WO2021073503A1 - 用于室内园艺设备的气氛控制系统 - Google Patents

用于室内园艺设备的气氛控制系统 Download PDF

Info

Publication number
WO2021073503A1
WO2021073503A1 PCT/CN2020/120636 CN2020120636W WO2021073503A1 WO 2021073503 A1 WO2021073503 A1 WO 2021073503A1 CN 2020120636 W CN2020120636 W CN 2020120636W WO 2021073503 A1 WO2021073503 A1 WO 2021073503A1
Authority
WO
WIPO (PCT)
Prior art keywords
growth
air
chamber
gardening equipment
growth chamber
Prior art date
Application number
PCT/CN2020/120636
Other languages
English (en)
French (fr)
Inventor
迈克尔·古德曼 施罗德
马修·R. 亨特
布莱恩·迈克尔 肖克
劳伦·尼科尔 普拉茨
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Priority to CN202080071645.8A priority Critical patent/CN114554834B/zh
Publication of WO2021073503A1 publication Critical patent/WO2021073503A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/247Watering arrangements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/26Electric devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Definitions

  • the invention relates to the field of indoor gardening equipment, in particular to an atmosphere control system for indoor gardening equipment.
  • a conventional indoor garden center includes a box defining a growth chamber in which a plurality of trays or shelves are provided to support seedlings or plant materials, for example, for growing herbs, vegetables or other plants in an indoor environment.
  • an indoor garden center may include an environmental control system that maintains the growth room at a desired temperature or humidity.
  • Certain indoor garden centers may also include a hydration system for watering plants and/or an artificial lighting system that provides the light necessary for the growth of such plants.
  • the traditional indoor garden center does not provide a way to regulate the exhaust air from the gardening equipment.
  • certain plants may naturally produce pleasant odors that are preferably discharged to the environment, while other plants produce unpleasant odors that are preferably filtered or treated before discharge.
  • the conventional equipment does not have a device for facilitating the regulation of such exhaust air.
  • an improved indoor garden center would be useful. More particularly, an indoor garden center with an atmosphere control system that regulates the gas concentration in the growth chamber of the indoor garden center will be particularly beneficial.
  • a gardening equipment comprising: an inner liner, the liner is arranged in the box and defines a growth chamber; a growth module, the growth module is installed in the inner liner and A plurality of orifices are defined, each orifice is used for placing a plant container; and an atmosphere control system.
  • the atmosphere control system includes: an air supply source, the air supply source is used to provide an intake air flow to the growth chamber; one or more permeable membranes, each of the one or more permeable membranes when being energized to adjust the The concentration of one or more gases in the inlet flow; and a controller operably connected to one or more permeable membranes, the controller selectively energizing the one or more permeable membranes.
  • a method of controlling the atmosphere in a growth chamber of gardening equipment includes: monitoring the gas concentration in the growth chamber; determining that the gas concentration is outside the desired range; using an air supply source to push air flow through one or more permeable membranes and into the growth chamber; and selectively energizing one or more permeable membranes , Adjust the gas concentration in the air stream to adjust the gas concentration within a desired range.
  • Fig. 1 provides a perspective view of a gardening equipment according to an exemplary embodiment of the present invention.
  • Fig. 2 depicts a front view of the exemplary gardening equipment of Fig. 1 with the door open according to an exemplary embodiment of the present invention.
  • Fig. 3 is a cross-sectional view at 3-3 in Fig. 2 with the inner partition plate removed for clarity.
  • FIG. 4 is a top perspective view of the exemplary gardening equipment of FIG. 1 according to an exemplary embodiment of the present invention, wherein the top panel of the box is removed to expose the rotatable growth module.
  • Fig. 5 provides a perspective cross-sectional view of the exemplary gardening equipment of Fig. 1 according to another exemplary embodiment of the present invention.
  • FIG. 6 provides a perspective view of a growth module of the exemplary gardening equipment of FIG. 1 according to another exemplary embodiment of the present invention.
  • FIG. 7 provides a perspective cross-sectional view of the exemplary growth module of FIG. 6 according to another exemplary embodiment of the present invention.
  • Figure 8 provides a top cross-sectional view of the exemplary growth module of Figure 6 according to another exemplary embodiment of the present invention.
  • FIG. 9 provides a schematic diagram of the atmosphere control system of the exemplary gardening equipment of FIG. 1 according to an exemplary embodiment of the present invention.
  • FIG. 10 provides a method of controlling the atmosphere in a growth chamber of indoor gardening equipment according to an exemplary embodiment of the present invention.
  • FIG. 1 provides a front view of a gardening equipment 100 according to an exemplary embodiment of the present invention.
  • the gardening equipment 100 may be used as an indoor garden center for growing plants. It should be understood that the embodiments described herein are only intended to illustrate aspects of the invention. The gardening equipment 100 may be changed and modified while remaining within the scope of the present invention.
  • the gardening equipment 100 includes a housing or box 102 that extends in the vertical direction V between the top 104 and the bottom 106, and in the lateral direction L between the first side 108 and the second side 110 Extend and extend along the transverse direction T between the front side 112 and the rear side 114.
  • Each of the vertical direction V, the lateral direction L, and the lateral direction T is perpendicular to each other and forms an orthogonal direction system.
  • the gardening equipment 100 may include a heat insulation liner 120 provided in the box 102.
  • the inner pot 120 may at least partially define a temperature control chamber in which the plants 124 may grow, which is collectively referred to herein as a growth chamber 122.
  • a growth chamber 122 a temperature control chamber in which the plants 124 may grow.
  • the gardening equipment 100 is referred to herein as growing a plant 124, it should be understood that other organisms or living beings may be grown or stored in the gardening equipment 100.
  • algae, fungi including mushrooms, for example
  • other living organisms may be grown or stored in the garden equipment 100.
  • the specific applications described herein are not intended to limit the scope of the invention.
  • the box 102 may define a substantially enclosed rear area or portion 130.
  • the box body 102 and the inner liner 120 may define a front opening, which is referred to herein as a front display opening 132, through which the user of the gardening equipment can enter the growth chamber 122, for example, for harvesting, planting, pruning or Interact with plants 124 in other ways.
  • the closed rear portion 130 may be defined as a portion of the inner liner 120 that defines a growth chamber 122 close to the rear side 114 of the box 102.
  • the front display opening 132 can generally be arranged close to or overlap with the front side 112 of the box body 102.
  • the gardening equipment 100 may also include one or more doors 134 rotatably mounted to the box 102 for providing selective access to the growth chamber 122.
  • Figure 1 illustrates doors 134 that are in a closed position so that they can help insulate the growth chamber 122.
  • FIG. 2 illustrates door bodies 134 that are in an open state to allow access to the growth chamber 122 and access to the plants 124 stored therein.
  • the door 134 may further include a transparent window 136 through which the user can observe the plants 124 without opening the door 134.
  • the door body 134 is exemplified as a rectangle and installed on the front side 112 of the box body 102, it should be understood that according to alternative embodiments, the door body 134 may have different shapes and installation positions. Wait.
  • the door body 134 may be curved, and may be completely formed of glass or the like.
  • the door 134 may have overall features for controlling the light entering and/or leaving the growth chamber 122, such as internal shutters, coloring, UV treatment, polarization, and the like.
  • internal shutters such as internal shutters, coloring, UV treatment, polarization, and the like.
  • the box body 102 also defines a drawer 138, which is arranged close to the bottom 106 of the box body 102 and is slidably mounted to the box body to facilitate storage of plant nutrients, system accessories, and water filters. Wait.
