに設定する。 The example shown in FIG. 7B is different from the example shown in FIG. 7A in that the following vehicle FV exists in the overtaking lane of the lane change destination of the vehicle 100 based on the avoidance route AR. In this case, the function F8 for setting the end speed ES of the avoidance control sets, for example, the end speed ES to the speed of the following vehicle FV, and sets the position where the lane change is completed to the end position EP of the avoidance control.
 図7Cに示す例では、片側一車線の直線道路を走行する車両100が、前方に位置する先行車LVとの衝突を回避するための回避経路ARとして、対向車線への車線変更を伴う経路が選択されている。この例では、車両100の車線変更先の対向車線の所定の範囲に、対向車が存在しない。この場合、回避制御の終了速度ESを設定する機能F8は、たとえば、終了速度ESを、たとえば5[km/h]以下の徐行速度、または、たとえば10[km/h]以下のクリープ速度に設定し、車線変更が完了した位置を回避制御の終了位置EPに設定する。 In the example shown in FIG. 7C, the vehicle 100 traveling on a straight road with one lane on each side has a route that involves changing lanes to the oncoming lane as an avoidance route AR for avoiding a collision with the preceding vehicle LV located in front. It has been selected. In this example, there is no oncoming vehicle in a predetermined range of the oncoming lane to which the vehicle 100 changes lanes. In this case, the function F8 for setting the end speed ES of avoidance control sets, for example, the end speed ES to a slow speed of, for example, 5 [km / h] or less, or a creep speed of, for example, 10 [km / h] or less. Then, the position where the lane change is completed is set as the end position EP of the avoidance control.
(回避制御を実行する処理P8)
 次に、車両制御装置110は、回避制御を実行する機能F9により、処理P6で選択された回避経路ARと、処理P7で設定された終了速度ESに基づいて、回避制御を実行する。より具体的には、回避制御を実行する機能F9は、たとえば、回避経路ARと終了速度ESと終了位置EPに基づいて、車両100の速度および操舵角の時間変化を演算する。そして、機能F9は、演算結果に基づく制御信号CSを、ブレーキ制御装置120、ステアリング制御装置130、駆動力制御装置140などに出力して、車両100を回避経路ARに沿って走行させる。
(Process P8 for executing avoidance control)
Next, the vehicle control device 110 executes the avoidance control based on the avoidance path AR selected in the process P6 and the end speed ES set in the process P7 by the function F9 that executes the avoidance control. More specifically, the function F9 that executes the avoidance control calculates the time change of the speed and the steering angle of the vehicle 100 based on, for example, the avoidance path AR, the end speed ES, and the end position EP. Then, the function F9 outputs the control signal CS based on the calculation result to the brake control device 120, the steering control device 130, the driving force control device 140, and the like, and causes the vehicle 100 to travel along the avoidance path AR.
 また、車両制御装置110は、たとえば、回避制御を実行する機能F9により、入出力装置160に制御信号CSを出力し、車両100が回避制御中であることを、入出力装置160によって画像や音声で車両100の運転者に通知する。また、車両制御装置110は、たとえば、回避制御を実行する機能F9により、灯火装置170に制御信号CSを出力し、方向指示灯および制動灯を適切に点灯させる。具体的には、回避制御を実行する機能F9は、移動方向の方向指示灯を点滅させたり、減速時に制動灯を点灯させたり、停止時に左右の方向指示灯を同時に点滅させたりする。 Further, for example, the vehicle control device 110 outputs a control signal CS to the input / output device 160 by the function F9 that executes avoidance control, and the input / output device 160 indicates that the vehicle 100 is in avoidance control. Notifies the driver of the vehicle 100 with. Further, the vehicle control device 110 outputs a control signal CS to the lighting device 170 by the function F9 for executing the avoidance control, and appropriately turns on the direction indicator light and the braking light. Specifically, the function F9 that executes avoidance control blinks the direction indicator lights in the moving direction, turns on the brake lights when decelerating, and blinks the left and right direction indicator lights at the same time when stopped.
(終了速度ESを判定する処理P9)
 次に、車両制御装置110は、回避制御を実行する機能F9により、回避制御の終了速度ESを判定する処理P9を実行する。具体的には、機能F9は、車両情報VIに含まれる車両100の速度が、前の処理P8で設定された終了速度ESと等しいか否かを判定する。車両100の速度が終了速度ESと等しくない場合(NO)、機能F9は、前の処理P8に戻り、回避制御を実行して車両100を回避経路ARに沿って走行させる。車両100の速度が終了速度ESと等しい場合(YES)、機能F9は、回避制御を終了し、図3に示す処理を終了する。
(Process P9 for determining end speed ES)
Next, the vehicle control device 110 executes the process P9 for determining the end speed ES of the avoidance control by the function F9 that executes the avoidance control. Specifically, the function F9 determines whether or not the speed of the vehicle 100 included in the vehicle information VI is equal to the end speed ES set in the previous process P8. When the speed of the vehicle 100 is not equal to the end speed ES (NO), the function F9 returns to the previous process P8, executes avoidance control, and causes the vehicle 100 to travel along the avoidance route AR. When the speed of the vehicle 100 is equal to the end speed ES (YES), the function F9 ends the avoidance control and ends the process shown in FIG.
 以下、本実施形態の車両制御装置110の作用を説明する。 Hereinafter, the operation of the vehicle control device 110 of the present embodiment will be described.
 前述のように、本実施形態の車両制御装置110は、外界情報EIを取得する外界センサ106と、車両情報VIを取得する車両センサ107と、地図情報MIを記憶する記憶装置108aとを備えた車両100を制御する。車両制御装置110は、処理装置111を備え、処理装置111は、外界情報EI、車両情報VI、地図情報MIのうちの一以上の情報に基づいて、以下の動作を行う。処理装置111は、まず、車両100の走行経路TRを推定し(処理P1)、車両100の周辺物体の位置および速度と、車両100の走行可能領域RAを算出する(処理P2,P3)。また、処理装置111は、周辺物体と車両100との衝突を回避し得る一以上の経路候補CRを生成し(処理P4)、一以上の経路候補CRから一の回避経路ARを選択する(処理P6)。さらに、処理装置111は、回避経路ARに沿って車両100を走行させる回避制御の終了速度ESを設定し(処理P7)、回避制御(処理P8)の開始後に車両が回避経路ARを走行して終了速度ESになったときに、回避制御を終了させる(処理P9)。 As described above, the vehicle control device 110 of the present embodiment includes an outside world sensor 106 that acquires the outside world information EI, a vehicle sensor 107 that acquires the vehicle information VI, and a storage device 108a that stores the map information MI. Control the vehicle 100. The vehicle control device 110 includes a processing device 111, and the processing device 111 performs the following operations based on one or more of the outside world information EI, the vehicle information VI, and the map information MI. First, the processing device 111 estimates the traveling path TR of the vehicle 100 (processing P1), and calculates the position and speed of the peripheral objects of the vehicle 100 and the travelable area RA of the vehicle 100 (processing P2 and P3). Further, the processing device 111 generates one or more route candidate CRs capable of avoiding a collision between a peripheral object and the vehicle 100 (process P4), and selects one avoidance route AR from one or more route candidate CRs (process P4). P6). Further, the processing device 111 sets the end speed ES of the avoidance control for traveling the vehicle 100 along the avoidance route AR (process P7), and the vehicle travels on the avoidance route AR after the start of the avoidance control (process P8). When the end speed ES is reached, the avoidance control is terminated (process P9).
