WO2021075013A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2021075013A1
WO2021075013A1 PCT/JP2019/040806 JP2019040806W WO2021075013A1 WO 2021075013 A1 WO2021075013 A1 WO 2021075013A1 JP 2019040806 W JP2019040806 W JP 2019040806W WO 2021075013 A1 WO2021075013 A1 WO 2021075013A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
suction pipe
compressor
air conditioner
outside air
Prior art date
Application number
PCT/JP2019/040806
Other languages
French (fr)
Japanese (ja)
Inventor
淳平 工藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/040806 priority Critical patent/WO2021075013A1/en
Priority to JP2021552050A priority patent/JPWO2021075013A1/ja
Publication of WO2021075013A1 publication Critical patent/WO2021075013A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the present invention relates to an air conditioner that harmonizes indoor air.
  • a refrigerant lower than 0 ° C. may flow through the suction pipe of the compressor, and dew condensation may occur on the surface of the suction pipe.
  • the water condensed on the surface of the suction pipe freezes, and the suction pipe may be damaged due to the change in the natural frequency, and the refrigerant may leak.
  • the present invention has been made in view of the above problems in the prior art, and can suppress dew condensation on the suction pipe of the compressor at low outside temperature and prevent damage to the suction pipe due to freezing of the dew condensation water.
  • the purpose is to provide an air conditioner that can be used.
  • the air conditioner according to the present invention is an air conditioner provided with a compressor, and detects an outside air temperature sensor that detects the outside air temperature and a suction pipe temperature of a suction pipe connected to the suction side of the compressor.
  • a suction pipe temperature sensor and a control device for controlling the operating frequency of the compressor are provided, and the control device is such that the suction pipe temperature becomes 0 ° C. or higher based on the outside air temperature and the suction pipe temperature. It lowers the operating frequency of the compressor.
  • the temperature of the suction pipe connected to the compressor becomes higher than 0 ° C. due to the decrease in the operating frequency of the compressor.
  • FIG. It is a circuit diagram which shows an example of the structure of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a functional block diagram which shows an example of the structure of the control device of FIG.
  • It is a hardware block diagram which shows an example of the structure of the control device of FIG.
  • It is a hardware block diagram which shows another example of the structure of the control device of FIG.
  • It is a flowchart which shows an example of the flow of the dew condensation suppression processing by the air conditioner 1 which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows an example of the flow of the dew condensation suppression processing by the air conditioner 1 which concerns on Embodiment 2.
  • FIG. It is a flowchart which shows an example of the flow of the dew condensation suppression processing by the air conditioner 1 which concerns on Embodiment 3.
  • Embodiment 1 The air conditioner according to the first embodiment will be described.
  • the air conditioner performs air conditioning in the target space by circulating the refrigerant in the refrigerant circuit.
  • FIG. 1 is a circuit diagram showing an example of the configuration of the air conditioner according to the first embodiment.
  • the air conditioner 1 is composed of an outdoor unit 10, an indoor unit 20, and a control device 30.
  • the outdoor unit 10 and the indoor unit 20 are connected by a refrigerant pipe.
  • the outdoor unit 10 includes a compressor 11, a refrigerant flow path switching device 12, an outdoor heat exchanger 13, an expansion valve 14, an outdoor blower 16, an outside air temperature sensor 17, and a suction pipe temperature sensor 18.
  • the indoor unit 20 includes an indoor heat exchanger 21 and an indoor blower 22.
  • the refrigerant circulates by sequentially connecting the compressor 11, the refrigerant flow path switching device 12, the outdoor heat exchanger 13, the expansion valve 14, the indoor heat exchanger 21, and the accumulator 15 by a refrigerant pipe.
  • a refrigerant circuit is formed.
  • the compressor 11 sucks in the low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, and discharges the sucked refrigerant in a high-temperature and high-pressure state.
  • the compressor 11 is composed of an inverter compressor whose capacity, which is the amount of transmission per unit time, is controlled by changing the operating frequency.
  • the operating frequency of the compressor 11 is controlled by the control device 30.
  • the refrigerant flow path switching device 12 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the flow direction of the refrigerant.
  • the refrigerant flow path switching device 12 switches to the state shown by the solid line in FIG. 1, that is, the discharge side of the compressor 11 and the outdoor heat exchanger 13 are connected to each other.
  • the refrigerant flow path switching device 12 switches during the heating operation so that the state shown by the broken line in FIG. 1, that is, the suction side of the compressor 11 and the outdoor heat exchanger 13 are connected.
  • the switching of the flow path in the refrigerant flow path switching device 12 is controlled by the control device 30.
  • the outdoor heat exchanger 13 is, for example, a fin-and-tube type heat exchanger that exchanges heat between the outdoor air supplied by the outdoor blower 16 and the refrigerant.
  • the outdoor heat exchanger 13 functions as a condenser that dissipates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation. Further, the outdoor heat exchanger 13 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air by the heat of vaporization at that time.
  • the outdoor blower 16 supplies outdoor air to the outdoor heat exchanger 13.
  • the rotation speed of the outdoor blower 16 is controlled by the control device 30. By controlling the rotation speed, the amount of air blown to the outdoor heat exchanger 13 is adjusted.
  • the expansion valve 14 decompresses the refrigerant and expands it.
  • the expansion valve 14 is composed of, for example, an electronic expansion valve or a valve capable of controlling the opening degree.
  • the opening degree of the expansion valve 14 is controlled by the control device 30.
  • the accumulator 15 is provided on the low pressure side, which is the suction side of the compressor 11.
  • the accumulator 15 stores the surplus refrigerant generated by the difference in the operating state, the surplus refrigerant due to the transient change in the operation, and the like.
  • the outside air temperature sensor 17 is provided near, for example, the outdoor heat exchanger 13 and detects the outside air temperature To.
  • the outside air temperature To detected by the outside air temperature sensor 17 is supplied to the control device 30.
  • the suction pipe temperature sensor 18 is provided in the suction side pipe of the compressor 11 and detects the suction pipe temperature Ts of the pipe through which the refrigerant sucked into the compressor 11 flows.
  • the suction pipe temperature Ts detected by the suction pipe temperature sensor 18 is supplied to the control device 30.
  • the indoor heat exchanger 21 exchanges heat between the indoor air supplied by the indoor blower 22 and the refrigerant. As a result, cooling air or heating air supplied to the indoor space is generated.
  • the indoor heat exchanger 21 functions as an evaporator during the cooling operation, and cools the air in the air-conditioned space to cool the air. Further, the indoor heat exchanger 21 functions as a condenser during the heating operation, and heats the air in the air-conditioned space to heat the room.
  • the indoor blower 22 supplies air to the indoor heat exchanger 21.
  • the rotation speed of the indoor blower 22 is controlled by the control device 30. By controlling the rotation speed, the amount of air blown to the indoor heat exchanger 21 is adjusted.
  • Control device 30 The control device 30 controls each part provided in the outdoor unit 10 and the indoor unit 20.
  • the control device 30 controls the operating frequency of the compressor 11 based on the outside air temperature To and the suction pipe temperature Ts detected by the outside air temperature sensor 17 and the suction pipe temperature sensor 18, respectively. ..
  • FIG. 2 is a functional block diagram showing an example of the configuration of the control device of FIG.
  • the control device 30 includes an information acquisition unit 31, a comparison unit 32, an equipment control unit 33, a timer 34, and a storage unit 35.
  • the control device 30 is composed of an arithmetic unit such as a microcomputer that realizes various functions by executing software, or hardware such as a circuit device corresponding to various functions. Note that, in FIG. 2, only the configuration for the function related to the first embodiment is shown, and the other configurations are not shown.
  • the information acquisition unit 31 acquires various data. Specifically, the information acquisition unit 31 acquires the outside air temperature To detected by the outside air temperature sensor 17 and the room temperature detected by the suction pipe temperature sensor 18. Further, the information acquisition unit 31 acquires the operating frequency of the compressor 11 from the compressor 11.
  • the comparison unit 32 compares various types of information when the dew condensation suppression process described later is executed. Specifically, the comparison unit 32 compares the suction pipe temperature Ts with the outside air temperature To. Further, the comparison unit 32 compares the minimum values of the suction pipe temperature Ts and the outside air temperature To with 0 ° C. Further, the comparison unit 32 compares the current operating frequency of the compressor 11 with the lower limit frequency of the operating frequency of the compressor 11 stored in the storage unit 35. Furthermore, the comparison unit 32 compares the operating time of the air conditioner 1 with the continuous operation allowable time stored in the storage unit 35 and set in advance with respect to the operating time.
  • the device control unit 33 controls the compressor 11 so as to change the operating frequency of the compressor 11 based on the comparison result of the comparison unit 32.
  • the timer 34 measures the operating time of the air conditioner 1. The timer 34 starts measuring the operation time when the operation of the air conditioner 1 is started, and ends the measurement of the operation time when the operation of the air conditioner 1 is stopped. When the measurement of the operation time is completed, the operation time measured by the timer 34 is reset.
  • the storage unit 35 stores various information used in each unit of the control device 30.
  • the storage unit 35 stores in advance the lower limit frequency of the compressor 11 and the continuous operation allowable time of the air conditioner 1 used in the comparison unit 32.
  • FIG. 3 is a hardware configuration diagram showing an example of the configuration of the control device of FIG.
  • the control device 30 of FIG. 2 is composed of a processing circuit 41 as shown in FIG.
  • each function of the information acquisition unit 31, the comparison unit 32, the device control unit 33, the timer 34, and the storage unit 35 is realized by the processing circuit 41.
  • the processing circuit 41 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate). Array) or a combination of these is applicable.
  • the functions of the information acquisition unit 31, the comparison unit 32, the device control unit 33, the timer 34, and the storage unit 35 may be realized by the processing circuit 41, or the functions of the respective units may be realized by one processing circuit. It may be realized by 41.
  • FIG. 4 is a hardware configuration diagram showing another example of the configuration of the control device of FIG.
  • the control device 30 of FIG. 2 includes a processor 51 and a memory 52 as shown in FIG.
  • each function of the information acquisition unit 31, the comparison unit 32, the device control unit 33, the timer 34, and the storage unit 35 is realized by the processor 51 and the memory 52.
  • the functions of the information acquisition unit 31, the comparison unit 32, the device control unit 33, the timer 34, and the storage unit 35 are software, firmware, or a combination of software and firmware. Is realized by.
  • the software and firmware are written as a program and stored in the memory 52.
  • the processor 51 realizes the functions of each part by reading and executing the program stored in the memory 52.
  • a RAM Random Access Memory
  • a ROM Read Only Memory
  • a flash memory an EPROM (Erasable and Programmable ROM), an EEPROM (Electrically Erasable Memory Volatile ROM, etc.)
  • a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), and a DVD (Digital Versaille Disc) may be used.
  • the refrigerant flow path switching device 12 is switched to the state shown by the solid line in FIG. 1 under the control of the control device 30. That is, the refrigerant flow path switching device 12 is switched so that the discharge side of the compressor 11 and the outdoor heat exchanger 13 are connected, and the accumulator 15 and the indoor heat exchanger 21 are connected.
  • the compressor 11 When the compressor 11 is driven, the refrigerant in a high temperature and high pressure gas state is discharged from the compressor 11.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 that functions as a condenser via the refrigerant flow path switching device 12.
  • the outdoor heat exchanger 13 heat exchange is performed between the high-temperature and high-pressure gas refrigerant that has flowed in and the outdoor air supplied by the outdoor blower 16.
  • the high-temperature and high-pressure gas refrigerant condenses into a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 13 expands at the expansion valve 14 and becomes a two-phase state refrigerant in which the low-pressure gas refrigerant and the low-pressure liquid refrigerant are mixed.
  • the two-phase refrigerant flows into the indoor heat exchanger 21 that functions as an evaporator.
  • heat exchange is performed between the flowing two-phase refrigerant and the indoor air supplied by the indoor blower 22.