  • a mechanical compartment 140 for receiving an environmental control system, which includes a sealing system for regulating the temperature in the growth chamber 122, as will be described in more detail below.
  • FIG. 3 provides a schematic diagram of certain components of the environmental control system 148 that can be used to regulate the temperature within the growth chamber 122.
  • the environmental control system 148 may include a sealing system 150, a piping system 160, and a hydration system 270, or any other suitable for adjusting the environment in the growth chamber 122, for example, to promote improvement or regulation of the growth of the plants 124 disposed therein. Components or subsystems.
  • FIG. 3 illustrates the sealing system 150 in the machine compartment 140.
  • an exemplary sealing system is illustrated and described herein, it should be understood that various changes and modifications can be made to the sealing system 150 while remaining within the scope of the present invention.
  • the sealing system 150 may include additional or alternative components, different piping configurations, and the like.
  • the sealing system 150 includes a compressor 152, a first heat exchanger or evaporator 154, and a second heat exchanger or condenser 156.
  • the compressor 152 is generally operable to circulate or push the refrigerant to flow through the sealing system 150, and may include various conduits, which may be used to allow the refrigerant to flow between the various components of the sealing system 150.
  • the evaporator 154 and the condenser 156 may be in fluid communication with each other and with the compressor 152.
  • the refrigerant flows from the evaporator 154 and toward the compressor 152, and the compressor 152 is generally configured to direct the compressed refrigerant from the compressor 152 to the condenser 156.
  • the refrigerant may leave the evaporator 154 as a fluid in the form of superheated steam.
  • the refrigerant may enter the compressor 152, which may be used to compress the refrigerant. Therefore, the pressure and temperature of the refrigerant may increase in the compressor 152, so that the refrigerant becomes more superheated vapor.
  • the condenser 156 is arranged downstream of the compressor 152 and is operable to reject heat from the refrigerant. For example, superheated steam from the compressor 152 may enter the condenser 156 and transfer energy to the air surrounding the condenser 156 (e.g., to generate a flow of heated air). In this way, the refrigerant condenses into a saturated liquid and/or liquid vapor mixture.
  • a condenser fan (not shown) may be disposed adjacent to the condenser 156 and may facilitate or push heated air (e.g., from the surrounding atmosphere) to flow through the coil of the condenser 156 to promote heat transfer.
  • an expansion device or a variable electronic expansion valve 158 may also be provided to adjust the refrigerant expansion.
  • the variable electronic expansion valve 158 can generally expand the refrigerant, which reduces its pressure and temperature.
  • the refrigerant may leave the condenser 156 in the form of a high liquid mass/saturated liquid vapor mixture and travel through the variable electronic expansion valve 158 before flowing through the evaporator 154.
  • the variable electronic expansion valve 158 is generally configured to be adjustable, for example, so that the refrigerant flow through the variable electronic expansion valve 158 can be selectively changed or adjusted (for example, a volumetric flow rate in milliliters per second).
  • the evaporator 154 is arranged downstream of the variable electronic expansion valve 158, and is operable to heat the refrigerant in the evaporator 154 (eg, to generate a flow of cooling air) by absorbing thermal energy from the air around the evaporator, for example.
  • the refrigerant from the variable electronic expansion valve 158 may enter the evaporator 154.
  • the refrigerant from the variable electronic expansion valve 158 receives energy from the flow of cooling air and evaporates into superheated steam and/or a high-quality steam mixture.
  • An air handler or evaporator fan (not shown) is provided adjacent to the evaporator 154, and can promote or push cooling air to flow through the evaporator 154 in order to promote heat transfer.
  • the refrigerant may return from the evaporator 154 to the compressor 152, and the vapor compression cycle may continue.
  • the environmental control system 148 includes a sealing system 150 for providing a flow of heated air or a flow of cooling air throughout the growth chamber 122 as needed.
  • the environmental control system 148 includes a duct system 160 for directing a flow of temperature-regulated air, which is simply identified herein as air flow 162 (see, for example, FIG. 3).
  • air flow 162 simply identified herein as air flow 162 (see, for example, FIG. 3).
  • the evaporator fan may generate a flow of cooling air
  • the condenser fan may generate a flow of heated air.
  • These air streams 162 are respectively routed through cooling air supply ducts and/or heating air supply ducts (not shown).
  • the environmental control system 148 may generally include multiple ducts, dampers, diverter assemblies, and/or air handlers to facilitate adjustment in both cooling mode, heating mode, heating and cooling mode, or suitable for adjustment. Any other mode operation of the environment within the growth chamber 122.
  • the piping system 160 can vary in complexity, and the air flow from the sealing system 150 can be adjusted with any suitable portion of the growth chamber 122 in any suitable arrangement.
  • the gardening equipment 100 may include a control panel 170.
  • the control panel 170 includes one or more input selectors 172, such as, for example, knobs, buttons, push buttons, touch screen interfaces, and the like.
  • the input selector 172 may be used to specify or set various settings of the gardening equipment 100, such as, for example, settings associated with the operation of the sealing system 150.
  • the input selector 172 may communicate with a processing device or controller 174.
  • a control signal in or generated by the controller 174 operates the gardening equipment 100 in response to the input selector 172.
  • the control panel 170 may include a display 176, such as an indicator light or a screen.
  • the display 176 is communicatively connected with the controller 174, and can display information in response to a signal from the controller 174. Further, as will be described herein, the controller 174 may be communicatively connected with other components of the gardening equipment 100, such as, for example, one or more sensors, motors, or other components.
  • processing device may refer to one or more microprocessors or semiconductor devices, and is not necessarily limited to a single element.
  • the processing device may be programmed to operate the gardening equipment 100.
  • the processing device may include or be associated with one or more storage elements (e.g., permanent storage media).
  • the storage element includes an electrically erasable programmable read-only memory (EEPROM).
  • EEPROM electrically erasable programmable read-only memory
  • the storage element can store information accessible to the processing device, including instructions that can be executed by the processing device.
  • the instructions may be software or any set of instructions and/or data, and the software or any set of instructions and/or data, when executed by the processing device, causes the processing device to perform operations.
  • the gardening equipment 100 generally includes a rotatable carousel, referred to herein as a growth module 200, which is installed in the inner tank 120, for example, such that it is in the growth chamber 122 Inside.
  • the growth module 200 includes a central hub 202 that extends along a central axis 204 and is rotatable about the central axis 204.
  • the central axis 204 is parallel to the vertical direction V.
  • the central axis 204 may alternatively extend in any suitable direction (e.g., such as a horizontal direction).
  • the growth module 200 generally defines an axial direction (ie, parallel to the central axis 204), a radial direction R extending perpendicular to the central axis 204, and a circumferential direction C extending around the central axis 204 (e.g., In the plane of the axis 204).
  • the growth module 200 may also include a plurality of partitions 206 that extend from the central hub 202 generally along the radial direction R. As shown in FIG. In this way, the growth module 200 defines a plurality of chambers by dividing or dividing the growth chamber 122, which is generally referred to by the reference numeral 210 herein. Specifically referring to the first embodiment of the growth module 200 illustrated in FIGS. 1 to 8, the growth module 200 includes three partitions 206 that define a first chamber 212 and a second chamber 214 that are circumferentially separated from each other. And the third room 216. Generally, as the growth module 200 rotates in the growth chamber 122, the plurality of chambers 210 define substantially separate and different growth environments, for example, for growing plants 124 with different growth requirements.