 このような構成により、本実施形態の車両制御装置110は、従来よりも車両100の安全性を向上させることができる。具体的には、たとえば、複数の車線を有する直線道路で車両100と先行車LVなどの障害物との衝突を回避する回避制御において、回避先の車線における後続車FVや対向車OVなどの状況に応じて、回避制御の終了速度ESを変更することができる。これにより、車両100の回避制御の終了時に後続車FVや対向車OVなどの障害物との衝突のリスクを低減することができ、従来よりも車両100の安全性を向上させることができる。 With such a configuration, the vehicle control device 110 of the present embodiment can improve the safety of the vehicle 100 as compared with the conventional case. Specifically, for example, in avoidance control for avoiding a collision between a vehicle 100 and an obstacle such as a preceding vehicle LV on a straight road having a plurality of lanes, a situation such as a following vehicle FV or an oncoming vehicle OV in the avoidance destination lane. The end speed ES of the avoidance control can be changed according to the above. As a result, the risk of collision with obstacles such as the following vehicle FV and the oncoming vehicle OV at the end of the avoidance control of the vehicle 100 can be reduced, and the safety of the vehicle 100 can be improved as compared with the conventional case.
 一般に、従来の運転支援システムは、衝突を回避するための車両制御を終了して、運転者に車両の操作を委譲するのは、車両の停止時である。たとえば、前記特許文献1に記載の従来の運転支援システムでは、自車両が減速して後続車と自車両との速度差が増大する。そのため、衝突の回避時に自車両が車線変更をすると、変更先の車線を走行する後続車に追突されるリスクが増大する。 In general, the conventional driving support system ends the vehicle control for avoiding a collision and delegates the operation of the vehicle to the driver when the vehicle is stopped. For example, in the conventional driving support system described in Patent Document 1, the own vehicle decelerates and the speed difference between the following vehicle and the own vehicle increases. Therefore, if the own vehicle changes lanes while avoiding a collision, the risk of being hit by a following vehicle traveling in the changed lane increases.
 これに対し、本実施形態の車両制御装置110では、処理装置111は、たとえば前述の終了速度ESを設定する処理P7において、車両100の回避経路ARが車線変更を含む場合に、変更先の車線の後続車FVの有無を判定する。そして、処理装置111は、後続車が無の場合に、終了速度ESをゼロに設定し、後続車FVが有の場合に、終了速度ESを後続車FVの速度に設定する。 On the other hand, in the vehicle control device 110 of the present embodiment, the processing device 111 changes to the lane of the change destination when the avoidance route AR of the vehicle 100 includes a lane change in the process P7 for setting the end speed ES, for example. Determines the presence or absence of the following vehicle FV. Then, the processing device 111 sets the end speed ES to zero when there is no following vehicle, and sets the end speed ES to the speed of the following vehicle FV when there is a following vehicle FV.
 この構成により、車両制御装置110は、車両100の回避制御の終了時に後続車FVの追突のリスクを低減することができ、従来よりも車両100の安全性を向上させることができる。より具体的には、回避制御開始時の車両100の速度が、後続車FVの速度よりも高ければ、回避制御において車両100を後続車FVと同じ速度まで減速させても、後続車FVの追突を回避することができる。また、回避制御時の車両100の速度が、後続車FVの速度よりも低ければ、回避制御において車両100を後続車FVと同じ速度まで加速させて、後続車FVの追突を回避することができる。 With this configuration, the vehicle control device 110 can reduce the risk of a rear-end collision of the following vehicle FV at the end of the avoidance control of the vehicle 100, and can improve the safety of the vehicle 100 as compared with the conventional case. More specifically, if the speed of the vehicle 100 at the start of avoidance control is higher than the speed of the following vehicle FV, even if the vehicle 100 is decelerated to the same speed as the following vehicle FV in the avoidance control, the following vehicle FV collides. Can be avoided. Further, if the speed of the vehicle 100 during the avoidance control is lower than the speed of the following vehicle FV, the vehicle 100 can be accelerated to the same speed as the following vehicle FV in the avoidance control to avoid the rear-end collision of the following vehicle FV. ..
 また、本実施形態の車両制御装置110において、処理装置111は、たとえば、前述の回避制御の許可を判定する処理P5において、上記の式(2)で表される操舵回避限界距離Dsにおける定数kを、道路条件や道路環境に応じて変更する。 Further, in the vehicle control device 110 of the present embodiment, the processing device 111 determines, for example, the constant k in the steering avoidance limit distance Ds represented by the above equation (2) in the process P5 for determining the permission of the avoidance control described above. Is changed according to the road conditions and road environment.
 図8は、上記の式(2)における定数k、すなわち図6に示す車両100の操舵回避限界距離Dsの設定による作用を説明する平面図である。図8に示すように、片側二車線の直線道路において、車両100が先行車LVとの衝突を回避しようとしている場面を想定する。このとき、処理装置111は、車両100が走行している走行車線に隣接する追い越し車線の所定の範囲に後続車FVが存在する場合に、所定の範囲に後続車FVが存在しない場合よりも、上記式(2)における定数kを増加させる。 FIG. 8 is a plan view illustrating the action of setting the constant k in the above equation (2), that is, the steering avoidance limit distance Ds of the vehicle 100 shown in FIG. As shown in FIG. 8, it is assumed that the vehicle 100 is trying to avoid a collision with the preceding vehicle LV on a straight road having two lanes on each side. At this time, the processing device 111 determines that when the following vehicle FV exists in a predetermined range of the overtaking lane adjacent to the traveling lane in which the vehicle 100 is traveling, the processing device 111 does not have the following vehicle FV in the predetermined range. The constant k in the above equation (2) is increased.
 その結果、前述の回避制御において、車両100が走行している走行車線の隣の追い越し車線の所定の範囲に後続車FVが存在する場合には、所定の範囲に後続車FVが存在しない場合よりも操舵回避限界距離Dsが増加する。これにより、図8に示すように、操舵回避限界距離Dsが増加する前の回避経路ARよりも、早い段階で車線変更して隣の車線に移動する回避経路AR’に沿って車両100を走行させることができる。したがって、回避制御を行う車両100の車線変更の意図が、後続車FVに早期に伝わり、車両100が後続車FVに追突されるリスクが低減され、車両100の安全性が向上する。 As a result, in the above-mentioned avoidance control, when the following vehicle FV exists in a predetermined range of the overtaking lane next to the traveling lane in which the vehicle 100 is traveling, compared with the case where the following vehicle FV does not exist in the predetermined range. Also, the steering avoidance limit distance Ds increases. As a result, as shown in FIG. 8, the vehicle 100 travels along the avoidance route AR'that changes lanes and moves to the adjacent lane at an earlier stage than the avoidance route AR before the steering avoidance limit distance Ds increases. Can be made to. Therefore, the intention of changing the lane of the vehicle 100 for avoidance control is transmitted to the following vehicle FV at an early stage, the risk of the vehicle 100 being hit by the following vehicle FV is reduced, and the safety of the vehicle 100 is improved.
 また、たとえば、後続車FVの速度が、車両100の速度よりも高い場合には、後続車FVの速度が車両100の速度以下の場合よりも、上記式(2)における定数kを増加させる。これにより、回避制御を行う車両100の車線変更の意図が、後続車FVにより早期に伝わり、車両100が後続車FVに追突されるリスクが低減され、車両100の安全性が向上する。 Further, for example, when the speed of the following vehicle FV is higher than the speed of the vehicle 100, the constant k in the above equation (2) is increased as compared with the case where the speed of the following vehicle FV is equal to or less than the speed of the vehicle 100. As a result, the intention of changing lanes of the vehicle 100 for avoidance control is transmitted to the following vehicle FV at an early stage, the risk of the vehicle 100 being hit by the following vehicle FV is reduced, and the safety of the vehicle 100 is improved.