  • the liquid refrigerant of the two-phase refrigerant evaporates to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant flowing out of the indoor heat exchanger 21 flows into the compressor 11 via the refrigerant flow path switching device 12 and the accumulator 15, is compressed into a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 11 again. Will be done. Hereinafter, this cycle is repeated.
  • the refrigerant flow path switching device 12 is switched to the state shown by the broken line in FIG. 1 under the control of the control device 30. That is, the refrigerant flow path switching device 12 is switched so that the discharge side of the compressor 11 and the indoor heat exchanger 21 are connected, and the accumulator 15 and the outdoor heat exchanger 13 are connected.
  • the compressor 11 When the compressor 11 is driven, the refrigerant in a high temperature and high pressure gas state is discharged from the compressor 11.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor heat exchanger 21 that functions as a condenser via the refrigerant flow path switching device 12.
  • the indoor heat exchanger 21 heat exchange is performed between the high-temperature and high-pressure gas refrigerant that has flowed in and the indoor air supplied by a blower (not shown).
  • a blower not shown
  • the high-pressure liquid refrigerant flowing out of the indoor heat exchanger 21 expands at the expansion valve 14 and becomes a two-phase state refrigerant in which a low-pressure gas refrigerant and a low-pressure liquid refrigerant are mixed.
  • the two-phase refrigerant flows into the outdoor heat exchanger 13 that functions as an evaporator.
  • heat exchange is performed between the flowing two-phase refrigerant and the outdoor air supplied by the outdoor blower 16.
  • the liquid refrigerant of the two-phase refrigerant evaporates to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant flowing out of the outdoor heat exchanger 13 flows into the compressor 11 via the refrigerant flow path switching device 12 and the accumulator 15, is compressed into a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 11 again. Will be done. Hereinafter, this cycle is repeated.
  • the air conditioner 1 controls the operating frequency of the compressor 11 so that the temperature of the suction pipe becomes 0 ° C. or higher, and suppresses the generation of condensed water in the suction pipe. Condensation suppression treatment is performed to prevent the dew condensation water from freezing.
  • FIG. 5 is a flowchart showing an example of the flow of the dew condensation suppression process by the air conditioner 1 according to the first embodiment.
  • step S1 the information acquisition unit 31 acquires the suction pipe temperature Ts detected by the suction pipe temperature sensor 18 and the outside air temperature To detected by the outside air temperature sensor 17.
  • step S2 the comparison unit 32 compares the suction pipe temperature Ts and the outside air temperature To, and compares the minimum value of the suction pipe temperature Ts and the outside air temperature To with 0 ° C.
  • “Min (Ts, To)” in FIG. 5 indicates the minimum value among the suction pipe temperature Ts and the outside air temperature To.
  • step S2 when the suction pipe temperature Ts is lower than the outside air temperature To and the minimum value Min (Ts, To) is lower than 0 ° C. (step S2: Yes), the process proceeds to step S3.
  • the suction pipe temperature Ts is equal to or higher than the outside air temperature To or the minimum value Min (Ts, To) is 0 ° C. or higher (step S2: No)
  • the device control unit 33 controls the air conditioner 1 in step S5. Each part is controlled so as to continue the operation of. Then, the process returns to step S1.
  • step S3 the comparison unit 32 compares the current operating frequency of the compressor 11 with the lower limit frequency of the operating frequency read from the storage unit 35. As a result of comparison, when the current operating frequency is higher than the lower limit frequency (step S3: Yes), the device control unit 33 controls in step S4 so as to lower the operating frequency of the compressor 11. Then, the process returns to step S1. On the other hand, when the current operating frequency is equal to or lower than the lower limit frequency (step S3: No), the process proceeds to step S6.
  • step S6 the comparison unit 32 compares the current operation time of the air conditioner 1 measured by the timer 34 with the continuous operation allowable time set in the air conditioner 1 read from the storage unit 35.
  • step S6: Yes when the current operation time of the air conditioner 1 is longer than the continuous operation allowable time (step S6: Yes), the device control unit 33 stops the operation of the air conditioner 1 in step S7. Control each part. Then, a series of processes is completed.
  • step S6: No the device control unit 33 sets each unit so as to continue the operation of the air conditioner 1 in step S5. Control. Then, the process returns to step S1.
  • the temperature of the suction pipe of the compressor 11 may become 0 ° C. or lower and dew condensation may occur, and the operating frequency of the compressor 11 is lowered. If it can be done, the operating frequency of the compressor 11 is lowered.
  • the operating frequency of the compressor 11 decreases, the amount of refrigerant circulating in the refrigerant circuit decreases, and the evaporation temperature or outlet temperature of the indoor heat exchanger 21 increases. As a result, the temperature of the refrigerant sucked into the compressor 11 rises. Therefore, the suction pipe temperature Ts can be set to a temperature higher than 0 ° C., and dew condensation on the suction pipe can be suppressed. Then, by suppressing the dew condensation on the suction pipe, it is possible to prevent the suction pipe from freezing due to the dew condensation.
  • the control device 30 has the outside air temperature To detected by the outside air temperature sensor 17 and the suction pipe of the suction pipe detected by the suction pipe temperature sensor 18.
  • the compressor 11 is controlled based on the temperature Ts.
  • the control device 30 lowers the operating frequency of the compressor 11 so that the suction pipe temperature Ts becomes 0 ° C. or higher.
  • the suction pipe temperature Ts can be set to a temperature higher than 0 ° C., and dew condensation on the suction pipe can be suppressed. Then, by suppressing the dew condensation on the suction pipe, it is possible to prevent the suction pipe from freezing due to the dew condensation.
  • the control device 30 determines that the suction pipe temperature Ts is lower than the outside air temperature To and the minimum value Min (Ts, To) of the suction pipe temperature Ts and the outside air temperature To is lower than 0 ° C. It is preferable to lower the operating frequency of the compressor 11.
  • Embodiment 2 Next, the second embodiment will be described.
  • the dew condensation suppression treatment is carried out in consideration of the humidity of the outside air.
  • the same reference numerals are given to the parts common to the first embodiment, and detailed description thereof will be omitted.
  • the comparison unit 32 of the control device 30 compares the suction pipe temperature Ts with the dew point temperature when the dew condensation suppressing process is executed.
  • the dew point temperature is acquired based on the outside air temperature To and the assumed humidity.
  • the storage unit 35 uses the calculation formula of the dew point temperature or the temperature / humidity used in the comparison unit 32 in addition to the lower limit frequency of the compressor 11 and the continuous operation allowable time of the air conditioner 1 described in the first embodiment.
  • a table or the like showing the relationship with the dew point temperature is stored in advance.
  • FIG. 6 is a flowchart showing an example of the flow of the dew condensation suppression process by the air conditioner 1 according to the second embodiment.
  • step S11 the information acquisition unit 31 acquires the suction pipe temperature Ts detected by the suction pipe temperature sensor 18 and the outside air temperature To detected by the outside air temperature sensor 17.
  • step S12 the comparison unit 32 compares the suction pipe temperature Ts with the dew point temperature obtained based on the outside air temperature To, and also compares the suction pipe temperature Ts with 0 ° C.
  • step S12 when the suction pipe temperature Ts is lower than the dew point temperature and the suction pipe temperature Ts is lower than 0 ° C. (step S12: Yes), the process proceeds to step S13.
  • the suction pipe temperature Ts is equal to or higher than the dew point temperature or the suction pipe temperature Ts is equal to or higher than 0 ° C. (step S12: No)
  • the device control unit 33 continues the operation of the air conditioner 1 in step S15. Each part is controlled so as to. Then, the process returns to step S11.
  • step S13 the comparison unit 32 compares the current operating frequency of the compressor 11 with the lower limit frequency of the operating frequency read from the storage unit 35. As a result of comparison, when the current operating frequency is higher than the lower limit frequency (step S13: Yes), the device control unit 33 controls in step S14 so as to lower the operating frequency of the compressor 11. Then, the process returns to step S11. On the other hand, when the current operating frequency is equal to or lower than the lower limit frequency (step S13: No), the process shifts to step S16.
  • step S16 the comparison unit 32 compares the current operation time of the air conditioner 1 measured by the timer 34 with the continuous operation allowable time set in the air conditioner 1 read from the storage unit 35. As a result of comparison, when the current operating time of the air conditioner 1 is longer than the continuous operation allowable time (step S16: Yes), the device control unit 33 stops the operation of the air conditioner 1 in step S17. Control each part. Then, a series of processes is completed. On the other hand, when the current operating time of the air conditioner 1 is equal to or less than the continuous operation allowable time (step S16: No), the device control unit 33 sets each unit so as to continue the operation of the air conditioner 1 in step S15. Control. Then, the process returns to step S11.
  • the dew condensation suppressing treatment according to the second embodiment when the suction pipe temperature Ts falls below the dew point temperature, it is determined that dew condensation occurs in the suction pipe, and the operating frequency of the compressor 11 is lowered. Be controlled.
  • the dew point temperature is -2.1 ° C., so that the temperature at which dew condensation is determined to occur is the dew condensation on the suction pipe.
  • the cooling capacity of the air conditioner 1 is lowered, but as in the second embodiment, the cooling capacity is widened by expanding the temperature range for lowering the operating frequency. Can be suppressed. Therefore, when the upper limit of the humidity of the outdoor air in the usage environment can be limited, the air conditioner 1 can perform the operation in which freezing is prevented while suppressing the decrease in the cooling capacity.
  • the suction pipe temperature Ts is lower than the dew point temperature obtained based on the outside air temperature To and the humidity, and the suction pipe temperature Ts is high.
  • the suction pipe temperature Ts can be set to a temperature higher than 0 ° C. as in the first embodiment, and dew condensation on the suction pipe can be suppressed. Then, by suppressing the dew condensation on the suction pipe, it is possible to prevent the suction pipe from freezing due to the dew condensation.
  • the value of the suction pipe temperature Ts at which dew condensation is determined to occur is lowered by the difference value A between the outside air temperature To and the dew point temperature, and the temperature range in which the operating frequency of the compressor 11 is lowered is different. It can be expanded by the value A. Therefore, the air conditioner 1 according to the second embodiment can perform the operation in which freezing is prevented while suppressing the decrease in the cooling capacity due to the decrease in the operating frequency of the compressor 11.
  • Embodiment 3 Next, the third embodiment will be described.
  • the amount of water present in the outdoor air is small, so even if the outside air temperature around the suction pipe connected to the compressor 11 falls below the dew point temperature.
  • the amount of condensed water in the suction pipe is small. Therefore, in the extremely low outside air temperature, the continuous operation time until freezing, which may cause the suction pipe to break, can be made longer than in the low outside air temperature. Therefore, in the third embodiment, the permissible continuous operation time when determining the continuous operation time in the dew condensation suppression process is changed from the first and second embodiments so as to correspond to the extremely low outside air temperature.
  • the parts common to the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the comparison unit 32 of the control device 30 compares the operation time with the value obtained by adding the set time B to the continuous operation allowable time at the time of the dew condensation suppression process.
  • the set time B is a value indicating a difference time from the continuous operation allowable time at the low outside air temperature, which is obtained in consideration of the water content at the extremely low outside air temperature.
  • the storage unit 35 stores in advance the set time B used by the comparison unit 32 in addition to the lower limit frequency of the compressor 11 and the continuous operation allowable time of the air conditioner 1 described in the first embodiment.
  • FIG. 7 is a flowchart showing an example of the flow of the dew condensation suppression process by the air conditioner 1 according to the third embodiment.
  • step S21 the information acquisition unit 31 acquires the suction pipe temperature Ts detected by the suction pipe temperature sensor 18 and the outside air temperature To detected by the outside air temperature sensor 17.
  • step S22 the comparison unit 32 compares the suction pipe temperature Ts and the outside air temperature To, and compares the minimum value Min (Ts, To) of the suction pipe temperature Ts and the outside air temperature To with 0 ° C.