  • the partition 206 may extend from the central hub 202 to a position immediately adjacent to the inner liner 120.
  • the partitions 206 are described as extending in the radial direction, it should be understood that they need not extend completely radially.
  • the distal end of each partition is joined to an adjacent partition using an arcuate wall 218, which is generally used to support the plant 124.
  • the growth module 200 may define a growth module diameter 220 (e.g., defined by its substantially circular footprint formed in a horizontal plane).
  • the closed rear portion 130 of the inner bladder 120 may be generally cylindrical, and may define the inner bladder diameter 222.
  • the inner container diameter 222 may be substantially equal to or slightly larger than the growth module diameter 220.
  • the growth module 200 may include one or more sealing elements 224 disposed on the radially distal end of each partition 206.
  • the sealing element 224 may extend from the partition 206 toward the inner liner 120 to contact the inner liner 120 and seal against the inner liner 120.
  • the sealing member 224 is a blade formed of silicone or another suitable elastic material.
  • the sealing element 224 slides against the inner container 120 to substantially seal each of the plurality of chambers 210.
  • the term is generally used to refer to an environment that can be adjusted to a reasonable degree independently of neighboring environments. For example, if the plant 124 and the first chamber 212 prefer a temperature rise of 10°F relative to the plant 124 and the second chamber 214, then a substantial seal between the two chambers can promote this temperature difference.
  • the gardening equipment 100 may further include a motor 230 or another suitable driving element or device for selectively rotating the growth module 200 during the operation of the gardening equipment 100.
  • the motor 230 is disposed under the growth module 200, for example, in the mechanical compartment 140, and is operatively connected to the growth module 200 along the central axis 204 for rotational growth. Module 200.
  • motor can refer to any suitable drive motor and/or transmission component for rotating the growth module 200.
  • the motor 230 may be a brushless DC motor, a stepper motor, or any other suitable type or configuration of motor.
  • the motor 230 may be an AC motor, an induction motor, a permanent magnet synchronous motor, or any other suitable type of AC motor.
  • the motor 230 may include any suitable transmission components, clutch mechanisms or other components.
  • the motor 230 may be operatively connected to the controller 174 that is programmed to rotate the growth module 200 according to a predetermined operation cycle based on user input (eg, via the touch button 172) or the like.
  • the controller 174 may be communicatively connected to one or more sensors, such as temperature or humidity sensors, which are respectively provided in various chambers 210 for measuring temperature and/or humidity. The controller 174 may then operate the motor 230 to maintain the desired environmental conditions for each of the various chambers 210.
  • the gardening equipment 100 includes features that are used to provide light, temperature control, appropriate moisture, nutrients, and other requirements for suitable plant growth to certain locations of the gardening equipment 100 .
  • the motor 230 can be used to set a specific chamber 210 where it needs to receive such growth requirements.
  • the controller 174 may operate the motor 230 to sequentially index the growth module 200 with a plurality of preselected positions. More specifically, the motor 230 may rotate the growth module 200 in a counterclockwise direction (for example, when viewed from the top of the growth module 200) in 120° increments to move the chamber 210 between the sealed position and the display position.
  • the chamber 210 is substantially sealed between the growth module 200 (ie, the central hub 202 and the adjacent partition 206) and the inner bladder 120, the chamber 210 is considered to be in the "sealed position" .
  • the chamber 210 is at least partially exposed to the front display opening 132 so that the user can access the plants 124 provided in the chamber 210, the chamber 210 is considered to be in the "display position.”
  • both the first chamber 212 and the second chamber 214 are in the sealed position, and the third chamber 216 is in the display position.
  • the motor 230 rotates the growth module 200 in a counterclockwise direction by 120 degrees, the second chamber 214 will enter the display position, and the first chamber 212 and the third chamber 216 will be in the sealed position.
  • the motor 230 may continue to rotate the growth module 200 in such increments, so that the growth chamber 210 circulates between the sealed positions and the display positions.
  • the growth module 200 defines a plurality of orifices 240 that are generally configured to receive the plant container 242 into the internal root chamber 244.
  • the plant container 242 usually contains seedlings or other materials for growing plants arranged in a mesh or other supporting structure, and the root of the plant 124 can be grown in the growth module 200 by means of the mesh or other supporting structure.
  • the user can insert a portion of the plant container 242 (eg, the seed end or root end 246) having the desired seeds into the root chamber 244 through one of the plurality of apertures 240.
  • the plant end 248 of the plant container 242 can be held within the growth chamber 210 so that the plants 124 can grow from the growth module 200 so that they can be accessed by the user.
  • the growth module 200 defines a root chamber 244, for example, within at least one of the central hub 202 and the plurality of partitions 206.
  • water and other nutrients may be supplied to the root end 246 of the plant container 242 in the root chamber 244.
  • the orifice 240 may be covered by a flat baffle seal (not shown) to prevent water from escaping the root chamber 244.
  • the growth module 200 may further include an inner partition 250 that is disposed in the root chamber 244 to divide the root chamber 244 into a plurality of root chambers. Each of them is in fluid communication with one of the plurality of growth chambers 210 via the plurality of orifices 240. More specifically, according to the illustrated embodiment, the inner partition plate 250 may divide the root chamber 244 into a first root chamber 252, a second root chamber 254, and a third root chamber 256.
  • the first root chamber 252 may provide water and nutrients to the plants 124 provided in the first growth chamber 212
  • the second root chamber 254 may provide water and nutrients to the plants 124 provided in the second growth chamber 214
  • the third root chamber 256 can provide water and nutrients to the plants 124 provided in the third growth chamber 216.
  • the environmental control system 148 can control the temperature and/or humidity of each of the plurality of chambers 212-216 and the plurality of root chambers 252-256 independently of each other.
  • the environmental control system 148 may also include a hydration system 270, which is generally configured to provide water to the plants 124 to support the growth of the plants.
  • the hydration system 270 generally includes a water source 272 and a spray device 274 (e.g., such as one or more fine mist nozzles).
  • the water source 272 may be a reservoir containing water (e.g., distilled water), or may be a directly connected municipal water source.
  • the spray device 274 may be provided at the bottom of the root chamber 244, and may be configured to fill the root chamber 244 with mist to hydrate the roots of the plants 124.
  • the spray device 274 may pass through the central hub 204 along the vertical direction V and periodically include nozzles for spraying or water into the root chamber 244. Because various plants 124 may require different amounts of water for the desired growth, the hydration system 270 may alternatively include a plurality of spray devices 274, for example, all spray devices are connected to the water source 272, but are selectively operated independently of each other Each of the first root chamber 252, the second root chamber 254, and the third root chamber 256 is filled with ground.
  • the above-mentioned environmental control system 148 is generally configured to separate the temperature and humidity (for example, or some other suitable water level or measurement) in one or all of the plurality of chambers 210 and/or root chambers 252-256 Adjust each other. In this way, a universal and desired growth environment can be obtained for each and every chamber 210.
  • the gardening equipment 100 may also include a light assembly 280 that is generally configured to provide light into a selected growth chamber 210 to promote photosynthesis and growth of the plant 124.
  • the light assembly 280 may include a plurality of light sources 282 stacked in an array, for example, extending along the vertical direction V.
  • the light source 282 may be directly installed to the inner pot 120 in the growth chamber 122, or alternatively may be arranged behind the inner pot 120 so that light is projected into the growth chamber 122 through a transparent window or a light pipe.