 また、衝突を回避するための車両制御の終了時が車両の停止時である従来の運転支援システムでは、たとえば、車両制御の終了時に不意に対向車が現れた場合、車両の運転者は、操舵による衝突回避を直ちに行うことができない。すなわち、衝突を回避する車両制御が終了して車両が停止した直後に不意に現れた対向車との衝突を回避する場合、車両の運転者は、シフトレバーの操作を行い、さらに、アクセルペダルの操作とステアリングホイールの操作を行う必要がある。そのため、車両の回避動作に遅れが生じ、対向車との衝突のリスクが増大する。 Further, in a conventional driving support system in which the end of vehicle control for avoiding a collision is when the vehicle is stopped, for example, when an oncoming vehicle suddenly appears at the end of vehicle control, the driver of the vehicle steers. Collision avoidance cannot be performed immediately. That is, when avoiding a collision with an oncoming vehicle that suddenly appears immediately after the vehicle control for avoiding a collision is completed and the vehicle stops, the driver of the vehicle operates the shift lever and further, the accelerator pedal It is necessary to operate and operate the steering wheel. Therefore, the avoidance operation of the vehicle is delayed, and the risk of collision with the oncoming vehicle increases.
 これに対し、本実施形態の車両制御装置110では、処理装置111は、たとえば前述の終了速度ESを設定する処理P7において、回避経路ARが対向車線を含む場合に、対向車線の対向車OVの有無を判定する。そして、処理装置111は、対向車OVが「無」の場合に、終了速度ESを徐行速度またはクリープ速度に設定する。 On the other hand, in the vehicle control device 110 of the present embodiment, the processing device 111 determines the oncoming vehicle OV in the oncoming lane when the avoidance route AR includes the oncoming lane in the process P7 for setting the end speed ES, for example. Determine the presence or absence. Then, the processing device 111 sets the end speed ES to the driving speed or the creep speed when the oncoming vehicle OV is “none”.
 この構成により、車両制御装置110は、車両100の回避制御の終了時に、車両100が対向車線に位置する場合に、車両100を徐行運転させることができる。そのため、車両制御装置110による車両100の回避制御の終了時に不意に対向車が現れた場合でも、車両100の運転者は、操舵による衝突回避を直ちに行うことができる。これにより、車両100の回避動作の遅れを解消し、対向車OVとの衝突のリスクを低減させ、従来よりも車両100の安全性を向上させることができる。 With this configuration, the vehicle control device 110 can drive the vehicle 100 slowly when the vehicle 100 is located in the oncoming lane at the end of the avoidance control of the vehicle 100. Therefore, even if an oncoming vehicle suddenly appears at the end of the avoidance control of the vehicle 100 by the vehicle control device 110, the driver of the vehicle 100 can immediately avoid the collision by steering. As a result, the delay in the avoidance operation of the vehicle 100 can be eliminated, the risk of collision with the oncoming vehicle OV can be reduced, and the safety of the vehicle 100 can be improved as compared with the conventional case.
 また、本実施形態の車両制御装置110において、処理装置111は、複数の経路候補CRが生成された場合に、車両100の操舵角、操舵角速度、もしくは操舵角加速度、または車両100の加速度が最小になる経路候補CRを、回避経路ARとして選択する。この構成により、車両制御装置110による車両100の回避制御時に、急な方向転換や急な加減速を抑制し、車両100を回避経路ARに沿ってより滑らかかつ安全に走行させ、車両100の乗り心地を向上させることができる。 Further, in the vehicle control device 110 of the present embodiment, when a plurality of route candidate CRs are generated, the processing device 111 minimizes the steering angle, steering angular velocity, or steering angular acceleration of the vehicle 100, or the acceleration of the vehicle 100. The route candidate CR that becomes is selected as the avoidance route AR. With this configuration, when avoidance control of the vehicle 100 by the vehicle control device 110, sudden change of direction and sudden acceleration / deceleration are suppressed, the vehicle 100 is made to run more smoothly and safely along the avoidance route AR, and the vehicle 100 rides. You can improve your comfort.
 また、本実施形態の車両制御装置110において、処理装置111は、複数の経路候補CRが生成された場合に、車両100が左方向または右方向の一方向の転舵で走行可能な経路候補CRを、回避経路ARとして選択してもよい。この構成により、車両制御装置110は、車両100の回避制御時に、左右両方向の転舵を行うS字転舵と比較して、ステアリングホイールを把持した運転者の腕への負担を軽減することができる。 Further, in the vehicle control device 110 of the present embodiment, the processing device 111 can travel the vehicle 100 by steering in one direction in the left or right direction when a plurality of route candidate CRs are generated. May be selected as the avoidance route AR. With this configuration, the vehicle control device 110 can reduce the burden on the driver's arm holding the steering wheel as compared with the S-shaped steering that steers in both the left and right directions during the avoidance control of the vehicle 100. it can.
 また、本実施形態の車両制御装置110において、車両情報VIは、たとえば車両100の運転者によるステアリングホイールの把持の有無を含んでいる。処理装置111は、車両制御装置110が操舵機構とステアリングホイールとの機械的接続を切断する切断機構を有しない場合かつ上記把持が「無」の場合、上記把持が「有」の場合よりも、車両100の操舵角、操舵角速度、もしくは操舵角加速度の上限値を増加させて回避経路ARを選択する。そして、処理装置111は、車両100が上記切断機構を有する場合、上記把持が「無」の場合の上記上限値に基づいて回避経路ARを選択する。 Further, in the vehicle control device 110 of the present embodiment, the vehicle information VI includes, for example, whether or not the driver of the vehicle 100 holds the steering wheel. When the vehicle control device 110 does not have a cutting mechanism for disconnecting the mechanical connection between the steering mechanism and the steering wheel and the grip is "absent", the processing device 111 is more than when the grip is "yes". The avoidance path AR is selected by increasing the steering angle, steering angular velocity, or upper limit of steering angular acceleration of the vehicle 100. Then, when the vehicle 100 has the cutting mechanism, the processing device 111 selects the avoidance path AR based on the upper limit value when the grip is “none”.
 この構成により、車両制御装置110は、車両100の回避制御時に、ステアリングホイールを把持した運転者の腕への負担を軽減することができる。また、運転者の腕への負担が少ない状態、すなわち、ステアリングホイールに手を添えている状態や、ステアリングホイールを把持していない手放し状態、またはSBWの採用時などは、より経路候補CRの選択の幅を広げることができ、車両100の安全性を向上させることができる。 With this configuration, the vehicle control device 110 can reduce the burden on the driver's arm holding the steering wheel during avoidance control of the vehicle 100. In addition, when the burden on the driver's arm is small, that is, when the driver is holding his / her hand on the steering wheel, when he / she is not holding the steering wheel, or when SBW is adopted, more route candidate CR is selected. The width of the wheel can be widened, and the safety of the vehicle 100 can be improved.
 以上説明したように、本実施形態によれば、従来よりも車両100の安全性を向上させた車両制御装置110を提供することができる。 As described above, according to the present embodiment, it is possible to provide the vehicle control device 110 in which the safety of the vehicle 100 is improved as compared with the conventional case.
[実施形態2]
 以下、図1から図8を援用し、図9から図11Bまでを参照して、本開示の車両制御装置の実施形態2を説明する。本実施形態の車両制御装置110は、図3に示す経路候補CRを選択する処理P6が、前述の実施形態1で説明した車両制御装置110と異なっている。本実施形態の車両制御装置110のその他の点は、前述の実施形態1の車両制御装置110と同様であるため、同様の部分には同一の符号を付して説明を省略する。
[Embodiment 2]
Hereinafter, the second embodiment of the vehicle control device of the present disclosure will be described with reference to FIGS. 1 to 8 and FIGS. 9 to 11B. In the vehicle control device 110 of the present embodiment, the process P6 for selecting the route candidate CR shown in FIG. 3 is different from the vehicle control device 110 described in the above-described first embodiment. Since the other points of the vehicle control device 110 of the present embodiment are the same as those of the vehicle control device 110 of the first embodiment, the same reference numerals are given to the same parts and the description thereof will be omitted.