  • step S22: Yes when the suction pipe temperature Ts is lower than the outside air temperature To and the minimum value Min (Ts, To) is lower than 0 ° C. (step S22: Yes), the process proceeds to step S23.
  • the suction pipe temperature Ts is equal to or higher than the outside air temperature To or the minimum value Min (Ts, To) is 0 ° C. or higher (step S22: No)
  • the device control unit 33 sets the air conditioner 1 in step S25. Each part is controlled so as to continue the operation of. Then, the process returns to step S21.
  • step S23 the comparison unit 32 compares the current operating frequency of the compressor 11 with the lower limit frequency of the operating frequency read from the storage unit 35. As a result of comparison, when the current operating frequency is higher than the lower limit frequency (step S23: Yes), the device control unit 33 controls in step S24 so as to lower the operating frequency of the compressor 11. Then, the process returns to step S21. On the other hand, when the current operating frequency is equal to or lower than the lower limit frequency (step S23: No), the process shifts to step S26.
  • step S26 the comparison unit 32 sets the set time B to the current operating time of the air conditioner 1 measured by the timer 34 and the continuous operation allowable time set in the air conditioner 1 read from the storage unit 35. Compare with the added time. As a result of comparison, when the current operating time of the air conditioner 1 is longer than the time obtained by adding the set time B to the continuous operation allowable time (step S26: Yes), the device control unit 33 sets the air conditioner 33 in step S27. Each part is controlled so as to stop the operation of 1. Then, a series of processes is completed.
  • step S26 No
  • the device control unit 33 of the air conditioner 1 in step S25 Each part is controlled so that the operation is continued. Then, the process returns to step S21.
  • the operating frequency of the compressor 11 is controlled in consideration of the amount of water in the extremely low outside air temperature, so that the air conditioner 1 reduces the cooling capacity. It is possible to carry out operation that prevents freezing while suppressing it.
  • step S22 is performed in the same manner as the process of step S2 in the first embodiment, but this is not limited to this example.
  • the process of step S22 may be performed in the same manner as the process of step S12 shown in FIG.
  • the control device 30 sets the operating time to the continuous operation allowable time when the operating frequency of the compressor 11 is equal to or lower than the lower limit frequency. If the time is longer than the time obtained by adding B, the operation of the air conditioner is stopped. At extremely low outside air temperature, even if the outside air temperature around the suction pipe falls below the dew point temperature, the amount of condensed water is smaller than at low outside air temperature. Therefore, at the time of extremely low outside air temperature, a longer allowable continuous operation time can be allowed as compared with the time of low outside air temperature.
  • the air conditioner 1 according to the third embodiment controls the operating frequency of the compressor 11 in consideration of the amount of water in the extremely low outside air temperature
  • the cooling capacity is the same as that of the first and second embodiments. It is possible to carry out the operation in which freezing is prevented while suppressing the decrease in the frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioner equipped with a compressor comprises: an outdoor air temperature sensor that detects the outdoor air temperature; a suction pipe temperature sensor that detects the suction pipe temperature of a suction pipe that is connected to the suction side of the compressor; and a control device that controls the operating frequency of the compressor. The control device lowers the operating frequency of the compressor so that the suction pipe temperature becomes 0°C or higher on the basis of the outdoor air temperature and the suction pipe temperature.

Description

空気調和機Air conditioner
 本発明は、室内の空気調和を行う空気調和機に関するものである。 The present invention relates to an air conditioner that harmonizes indoor air.
 従来、低外気温時でも冷房運転を実施する必要があるサーバールームなどに用いられる空気調和機においては、吐出圧力と吸入圧力との差である高低圧差を確保して低圧縮比運転を回避するため、サーミスタ等を用いて室外送風機の回転数を制御している(例えば、特許文献1参照)。 Conventionally, in an air conditioner used in a server room or the like where it is necessary to perform cooling operation even at a low outside temperature, a high / low pressure difference, which is the difference between the discharge pressure and the suction pressure, is secured to avoid low compression ratio operation. Therefore, the rotation speed of the outdoor blower is controlled by using a thermistor or the like (see, for example, Patent Document 1).
特開2011-247455号公報Japanese Unexamined Patent Publication No. 2011-247455
 ところで、低外気温時に冷房運転が実施されると、圧縮機の吸入配管には、0℃よりも低い冷媒が流れ、吸入配管の表面に結露が発生する虞がある。この場合、吸入配管の表面で結露した水分が凍結し、固有振動数の変化によって吸入配管が破損して冷媒が漏洩する可能性がある。 By the way, if the cooling operation is carried out at a low outside air temperature, a refrigerant lower than 0 ° C. may flow through the suction pipe of the compressor, and dew condensation may occur on the surface of the suction pipe. In this case, the water condensed on the surface of the suction pipe freezes, and the suction pipe may be damaged due to the change in the natural frequency, and the refrigerant may leak.
 結露水の凍結による吸入配管の破損を防止するためには、一時的に空気調和機の運転を停止させて氷を溶かしたり、吸入配管に断熱材を隙間なく巻き付けたりする等の特別な対応が必要となる。しかしながら、このような対応を行うと、連続的な空調の維持が困難であり、また、コストの増大および作業性の悪化が生じるという課題があった。 In order to prevent damage to the suction pipe due to freezing of condensed water, special measures such as temporarily stopping the operation of the air conditioner to melt the ice and wrapping the heat insulating material around the suction pipe without any gaps are required. You will need it. However, if such measures are taken, it is difficult to maintain continuous air conditioning, and there are problems that the cost increases and the workability deteriorates.
 本発明は、上記従来の技術における課題に鑑みてなされたものであって、低外気温時における圧縮機の吸入配管の結露を抑制し、結露水の凍結による吸入配管の破損を防止することができる空気調和機を提供することを目的とする。 The present invention has been made in view of the above problems in the prior art, and can suppress dew condensation on the suction pipe of the compressor at low outside temperature and prevent damage to the suction pipe due to freezing of the dew condensation water. The purpose is to provide an air conditioner that can be used.
 本発明に係る空気調和機は、圧縮機を備えた空気調和機であって、外気温度を検知する外気温度センサと、前記圧縮機の吸入側に接続された吸入配管の吸入管温度を検知する吸入管温度センサと、前記圧縮機の運転周波数を制御する制御装置とを備え、前記制御装置は、前記外気温度および前記吸入管温度に基づき、前記吸入管温度が0℃以上となるように、前記圧縮機の前記運転周波数を低下させるものである。 The air conditioner according to the present invention is an air conditioner provided with a compressor, and detects an outside air temperature sensor that detects the outside air temperature and a suction pipe temperature of a suction pipe connected to the suction side of the compressor. A suction pipe temperature sensor and a control device for controlling the operating frequency of the compressor are provided, and the control device is such that the suction pipe temperature becomes 0 ° C. or higher based on the outside air temperature and the suction pipe temperature. It lowers the operating frequency of the compressor.
 本発明によれば、圧縮機の運転周波数が低下することにより、圧縮機に接続された吸入配管の温度が0℃よりも高くなる。これにより、低外気温時における圧縮機の吸入配管の結露を抑制し、結露水の凍結による吸入配管の破損を防止することができる。 According to the present invention, the temperature of the suction pipe connected to the compressor becomes higher than 0 ° C. due to the decrease in the operating frequency of the compressor. As a result, dew condensation on the suction pipe of the compressor at low outside air temperature can be suppressed, and damage to the suction pipe due to freezing of the dew condensation water can be prevented.
実施の形態1に係る空気調和機の構成の一例を示す回路図である。It is a circuit diagram which shows an example of the structure of the air conditioner which concerns on Embodiment 1. FIG. 図1の制御装置の構成の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the structure of the control device of FIG. 図2の制御装置の構成の一例を示すハードウェア構成図である。It is a hardware block diagram which shows an example of the structure of the control device of FIG. 図2の制御装置の構成の他の例を示すハードウェア構成図である。It is a hardware block diagram which shows another example of the structure of the control device of FIG. 実施の形態1に係る空気調和機1による結露抑制処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the dew condensation suppression processing by the air conditioner 1 which concerns on Embodiment 1. FIG. 実施の形態2に係る空気調和機1による結露抑制処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the dew condensation suppression processing by the air conditioner 1 which concerns on Embodiment 2. FIG. 実施の形態3に係る空気調和機1による結露抑制処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the dew condensation suppression processing by the air conditioner 1 which concerns on Embodiment 3.
 以下、本発明の実施の形態について、図面を参照して説明する。本発明は、以下の実施の形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々に変形することが可能である。また、本発明は、以下の各実施の形態に示す構成のうち、組合せ可能な構成のあらゆる組合せを含むものである。また、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention. In addition, the present invention includes all combinations of configurations that can be combined among the configurations shown in the following embodiments. Further, in each figure, those having the same reference numerals are the same or equivalent thereof, which are common in the entire text of the specification.
実施の形態1.
 本実施の形態1に係る空気調和機について説明する。本実施の形態1に係る空気調和機は、空気調和機は、冷媒回路に冷媒を循環させることにより、対象空間の空気調和を行うものである。
Embodiment 1.
The air conditioner according to the first embodiment will be described. In the air conditioner according to the first embodiment, the air conditioner performs air conditioning in the target space by circulating the refrigerant in the refrigerant circuit.
[空気調和機1の構成]
 図1は、本実施の形態1に係る空気調和機の構成の一例を示す回路図である。図1に示すように、空気調和機1は、室外機10、室内機20および制御装置30で構成されている。室外機10および室内機20は、冷媒配管で接続されている。
[Configuration of air conditioner 1]
FIG. 1 is a circuit diagram showing an example of the configuration of the air conditioner according to the first embodiment. As shown in FIG. 1, the air conditioner 1 is composed of an outdoor unit 10, an indoor unit 20, and a control device 30. The outdoor unit 10 and the indoor unit 20 are connected by a refrigerant pipe.
 室外機10は、圧縮機11、冷媒流路切替装置12、室外熱交換器13、膨張弁14、室外送風機16、外気温度センサ17および吸入管温度センサ18を備えている。室内機20は、室内熱交換器21および室内送風機22を備えている。空気調和機1では、圧縮機11、冷媒流路切替装置12、室外熱交換器13、膨張弁14、室内熱交換器21およびアキュムレータ15が冷媒配管によって順次接続されることにより、冷媒が循環する冷媒回路が形成される。 The outdoor unit 10 includes a compressor 11, a refrigerant flow path switching device 12, an outdoor heat exchanger 13, an expansion valve 14, an outdoor blower 16, an outside air temperature sensor 17, and a suction pipe temperature sensor 18. The indoor unit 20 includes an indoor heat exchanger 21 and an indoor blower 22. In the air conditioner 1, the refrigerant circulates by sequentially connecting the compressor 11, the refrigerant flow path switching device 12, the outdoor heat exchanger 13, the expansion valve 14, the indoor heat exchanger 21, and the accumulator 15 by a refrigerant pipe. A refrigerant circuit is formed.
(室外機10)
 圧縮機11は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮して高温高圧の状態にして吐出する。圧縮機11は、運転周波数を変化させることにより、単位時間あたりの送出量である容量が制御されるインバータ圧縮機からなる。圧縮機11の運転周波数は、制御装置30によって制御される。
(Outdoor unit 10)
The compressor 11 sucks in the low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, and discharges the sucked refrigerant in a high-temperature and high-pressure state. The compressor 11 is composed of an inverter compressor whose capacity, which is the amount of transmission per unit time, is controlled by changing the operating frequency. The operating frequency of the compressor 11 is controlled by the control device 30.