  • the location, configuration, and type of the light source 282 described herein are not intended to limit the scope of the present invention in any way.
  • the light source 282 may use any suitable light technology and be illuminated in any suitable color, and be set as any suitable number, type, position, and configuration of electric light sources.
  • the light source 282 includes one or more light emitting diodes (LEDs), which can each be illuminated in a single color (eg, white LEDs), or can be individually illuminated depending on a control signal from the controller 174. Illuminate in multiple colors (for example, multi-color or RGB LED).
  • the light source 282 may include any other suitable conventional bulbs or light sources, such as halogen bulbs, fluorescent bulbs, incandescent bulbs, glow sticks, fiber optic light sources, and the like.
  • the light generated from the light assembly 280 may cause light pollution in the room where the gardening equipment 100 is located. Therefore, aspects of the present invention focus on features for reducing light pollution, or focus on preventing light from the light source 282 passing through the front display opening 132.
  • the light assembly 280 is only disposed in the enclosed rear portion 130 of the inner container 120, so that only the growth chamber 210 in the sealed position is exposed to the light from the light source 282.
  • the growth module 200 serves as a physical partition between the light assembly 280 and the front display opening 132. Thus, as shown in FIG. 5, no light can pass through the growth module 200 from the first chamber 212 or the second chamber 214 and exit the front display opening 132.
  • a single light assembly may be used to reduce costs, whereby only a single growth chamber 210 is illuminated at a single time.
  • the gardening equipment 100 can be simplified into a two-chamber embodiment with a square inner container 120 and a growth module 200 having two partitions 206 extending from opposite sides of the central hub 202 to The first growth chamber and the second growth chamber are defined.
  • the first chamber can be in the sealed position (for example, facing the rear side 114 of the box 102) and the display position (for example, facing the front of the box 102). Alternate between sides 112).
  • the same rotation will move the second chamber from the display position to the sealed position.
  • the gardening equipment 100 may include a three-chamber growth module 200, but with a modified box body 102 such that the front display opening 132 is wider, and two of the three growth chambers 210 are displayed at a time.
  • the first chamber 212 may be in the sealed position
  • the second chamber 214 and the third chamber 216 may be in the display position.
  • the growth module 200 rotates counterclockwise, the first chamber 212 moves into the display position, and the third chamber 216 moves into the sealed position.
  • an atmosphere control system 300 that can be used to adjust the atmosphere in and around the gardening equipment 100 will be described according to an exemplary embodiment of the present invention.
  • the growth rate and health of the plants grown in the gardening equipment 100 depend on the concentration of the gas contained therein.
  • certain plants produce unpleasant or pleasant odors, which should be properly filtered and/or discharged.
  • aspects of the present invention relate to an atmosphere control system that is designed to regulate this air flow and control the atmosphere in the growth chamber 210.
  • an exemplary configuration is described herein, it should be understood that the atmosphere control system 300 can be varied while remaining within the scope of the present invention.
  • the atmosphere control system 300 includes an air supply source 302 for providing an intake air flow (for example, as indicated by an arrow 304) into the growth chamber 210.
  • This intake air flow 304 may enter the growth chamber 210 and mix with the air present in the growth chamber 210 (i.e., chamber air as generally identified by reference numeral 306).
  • the concentration of various gases in the room air 306 can be changed by adjusting the concentration of the same gas in the inlet flow 304.
  • aspects of the present invention involve adjusting the intake air flow 304 and its gas concentration.
  • the intake air flow 304 may enter the growth chamber 210 via the intake pipe 310. More specifically, the air supply source 302 may be fluidly connected to or disposed in the inlet 312 of the intake duct 310 to push the intake air flow 304 through. The outlet 314 of the intake duct 310 may be fluidly connected to the growth chamber 210. It is worth noting that the air supply source 302 may generally be any suitable air source or other gas source suitable for introduction into the growth chamber 210 to promote plant growth.
  • the air supply source 302 is an air pump 316, which is fluidly connected to the intake duct 310, for drawing in air from the surrounding environment 318 (eg, around the gardening equipment 100) and pushing the intake flow 304 into the growth Room 210.
  • the atmosphere control system 300 may further include one or more permeable membranes 320 configured to adjust the concentration of one or more gases in the inlet flow 304.
  • permeable membranes 320 are membranes through which the inlet flow 304 can pass, but these membranes can be selectively energized, energized, or placed in a magnetic field to control the concentration of gas passing therethrough.
  • the permeable membrane 320 may be selected to adjust the concentration of a specific gas, for example, the concentration of oxygen (O 2 ), carbon dioxide (CO 2 ), or nitrogen (N 2 ).
  • the atmosphere control system 300 may include a controller, such as a dedicated controller or the controller 174 of the indoor garden appliance 100, which may be operably connected to the permeable membrane 320 for selectively energizing one of the permeable membranes 320 or Multiple to adjust the gas concentration in the intake air flow 304. In this way, by adjusting the operation of the air pump 316 and the excitation of the permeable membrane 320, the controller 174 can manipulate or adjust the gas concentration in the room air 306.
  • a controller such as a dedicated controller or the controller 174 of the indoor garden appliance 100, which may be operably connected to the permeable membrane 320 for selectively energizing one of the permeable membranes 320 or Multiple to adjust the gas concentration in the intake air flow 304.
  • the atmosphere control system 300 includes three permeable membranes 320 stacked adjacent to each other in the intake duct 310 (for example, for adjusting O 2 , CO 2, and N 2 ).
  • the permeable membrane 320 may be provided at different positions around the box 102 or the inner liner 120 for adjusting the flow of gas passing therethrough.
  • the air pump 316 may not be required in the air supply source 302, and may only rely on the natural flow of air entering the growth chamber 210.
  • the atmosphere control system 300 may include an auxiliary gas source 322 fluidly connected to the growth chamber 210.
  • the auxiliary gas source 322 may contain a concentrated gas having a desired composition, such as pure carbon dioxide (CO 2 ), nitrogen (N 2 ), and the like.
  • the control valve 324 can adjust the flow of this concentrated gas from the auxiliary gas source 322 into the growth chamber 210.
  • such an auxiliary gas source 322 may be used when the gas concentration in the room air 306 is far from the desired range and needs to be adjusted quickly.
  • the atmosphere control system 300 may further include a gas sensor 330, which is arranged in the growth chamber 310 for detecting this concentration.
  • the controller 174 is communicatively connected with the gas sensor 330 and is configured to selectively activate the permeable membrane 320 based at least in part on the concentration detected by the gas sensor 330. In this way, the gas sensor 330 can provide feedback to achieve an accurate gas concentration and an ideal growth atmosphere in the growth chamber 210.
  • the atmosphere control system 300 may also include features for adjusting the exhaust air (e.g., generally identified herein by the reference numeral 340).
  • the atmosphere control system 300 includes an exhaust duct 342 that is in fluid communication with the growth chamber 210 for allowing the flow of exhaust air 340 to exit the growth chamber 210.
  • the flow adjusting device 344 may be operably connected to the exhaust duct 342 to adjust the flow of the exhaust air 340.
  • the flow regulating device 344 is a damper 346 that pivots between positions to control the flow of the exhaust air 340, as described below.
  • the flow regulating device 344 may be any other suitable flow control device.
  • the exhaust duct 342 is divided into a non-filtering part 350 and a filtering part 352.
  • the damper 346 is located at a first position (for example, as shown in FIG. 9) for directing the exhaust air 340 to the surrounding environment 318 through the non-filtering part 350 and a second position (for guiding the exhaust air 340 through the filtering part 352).