 図9は、本実施形態に係る車両制御装置110の処理装置111による経路候補CRを選択する処理P6の詳細を示すフロー図である。図10Aから図10Cは、車両制御装置110の回避経路ARを選択する機能F7による復帰領域CAを算出する処理P62を説明する平面図である。なお、復帰領域CAは、車両100の前進と後進の切り替えを行うことなく走行経路TRへ復帰可能な領域である。 FIG. 9 is a flow chart showing details of the process P6 for selecting the route candidate CR by the processing device 111 of the vehicle control device 110 according to the present embodiment. 10A to 10C are plan views illustrating a process P62 for calculating the return region CA by the function F7 for selecting the avoidance path AR of the vehicle control device 110. The return area CA is an area capable of returning to the traveling path TR without switching between forward and reverse movement of the vehicle 100.
 図10Aに示すように、車両100が走行経路TRに沿って交差点を右折するときに、交差点を直進する対向車OVとの衝突を回避する場面を想定する。この場合、車両制御装置110は、図3に示す経路候補CRを生成する処理P4において、図2に示す経路候補CRを生成する機能F6により、図10Aに示すような複数の経路候補CRを生成する。 As shown in FIG. 10A, it is assumed that when the vehicle 100 turns right at an intersection along the travel path TR, it avoids a collision with an oncoming vehicle OV traveling straight through the intersection. In this case, in the process P4 for generating the route candidate CR shown in FIG. 3, the vehicle control device 110 generates a plurality of route candidate CRs as shown in FIG. 10A by the function F6 for generating the route candidate CR shown in FIG. To do.
 次に、図3に示す回避制御の許可を判定する処理P5において、図2に示す回避経路ARを選択する機能F7は、回避制御の許可(YES)を判定すると、図3に示す経路候補CRを選択する処理P6を開始する。この処理P6において、車両制御装置110は、たとえば、回避経路ARを選択する機能F7により、図9に示すように、まず、走行可能領域RA外の経路候補CRを除外する処理P61を実行する。 Next, in the process P5 for determining the permission of avoidance control shown in FIG. 3, the function F7 for selecting the avoidance route AR shown in FIG. 2 determines the permission (YES) for avoidance control, and the route candidate CR shown in FIG. The process P6 for selecting is started. In this process P6, for example, the vehicle control device 110 first executes the process P61 for excluding the route candidate CR outside the travelable area RA by the function F7 for selecting the avoidance route AR, as shown in FIG.
 この処理P61により、図10Aに示す例では、走行可能領域RA外となる対向車OVの近傍を通る二つの経路候補CR、すなわち、車両100の走行経路TRよりも右側の二つの経路候補CRが除外される。次に、車両制御装置110は、たとえば、回避経路ARを選択する機能F7により、経路候補CRから走行経路TRへ復帰可能な復帰領域CAを算出する処理P62を実行する。 By this process P61, in the example shown in FIG. 10A, two route candidate CRs passing in the vicinity of the oncoming vehicle OV outside the travelable area RA, that is, two route candidate CRs on the right side of the travel route TR of the vehicle 100 Excluded. Next, the vehicle control device 110 executes the process P62 for calculating the return region CA that can return from the route candidate CR to the travel route TR by, for example, the function F7 that selects the avoidance route AR.
 この処理P62において、回避経路ARを選択する機能F7は、たとえば、図10Bおよび図10Cに示すように、前述の処理P61で除外されずに残ったそれぞれの経路候補CRの終了位置EPにおいて、車両100が旋回可能な半径に基づく円弧を生成する。そして、図10Bに示すように、生成した円弧が走行経路TRを含む道路の境界線BLの内側に入る場合に、当該円弧とその内側の領域を復帰領域CAとする。一方、図10Cに示すように、生成した円弧が走行経路TRを含む道路の境界線BLの内側に入らない場合は、その円弧とその内側の領域を復帰領域CAとはしない。 In this process P62, the function F7 for selecting the avoidance route AR is, for example, as shown in FIGS. 10B and 10C, at the end position EP of each route candidate CR that remains without being excluded in the above-mentioned process P61. 100 produces an arc based on a swivel radius. Then, as shown in FIG. 10B, when the generated arc enters the inside of the boundary line BL of the road including the travel path TR, the arc and the region inside the arc are designated as the return region CA. On the other hand, as shown in FIG. 10C, when the generated arc does not enter the inside of the boundary line BL of the road including the travel path TR, the arc and the region inside the arc are not set as the return region CA.
 なお、図10Cに示すように、生成した円弧が走行経路TRを含む道路の境界線BLの内側に入らない場合は、経路候補CRに沿って走行する車両100の速度を低下させてもよい。この例を、図11Aおよび図11Bを参照して説明する。 As shown in FIG. 10C, if the generated arc does not enter the inside of the boundary line BL of the road including the travel route TR, the speed of the vehicle 100 traveling along the route candidate CR may be reduced. This example will be described with reference to FIGS. 11A and 11B.
 図11Aは、図10Cに示す経路候補CRに沿って走行する車両100の速度を低下させた場合の経路候補CRの終了位置EPを示す平面図である。図11Bは、経路候補CRに沿って走行する車両100の走行距離を横軸とし、車両100の速度を縦軸として、速度を低下させる前の車両100の速度プロファイルVp1と、速度を低下させた後の車両100の速度プロファイルVp2を示すグラフである。 FIG. 11A is a plan view showing the end position EP of the route candidate CR when the speed of the vehicle 100 traveling along the route candidate CR shown in FIG. 10C is reduced. In FIG. 11B, the mileage of the vehicle 100 traveling along the route candidate CR is on the horizontal axis, the speed of the vehicle 100 is on the vertical axis, and the speed profile Vp1 of the vehicle 100 before the speed is reduced and the speed are reduced. It is a graph which shows the speed profile Vp2 of the vehicle 100 later.
 図11Aおよび図11Bに示すように、車両100の速度を低下させることで、経路候補CR’の終了位置EP’が、図10Cに示す経路候補CRの終了位置EPよりも手前に移動する。回避経路ARを選択する機能F7は、たとえば、図11Aに示すように、短縮された経路候補CR’の終了位置EP’で、車両100が旋回可能な半径に基づく円弧を生成する。そして、生成した円弧が走行経路TRを含む道路の境界線BLの内側に入る場合に、図10Cに示す経路候補CRを、図11Aに示す経路候補CR’に更新し、図11Aに示す円弧とその内側の領域を復帰領域CAとする。 As shown in FIGS. 11A and 11B, by reducing the speed of the vehicle 100, the end position EP'of the route candidate CR'move to the front of the end position EP of the route candidate CR shown in FIG. 10C. The function F7 for selecting the avoidance route AR, for example, generates an arc based on the radius at which the vehicle 100 can turn at the end position EP'of the shortened route candidate CR', as shown in FIG. 11A. Then, when the generated arc enters the inside of the boundary line BL of the road including the traveling route TR, the route candidate CR shown in FIG. 10C is updated to the route candidate CR'shown in FIG. 11A, and the arc is changed to the arc shown in FIG. 11A. The area inside the area is referred to as a return area CA.
 次に、車両制御装置110は、たとえば、回避経路ARを選択する機能F7により、算出した復帰領域CAに経路候補CRが存在するか否かを判定する処理P63を実行する。
この処理P63において、図10Bに示す例のように、機能F7は、復帰領域CAに経路候補CRが存在する(YES)と判定すると、復帰領域CA内の経路候補CRを、回避経路ARとして選択する処理P64を実行する。ここで、復帰領域CA内に複数の経路候補CRが存在する場合、機能F7は、前述の実施形態1と同様に、一の経路候補CRを回避経路ARとして選択する。その後、車両制御装置110は、図9に示す経路候補CRを選択する処理P6を終了して、図3に示す終了速度ESを設定する処理P7を実行する。
Next, the vehicle control device 110 executes, for example, the process P63 for determining whether or not the route candidate CR exists in the calculated return region CA by the function F7 for selecting the avoidance route AR.