 冷媒流路切替装置12は、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転および暖房運転の切り替えを行う。冷媒流路切替装置12は、冷房運転時に、図1の実線で示す状態、すなわち圧縮機11の吐出側と室外熱交換器13とが接続されるように切り替わる。また、冷媒流路切替装置12は、暖房運転時に、図1の破線で示す状態、すなわち圧縮機11の吸入側と室外熱交換器13とが接続されるように切り替わる。冷媒流路切替装置12における流路の切り替えは、制御装置30によって制御される。 The refrigerant flow path switching device 12 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the flow direction of the refrigerant. During the cooling operation, the refrigerant flow path switching device 12 switches to the state shown by the solid line in FIG. 1, that is, the discharge side of the compressor 11 and the outdoor heat exchanger 13 are connected to each other. Further, the refrigerant flow path switching device 12 switches during the heating operation so that the state shown by the broken line in FIG. 1, that is, the suction side of the compressor 11 and the outdoor heat exchanger 13 are connected. The switching of the flow path in the refrigerant flow path switching device 12 is controlled by the control device 30.
 室外熱交換器13は、例えば、フィンアンドチューブ型の熱交換器であり、室外送風機16によって供給される室外空気と冷媒との間で熱交換を行う。室外熱交換器13は、冷房運転の際に、冷媒の熱を室外空気に放熱して冷媒を凝縮させる凝縮器として機能する。また、室外熱交換器13は、暖房運転の際に、冷媒を蒸発させ、その際の気化熱により室外空気を冷却する蒸発器として機能する。 The outdoor heat exchanger 13 is, for example, a fin-and-tube type heat exchanger that exchanges heat between the outdoor air supplied by the outdoor blower 16 and the refrigerant. The outdoor heat exchanger 13 functions as a condenser that dissipates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation. Further, the outdoor heat exchanger 13 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air by the heat of vaporization at that time.
 室外送風機16は、室外熱交換器13に対して室外空気を供給する。室外送風機16の回転数は、制御装置30によって制御される。回転数が制御されることにより、室外熱交換器13に対する送風量が調整される。 The outdoor blower 16 supplies outdoor air to the outdoor heat exchanger 13. The rotation speed of the outdoor blower 16 is controlled by the control device 30. By controlling the rotation speed, the amount of air blown to the outdoor heat exchanger 13 is adjusted.
 膨張弁14は、冷媒を減圧して膨張させる。膨張弁14は、例えば、電子式膨張弁等の開度の制御が可能な弁で構成される。膨張弁14の開度は、制御装置30によって制御される。アキュムレータ15は、圧縮機11の吸入側である低圧側に設けられる。アキュムレータ15は、運転状態の違いによって生じる余剰冷媒、および過渡的な運転の変化に対する余剰冷媒等を貯留する。 The expansion valve 14 decompresses the refrigerant and expands it. The expansion valve 14 is composed of, for example, an electronic expansion valve or a valve capable of controlling the opening degree. The opening degree of the expansion valve 14 is controlled by the control device 30. The accumulator 15 is provided on the low pressure side, which is the suction side of the compressor 11. The accumulator 15 stores the surplus refrigerant generated by the difference in the operating state, the surplus refrigerant due to the transient change in the operation, and the like.
 外気温度センサ17は、例えば室外熱交換器13の近傍に設けられ、外気温度Toを検知する。外気温度センサ17で検知された外気温度Toは、制御装置30に供給される。吸入管温度センサ18は、圧縮機11の吸入側配管に設けられ、圧縮機11に吸入される冷媒が流通する配管の吸入管温度Tsを検知する。吸入管温度センサ18で検知された吸入管温度Tsは、制御装置30に供給される。 The outside air temperature sensor 17 is provided near, for example, the outdoor heat exchanger 13 and detects the outside air temperature To. The outside air temperature To detected by the outside air temperature sensor 17 is supplied to the control device 30. The suction pipe temperature sensor 18 is provided in the suction side pipe of the compressor 11 and detects the suction pipe temperature Ts of the pipe through which the refrigerant sucked into the compressor 11 flows. The suction pipe temperature Ts detected by the suction pipe temperature sensor 18 is supplied to the control device 30.
(室内機20)
 室内熱交換器21は、室内送風機22によって供給される室内空気と冷媒との間で熱交換を行う。これにより、室内空間に供給される冷房用空気または暖房用空気が生成される。室内熱交換器21は、冷房運転の際に蒸発器として機能し、空調対象空間の空気を冷却して冷房を行う。また、室内熱交換器21は、暖房運転の際に凝縮器として機能し、空調対象空間の空気を加熱して暖房を行う。
(Indoor unit 20)
The indoor heat exchanger 21 exchanges heat between the indoor air supplied by the indoor blower 22 and the refrigerant. As a result, cooling air or heating air supplied to the indoor space is generated. The indoor heat exchanger 21 functions as an evaporator during the cooling operation, and cools the air in the air-conditioned space to cool the air. Further, the indoor heat exchanger 21 functions as a condenser during the heating operation, and heats the air in the air-conditioned space to heat the room.
 室内送風機22は、室内熱交換器21に対して空気を供給する。室内送風機22の回転数は、制御装置30によって制御される。回転数が制御されることにより、室内熱交換器21に対する送風量が調整される。 The indoor blower 22 supplies air to the indoor heat exchanger 21. The rotation speed of the indoor blower 22 is controlled by the control device 30. By controlling the rotation speed, the amount of air blown to the indoor heat exchanger 21 is adjusted.
(制御装置30)
 制御装置30は、室外機10および室内機20に設けられた各部を制御する。特に、本実施の形態1において、制御装置30は、外気温度センサ17および吸入管温度センサ18のそれぞれで検知された外気温度Toおよび吸入管温度Tsに基づき、圧縮機11の運転周波数を制御する。
(Control device 30)
The control device 30 controls each part provided in the outdoor unit 10 and the indoor unit 20. In particular, in the first embodiment, the control device 30 controls the operating frequency of the compressor 11 based on the outside air temperature To and the suction pipe temperature Ts detected by the outside air temperature sensor 17 and the suction pipe temperature sensor 18, respectively. ..
 図2は、図1の制御装置の構成の一例を示す機能ブロック図である。図2に示すように、制御装置30は、情報取得部31、比較部32、機器制御部33、タイマ34および記憶部35を備えている。制御装置30は、ソフトウェアを実行することにより各種機能を実現するマイクロコンピュータなどの演算装置、もしくは各種機能に対応する回路デバイスなどのハードウェア等で構成されている。なお、図2では、本実施の形態1に関連する機能についての構成のみを図示し、それ以外の構成については図示を省略する。 FIG. 2 is a functional block diagram showing an example of the configuration of the control device of FIG. As shown in FIG. 2, the control device 30 includes an information acquisition unit 31, a comparison unit 32, an equipment control unit 33, a timer 34, and a storage unit 35. The control device 30 is composed of an arithmetic unit such as a microcomputer that realizes various functions by executing software, or hardware such as a circuit device corresponding to various functions. Note that, in FIG. 2, only the configuration for the function related to the first embodiment is shown, and the other configurations are not shown.
 情報取得部31は、各種のデータを取得する。具体的には、情報取得部31は、外気温度センサ17で検知された外気温度Toと、吸入管温度センサ18で検知された室内温度とを取得する。また、情報取得部31は、圧縮機11の運転周波数を圧縮機11から取得する。 The information acquisition unit 31 acquires various data. Specifically, the information acquisition unit 31 acquires the outside air temperature To detected by the outside air temperature sensor 17 and the room temperature detected by the suction pipe temperature sensor 18. Further, the information acquisition unit 31 acquires the operating frequency of the compressor 11 from the compressor 11.
 比較部32は、後述する結露抑制処理が実行される際に、各種の情報を比較する。具体的には、比較部32は、吸入管温度Tsと外気温度Toとを比較する。また、比較部32は、吸入管温度Tsおよび外気温度Toのうちの最小値と、0℃とを比較する。さらに、比較部32は、圧縮機11における現在の運転周波数と、記憶部35に記憶された圧縮機11の運転周波数の下限周波数とを比較する。さらにまた、比較部32は、空気調和機1の運転時間と、記憶部35に記憶された、当該運転時間に対して予め設定された連続運転許容時間とを比較する。 The comparison unit 32 compares various types of information when the dew condensation suppression process described later is executed. Specifically, the comparison unit 32 compares the suction pipe temperature Ts with the outside air temperature To. Further, the comparison unit 32 compares the minimum values of the suction pipe temperature Ts and the outside air temperature To with 0 ° C. Further, the comparison unit 32 compares the current operating frequency of the compressor 11 with the lower limit frequency of the operating frequency of the compressor 11 stored in the storage unit 35. Furthermore, the comparison unit 32 compares the operating time of the air conditioner 1 with the continuous operation allowable time stored in the storage unit 35 and set in advance with respect to the operating time.
 機器制御部33は、比較部32の比較結果に基づき、圧縮機11の運転周波数を変更するように、圧縮機11を制御する。タイマ34は、空気調和機1の運転時間を計測する。タイマ34は、空気調和機1の運転が開始された際に運転時間の計測を開始し、空気調和機1の運転が停止された際に運転時間の計測を終了する。運転時間の計測が終了した場合には、タイマ34によって計測された運転時間がリセットされる。 The device control unit 33 controls the compressor 11 so as to change the operating frequency of the compressor 11 based on the comparison result of the comparison unit 32. The timer 34 measures the operating time of the air conditioner 1. The timer 34 starts measuring the operation time when the operation of the air conditioner 1 is started, and ends the measurement of the operation time when the operation of the air conditioner 1 is stopped. When the measurement of the operation time is completed, the operation time measured by the timer 34 is reset.
 記憶部35は、制御装置30の各部で用いられる各種の情報を記憶する。本実施の形態1において、記憶部35は、比較部32で用いられる圧縮機11の下限周波数および空気調和機1の連続運転許容時間を予め記憶している。 The storage unit 35 stores various information used in each unit of the control device 30. In the first embodiment, the storage unit 35 stores in advance the lower limit frequency of the compressor 11 and the continuous operation allowable time of the air conditioner 1 used in the comparison unit 32.
 図3は、図2の制御装置の構成の一例を示すハードウェア構成図である。制御装置30の各種機能がハードウェアで実行される場合、図2の制御装置30は、図3に示すように、処理回路41で構成される。図2の制御装置30において、情報取得部31、比較部32、機器制御部33、タイマ34および記憶部35の各機能は、処理回路41により実現される。 FIG. 3 is a hardware configuration diagram showing an example of the configuration of the control device of FIG. When various functions of the control device 30 are executed by hardware, the control device 30 of FIG. 2 is composed of a processing circuit 41 as shown in FIG. In the control device 30 of FIG. 2, each function of the information acquisition unit 31, the comparison unit 32, the device control unit 33, the timer 34, and the storage unit 35 is realized by the processing circuit 41.
 各機能がハードウェアで実行される場合、処理回路41は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。制御装置30は、情報取得部31、比較部32、機器制御部33、タイマ34および記憶部35の各部の機能それぞれを処理回路41で実現してもよいし、各部の機能を1つの処理回路41で実現してもよい。 When each function is executed by hardware, the processing circuit 41 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate). Array) or a combination of these is applicable. In the control device 30, the functions of the information acquisition unit 31, the comparison unit 32, the device control unit 33, the timer 34, and the storage unit 35 may be realized by the processing circuit 41, or the functions of the respective units may be realized by one processing circuit. It may be realized by 41.
 図4は、図2の制御装置の構成の他の例を示すハードウェア構成図である。制御装置30の各種機能がソフトウェアで実行される場合、図2の制御装置30は、図4に示すように、プロセッサ51およびメモリ52で構成される。制御装置30において、情報取得部31、比較部32、機器制御部33、タイマ34および記憶部35の各機能は、プロセッサ51およびメモリ52により実現される。 FIG. 4 is a hardware configuration diagram showing another example of the configuration of the control device of FIG. When various functions of the control device 30 are executed by software, the control device 30 of FIG. 2 includes a processor 51 and a memory 52 as shown in FIG. In the control device 30, each function of the information acquisition unit 31, the comparison unit 32, the device control unit 33, the timer 34, and the storage unit 35 is realized by the processor 51 and the memory 52.