  • the filter portion 352 may also include a filter element or filter device 354 for processing, filtering, or adjusting the flow of the exhaust air 340, as described in more detail below.
  • the atmosphere control system 300 may include an odor sensor 356, which is generally configured to detect pleasant or unpleasant odors, the level of volatile organic compounds (VOC), or the flow of exhaust air 340 Other odor-related properties.
  • the controller 174 may be operatively connected with the odor sensor 356, and may adjust the position of the damper 346 based on the detected odor. For example, if the odor sensor 356 detects a high level of VOC or an unpleasant odor, the damper 346 may be shifted to the second position in order to guide the exhaust air 340 to flow through the filter part 352, more specifically, through the filter device 354.
  • the damper 346 may be controlled to directly discharge the exhaust air 340 through the non-filtering part 350.
  • the outlet 314 of the air inlet duct 310 may be provided at any suitable position for supplying the air inlet flow 304 into the growth chamber 210.
  • the outlet 314 is directly provided in the side wall of the inner tank 120.
  • the intake air flow 304 may be provided into a single chamber in a sealed position (for example, the first chamber 212), into two chambers in a sealed position (for example, the first chamber 212 and the second chamber 214), Enter the third chamber 216 in the display position, or any other suitable position.
  • the outlet 314 of the air inlet duct 310 may be fluidly connected to the root chamber 244.
  • the inlet 360 of the exhaust duct can be provided at any suitable position.
  • the outlet 314 of the intake duct 310 is provided in the first chamber 212 and the inlet 360 of the exhaust duct 342 is provided in the second chamber 214.
  • a plurality of intake ducts and a plurality of exhaust ducts may be independently used to adjust the gas concentration in each of the chambers 212 to 216.
  • Other configurations are possible and are within the scope of the present invention.
  • an exemplary method 400 of adjusting the atmosphere in an indoor garden appliance will be described.
  • the following discussion relates to an exemplary method 400 of operating the gardening equipment 100, those skilled in the art should understand that the exemplary method 400 is applicable to operating various other gardening equipment and/or atmosphere control systems or components.
  • the method 400 includes: at step 410, monitoring the concentration of gas in the growth chamber.
  • the atmosphere control system 300 can use the gas sensor 330 to detect the concentration of certain specific gases in the room air 306.
  • the controller 174 may also be configured to obtain a desired gas concentration of such gas or a desired range of such gas, for example, based on the particular plant 124 being grown.
  • Step 420 may also include determining the concentration of gas outside the desired range. When this gas concentration falls outside the desired range, the atmosphere control system 300 can implement a corrective action by introducing the intake air flow 304 to correct this gas concentration.
  • step 430 includes using an air supply source to push air flow through one or more permeable membranes and into the growth chamber.
  • the air pump 316 can draw in air from the surrounding environment 318 and push the air through the intake duct 310.
  • the inlet flow 304 may pass through a plurality of permeable membranes 320, and each permeable membrane may be configured to adjust the flow rate of a specific gas or increase the concentration of the specific gas.
  • step 440 includes selectively energizing one or more permeable membranes to adjust the gas concentration in the air stream to adjust the gas concentration to a desired range.
  • the controller 174 can also selectively energize or energize each permeable membrane 320 to control the total gas concentration in the inlet flow 304.