In this process P63, as in the example shown in FIG. 10B, when the function F7 determines that the route candidate CR exists in the return region CA (YES), the function F7 selects the route candidate CR in the return region CA as the avoidance route AR. Process P64 is executed. Here, when a plurality of route candidate CRs exist in the return region CA, the function F7 selects one route candidate CR as the avoidance route AR as in the above-described first embodiment. After that, the vehicle control device 110 ends the process P6 for selecting the route candidate CR shown in FIG. 9, and executes the process P7 for setting the end speed ES shown in FIG.
 一方、処理P63において、図10Cに示す例のように、回避経路ARを選択する機能F7は、復帰領域CAに経路候補CRが存在しない(NO)と判定すると、走行可能領域RA内に経路候補CRが存在するか否かを判定する処理P65を実行する。この処理P65において、機能F7は、図10Cに示す例のように、走行可能領域RAに経路候補CRが存在する(YES)と判定すると、走行可能領域RA内の経路候補CRを、回避経路ARとして選択する処理P66を実行する。 On the other hand, in the process P63, as in the example shown in FIG. 10C, when the function F7 for selecting the avoidance route AR determines that the route candidate CR does not exist in the return area CA (NO), the route candidate is in the travelable area RA. The process P65 for determining whether or not CR exists is executed. In this process P65, when the function F7 determines that the route candidate CR exists in the travelable area RA (YES) as in the example shown in FIG. 10C, the function F7 determines the route candidate CR in the travelable area RA as the avoidance route AR. The process P66 selected as is executed.
 この処理P66において、走行可能領域RA内の経路候補CRが複数存在する場合、回避経路ARを選択する機能F7は、前述の実施形態1と同様に、一の経路候補CRを回避経路ARとして選択する。一方、前述の処理P65において、機能F7は、たとえば先行車や他の対向車などの存在により、走行可能領域RAに経路候補CRが存在しない(NO)と判定すると、図9に示す経路候補CRを選択する処理P6を終了する。 In this process P66, when there are a plurality of route candidate CRs in the travelable area RA, the function F7 for selecting the avoidance route AR selects one route candidate CR as the avoidance route AR, as in the first embodiment. To do. On the other hand, in the above-mentioned process P65, when the function F7 determines that the route candidate CR does not exist in the travelable region RA (NO) due to the presence of, for example, a preceding vehicle or another oncoming vehicle, the route candidate CR shown in FIG. The process P6 for selecting is terminated.
 以上のように、本実施形態の車両制御装置110において、処理装置111は、経路候補CRから走行経路TRへ復帰可能な復帰領域CAを算出する。そして、処理装置111は、経路候補CRが復帰領域CAに含まれる場合、当該経路候補CRを回避経路ARとして選択し、経路候補CRが復帰領域CAに含まれない場合、走行可能領域RAに含まれる経路候補CRを回避経路ARとして選択する。この構成により、車両制御装置110によって車両100を回避経路ARに沿って走行させる回避制御の終了後に、運転者は、車両100を操作して予定していた走行経路TRに復帰することができる。 As described above, in the vehicle control device 110 of the present embodiment, the processing device 111 calculates the return region CA capable of returning from the route candidate CR to the travel route TR. Then, the processing device 111 selects the route candidate CR as the avoidance route AR when the route candidate CR is included in the return area CA, and includes the route candidate CR in the travelable area RA when the route candidate CR is not included in the return area CA. The route candidate CR to be selected is selected as the avoidance route AR. With this configuration, the driver can operate the vehicle 100 to return to the planned travel route TR after the completion of the avoidance control for driving the vehicle 100 along the avoidance route AR by the vehicle control device 110.
 また、本実施形態の車両制御装置110において、復帰領域CAは、車両100の前進と後進の切り替えを行うことなく走行経路TRへ復帰可能な領域である。この構成により、車両制御装置110によって車両100を回避経路ARに沿って走行させる回避制御の終了後に、運転者は、車両100の前進と後進を切り替える切り返し操作を行うことなく、予定していた走行経路TRに復帰することができる。これにより、車両制御装置110による車両100の回避制御の終了後に、車両100が他の車両に衝突される可能性を低減し、車両100の安全性を向上させることができる。 Further, in the vehicle control device 110 of the present embodiment, the return area CA is an area capable of returning to the traveling path TR without switching between forward and reverse of the vehicle 100. With this configuration, after the end of the avoidance control in which the vehicle control device 110 causes the vehicle 100 to travel along the avoidance route AR, the driver does not perform a turning operation for switching between forward and reverse movement of the vehicle 100, and the planned driving It is possible to return to the route TR. As a result, the possibility that the vehicle 100 is collided with another vehicle after the end of the avoidance control of the vehicle 100 by the vehicle control device 110 can be reduced, and the safety of the vehicle 100 can be improved.
 また、本実施形態の車両制御装置110において、処理装置111は、前述のように、復帰領域CAに経路候補CRが含まれない場合に、経路候補CRに沿って走行する車両100の速度を低下させることができる。これにより、走行経路TRに復帰可能な経路候補CR’を生成することができる可能性を増加させることができる。なお、走行経路TRに復帰可能な経路候補CR’を生成するために、経路候補CRに沿って走行する車両100の速度を低下させるだけでなく、車両100の様々な経路候補CRと速度プロファイルを生成してもよい。この場合、生成した経路候補CRと速度プロファイルによって走行経路TRに復帰可能か否かを判定し、復帰可能な経路候補CRと速度プロファイルを回避経路ARとして選択してもよい。 Further, in the vehicle control device 110 of the present embodiment, as described above, the processing device 111 reduces the speed of the vehicle 100 traveling along the route candidate CR when the return region CA does not include the route candidate CR. Can be made to. This makes it possible to increase the possibility of generating a route candidate CR'that can return to the travel route TR. In addition, in order to generate a route candidate CR'that can return to the travel route TR, not only the speed of the vehicle 100 traveling along the route candidate CR is reduced, but also various route candidate CRs and speed profiles of the vehicle 100 are used. It may be generated. In this case, it may be determined whether or not it is possible to return to the traveling route TR based on the generated route candidate CR and speed profile, and the returnable route candidate CR and speed profile may be selected as the avoidance route AR.
[実施形態3]
 以下、図1から図11Bまでを援用し、図12を参照して、本開示の車両制御装置の実施形態3を説明する。本実施形態の車両制御装置110は、図3に示す経路候補CRを選択する処理P6が、前述の実施形態2で説明した車両制御装置110と異なっている。本実施形態の車両制御装置110のその他の点は、前述の実施形態2の車両制御装置110と同様であるため、同様の部分には同一の符号を付して説明を省略する。
[Embodiment 3]
Hereinafter, the third embodiment of the vehicle control device of the present disclosure will be described with reference to FIGS. 1 to 11B and with reference to FIG. In the vehicle control device 110 of the present embodiment, the process P6 for selecting the route candidate CR shown in FIG. 3 is different from the vehicle control device 110 described in the second embodiment. Since the other points of the vehicle control device 110 of the present embodiment are the same as those of the vehicle control device 110 of the second embodiment, the same reference numerals are given to the same parts and the description thereof will be omitted.