 各機能がソフトウェアで実行される場合、制御装置30において、情報取得部31、比較部32、機器制御部33、タイマ34および記憶部35の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ52に格納される。プロセッサ51は、メモリ52に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。 When each function is executed by software, in the control device 30, the functions of the information acquisition unit 31, the comparison unit 32, the device control unit 33, the timer 34, and the storage unit 35 are software, firmware, or a combination of software and firmware. Is realized by. The software and firmware are written as a program and stored in the memory 52. The processor 51 realizes the functions of each part by reading and executing the program stored in the memory 52.
 メモリ52として、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable and Programmable ROM)およびEEPROM(Electrically Erasable and Programmable ROM)等の不揮発性または揮発性の半導体メモリ等が用いられる。また、メモリ52として、例えば、磁気ディスク、フレキシブルディスク、光ディスク、CD(Compact Disc)、MD(Mini Disc)およびDVD(Digital Versatile Disc)等の着脱可能な記録媒体が用いられてもよい。 As the memory 52, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable and Programmable ROM), an EEPROM (Electrically Erasable Memory Volatile ROM, etc.) Is used. Further, as the memory 52, for example, a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), and a DVD (Digital Versaille Disc) may be used.
[空気調和機1の動作]
 次に、このように構成された空気調和機1の動作について、図1を参照して冷媒の流れとともに説明する。ここでは、空気調和機1が冷房運転および暖房運転を実行する場合の冷媒の流れについて説明する。
[Operation of air conditioner 1]
Next, the operation of the air conditioner 1 configured in this way will be described together with the flow of the refrigerant with reference to FIG. Here, the flow of the refrigerant when the air conditioner 1 executes the cooling operation and the heating operation will be described.
(冷房運転時)
 空気調和機1が冷房運転を実行する場合について説明する。冷房運転が実行される場合には、まず、冷媒流路切替装置12が、制御装置30の制御により図1の実線で示される状態に切り替えられる。すなわち、冷媒流路切替装置12は、圧縮機11の吐出側と室外熱交換器13とが接続され、アキュムレータ15と室内熱交換器21とが接続されるように切り替えられる。
(During cooling operation)
A case where the air conditioner 1 executes the cooling operation will be described. When the cooling operation is executed, first, the refrigerant flow path switching device 12 is switched to the state shown by the solid line in FIG. 1 under the control of the control device 30. That is, the refrigerant flow path switching device 12 is switched so that the discharge side of the compressor 11 and the outdoor heat exchanger 13 are connected, and the accumulator 15 and the indoor heat exchanger 21 are connected.
 圧縮機11が駆動すると、圧縮機11から高温高圧のガス状態の冷媒が吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して、凝縮器として機能する室外熱交換器13に流れ込む。室外熱交換器13では、流れ込んだ高温高圧のガス冷媒と、室外送風機16によって供給される室外空気との間で熱交換が行われる。これにより、高温高圧のガス冷媒は、凝縮して高圧の液冷媒になる。 When the compressor 11 is driven, the refrigerant in a high temperature and high pressure gas state is discharged from the compressor 11. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 that functions as a condenser via the refrigerant flow path switching device 12. In the outdoor heat exchanger 13, heat exchange is performed between the high-temperature and high-pressure gas refrigerant that has flowed in and the outdoor air supplied by the outdoor blower 16. As a result, the high-temperature and high-pressure gas refrigerant condenses into a high-pressure liquid refrigerant.
 室外熱交換器13から流出した高圧の液冷媒は、膨張弁14で膨張し、低圧のガス冷媒と低圧の液冷媒とが混合した二相状態の冷媒になる。二相状態の冷媒は、蒸発器として機能する室内熱交換器21に流れ込む。室内熱交換器21では、流れ込んだ二相状態の冷媒と、室内送風機22によって供給される室内空気との間で熱交換が行われる。これにより、二相状態の冷媒のうちの液冷媒が蒸発して、低圧のガス冷媒になる。室内熱交換器21から流出した低圧のガス冷媒は、冷媒流路切替装置12およびアキュムレータ15を介して圧縮機11に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機11から吐出される。以下、このサイクルが繰り返される。 The high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 13 expands at the expansion valve 14 and becomes a two-phase state refrigerant in which the low-pressure gas refrigerant and the low-pressure liquid refrigerant are mixed. The two-phase refrigerant flows into the indoor heat exchanger 21 that functions as an evaporator. In the indoor heat exchanger 21, heat exchange is performed between the flowing two-phase refrigerant and the indoor air supplied by the indoor blower 22. As a result, the liquid refrigerant of the two-phase refrigerant evaporates to become a low-pressure gas refrigerant. The low-pressure gas refrigerant flowing out of the indoor heat exchanger 21 flows into the compressor 11 via the refrigerant flow path switching device 12 and the accumulator 15, is compressed into a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 11 again. Will be done. Hereinafter, this cycle is repeated.
(暖房運転時)
 空気調和機1が暖房運転を実行する場合について説明する。暖房運転が実行される場合には、まず、冷媒流路切替装置12が、制御装置30の制御により図1の破線で示される状態に切り替えられる。すなわち、冷媒流路切替装置12は、圧縮機11の吐出側と室内熱交換器21とが接続され、アキュムレータ15と室外熱交換器13とが接続されるように切り替えられる。
(During heating operation)
A case where the air conditioner 1 executes the heating operation will be described. When the heating operation is executed, first, the refrigerant flow path switching device 12 is switched to the state shown by the broken line in FIG. 1 under the control of the control device 30. That is, the refrigerant flow path switching device 12 is switched so that the discharge side of the compressor 11 and the indoor heat exchanger 21 are connected, and the accumulator 15 and the outdoor heat exchanger 13 are connected.
 圧縮機11が駆動すると、圧縮機11から高温高圧のガス状態の冷媒が吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して、凝縮器として機能する室内熱交換器21に流れ込む。室内熱交換器21では、流れ込んだ高温高圧のガス冷媒と、図示しない送風機によって供給される室内空気との間で熱交換が行われる。これにより、高温高圧のガス冷媒は、凝縮して高圧の液冷媒になる。 When the compressor 11 is driven, the refrigerant in a high temperature and high pressure gas state is discharged from the compressor 11. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor heat exchanger 21 that functions as a condenser via the refrigerant flow path switching device 12. In the indoor heat exchanger 21, heat exchange is performed between the high-temperature and high-pressure gas refrigerant that has flowed in and the indoor air supplied by a blower (not shown). As a result, the high-temperature and high-pressure gas refrigerant condenses into a high-pressure liquid refrigerant.
 室内熱交換器21から流出した高圧の液冷媒は、膨張弁14で膨張し、低圧のガス冷媒と低圧の液冷媒とが混合した二相状態の冷媒になる。二相状態の冷媒は、蒸発器として機能する室外熱交換器13に流れ込む。室外熱交換器13では、流れ込んだ二相状態の冷媒と、室外送風機16によって供給される室外空気との間で熱交換が行われる。これにより、二相状態の冷媒のうちの液冷媒が蒸発して、低圧のガス冷媒になる。室外熱交換器13から流出した低圧のガス冷媒は、冷媒流路切替装置12およびアキュムレータ15を介して圧縮機11に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機11から吐出される。以下、このサイクルが繰り返される。 The high-pressure liquid refrigerant flowing out of the indoor heat exchanger 21 expands at the expansion valve 14 and becomes a two-phase state refrigerant in which a low-pressure gas refrigerant and a low-pressure liquid refrigerant are mixed. The two-phase refrigerant flows into the outdoor heat exchanger 13 that functions as an evaporator. In the outdoor heat exchanger 13, heat exchange is performed between the flowing two-phase refrigerant and the outdoor air supplied by the outdoor blower 16. As a result, the liquid refrigerant of the two-phase refrigerant evaporates to become a low-pressure gas refrigerant. The low-pressure gas refrigerant flowing out of the outdoor heat exchanger 13 flows into the compressor 11 via the refrigerant flow path switching device 12 and the accumulator 15, is compressed into a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 11 again. Will be done. Hereinafter, this cycle is repeated.
[結露抑制処理]
 次に、本実施の形態1に係る空気調和機1による結露抑制処理について説明する。背景技術の項で説明したように、従来の空気調和機1では、低外気温時において、圧縮機11の吸入配管の温度が外気温度よりも低くなると、吸入配管に結露が発生する。そして、外気温度が0℃以下となった場合には、結露水が凍結し、それによって吸入配管が破損する可能性がある。
[Condensation suppression treatment]
Next, the dew condensation suppression treatment by the air conditioner 1 according to the first embodiment will be described. As described in the section of background technology, in the conventional air conditioner 1, when the temperature of the suction pipe of the compressor 11 becomes lower than the outside air temperature at a low outside air temperature, dew condensation occurs on the suction pipe. When the outside air temperature becomes 0 ° C. or lower, the condensed water freezes, which may damage the suction pipe.
 そこで、本実施の形態1に係る空気調和機1は、吸入配管の温度が0℃以上となるように、圧縮機11の運転周波数を制御し、吸入配管への結露水の発生を抑制して結露水の凍結を防止する結露抑制処理を行う。図5は、本実施の形態1に係る空気調和機1による結露抑制処理の流れの一例を示すフローチャートである。 Therefore, the air conditioner 1 according to the first embodiment controls the operating frequency of the compressor 11 so that the temperature of the suction pipe becomes 0 ° C. or higher, and suppresses the generation of condensed water in the suction pipe. Condensation suppression treatment is performed to prevent the dew condensation water from freezing. FIG. 5 is a flowchart showing an example of the flow of the dew condensation suppression process by the air conditioner 1 according to the first embodiment.
 ステップS1において、情報取得部31は、吸入管温度センサ18で検知された吸入管温度Tsと、外気温度センサ17で検知された外気温度Toとを取得する。ステップS2において、比較部32は、吸入管温度Tsと外気温度Toとを比較するとともに、吸入管温度Tsおよび外気温度Toのうちの最小値と0℃とを比較する。なお、図5における「Min(Ts,To)」は、吸入管温度Tsおよび外気温度Toのうちの最小値を示す。 In step S1, the information acquisition unit 31 acquires the suction pipe temperature Ts detected by the suction pipe temperature sensor 18 and the outside air temperature To detected by the outside air temperature sensor 17. In step S2, the comparison unit 32 compares the suction pipe temperature Ts and the outside air temperature To, and compares the minimum value of the suction pipe temperature Ts and the outside air temperature To with 0 ° C. In addition, "Min (Ts, To)" in FIG. 5 indicates the minimum value among the suction pipe temperature Ts and the outside air temperature To.
 比較の結果、吸入管温度Tsが外気温度Toよりも低く、かつ、最小値Min(Ts,To)が0℃よりも低い場合(ステップS2:Yes)には、処理がステップS3に移行する。一方、吸入管温度Tsが外気温度To以上、または、最小値Min(Ts,To)が0℃以上である場合(ステップS2:No)、機器制御部33は、ステップS5において、空気調和機1の運転を継続するように各部を制御する。そして、処理がステップS1に戻る。 As a result of comparison, when the suction pipe temperature Ts is lower than the outside air temperature To and the minimum value Min (Ts, To) is lower than 0 ° C. (step S2: Yes), the process proceeds to step S3. On the other hand, when the suction pipe temperature Ts is equal to or higher than the outside air temperature To or the minimum value Min (Ts, To) is 0 ° C. or higher (step S2: No), the device control unit 33 controls the air conditioner 1 in step S5. Each part is controlled so as to continue the operation of. Then, the process returns to step S1.