  • the intake air stream 304 may enter the growth chamber 210 and mix with the chamber air 306 to produce a new concentration closer to the desired range or target concentration.
  • the atmosphere control system 300 can also use the auxiliary gas source 322 and the control valve 324 to supplement this gas, so as to achieve the desired or improved plant growth. Target gas concentration.
  • Step 450 may also include adjusting a flow regulating device that is operatively connected to the exhaust duct to regulate the flow of exhaust air through the exhaust duct.
  • the damper 346 may be used to control the air flow through the exhaust duct 342.
  • the damper 346 may guide the exhaust air 340 through the non-filtering part 350.
  • the damper 346 can be adjusted to guide the exhaust air 340 through the filter 352 and the filter 354, so as to reduce VOC or improve the odor.
  • the damper 346 may be configured to completely close or close the exhaust duct 342.
  • the operation of the damper 346, the type of the filtering device 354, the desired gas concentration range, etc. can be changed and modified.
  • Figure 10 depicts the steps performed in a specific order for purposes of example and discussion. Using the content of the invention provided herein, those of ordinary skill in the art will understand that the steps of any method described herein can be adapted, rearranged, expanded, omitted or modified in various ways without departing from the scope of the present invention. Moreover, although the gardening equipment 100 is used as an example to illustrate various aspects of the method 400, it should be understood that these methods can be applied to the operation of any gardening equipment or atmosphere control system having any other suitable configuration.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)

Abstract

一种用于室内园艺设备(100)的气氛控制系统(300),室内园艺设备(100)包括限定生长室(122)的内胆(120)和安装在生长室(122)内用于放置多个植物容器(242)的生长模块(200)。气氛控制系统(300)包括用于将进气流(304)提供到生长室(122)中的空气供应源(302)。进气流(304)可以通过包括渗透膜(320)的进气管道(310),这些渗透膜(320)用于控制进气流(304)内的气体浓度。气体传感器(330)用于感测各种气体的浓度,并且控制器(174)可以选择性地激励渗透膜(320),以控制进气流(304)中的气体浓度,从而将气体浓度维持在期望范围内。

Description

用于室内园艺设备的气氛控制系统 技术领域
本发明涉及室内园艺设备领域,具体地涉及一种用于室内园艺设备的气氛控制系统。
背景技术
常规的室内花园中心包括限定生长室的箱体,该生长室中设置有多个托盘或搁架,以支撑幼苗或植物材料,例如,用于在室内环境中种植药草、蔬菜或其他植物。另外,这种室内花园中心可以包括将生长室维持在期望的温度或湿度的环境控制系统。某些室内花园中心还可以包括用于给植物浇水的水合系统和/或提供这种植物生长所必需的光的人工照明系统。
然而,传统的室内花园中心通常不包括用于调节生长室内的气氛的系统。例如,植物消耗二氧化碳(CO 2)以促进光合作用过程,同时,这会产生副产物氧气(O 2)。因此,生长室内的气氛自然会变得富氧和二氧化碳不足。相反,其它气体可能以不期望的浓度存在,并且可能影响植物的生长速率,诸如氮气(N 2)。不能适当地调节气氛内这些气体的浓度可能导致较差的生长环境。
此外,传统的室内花园中心没有提供调节从园艺设备排出空气的途径。在这点上,某些植物可能自然产生优选排放到环境的令人愉快的气味,而其它植物产生优选在排放之前过滤或处理的难闻气味。传统的设备没有用于促进这种排出空气的调节的装置。
因此,一种改进的室内花园中心将是有用的。更特别地,具有气氛控制系统的室内花园中心将是特别有益的,该气氛控制系统调节室内花园中心的生长室内的气体浓度。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而想到。
在一个示例性实施方式中,提供了一种园艺设备,所述园艺设备包括:内胆,所述内胆设置在箱体内并限定生长室;生长模块,所述生长模块安装在内胆内并限定多个孔口,每个孔口用于放置植物容器;以及气氛控制系统。气氛控制系统包括:空气供应源,所述空气供应源用于向所述生长室提供进气流;一个或多个渗透膜,所述一个或多个渗透膜中的每一个在被激励时调节所述进气流中一种或多种气体的浓度;以及控制器,所述控制器可操作地连接到一个或多个渗透膜,所述控制器选择性地激励所述一个或多个渗透膜。
在另一示例性实施方式中,提供了一种控制园艺设备的生长室内的气氛的方法。方法包括:监测生长室内的气体浓度;确定气体浓度在期望范围之外;使用空气供应源推动空气流通过一个或多个渗透膜并进入生长室中;以及选择性地激励一个或多个渗透膜,调节所述空气流内的气体浓度,以将气体的浓度调节到期望范围内。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1提供了根据本发明的示例性实施方式的园艺设备的立体图。
图2描绘了根据本发明的示例性实施方式的图1的示例性园艺设备的前视图,其中门体打开。
图3是图2中3-3处的剖视图,其中为了清楚起见,去除内分隔板。
图4是根据本发明的示例性实施方式的图1的示例性园艺设备的顶立体图,其中去除箱体的顶面板,以露出可旋转的生长模块。
图5提供了根据本发明的另一个示例性实施方式的图1的示例性园艺设备的立体剖视图。
图6提供了根据本发明的另一个示例性实施方式的图1的示例性园艺设备的生长模块的立体图。
图7提供了根据本发明的另一个示例性实施方式的图6的示例性生长模块的立体剖视图。
图8提供了根据本发明的另一个示例性实施方式的图6的示例性生长模块的顶剖视图。
图9提供了根据本发明的示例性实施方式的图1的示例性园艺设备的气氛控制系统的示意图。
图10提供了根据本发明的示例性实施方式的控制室内园艺设备的生长室内的气氛的方法。
附图标记在本说明书和附图中的重复使用旨在表示本发明的相同或相似的特征或元件。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围或者精神的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
如本文中使用的,近似的用语,如“近似”、“大致”或“大约”是指在所 述值的百分之十(10%)的误差裕度内。而且,如本文所用的,术语“第一”、“第二”和“第三”可以互换使用以将一个部件与另一个部件区分开,并且这些术语并不旨在表示各个部件的位置或重要性。术语“上游”和“下游”是指相对于流体通路中的流体流动的相对方向。例如,“上游”是指流体流动的来向,而“下游”是指流体流动的去向。
图1提供了根据本发明的示例性实施方式的园艺设备100的前视图。根据示例性实施方式,园艺设备100可以用作用于使植物生长的室内花园中心。应当理解,本文描述的实施方式仅旨在说明本发明的方面。可以在保持在本发明的范围内的同时对园艺设备100进行变更和修改。
园艺设备100包括壳体或箱体102,所述壳体或箱体沿着竖向V在顶部104与底部106之间延伸,沿着侧向L在第一侧108与第二侧110之间延伸,并且沿着横向T在前侧112与后侧114之间延伸。竖向V、侧向L以及横向T中的每一个彼此互相垂直并形成正交方向系统。