 本実施形態の車両制御装置110は、走行可能領域RAに経路候補CRが存在するか否かを判定する処理P65において、経路候補CRが存在しない(NO)と判定した場合の処理が、図9に示す実施形態2の車両制御装置110と異なっている。具体的には、図12に示すように、本実施形態の車両制御装置110は、処理P65において、回避経路ARを選択する機能F7により、走行可能領域RAに経路候補CRが存在しない(NO)と判定すると、走行可能領域RA外の最も危険度の低い経路候補CRを回避経路ARとして選択する。 In the vehicle control device 110 of the present embodiment, in the process P65 for determining whether or not the route candidate CR exists in the travelable area RA, the process when it is determined that the route candidate CR does not exist (NO) is shown in FIG. It is different from the vehicle control device 110 of the second embodiment shown in the above. Specifically, as shown in FIG. 12, in the vehicle control device 110 of the present embodiment, the route candidate CR does not exist in the travelable area RA due to the function F7 for selecting the avoidance route AR in the process P65 (NO). If it is determined, the route candidate CR having the lowest risk outside the travelable area RA is selected as the avoidance route AR.
 より詳細には、回避経路ARを選択する機能F7は、たとえば、車両100の周囲に存在する周辺物体の物性または種別に基づいて、衝突時の危険度を判定する。ここで、周辺物体の物性は、たとえば、相対速度、面積、体積、重量、金属または木材などの材質を含む。また、周辺物体の種別は、たとえば、車両、歩行者、ガードレール、街路樹、中央分離帯、フェンス、その他の障害物などを含む。危険度は、たとえば、歩行者および運転者の安全を優先して決定する。そして、回避経路ARを選択する機能F7は、判定した危険度が最も低い周辺物体に衝突する危険回避経路を回避経路ARとして選択する。 More specifically, the function F7 for selecting the avoidance route AR determines the degree of danger at the time of a collision, for example, based on the physical properties or types of peripheral objects existing around the vehicle 100. Here, the physical characteristics of peripheral objects include, for example, relative velocity, area, volume, weight, and materials such as metal or wood. In addition, the types of peripheral objects include, for example, vehicles, pedestrians, guardrails, roadside trees, medians, fences, and other obstacles. The degree of risk is determined by giving priority to the safety of pedestrians and drivers, for example. Then, the function F7 for selecting the avoidance route AR selects the danger avoidance route that collides with the determined peripheral object having the lowest risk as the avoidance route AR.
 以上のように、本実施形態の車両制御装置110において、処理装置111は、経路候補CRが復帰領域CAおよび走行可能領域RAに含まれない場合に、周辺物体の物性または種別に基づいて判定した衝突時の危険度が最も低い周辺物体に衝突する危険回避経路を算出する。そして、処理装置111は、危険回避経路に沿って車両100を走行させる危険回避制御の制御量を算出する。 As described above, in the vehicle control device 110 of the present embodiment, the processing device 111 determines based on the physical properties or types of peripheral objects when the route candidate CR is not included in the return area CA and the travelable area RA. Calculate the danger avoidance route that collides with the peripheral object with the lowest risk at the time of collision. Then, the processing device 111 calculates the control amount of the danger avoidance control that causes the vehicle 100 to travel along the danger avoidance route.
 この構成により、復帰領域CAおよび走行可能領域RAに経路候補CRが存在しない場合でも、回避経路ARに沿って車両100を走行させる回避制御を実行することで、車両100を最も危険度の低い周辺物体に衝突させることができる。したがって、復帰領域CAおよび走行可能領域RAに経路候補CRが存在しない場合でも、車両100の運転者おおび車両100の周囲の歩行者の安全性を向上させることができる。 With this configuration, even if the route candidate CR does not exist in the return region CA and the travelable region RA, the avoidance control for driving the vehicle 100 along the avoidance route AR is executed to make the vehicle 100 the least dangerous peripheral area. It can collide with an object. Therefore, even when the route candidate CR does not exist in the return region CA and the travelable region RA, the safety of the driver of the vehicle 100 and the pedestrians around the vehicle 100 can be improved.
[実施形態4]
 以下、図1から図12までを援用し、図13および図14Aから図14Dまでを参照して、本開示の車両制御装置の実施形態4を説明する。本実施形態の車両制御装置110は、図13に示す経路候補CRを選択する処理P6が、図12に示す実施形態3で説明した処理P6と異なっている。本実施形態の車両制御装置110のその他の点は、前述の実施形態3の車両制御装置110と同様であるため、同一の部分には同一の符号を付して説明を省略する。
[Embodiment 4]
Hereinafter, the fourth embodiment of the vehicle control device of the present disclosure will be described with reference to FIGS. 13 and 14A to 14D with reference to FIGS. 1 to 12. In the vehicle control device 110 of the present embodiment, the process P6 for selecting the route candidate CR shown in FIG. 13 is different from the process P6 described in the third embodiment shown in FIG. Since the other points of the vehicle control device 110 of the present embodiment are the same as those of the vehicle control device 110 of the third embodiment, the same parts are designated by the same reference numerals and the description thereof will be omitted.
 図13は、本実施形態の車両制御装置110における経路候補CRを選択する処理P6の流れを示すフロー図である。本実施形態の車両制御装置110において、回避経路ARを選択する機能F7は、復帰領域CAに経路候補CRが存在するか否かを判定する処理P63において、経路候補CRが存在しない(NO)と判定した場合に、代替経路SRに経路候補CRが存在するか否かを判定する処理P68を実行する。 FIG. 13 is a flow chart showing the flow of the process P6 for selecting the route candidate CR in the vehicle control device 110 of the present embodiment. In the vehicle control device 110 of the present embodiment, the function F7 for selecting the avoidance route AR says that the route candidate CR does not exist (NO) in the process P63 for determining whether or not the route candidate CR exists in the return region CA. When the determination is made, the process P68 for determining whether or not the route candidate CR exists in the alternative route SR is executed.
 図14Aから図14Dは、本実施形態の車両制御装置110による経路候補CRの算出結果の一例である。図14Aに示す例において、回避経路ARを選択する機能F7は、交差点を右折する走行経路TRを中心とする経路候補CRだけでなく、走行経路TRから外れて交差点を直進する代替経路SRにも経路候補CRを生成している。図14Bに示す例において、回避経路ARを選択する機能F7は、交差点を直進する走行経路TRを中心とする経路候補CRだけでなく、走行経路TRから外れて交差点を左折する代替経路SRと交差点を右折する代替経路SRにも、経路候補CRを生成している。 14A to 14D are examples of calculation results of the route candidate CR by the vehicle control device 110 of the present embodiment. In the example shown in FIG. 14A, the function F7 for selecting the avoidance route AR is used not only for the route candidate CR centered on the travel route TR that turns right at the intersection, but also for the alternative route SR that deviates from the travel route TR and goes straight through the intersection. A route candidate CR is generated. In the example shown in FIG. 14B, the function F7 for selecting the avoidance route AR includes not only the route candidate CR centered on the travel route TR that goes straight through the intersection, but also the alternative route SR that deviates from the travel route TR and turns left at the intersection and the intersection. A route candidate CR is also generated for the alternative route SR that turns right.
 図14Cに示す例において、回避経路ARを選択する機能F7は、交差点を左折する走行経路TRを中心とする経路候補CRだけでなく、走行経路TRから外れて交差点を直進する代替経路SRにも、経路候補CRを生成している。図14Dに示す例において、回避経路ARを選択する機能F7は、車両100が右折車線を走行しているため、交差点を右折する走行経路TRを中心とする経路候補CRだけを生成し、交差点を左折する代替経路SRや交差点を直進する代替経路SRに経路候補CRを生成しない。 In the example shown in FIG. 14C, the function F7 for selecting the avoidance route AR is used not only for the route candidate CR centered on the travel route TR that turns left at the intersection, but also for the alternative route SR that deviates from the travel route TR and goes straight through the intersection. , The route candidate CR is generated. In the example shown in FIG. 14D, since the vehicle 100 is traveling in the right turn lane, the function F7 for selecting the avoidance route AR generates only the route candidate CR centered on the travel route TR that turns right at the intersection, and sets the intersection. Route candidate CR is not generated for the alternative route SR that turns left or the alternative route SR that goes straight at the intersection.