 ステップS3において、比較部32は、圧縮機11における現在の運転周波数と、記憶部35から読み出した運転周波数の下限周波数とを比較する。比較の結果、現在の運転周波数が下限周波数よりも高い場合(ステップS3:Yes)、機器制御部33は、ステップS4において、圧縮機11の運転周波数を低下させるように制御する。そして、処理がステップS1に戻る。一方、現在の運転周波数が下限周波数以下である場合(ステップS3:No)には、処理がステップS6に移行する。 In step S3, the comparison unit 32 compares the current operating frequency of the compressor 11 with the lower limit frequency of the operating frequency read from the storage unit 35. As a result of comparison, when the current operating frequency is higher than the lower limit frequency (step S3: Yes), the device control unit 33 controls in step S4 so as to lower the operating frequency of the compressor 11. Then, the process returns to step S1. On the other hand, when the current operating frequency is equal to or lower than the lower limit frequency (step S3: No), the process proceeds to step S6.
 ステップS6において、比較部32は、タイマ34によって計測された空気調和機1の現在の運転時間と、記憶部35から読み出した、空気調和機1に設定された連続運転許容時間とを比較する。比較の結果、空気調和機1の現在の運転時間が連続運転許容時間よりも長い場合(ステップS6:Yes)、機器制御部33は、ステップS7において、空気調和機1の運転を停止させるように各部を制御する。そして、一連の処理が終了する。一方、空気調和機1の現在の運転時間が連続運転許容時間以下である場合(ステップS6:No)、機器制御部33は、ステップS5において、空気調和機1の運転を継続するように各部を制御する。そして、処理がステップS1に戻る。 In step S6, the comparison unit 32 compares the current operation time of the air conditioner 1 measured by the timer 34 with the continuous operation allowable time set in the air conditioner 1 read from the storage unit 35. As a result of comparison, when the current operation time of the air conditioner 1 is longer than the continuous operation allowable time (step S6: Yes), the device control unit 33 stops the operation of the air conditioner 1 in step S7. Control each part. Then, a series of processes is completed. On the other hand, when the current operating time of the air conditioner 1 is equal to or less than the continuous operation allowable time (step S6: No), the device control unit 33 sets each unit so as to continue the operation of the air conditioner 1 in step S5. Control. Then, the process returns to step S1.
 このように、本実施の形態1に係る結露抑制処理では、圧縮機11の吸入配管の温度が0℃以下となって結露する可能性がある場合であって、圧縮機11の運転周波数を低下させることができる場合には、圧縮機11の運転周波数を低下させる。圧縮機11の運転周波数が低下すると、冷媒回路中の冷媒循環量が低下し、室内熱交換器21の蒸発温度または出口温度が上昇する。その結果、圧縮機11に吸入される冷媒の温度が上昇する。そのため、吸入管温度Tsを0℃よりも高い温度とすることができ、吸入配管の結露を抑制することができる。そして、吸入配管の結露が抑制されることにより、結露による吸入配管の凍結を防止することができる。 As described above, in the dew condensation suppressing treatment according to the first embodiment, the temperature of the suction pipe of the compressor 11 may become 0 ° C. or lower and dew condensation may occur, and the operating frequency of the compressor 11 is lowered. If it can be done, the operating frequency of the compressor 11 is lowered. When the operating frequency of the compressor 11 decreases, the amount of refrigerant circulating in the refrigerant circuit decreases, and the evaporation temperature or outlet temperature of the indoor heat exchanger 21 increases. As a result, the temperature of the refrigerant sucked into the compressor 11 rises. Therefore, the suction pipe temperature Ts can be set to a temperature higher than 0 ° C., and dew condensation on the suction pipe can be suppressed. Then, by suppressing the dew condensation on the suction pipe, it is possible to prevent the suction pipe from freezing due to the dew condensation.
 以上のように、本実施の形態1に係る空気調和機1において、制御装置30は、外気温度センサ17で検知された外気温度Toと、吸入管温度センサ18で検知された吸入配管の吸入管温度Tsとに基づき、圧縮機11を制御する。このとき、制御装置30は、吸入管温度Tsが0℃以上となるように、圧縮機11の運転周波数を低下させる。 As described above, in the air conditioner 1 according to the first embodiment, the control device 30 has the outside air temperature To detected by the outside air temperature sensor 17 and the suction pipe of the suction pipe detected by the suction pipe temperature sensor 18. The compressor 11 is controlled based on the temperature Ts. At this time, the control device 30 lowers the operating frequency of the compressor 11 so that the suction pipe temperature Ts becomes 0 ° C. or higher.
 このように圧縮機11の運転周波数が低下すると、室内熱交換器21の蒸発温度または出口温度が上昇し、圧縮機11に吸入される冷媒の温度が上昇する。そのため、吸入管温度Tsを0℃よりも高い温度とすることができ、吸入配管の結露を抑制することができる。そして、吸入配管の結露が抑制されることにより、結露による吸入配管の凍結を防止することができる。 When the operating frequency of the compressor 11 is lowered in this way, the evaporation temperature or the outlet temperature of the indoor heat exchanger 21 rises, and the temperature of the refrigerant sucked into the compressor 11 rises. Therefore, the suction pipe temperature Ts can be set to a temperature higher than 0 ° C., and dew condensation on the suction pipe can be suppressed. Then, by suppressing the dew condensation on the suction pipe, it is possible to prevent the suction pipe from freezing due to the dew condensation.
 このとき、制御装置30は、吸入管温度Tsが外気温度Toよりも低く、かつ、吸入管温度Tsおよび外気温度Toのうちの最小値Min(Ts,To)が0℃よりも低い場合に、圧縮機11の運転周波数を低下させると好ましい。 At this time, the control device 30 determines that the suction pipe temperature Ts is lower than the outside air temperature To and the minimum value Min (Ts, To) of the suction pipe temperature Ts and the outside air temperature To is lower than 0 ° C. It is preferable to lower the operating frequency of the compressor 11.
実施の形態2.
 次に、本実施の形態2について説明する。本実施の形態2は、使用環境の湿度の上限が限定できる場合に、外気の湿度を考慮して結露抑制処理を実施する。なお、本実施の形態2において、実施の形態1と共通する部分には同一の符号を付し、詳細な説明を省略する。
Embodiment 2.
Next, the second embodiment will be described. In the second embodiment, when the upper limit of the humidity of the usage environment can be limited, the dew condensation suppression treatment is carried out in consideration of the humidity of the outside air. In the second embodiment, the same reference numerals are given to the parts common to the first embodiment, and detailed description thereof will be omitted.
[空気調和機1の構成]
 本実施の形態2に係る空気調和機1は、図1に示す実施の形態1に係る空気調和機1と同様であるため、詳細な説明を省略する。なお、本実施の形態2において、制御装置30の比較部32は、結露抑制処理が実行される際に、吸入管温度Tsと露点温度とを比較する。露点温度は、外気温度Toおよび想定される湿度に基づき取得される。また、記憶部35は、実施の形態1で説明した圧縮機11の下限周波数および空気調和機1の連続運転許容時間に加えて、比較部32で用いられる露点温度の算出式あるいは、温湿度と露点温度との関係を示すテーブル等を予め記憶している。
[Configuration of air conditioner 1]
Since the air conditioner 1 according to the second embodiment is the same as the air conditioner 1 according to the first embodiment shown in FIG. 1, detailed description thereof will be omitted. In the second embodiment, the comparison unit 32 of the control device 30 compares the suction pipe temperature Ts with the dew point temperature when the dew condensation suppressing process is executed. The dew point temperature is acquired based on the outside air temperature To and the assumed humidity. Further, the storage unit 35 uses the calculation formula of the dew point temperature or the temperature / humidity used in the comparison unit 32 in addition to the lower limit frequency of the compressor 11 and the continuous operation allowable time of the air conditioner 1 described in the first embodiment. A table or the like showing the relationship with the dew point temperature is stored in advance.
[結露抑制処理]
 次に、本実施の形態2に係る空気調和機1による結露抑制処理について説明する。本実施の形態2に係る空気調和機1は、室外空気の湿度を考慮した結露抑制処理を行う。図6は、本実施の形態2に係る空気調和機1による結露抑制処理の流れの一例を示すフローチャートである。
[Condensation suppression treatment]
Next, the dew condensation suppression treatment by the air conditioner 1 according to the second embodiment will be described. The air conditioner 1 according to the second embodiment performs dew condensation suppression treatment in consideration of the humidity of the outdoor air. FIG. 6 is a flowchart showing an example of the flow of the dew condensation suppression process by the air conditioner 1 according to the second embodiment.
 ステップS11において、情報取得部31は、吸入管温度センサ18で検知された吸入管温度Tsと、外気温度センサ17で検知された外気温度Toとを取得する。ステップS12において、比較部32は、吸入管温度Tsと、外気温度Toに基づき得られる露点温度とを比較するとともに、吸入管温度Tsと0℃とを比較する。 In step S11, the information acquisition unit 31 acquires the suction pipe temperature Ts detected by the suction pipe temperature sensor 18 and the outside air temperature To detected by the outside air temperature sensor 17. In step S12, the comparison unit 32 compares the suction pipe temperature Ts with the dew point temperature obtained based on the outside air temperature To, and also compares the suction pipe temperature Ts with 0 ° C.
 比較の結果、吸入管温度Tsが露点温度よりも低く、かつ、吸入管温度Tsが0℃よりも低い場合(ステップS12:Yes)には、処理がステップS13に移行する。一方、吸入管温度Tsが露点温度以上、または、吸入管温度Tsが0℃以上である場合(ステップS12:No)、機器制御部33は、ステップS15において、空気調和機1の運転を継続するように各部を制御する。そして、処理がステップS11に戻る。 As a result of comparison, when the suction pipe temperature Ts is lower than the dew point temperature and the suction pipe temperature Ts is lower than 0 ° C. (step S12: Yes), the process proceeds to step S13. On the other hand, when the suction pipe temperature Ts is equal to or higher than the dew point temperature or the suction pipe temperature Ts is equal to or higher than 0 ° C. (step S12: No), the device control unit 33 continues the operation of the air conditioner 1 in step S15. Each part is controlled so as to. Then, the process returns to step S11.
 ステップS13において、比較部32は、圧縮機11における現在の運転周波数と、記憶部35から読み出した運転周波数の下限周波数とを比較する。比較の結果、現在の運転周波数が下限周波数よりも高い場合(ステップS13:Yes)、機器制御部33は、ステップS14において、圧縮機11の運転周波数を低下させるように制御する。そして、処理がステップS11に戻る。一方、現在の運転周波数が下限周波数以下である場合(ステップS13:No)には、処理がステップS16に移行する。 In step S13, the comparison unit 32 compares the current operating frequency of the compressor 11 with the lower limit frequency of the operating frequency read from the storage unit 35. As a result of comparison, when the current operating frequency is higher than the lower limit frequency (step S13: Yes), the device control unit 33 controls in step S14 so as to lower the operating frequency of the compressor 11. Then, the process returns to step S11. On the other hand, when the current operating frequency is equal to or lower than the lower limit frequency (step S13: No), the process shifts to step S16.
 ステップS16において、比較部32は、タイマ34によって計測された空気調和機1の現在の運転時間と、記憶部35から読み出した、空気調和機1に設定された連続運転許容時間とを比較する。比較の結果、空気調和機1の現在の運転時間が連続運転許容時間よりも長い場合(ステップS16:Yes)、機器制御部33は、ステップS17において、空気調和機1の運転を停止させるように各部を制御する。そして、一連の処理が終了する。一方、空気調和機1の現在の運転時間が連続運転許容時間以下である場合(ステップS16:No)、機器制御部33は、ステップS15において、空気調和機1の運転を継続するように各部を制御する。そして、処理がステップS11に戻る。 In step S16, the comparison unit 32 compares the current operation time of the air conditioner 1 measured by the timer 34 with the continuous operation allowable time set in the air conditioner 1 read from the storage unit 35. As a result of comparison, when the current operating time of the air conditioner 1 is longer than the continuous operation allowable time (step S16: Yes), the device control unit 33 stops the operation of the air conditioner 1 in step S17. Control each part. Then, a series of processes is completed. On the other hand, when the current operating time of the air conditioner 1 is equal to or less than the continuous operation allowable time (step S16: No), the device control unit 33 sets each unit so as to continue the operation of the air conditioner 1 in step S15. Control. Then, the process returns to step S11.