园艺设备100可以包括设置在箱体102内的隔热内胆120。内胆120可以至少部分地限定植物124可以在其中生长的温度控制室,本文总体称为生长室122。虽然园艺设备100在本文中被称为使植物124生长,但应当理解,其他有机体或生物可以在园艺设备100中生长或储存。例如,可以在园艺设备100中生长或储存藻类、真菌(例如,包括蘑菇)或其他活有机体。本文所述的特定应用并非旨在限制本发明的范围。
箱体102,或更具体地,内胆120可以限定大致封闭的后区域或部分130。另外,箱体102和内胆120可以限定前开口,在本文中称为前显示开口132,园艺设备的用户穿过所述前开口100可以进入生长室122,例如,以便收获、种植、修剪或以其他方式与植物124相互作用。根据示例性实施方式,封闭的后部130可以被定义为内胆120的一部分,所述部分限定了接近箱体102的后侧114的生长室122。另外,前显示开口132通常可以设置为接近箱体102的前侧112或与之重合。
园艺设备100还可以包括一个或多个门体134,这些门体可旋转地安装到箱体102,用于提供到生长室122的选择性进入。例如,图1示例了门体134,这些门体处于关闭位置,使得它们可以帮助使生长室122隔热。相比之下,图 2示例了门体134,这些门体处于打开状态,以便进入生长室122并接近储存在其中的植物124。门体134还可以包括透明窗口136,用户可以借助所述窗口观察植物124,而无需打开门体134。
虽然在图1和图2中,门体134被示例为矩形并且被安装在箱体102的前侧112上,但是应当理解,根据另选实施方式,门体134可以具有不同的形状、安装位置等。例如,门体134可以是弯曲的,可以完全由玻璃等形成。另外,门体134可以具有用于控制传入和/或离开生长室122的光的整体特征,诸如内部百叶窗、着色、UV处理、极化等。本领域技术人员将理解,其他室和门体构造是可以的,并且在本发明的范围内。
根据所示例的实施方式,箱体102还限定抽屉138,所述抽屉被设置为接近箱体102的底部106,并且可滑动地安装到箱体,从而方便储存植物养分、系统配件、滤水器等。另外,在抽屉138后面的是用于接收环境控制系统的机械间室140,所述环境控制系统包括用于调节生长室122内的温度的密封系统,如下将更详细地描述。
图3提供了可以用于调节生长室122内的温度的环境控制系统148的某些部件的示意图。具体地,环境控制系统148可以包括密封系统150、管道系统160以及水合系统270、或用于调节生长室122内的环境例如以便促进改善或调节设置在其中的植物124的生长的任意其他合适的部件或子系统。具体地,图3示例了机械间室140内的密封系统150。虽然在本文中示例并描述了示例性密封系统,但应当理解,可以在保持在本发明的范围内的同时对密封系统150进行各种变更和修改。例如,密封系统150可以包括另外或另选的部件、不同的管道构造等。
如图所示,密封系统150包括压缩机152、第一热交换器或蒸发器154以及第二热交换器或冷凝器156。如通常理解的,压缩机152通常可操作为循环或推动制冷剂流过密封系统150,可以包括各种导管,这些导管可以用于使制冷剂在密封系统150的各种部件之间流动。由此,蒸发器154和冷凝器156可以在彼此以及与压缩机152流体连通。
在密封系统150的操作期间,制冷剂从蒸发器154并且向压缩机152流动,并且压缩机152通常被构造为将压缩的制冷剂从压缩机152引导至冷凝器156。 例如,制冷剂可以作为过热蒸汽形式的流体离开蒸发器154。在离开蒸发器154时,制冷剂可以进入压缩机152,所述压缩机可用于压缩制冷剂。因此,制冷剂的压力和温度可以在压缩机152中升高,使得制冷剂变为更过热的蒸汽。
冷凝器156布置在压缩机152的下游,并且可操作为排斥来自制冷剂的热量。例如,来自压缩机152的过热蒸汽可以进入冷凝器156并将能量传递到冷凝器156周围的空气(例如,以产生加热空气的流)。这样,制冷剂冷凝成饱和的液体和/或液体蒸汽混合物。冷凝器风扇(未示出)可以被设置为与冷凝器156相邻,并且可以促进或推动加热空气(例如,来自周围大气)流过冷凝器156的盘管,以便促进热传递。
根据所示例的实施方式,还可以设置膨胀装置或可变电子膨胀阀158,以调节制冷剂膨胀。在使用期间,可变电子膨胀阀158通常可以使制冷剂膨胀,这降低其压力和温度。在这点上,制冷剂可以以高液体质量/饱和液体蒸汽混合物的形式离开冷凝器156,并且在流过蒸发器154之前行进穿过可变电子膨胀阀158。可变电子膨胀阀158通常被构造为可调节,例如,使得可以选择性地改变或调节穿过可变电子膨胀阀158的制冷剂流(例如,以毫升/秒为单位的体积流量)。
蒸发器154布置在可变电子膨胀阀158的下游,并且可操作为例如通过吸收来自蒸发器周围的空气的热能来加热蒸发器154内的制冷剂(例如,以产生冷却空气的流)。例如,来自可变电子膨胀阀158的液体或液体蒸汽混合物制冷剂可以进入蒸发器154。在蒸发器154内,来自可变电子膨胀阀158的制冷剂从冷却空气的流接收能量,并且蒸发成过热蒸汽和/或高质量的蒸气混合物。空气处理器或蒸发器风扇(未示出)设置为与蒸发器154相邻,并且可以促进或推动冷却空气流过蒸发器154,以便促进热传递。制冷剂可以从蒸发器154返回压缩机152,并且蒸汽压缩循环可以继续。
如上所述,环境控制系统148包括密封系统150,所述密封系统用于根据需要贯穿生长室122提供受热空气的流或冷却空气的流。为了引导所述空气,环境控制系统148包括用于引导温度调节空气流的管道系统160,温度调节空气流在本文中简单地标识为空气流162(例如,参见图3)。在这点上,例如,随着空气经过蒸发器154,蒸发器风扇可以生成冷却空气流,并且随着空气经 过冷凝器156,冷凝器风扇可以生成加热空气流。
这些空气流162分别被路由穿过冷却空气供应管道和/或加热空气供应管道(未示出)。在这点上,应当理解,环境控制系统148通常可以包括多个管道、风门、分流器组件和/或空气处理器,以便于以冷却模式、加热模式、加热和冷却模式两者或适于调节生长室122内的环境的任何其他模式操作。应当理解,管道系统160可以在复杂性方面变化,并且可以借助生长室122的任意合适的部分以任意合适的布置来调节来自密封系统150的空气流。
园艺设备100可以包括控制面板170。控制面板170包括一个或多个输入选择器172,诸如例如,旋钮、按钮、下压按钮、触摸屏界面等。另外,输入选择器172可以用于指定或设置园艺设备100的各种设置,诸如例如与密封系统150的操作关联的设置。输入选择器172可以与处理装置或控制器174通信。在控制器174中或由控制器174生成的控制信号响应于输入选择器172操作园艺设备100。另外,控制面板170可以包括显示器176,诸如指示灯或屏幕。显示器176与控制器174通信地连接,并且可以响应于来自控制器174的信号而显示信息。进一步地,如将在本文中描述的,控制器174可以与园艺设备100的其他部件(诸如例如,一个或多个传感器、电机或其他部件)通信地连接。
如本文中使用的,“处理装置”或“控制器”可以指一个或多个微处理器或半导体装置,并且不必限于单个元件。处理装置可以被编程为操作园艺设备100。处理装置可以包括一个或多个存储元件(例如,永久存储介质)或与其关联。在一些这种实施方式中,存储元件包括电可擦可编程只读存储器(EEPROM)。通常,存储元件可以存储处理装置可访问的信息,包括可以由处理装置执行的指令。可选地,指令可以是软件或指令和/或数据的任意集合,所述软件或指令和/或数据的任意集合在由处理装置执行时,使得处理装置执行操作。
现在总体参照图1至图8,园艺设备100通常包括可旋转的圆盘传送带,在本文中被称为生长模块200,所述生长模块安装在内胆120内,例如,使得其在生长室122内。如图所示,生长模块200包括沿着中心轴线204延伸并且可绕中心轴线204旋转的中心毂202。具体地,根据所示例的实施方式,中心轴线204平行于竖向V。然而,应当理解,中心轴线204可以另选地沿任意合 适的方向(例如,诸如水平方向)延伸。在这点上,生长模块200通常限定轴向(即,平行于中心轴线204)、与中心轴线204垂直地延伸的径向R以及绕中心轴线204延伸的周向C(例如,在垂直于中心轴线204的平面中)。
生长模块200还可以包括多个隔板206,这些隔板大致沿着径向R从中心毂202延伸。这样,生长模块200通过划分或分割生长室122来限定多个腔室,在本文中总体由附图标记210指代。具体参照图1至图8所示例的生长模块200的第一实施方式,生长模块200包括三个隔板206,这些隔板限定相对于彼此周向隔开的第一室212、第二室214以及第三室216。通常,随着生长模块200在生长室122内旋转,多个腔室210限定大致分开且不同的生长环境,例如,用于使具有不同生长需求的植物124生长。
更具体地,隔板206可以从中心毂202延伸到紧邻内胆120的位置。虽然隔板206被描述为沿着径向延伸,但应当理解,它们不必完全径向地延伸。例如,根据所示例的实施方式,各个隔板的远端使用弓形壁218与相邻的隔板接合,所述弓形壁218通常用于支撑植物124。
明显地,根据示例性实施方式,期望在隔板206与内胆120之间形成大致的密封。因此,根据示例性实施方式,生长模块200可以限定生长模块直径220(例如,由其形成在水平面中的大致圆形的覆盖区限定)。类似地,内胆120的封闭的后部130可以是大致圆柱形的,并且可以限定内胆直径222。为了防止大量的空气在隔板206与内胆120之间逸出,内胆直径222可以大致等于或稍大于生长模块直径220。