 なお、代替経路SRに経路候補CRを生成するか否かは、代替経路SRにおける信号機の表示によって判断してもよい。たとえば、図14Bに示す例において、交差点の信号が直進方向のみの走行を許可する表示である場合、交差点を右折する代替経路SRおよび交差点を左折する代替経路SRに経路候補CRを生成しない。これにより、車両100の安全性を向上させることができる。 Whether or not to generate a route candidate CR in the alternative route SR may be determined by displaying a traffic light in the alternative route SR. For example, in the example shown in FIG. 14B, when the signal of the intersection is a display that allows traveling only in the straight direction, the route candidate CR is not generated in the alternative route SR that turns right at the intersection and the alternative route SR that turns left at the intersection. Thereby, the safety of the vehicle 100 can be improved.
 図13に示す処理P68において、回避経路ARを選択する機能F7は、代替経路SRに経路候補CRが存在する(YES)と判定すると、代替経路SRの経路候補CRを回避経路ARとして選択する。一方、処理P68において、回避経路ARを選択する機能F7は、代替経路SRに経路候補CRが存在しない(NO)と判定すると、実施形態3と同様に、走行可能領域RAに経路候補CRが存在するか否かを判定する処理P65を実行する。 In the process P68 shown in FIG. 13, the function F7 for selecting the avoidance route AR selects the route candidate CR of the alternative route SR as the avoidance route AR when it is determined that the route candidate CR exists in the alternative route SR (YES). On the other hand, in the process P68, when the function F7 for selecting the avoidance route AR determines that the route candidate CR does not exist in the alternative route SR (NO), the route candidate CR exists in the travelable region RA as in the third embodiment. The process P65 for determining whether or not to do so is executed.
 以上のように、本実施形態の車両制御装置110において、処理装置111は、経路候補CRが復帰領域CAに含まれない場合に、走行経路TRから外れた代替経路SRに経路候補CRを生成する。この構成により、本実施形態の車両制御装置110は、復帰領域CAに経路候補CRが存在しない場合でも、代替経路SRの経路候補CRを回避経路ARとして選択して、車両100の回避制御を実行することができる。したがって、車両100の回避制御の終了後に、車両100が交差点内で前進と後進を切り替える切り返し操作を必要とすることなく危険を回避することができ、車両100の安全性を向上させることができる。 As described above, in the vehicle control device 110 of the present embodiment, the processing device 111 generates the route candidate CR in the alternative route SR deviated from the travel route TR when the route candidate CR is not included in the return region CA. .. With this configuration, the vehicle control device 110 of the present embodiment selects the route candidate CR of the alternative route SR as the avoidance route AR and executes the avoidance control of the vehicle 100 even when the route candidate CR does not exist in the return region CA. can do. Therefore, after the avoidance control of the vehicle 100 is completed, the danger can be avoided without the vehicle 100 requiring a turning operation for switching between forward and reverse in the intersection, and the safety of the vehicle 100 can be improved.
 以上、図面を用いて本開示に係る車両制御装置の実施形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。 Although the embodiment of the vehicle control device according to the present disclosure has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and the design change is not deviated from the gist of the present disclosure. Etc., but they are included in this disclosure.
100  車両
106  外界センサ
107  車両センサ
108a 記憶装置
110  車両制御装置
111  処理装置
AR   回避経路
CA   復帰領域
CR   経路候補
EI   外界情報
ES   終了速度
FV   後続車
MI   地図情報
OV   対向車
RA   走行可能領域
SR   代替経路
TR   走行経路
VI   車両情報
100 Vehicle 106 External world sensor 107 Vehicle sensor 108a Storage device 110 Vehicle control device 111 Processing device AR Avoidance route CA Return area CR Route candidate EI External world information ES End speed FV Following vehicle MI Map information OV Oncoming vehicle RA Travelable area SR Alternative route TR Travel route VI Vehicle information

Claims (10)

  1.  外界情報を取得する外界センサと車両情報を取得する車両センサと地図情報を記憶する記憶装置とを備えた車両を制御するための車両制御装置であって、処理装置を備え、
     前記処理装置は、
     前記外界情報、前記車両情報、前記地図情報のうちの一以上の情報に基づいて、
     前記車両の走行経路を推定し、
     前記車両の周辺物体の位置および速度と、前記車両の走行可能領域を算出し、
     前記周辺物体と前記車両との衝突を回避し得る一以上の経路候補を生成し、
     一以上の前記経路候補から一の回避経路を選択し、
     前記回避経路に沿って前記車両を走行させる回避制御の終了速度を設定し、
     前記回避制御の開始後に前記車両が前記回避経路を走行して前記終了速度になったときに前記回避制御を終了させることを特徴とする、車両制御装置。
    A vehicle control device for controlling a vehicle including an outside world sensor for acquiring outside world information, a vehicle sensor for acquiring vehicle information, and a storage device for storing map information.
    The processing device is
    Based on one or more of the outside world information, the vehicle information, and the map information,
    Estimate the traveling route of the vehicle and
    The position and speed of objects around the vehicle and the travelable area of the vehicle are calculated.
    Generate one or more route candidates that can avoid a collision between the peripheral object and the vehicle.
    Select one avoidance route from one or more of the above route candidates,
    Set the end speed of avoidance control to drive the vehicle along the avoidance route,
    A vehicle control device, characterized in that the avoidance control is terminated when the vehicle travels on the avoidance route and reaches the end speed after the start of the avoidance control.
  2.  前記処理装置は、
     前記回避経路が車線変更を含む場合に、変更先の車線の後続車の有無を判定し、
     前記後続車が無の場合に、前記終了速度をゼロに設定し、
     前記後続車が有の場合に、前記終了速度を前記後続車の速度に設定することを特徴とする、請求項1に記載の車両制御装置。
    The processing device is
    When the avoidance route includes a lane change, it is determined whether or not there is a following vehicle in the changed lane.
    When there is no following vehicle, the end speed is set to zero.
    The vehicle control device according to claim 1, wherein when the following vehicle is present, the ending speed is set to the speed of the following vehicle.
  3.  前記処理装置は、
     前記回避経路が対向車線を含む場合に、前記対向車線の対向車の有無を判定し、
     前記対向車が無の場合に、前記終了速度を徐行速度に設定することを特徴とする、請求項1に記載の車両制御装置。
    The processing device is
    When the avoidance route includes an oncoming lane, the presence or absence of an oncoming vehicle in the oncoming lane is determined.
    The vehicle control device according to claim 1, wherein the end speed is set to a slow speed when there is no oncoming vehicle.
  4.  前記処理装置は、複数の前記経路候補が生成された場合に、前記車両の操舵角、操舵角速度、もしくは操舵角加速度、または前記車両の加速度が最小になる前記経路候補を、前記回避経路として選択することを特徴とする、請求項1に記載の車両制御装置。 When a plurality of the route candidates are generated, the processing device selects the steering angle, the steering angular velocity, or the steering angular acceleration of the vehicle, or the route candidate that minimizes the acceleration of the vehicle, as the avoidance route. The vehicle control device according to claim 1, wherein the vehicle control device is characterized by the above.
  5.  前記処理装置は、
     前記経路候補から前記走行経路へ復帰可能な復帰領域を算出し、
     前記経路候補が前記復帰領域に含まれる場合、当該経路候補を前記回避経路として選択し、
     前記経路候補が前記復帰領域に含まれない場合、前記走行可能領域に含まれる前記経路候補を前記回避経路として選択することを特徴とする、請求項1に記載の車両制御装置。
    The processing device is
    A return area that can return to the travel route from the route candidate is calculated.
    When the route candidate is included in the return region, the route candidate is selected as the avoidance route, and the route candidate is selected.