 このように、本実施の形態2に係る結露抑制処理では、吸入管温度Tsが露点温度を下回った場合に、吸入配管に結露が発生すると判断され、圧縮機11の運転周波数が低下するように制御される。この場合、結露が発生すると判断される温度は、外気温度の湿度を考慮しない場合と比較して、外気温度Toと露点温度との差分値A(=外気温度To-露点温度)の分だけ引き下げられる。すなわち、本実施の形態2では、圧縮機11の運転周波数を低下させる温度範囲を、差分値Aの分だけ広げることができる。 As described above, in the dew condensation suppressing treatment according to the second embodiment, when the suction pipe temperature Ts falls below the dew point temperature, it is determined that dew condensation occurs in the suction pipe, and the operating frequency of the compressor 11 is lowered. Be controlled. In this case, the temperature at which dew condensation is determined to occur is lowered by the difference value A (= outside air temperature To-dew point temperature) between the outside air temperature To and the dew point temperature, as compared with the case where the humidity of the outside air temperature is not taken into consideration. Be done. That is, in the second embodiment, the temperature range for lowering the operating frequency of the compressor 11 can be expanded by the difference value A.
 具体的には、例えば、外気温度Toが5℃であり、湿度が60%である場合、露点温度は-2.1℃となるので、結露が発生すると判断される温度は、吸入配管が結露すると判断される温度が0℃から-2.1℃に引き下げられる。そのため、圧縮機11の運転周波数を低下させる温度範囲は、引き下げられた温度の分(-2.1℃)だけ広げられることになる。 Specifically, for example, when the outside air temperature To is 5 ° C. and the humidity is 60%, the dew point temperature is -2.1 ° C., so that the temperature at which dew condensation is determined to occur is the dew condensation on the suction pipe. The temperature determined to be then lowered from 0 ° C to -2.1 ° C. Therefore, the temperature range in which the operating frequency of the compressor 11 is lowered is expanded by the amount of the lowered temperature (−2.1 ° C.).
 このように、運転周波数を低下させた場合には、空気調和機1の冷房能力が低下するが、本実施の形態2のように、運転周波数を低下させる温度範囲が広げられることにより、冷房能力の低下を抑制することができる。したがって、空気調和機1は、使用環境における室外空気の湿度の上限が限定できる場合に、冷房能力の低下を抑えながら、凍結を防止した運転を実施することができる。 In this way, when the operating frequency is lowered, the cooling capacity of the air conditioner 1 is lowered, but as in the second embodiment, the cooling capacity is widened by expanding the temperature range for lowering the operating frequency. Can be suppressed. Therefore, when the upper limit of the humidity of the outdoor air in the usage environment can be limited, the air conditioner 1 can perform the operation in which freezing is prevented while suppressing the decrease in the cooling capacity.
 以上のように、本実施の形態2に係る空気調和機1において、制御装置30は、吸入管温度Tsが外気温度Toおよび湿度に基づき得られる露点温度よりも低く、かつ、吸入管温度Tsが0℃よりも低い場合に、圧縮機11の運転周波数を低下させる。これにより、室外空気の湿度を考慮した場合でも、実施の形態1と同様に、吸入管温度Tsを0℃よりも高い温度とすることができ、吸入配管の結露を抑制することができる。そして、吸入配管の結露が抑制されることにより、結露による吸入配管の凍結を防止することができる。 As described above, in the air conditioner 1 according to the second embodiment, in the control device 30, the suction pipe temperature Ts is lower than the dew point temperature obtained based on the outside air temperature To and the humidity, and the suction pipe temperature Ts is high. When it is lower than 0 ° C., the operating frequency of the compressor 11 is lowered. As a result, even when the humidity of the outdoor air is taken into consideration, the suction pipe temperature Ts can be set to a temperature higher than 0 ° C. as in the first embodiment, and dew condensation on the suction pipe can be suppressed. Then, by suppressing the dew condensation on the suction pipe, it is possible to prevent the suction pipe from freezing due to the dew condensation.
 また、この場合、結露が発生すると判断される吸入管温度Tsの値が、外気温度Toと露点温度との差分値Aの分だけ引き下げられ、圧縮機11の運転周波数を低下させる温度範囲を差分値Aの分だけ広げることができる。そのため、本実施の形態2に係る空気調和機1は、圧縮機11の運転周波数の低下による冷房能力の低下を抑えながら、凍結を防止した運転を実施することができる。 Further, in this case, the value of the suction pipe temperature Ts at which dew condensation is determined to occur is lowered by the difference value A between the outside air temperature To and the dew point temperature, and the temperature range in which the operating frequency of the compressor 11 is lowered is different. It can be expanded by the value A. Therefore, the air conditioner 1 according to the second embodiment can perform the operation in which freezing is prevented while suppressing the decrease in the cooling capacity due to the decrease in the operating frequency of the compressor 11.
実施の形態3.
 次に、本実施の形態3について説明する。低外気温よりも温度が低い極低外気温では、室外空気中に存在する水分量が少ないことから、圧縮機11に接続された吸入配管の周囲の外気温度が露点温度を下回った場合でも、吸入配管に対する結露水の量が少ない。そのため、極低外気温時においては、吸入配管が折損する可能性があるような凍結に至る連続運転時間を、低外気温時よりも長くすることができる。そこで、本実施の形態3では、結露抑制処理で連続運転時間を判断する際の連続運転許容時間を、極低外気温時に対応するように、実施の形態1および2から変更する。なお、本実施の形態3において、実施の形態1および2と共通する部分には同一の符号を付し、詳細な説明を省略する。
Embodiment 3.
Next, the third embodiment will be described. At extremely low outside air temperature, which is lower than low outside air temperature, the amount of water present in the outdoor air is small, so even if the outside air temperature around the suction pipe connected to the compressor 11 falls below the dew point temperature. The amount of condensed water in the suction pipe is small. Therefore, in the extremely low outside air temperature, the continuous operation time until freezing, which may cause the suction pipe to break, can be made longer than in the low outside air temperature. Therefore, in the third embodiment, the permissible continuous operation time when determining the continuous operation time in the dew condensation suppression process is changed from the first and second embodiments so as to correspond to the extremely low outside air temperature. In the third embodiment, the parts common to the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
[空気調和機1の構成]
 本実施の形態3に係る空気調和機1は、図1に示す実施の形態1に係る空気調和機1と同様であるため、詳細な説明を省略する。なお、本実施の形態3において、制御装置30の比較部32は、結露抑制処理の際に、運転時間と連続運転許容時間に設定時間Bを加算した値とを比較する。設定時間Bは、極低外気温における水分量を考慮して得られる、低外気温時における連続運転許容時間との差分時間を示す値である。また、記憶部35は、実施の形態1で説明した圧縮機11の下限周波数および空気調和機1の連続運転許容時間に加えて、比較部32で用いられる設定時間Bを予め記憶している。
[Configuration of air conditioner 1]
Since the air conditioner 1 according to the third embodiment is the same as the air conditioner 1 according to the first embodiment shown in FIG. 1, detailed description thereof will be omitted. In the third embodiment, the comparison unit 32 of the control device 30 compares the operation time with the value obtained by adding the set time B to the continuous operation allowable time at the time of the dew condensation suppression process. The set time B is a value indicating a difference time from the continuous operation allowable time at the low outside air temperature, which is obtained in consideration of the water content at the extremely low outside air temperature. Further, the storage unit 35 stores in advance the set time B used by the comparison unit 32 in addition to the lower limit frequency of the compressor 11 and the continuous operation allowable time of the air conditioner 1 described in the first embodiment.
[結露抑制処理]
 次に、本実施の形態3に係る空気調和機1による結露抑制処理について説明する。上述したように、低外気温よりも温度が低い極低外気温では、室外空気中に存在する水分量が少ないため、吸入配管が折損する可能性がある凍結に至る連続運転時間は、低外気温時と比較して長い。例えば、低外気温時には、連続運転時間が24時間程度経過した時点で、吸入配管が折損する可能性があるような凍結に至る場合でも、極低外気温時には、凍結に至るまでの連続運転時間を48時間程度まで許容することができる。
[Condensation suppression treatment]
Next, the dew condensation suppression treatment by the air conditioner 1 according to the third embodiment will be described. As mentioned above, in the extremely low outside air temperature, which is lower than the low outside air temperature, the amount of water present in the outdoor air is small, so the continuous operation time until freezing, which may break the suction pipe, is low. It is long compared to the temperature. For example, when the outside temperature is low, the continuous operation time until about 24 hours elapses, even if the suction pipe freezes, but when the outside temperature is extremely low, the continuous operation time until the freezing occurs. Can be tolerated for up to about 48 hours.
 そこで、本実施の形態3に係る空気調和機1は、低外気温時よりも温度が低い極低外気温時に、連続運転許容時間を当該連続運転許容時間に対して設定時間Bを加算した時間に変更して結露抑制処理を行う。図7は、本実施の形態3に係る空気調和機1による結露抑制処理の流れの一例を示すフローチャートである。 Therefore, in the air conditioner 1 according to the third embodiment, the continuous operation allowable time is added to the continuous operation allowable time by adding the set time B at the extremely low outside air temperature, which is lower than the low outside air temperature. Change to and perform dew condensation suppression treatment. FIG. 7 is a flowchart showing an example of the flow of the dew condensation suppression process by the air conditioner 1 according to the third embodiment.
 ステップS21において、情報取得部31は、吸入管温度センサ18で検知された吸入管温度Tsと、外気温度センサ17で検知された外気温度Toとを取得する。ステップS22において、比較部32は、吸入管温度Tsと外気温度Toとを比較するとともに、吸入管温度Tsおよび外気温度Toのうちの最小値Min(Ts,To)と0℃とを比較する。 In step S21, the information acquisition unit 31 acquires the suction pipe temperature Ts detected by the suction pipe temperature sensor 18 and the outside air temperature To detected by the outside air temperature sensor 17. In step S22, the comparison unit 32 compares the suction pipe temperature Ts and the outside air temperature To, and compares the minimum value Min (Ts, To) of the suction pipe temperature Ts and the outside air temperature To with 0 ° C.
 比較の結果、吸入管温度Tsが外気温度Toよりも低く、かつ、最小値Min(Ts,To)が0℃よりも低い場合(ステップS22:Yes)には、処理がステップS23に移行する。一方、吸入管温度Tsが外気温度To以上、または、最小値Min(Ts,To)が0℃以上である場合(ステップS22:No)、機器制御部33は、ステップS25において、空気調和機1の運転を継続するように各部を制御する。そして、処理がステップS21に戻る。 As a result of comparison, when the suction pipe temperature Ts is lower than the outside air temperature To and the minimum value Min (Ts, To) is lower than 0 ° C. (step S22: Yes), the process proceeds to step S23. On the other hand, when the suction pipe temperature Ts is equal to or higher than the outside air temperature To or the minimum value Min (Ts, To) is 0 ° C. or higher (step S22: No), the device control unit 33 sets the air conditioner 1 in step S25. Each part is controlled so as to continue the operation of. Then, the process returns to step S21.
 ステップS23において、比較部32は、圧縮機11における現在の運転周波数と、記憶部35から読み出した運転周波数の下限周波数とを比較する。比較の結果、現在の運転周波数が下限周波数よりも高い場合(ステップS23:Yes)、機器制御部33は、ステップS24において、圧縮機11の運転周波数を低下させるように制御する。そして、処理がステップS21に戻る。一方、現在の運転周波数が下限周波数以下である場合(ステップS23:No)には、処理がステップS26に移行する。 In step S23, the comparison unit 32 compares the current operating frequency of the compressor 11 with the lower limit frequency of the operating frequency read from the storage unit 35. As a result of comparison, when the current operating frequency is higher than the lower limit frequency (step S23: Yes), the device control unit 33 controls in step S24 so as to lower the operating frequency of the compressor 11. Then, the process returns to step S21. On the other hand, when the current operating frequency is equal to or lower than the lower limit frequency (step S23: No), the process shifts to step S26.