    The vehicle control device according to claim 1, wherein when the route candidate is not included in the return region, the route candidate included in the travelable region is selected as the avoidance route.
  6.  前記復帰領域は、前記車両の前進と後進の切り替えを行うことなく前記走行経路へ復帰可能な領域であることを特徴とする、請求項5に記載の車両制御装置。 The vehicle control device according to claim 5, wherein the return region is a region capable of returning to the traveling path without switching between forward and reverse movement of the vehicle.
  7.  前記処理装置は、前記経路候補が前記復帰領域および前記走行可能領域に含まれない場合に、前記周辺物体の物性または種別に基づいて判定した衝突時の危険度が最も低い前記周辺物体に衝突する危険回避経路を算出し、
     前記危険回避経路に沿って前記車両を走行させる危険回避制御の制御量を算出することを特徴とする、請求項5に記載の車両制御装置。
    When the route candidate is not included in the return region and the travelable region, the processing device collides with the peripheral object having the lowest risk at the time of collision determined based on the physical properties or type of the peripheral object. Calculate the danger avoidance route,
    The vehicle control device according to claim 5, wherein the control amount of the danger avoidance control for driving the vehicle along the danger avoidance route is calculated.
  8.  前記処理装置は、前記経路候補が前記復帰領域に含まれない場合に、前記走行経路から外れた代替経路に前記経路候補を生成することを特徴とする、請求項5に記載の車両制御装置。 The vehicle control device according to claim 5, wherein the processing device generates the route candidate in an alternative route deviating from the traveling route when the route candidate is not included in the return region.
  9.  前記処理装置は、複数の前記経路候補が生成された場合に、前記車両が左方向または右方向の一方向の転舵で走行可能な前記経路候補を、前記回避経路として選択することを特徴とする、請求項1に記載の車両制御装置。 The processing device is characterized in that, when a plurality of the route candidates are generated, the route candidates that the vehicle can travel by steering in one direction in the left or right direction are selected as the avoidance routes. The vehicle control device according to claim 1.
  10.  前記車両情報は、前記車両の運転者によるステアリングホイールの把持の有無を含み、
     前記処理装置は、
     前記車両が操舵機構と前記ステアリングホイールとの機械的接続を切断する切断機構を有しない場合かつ前記把持が無の場合、前記把持が有の場合よりも、前記車両の操舵角、操舵角速度、もしくは操舵角加速度の上限値を増加させて前記回避経路を選択し、
     前記車両が前記切断機構を有する場合、前記把持が無の場合の前記上限値に基づいて前記回避経路を選択することを特徴とする、請求項1に記載の車両制御装置。
    The vehicle information includes whether or not the driver of the vehicle holds the steering wheel.
    The processing device is
    When the vehicle does not have a cutting mechanism for disconnecting the mechanical connection between the steering mechanism and the steering wheel and there is no grip, the steering angle, steering angular velocity, or steering angular velocity of the vehicle is higher than when the grip is present. Select the avoidance path by increasing the upper limit of the steering angular acceleration,
    The vehicle control device according to claim 1, wherein when the vehicle has the cutting mechanism, the avoidance route is selected based on the upper limit value in the case where the grip is not performed.
PCT/JP2020/035390 2019-10-18 2020-09-18 Vehicle control device WO2021075203A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020004474.2T DE112020004474T5 (en) 2019-10-18 2020-09-18 VEHICLE CONTROL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019190677A JP7219200B2 (en) 2019-10-18 2019-10-18 vehicle controller
JP2019-190677 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021075203A1 true WO2021075203A1 (en) 2021-04-22

Family

ID=75537568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035390 WO2021075203A1 (en) 2019-10-18 2020-09-18 Vehicle control device

Country Status (3)

Country Link
JP (1) JP7219200B2 (en)
DE (1) DE112020004474T5 (en)
WO (1) WO2021075203A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230150507A1 (en) * 2020-04-15 2023-05-18 Nissan Motor Co., Ltd. Travel Assistance Method and Travel Assistance Device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7393721B2 (en) * 2020-02-13 2023-12-07 マツダ株式会社 Driving route generation system and vehicle driving support system
WO2023194793A1 (en) * 2022-04-05 2023-10-12 日産自動車株式会社 Information providing device and information providing method
DE102022207185A1 (en) 2022-07-14 2024-01-25 Robert Bosch Gesellschaft mit beschränkter Haftung Method for controlling an ego vehicle
DE102022214143A1 (en) 2022-12-21 2024-06-27 Robert Bosch Gesellschaft mit beschränkter Haftung Method for controlling an ego vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014061792A (en) * 2012-09-21 2014-04-10 Toyota Motor Corp Travel assisting device
JP2017214036A (en) * 2016-06-02 2017-12-07 本田技研工業株式会社 Vehicle control system, vehicle control method, and vehicle control program
JP2018154140A (en) * 2017-03-15 2018-10-04 パナソニックIpマネジメント株式会社 Electronic apparatus and vehicle
JP2018158684A (en) * 2017-03-23 2018-10-11 スズキ株式会社 Travel control device for vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2570982C2 (en) 2011-09-26 2015-12-20 Тойота Дзидося Кабусики Кайся Auxiliary vehicle control system
JP6332170B2 (en) 2015-07-01 2018-05-30 トヨタ自動車株式会社 Automatic operation control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014061792A (en) * 2012-09-21 2014-04-10 Toyota Motor Corp Travel assisting device
JP2017214036A (en) * 2016-06-02 2017-12-07 本田技研工業株式会社 Vehicle control system, vehicle control method, and vehicle control program
JP2018154140A (en) * 2017-03-15 2018-10-04 パナソニックIpマネジメント株式会社 Electronic apparatus and vehicle
JP2018158684A (en) * 2017-03-23 2018-10-11 スズキ株式会社 Travel control device for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230150507A1 (en) * 2020-04-15 2023-05-18 Nissan Motor Co., Ltd. Travel Assistance Method and Travel Assistance Device
US11884276B2 (en) * 2020-04-15 2024-01-30 Nissan Motor Co., Ltd. Travel assistance method and travel assistance device

Also Published As

Publication number Publication date
JP7219200B2 (en) 2023-02-07
DE112020004474T5 (en) 2022-08-04
JP2021067988A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2021075203A1 (en) Vehicle control device
CN109795490B (en) Automatic driving system
JP6768787B2 (en) Vehicle control systems, vehicle control methods, and vehicle control programs
JP7088364B2 (en) Autonomous driving system
JP6308233B2 (en) Vehicle control apparatus and vehicle control method
US20170313321A1 (en) Vehicle control system, vehicle control method, and vehicle control program
US20170120912A1 (en) Vehicle control apparatus, vehicle control method, and vehicle control program
WO2018101253A1 (en) Vehicle control device
JP6460579B2 (en) Driving support control device
JP7266709B2 (en) Vehicle control method and vehicle control device
JP2020163900A (en) Vehicle control device, vehicle control method, and program
US11479246B2 (en) Vehicle control device, vehicle control method, and storage medium
JP6376523B2 (en) Vehicle control device
JP7287498B2 (en) Operation control method and operation control device
JP2020077266A (en) Vehicle control device
JP6376522B2 (en) Vehicle control device
JP2018203108A (en) Vehicle control device
JP2021170165A (en) Vehicle travel control device
EP3842315B1 (en) Autonomous driving vehicle three-point turn
CN114761300A (en) Driving control method and driving control device
JPWO2018047232A1 (en) Vehicle control device
JP7435787B2 (en) Route confirmation device and route confirmation method
JP2020045039A (en) Vehicle control method and vehicle control apparatus
JP6376520B2 (en) Vehicle control device
JP6376521B2 (en) Vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877101

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20877101

Country of ref document: EP

Kind code of ref document: A1