 ステップS26において、比較部32は、タイマ34によって計測された空気調和機1の現在の運転時間と、記憶部35から読み出した、空気調和機1に設定された連続運転許容時間に設定時間Bを加算した時間とを比較する。比較の結果、空気調和機1の現在の運転時間が連続運転許容時間に設定時間Bを加算した時間よりも長い場合(ステップS26:Yes)、機器制御部33は、ステップS27において、空気調和機1の運転を停止させるように各部を制御する。そして、一連の処理が終了する。一方、空気調和機1の現在の運転時間が連続運転許容時間に設定時間Bを加算した時間以下である場合(ステップS26:No)、機器制御部33は、ステップS25において、空気調和機1の運転を継続するように各部を制御する。そして、処理がステップS21に戻る。 In step S26, the comparison unit 32 sets the set time B to the current operating time of the air conditioner 1 measured by the timer 34 and the continuous operation allowable time set in the air conditioner 1 read from the storage unit 35. Compare with the added time. As a result of comparison, when the current operating time of the air conditioner 1 is longer than the time obtained by adding the set time B to the continuous operation allowable time (step S26: Yes), the device control unit 33 sets the air conditioner 33 in step S27. Each part is controlled so as to stop the operation of 1. Then, a series of processes is completed. On the other hand, when the current operating time of the air conditioner 1 is equal to or less than the time obtained by adding the set time B to the continuous operation allowable time (step S26: No), the device control unit 33 of the air conditioner 1 in step S25. Each part is controlled so that the operation is continued. Then, the process returns to step S21.
 このように、本実施の形態3に係る結露抑制処理では、極低外気温における水分量を考慮して、圧縮機11の運転周波数を制御するため、空気調和機1は、冷房能力の低下を抑えながら、凍結を防止した運転を実施することができる。 As described above, in the dew condensation suppression treatment according to the third embodiment, the operating frequency of the compressor 11 is controlled in consideration of the amount of water in the extremely low outside air temperature, so that the air conditioner 1 reduces the cooling capacity. It is possible to carry out operation that prevents freezing while suppressing it.
 なお、図7に示す例において、ステップS22の処理は、実施の形態1におけるステップS2の処理と同様に行われているが、これはこの例に限られない。例えば、実施の形態2と同様に、使用環境の湿度の上限が限定できる場合、ステップS22の処理は、図6に示すステップS12の処理と同様に行われてもよい。 In the example shown in FIG. 7, the process of step S22 is performed in the same manner as the process of step S2 in the first embodiment, but this is not limited to this example. For example, as in the second embodiment, when the upper limit of the humidity of the usage environment can be limited, the process of step S22 may be performed in the same manner as the process of step S12 shown in FIG.
 以上のように、本実施の形態3に係る空気調和機1において、制御装置30は、圧縮機11の運転周波数が下限周波数以下であるときであって、運転時間が連続運転許容時間に設定時間Bを加算した時間よりも長い場合に、空気調和機の運転を停止させる。極低外気温時には、吸入配管の周囲の外気温度が露点温度を下回った場合でも、低外気温時よりも結露水の量が少ない。そのため、極低外気温時には、低外気温時と比較して長い連続運転許容時間を許容することができる。 As described above, in the air conditioner 1 according to the third embodiment, the control device 30 sets the operating time to the continuous operation allowable time when the operating frequency of the compressor 11 is equal to or lower than the lower limit frequency. If the time is longer than the time obtained by adding B, the operation of the air conditioner is stopped. At extremely low outside air temperature, even if the outside air temperature around the suction pipe falls below the dew point temperature, the amount of condensed water is smaller than at low outside air temperature. Therefore, at the time of extremely low outside air temperature, a longer allowable continuous operation time can be allowed as compared with the time of low outside air temperature.
 また、本実施の形態3に係る空気調和機1は、極低外気温における水分量を考慮して、圧縮機11の運転周波数を制御するため、実施の形態1および2と同様に、冷房能力の低下を抑えながら、凍結を防止した運転を実施することができる。 Further, since the air conditioner 1 according to the third embodiment controls the operating frequency of the compressor 11 in consideration of the amount of water in the extremely low outside air temperature, the cooling capacity is the same as that of the first and second embodiments. It is possible to carry out the operation in which freezing is prevented while suppressing the decrease in the frequency.
 1 空気調和機、10 室外機、11 圧縮機、12 冷媒流路切替装置、13 室外熱交換器、14 膨張弁、15 アキュムレータ、16 室外送風機、17 外気温度センサ、18 吸入管温度センサ、20 室内機、21 室内熱交換器、22 室内送風機、30 制御装置、31 情報取得部、32 比較部、33 機器制御部、34 タイマ、35 記憶部、41 処理回路、51 プロセッサ、52 メモリ。 1 air conditioner, 10 outdoor unit, 11 compressor, 12 refrigerant flow path switching device, 13 outdoor heat exchanger, 14 expansion valve, 15 accumulator, 16 outdoor blower, 17 outdoor air temperature sensor, 18 suction pipe temperature sensor, 20 indoor Machine, 21 indoor heat exchanger, 22 indoor blower, 30 control device, 31 information acquisition unit, 32 comparison unit, 33 equipment control unit, 34 timer, 35 storage unit, 41 processing circuit, 51 processor, 52 memory.

Claims (5)

  1.  圧縮機を備えた空気調和機であって、
     外気温度を検知する外気温度センサと、
     前記圧縮機の吸入側に接続された吸入配管の吸入管温度を検知する吸入管温度センサと、
     前記圧縮機の運転周波数を制御する制御装置と
    を備え、
     前記制御装置は、
     前記外気温度および前記吸入管温度に基づき、前記吸入管温度が0℃以上となるように、前記圧縮機の前記運転周波数を低下させる
    空気調和機。
    An air conditioner equipped with a compressor
    An outside air temperature sensor that detects the outside air temperature,
    A suction pipe temperature sensor that detects the suction pipe temperature of the suction pipe connected to the suction side of the compressor, and
    A control device for controlling the operating frequency of the compressor is provided.
    The control device is
    An air conditioner that lowers the operating frequency of the compressor so that the suction pipe temperature becomes 0 ° C. or higher based on the outside air temperature and the suction pipe temperature.
  2.  前記制御装置は、
     前記吸入管温度が前記外気温度よりも低く、かつ、前記吸入管温度および前記外気温度のうちの最小値が0℃よりも低い場合に、前記圧縮機の前記運転周波数を低下させる
    請求項1に記載の空気調和機。
    The control device is
    The first aspect of claim 1 is to lower the operating frequency of the compressor when the suction pipe temperature is lower than the outside air temperature and the minimum values of the suction pipe temperature and the outside air temperature are lower than 0 ° C. The described air conditioner.
  3.  前記制御装置は、
     前記吸入管温度が前記外気温度および湿度に基づき得られる露点温度よりも低く、かつ、前記吸入管温度が0℃よりも低い場合に、前記圧縮機の前記運転周波数を低下させる
    請求項1に記載の空気調和機。
    The control device is
    The first aspect of claim 1, wherein the operating frequency of the compressor is lowered when the suction pipe temperature is lower than the dew point temperature obtained based on the outside air temperature and humidity and the suction pipe temperature is lower than 0 ° C. Air conditioner.
  4.  前記制御装置は、
     前記圧縮機の前記運転周波数が下限周波数以下である場合に、前記空気調和機の運転時間と連続運転許容時間とを比較し、
     前記運転時間が前記連続運転許容時間よりも長い場合に、前記空気調和機の運転を停止させる
    請求項1~3の何れか一項に記載の空気調和機。
    The control device is
    When the operating frequency of the compressor is equal to or lower than the lower limit frequency, the operating time of the air conditioner is compared with the allowable continuous operation time.
    The air conditioner according to any one of claims 1 to 3, wherein the operation of the air conditioner is stopped when the operation time is longer than the allowable continuous operation time.
  5.  前記制御装置は、
     前記圧縮機の前記運転周波数が下限周波数以下である場合に、前記空気調和機の運転時間と、連続運転許容時間に設定時間を加算した時間とを比較し、
     前記運転時間が前記連続運転許容時間に前記設定時間を加算した時間よりも長い場合に、前記空気調和機の運転を停止させる
    請求項1~3の何れか一項に記載の空気調和機。
    The control device is
    When the operating frequency of the compressor is equal to or lower than the lower limit frequency, the operating time of the air conditioner is compared with the time obtained by adding the set time to the continuous operation allowable time.
    The air conditioner according to any one of claims 1 to 3, wherein the operation of the air conditioner is stopped when the operation time is longer than the time obtained by adding the set time to the continuous operation allowable time.
PCT/JP2019/040806 2019-10-17 2019-10-17 Air conditioner WO2021075013A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/040806 WO2021075013A1 (en) 2019-10-17 2019-10-17 Air conditioner
JP2021552050A JPWO2021075013A1 (en) 2019-10-17 2019-10-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/040806 WO2021075013A1 (en) 2019-10-17 2019-10-17 Air conditioner

Publications (1)

Publication Number Publication Date
WO2021075013A1 true WO2021075013A1 (en) 2021-04-22

Family

ID=75537541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040806 WO2021075013A1 (en) 2019-10-17 2019-10-17 Air conditioner

Country Status (2)

Country Link
JP (1) JPWO2021075013A1 (en)
WO (1) WO2021075013A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118674A (en) * 1991-10-29 1993-05-14 Matsushita Refrig Co Ltd Controller of air conditioner
JP2004003728A (en) * 2002-05-31 2004-01-08 Daikin Ind Ltd Air conditioner and diagnostic method of air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096960A (en) * 1973-12-28 1975-08-01
JP6569899B2 (en) * 2015-07-01 2019-09-04 三菱重工サーマルシステムズ株式会社 Air conditioning system, control method and program
JP6526218B2 (en) * 2015-10-01 2019-06-05 三菱電機株式会社 Outdoor unit of air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118674A (en) * 1991-10-29 1993-05-14 Matsushita Refrig Co Ltd Controller of air conditioner
JP2004003728A (en) * 2002-05-31 2004-01-08 Daikin Ind Ltd Air conditioner and diagnostic method of air conditioner

Also Published As

Publication number Publication date
JPWO2021075013A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
CN111486574B (en) Air conditioning system, anti-condensation control method and device thereof, and storage medium
JP6004670B2 (en) Air conditioner control device, air conditioner control method, air conditioner program, and air conditioner equipped with the same
CN112739965B (en) Air conditioner
US11598559B2 (en) Heat source-side unit and refrigeration apparatus
JP2012122724A (en) Air conditioning device
JP5082807B2 (en) Air conditioner
JP6664511B2 (en) Air conditioner
JP4730318B2 (en) Refrigeration equipment
JP7142789B2 (en) air conditioner
JP2013002749A (en) Air conditioning device
WO2021075013A1 (en) Air conditioner
US11512876B2 (en) Refrigeration apparatus
JP2020122626A (en) Air conditioner
JPWO2020202424A1 (en) Air conditioner
JPWO2021075013A5 (en)
JP6820205B2 (en) Refrigerant circuit system and control method
KR101075168B1 (en) Method for defrost of heat pump system
JP7069415B2 (en) Air conditioner
WO2020144843A1 (en) Air-conditioning apparatus
JP6835055B2 (en) Refrigeration equipment
WO2021156964A1 (en) Air conditioner
JP2007271215A (en) Outdoor unit, and air conditioner comprising the same
JP2021046968A (en) Refrigeration device
JP6393973B2 (en) Refrigeration equipment
JP7112057B1 (en) air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949448

Country of ref document: EP

Kind code of ref document: A1