根据另一些实施方式,生长模块200可以包括设置在各个隔板206的径向远端上的一个或多个密封元件224。在这点上,密封元件224可以从隔板206朝向内胆120延伸,以接触内胆120并紧靠内胆120密封。例如,根据所示例的实施方式,密封元件224是由硅树脂或另一种合适的弹性材料形成的刮片。由此,随着生长模块200旋转,密封元件224紧靠内胆120滑动,以大致密封多个室210中的每一个。应当理解,如本文使用的,术语“大致密封”等不旨在指代完美的气密接合。相反,所述术语通常用于指代可以在合理程度上独立于相邻环境调节的环境。例如,如果植物124和第一室212相对于植物124和第二室214更喜欢10°F的温升,则这两个室之间的大致密封可以促进这种温 差。
现在具体参照图3,园艺设备100还可以包括电机230或另一种合适的驱动元件或装置,用于在园艺设备100的操作期间选择性地旋转生长模块200。在这点上,根据所示例的实施方式,电机230被设置在生长模块200下方,例如,设置在机械间室140内,并且沿着中心轴线204可操作地连接到生长模块200,以便旋转生长模块200。
如本文使用的,“电机”可以指代用于旋转生长模块200的任意合适的驱动电机和/或传动组件。例如,电机230可以是无刷DC电动机、步进电机或任意其他合适类型或构造的电机。例如,电机230可以是AC电机、感应电机、永磁同步电机或任意其他合适类型的AC电机。另外,电机230可以包括任意合适的传动组件、离合器机构或其他部件。
根据示例性实施方式,电机230可以可操作地连接到控制器174,所述控制器被编程为基于用户输入(例如,经由触摸按钮172)等根据预定的操作循环旋转生长模块200。另外,控制器174可以通信地连接到一个或多个传感器,诸如温度或湿度传感器,这些传感器分别设置在用于测量温度和/或湿度的各种室210内。控制器174然后可以操作电机230,以便为各个腔室210中的每一个维持期望的环境条件。例如,如将在下面更详细地描述的,园艺设备100包括特征,这些特征用于向园艺设备100的某些位置提供光、温度控制、适当的水分、养分以及用于适合植物生长的其他要求。电机230可以用于将特定的腔室210设置在需要接收这种生长要求的地方。
根据示例性实施方式,诸如在三个隔板206形成三个室212-216的情况下,控制器174可以操作电机230,以借助多个预选位置顺序地对生长模块200进行分度。更具体地,电机230可以以120°的增量沿逆时针方向(例如,当从生长模块200的顶部查看时)旋转生长模块200,以使腔室210在密封位置与显示位置之间移动。如本文使用的,当腔室210被大致密封在生长模块200(即,中心毂202和相邻的隔板206)与内胆120之间时,所述腔室210被认为处于“密封位置”。与之相比,当腔室210至少部分地暴露于前显示开口132使得用户可以接近设置在所述腔室210内的植物124时,所述腔室210被认为处于“显示位置”。
例如,如图4和图5所示,第一室212和第二室214都处于密封位置,而第三室216处于显示位置。随着电机230沿逆时针方向将生长模块200旋转120度,第二室214将进入显示位置,而第一室212和第三室216将处于密封位置。电机230可以继续以这种增量旋转生长模块200,以使生长室210在这些密封位置与显示位置之间循环。
现在总体参照图4至图8,将更详细地描述根据本发明的示例性实施方式的生长模块200。如图所示,生长模块200限定多个孔口240,这些孔口通常被构造为将植物容器242接收到内部根室244中。植物容器242通常包含设置在网眼或其他支撑结构内的用于生长植物的幼苗或其他材料,植物124的根可以借助所述网眼或其他支撑结构在生长模块200内生长。用户可以将具有期望种子的植物容器242的部分(例如,种子端或根端246)穿过多个孔口240中的一个插入到根室244中。植物容器242的植物端248可以保持在生长室210内,使得植物124可以从生长模块200生长,使得它们可由用户接近。在这点上,生长模块200限定根室244,例如,在中心毂202和多个隔板206中的至少一个内。如下面将说明的,水和其他养分可以被供应到根室244内的植物容器242的根端246。明显地,当未安装植物容器242时,孔口240可以被平坦的挡板密封件(未示出)覆盖,以防止水逸出根室244。
如在图5和图7中最佳示出的,生长模块200还可以包括内部分隔板250,所述内部分隔板设置在根室244内,以将根室244分成多个根室,多个根室中的每一个借助多个孔口240与多个生长室210中的一个流体连通。更具体地,根据所示例的实施方式,内部分隔板250可以将根室244分成第一根室252、第二根室254以及第三根室256。根据示例性实施方式,第一根室252可以向设置在第一生长室212中的植物124提供水和养分,第二根室254可以向设置在第二生长室214中的植物124提供水和养分,并且第三根室256可以向设置在第三生长室216中的植物124提供水和养分。这样,环境控制系统148可以将多个室212-216和多个根室252-256中的每一个的温度和/或湿度独立于彼此控制。
环境控制系统148还可以包括水合系统270,所述水合系统通常被构造为向植物124提供水,以支持植物的生长。具体地,根据所示例的实施方式,水 合系统270通常包括水源272和喷雾装置274(例如,诸如一个或多个细雾喷嘴)。例如,水源272可以是含水(例如,蒸馏水)的储液器,或者可以是直接连接的市政水源。喷雾装置274可以设置在根室244的底部,并且可以被构造为用雾来填充根室244,以使植物124的根水合。另选地,喷雾装置274可以沿着竖向V穿过中心毂204,并且周期性地包括用于向根室244中喷雾或水的喷嘴。因为各种植物124对于期望的生长可能需要不同量的水,因此水合系统270可以另选地包括多个喷雾装置274,例如,全部喷雾装置均连接至水源272,但是选择性地操作为彼此独立地填充第一根室252、第二根室254以及第三根室256中的每一个。
明显地,上述环境控制系统148通常被构造为将多个腔室210和/或根室252-256中的一个或全部内的温度和湿度(例如,或一些其他合适的水位量或测量)独立于彼此调节。这样,可以为各个和每一个腔室210获得通用且期望的生长环境。
现在例如参照图4和图5,园艺设备100还可以包括光组件280,所述光组件通常被构造为向选定的生长室210中提供光,以促进植物124的光合作用和生长。如图所示,光组件280可以包括多个光源282,这些光源堆叠成阵列,例如,沿着竖向V延伸。例如,光源282可以直接安装到生长室122内的内胆120,或者可以另选地设置在内胆120的后面,使得光穿过透明窗口或光管投射到生长室122中。本文描述的光源282的位置、构造以及类型并不旨在以任何方式限制本发明的范围。
光源282可以使用任意合适的光技术并以任意合适的颜色照明,来设置为任意合适的数量、类型、位置以及构造的电光源。例如,根据所示例的实施方式,光源282包括一个或多个发光二极管(LED),取决于来自控制器174的控制信号,这些LED可以各自以单色照明(例如,白色LED),或者可以各自以多个颜色照明(例如,多色或RGB LED)。然而,应当理解,根据另选实施方式,光源282可以包括任意其他合适的传统灯泡或光源,诸如卤素灯泡、荧光灯泡、白炽灯灯泡、发光棒、光纤光源等。
如上所述,从光组件280生成的光可能导致园艺设备100所位于的房间内的光污染。因此,本发明的方面致力于用于减少光污染的特征,或致力于阻止 穿过前显示开口132的来自光源282的光。具体地,如图所示,光组件280仅设置在内胆120的封闭后部130内,使得仅处于密封位置的生长室210暴露于来自光源282的光。具体地,生长模块200充当光组件280与前显示开口132之间的物理隔板。这样,如图5所示,没有光可以从第一室212或第二室214穿过生长模块200并离开前显示开口132。随着生长模块200旋转,三个生长室210中的两个将一次接收来自光组件280的光。根据另一些实施方式,可以使用单个光组件来降低成本,借此,在单个时间仅照亮单个生长室210。
上面已经描述了园艺设备100和生长模块200,来说明本发明的示例性实施方式。然而,应当理解,可以在保持在本发明的范围内的同时进行变更和修改。例如,根据可选实施方式,园艺设备100可以简化为具有方形内胆120和生长模块200的两室实施方式,所述生长模块具有从中心毂202的相对侧延伸的两个隔板206,以限定第一生长室和第二生长室。根据这种实施方式,通过使生长模块200围绕中心轴线206旋转180度,第一室可以在密封位置(例如,面向箱体102的后侧114)与显示位置(例如,面向箱体102的前侧112)之间交替。相反,相同的旋转将使第二室从显示位置移动到密封位置。
根据另一些实施方式,园艺设备100可以包括三室生长模块200,但是具有修改的箱体102,使得前显示开口132更宽,并且单次显示三个生长室210中的两个。由此,第一室212可以处于密封位置,而第二室214和第三室216可以处于显示位置。随着生长模块200逆时针旋转,第一室212移动到显示位置中,并且第三室216移动到密封位置中。
现在具体参见图9,将根据本发明的示例性实施方式描述可用于调节园艺设备100中和周围的气氛的气氛控制系统300。如上所述,园艺设备100内生长的植物的生长速率和健康取决于其中所含气体的浓度。另外,某些植物产生难闻或令人愉快的气味,这些气味应当被适当地过滤和/或排出。本发明的各方面涉及气氛控制系统,所述气氛控制系统被设计为调节这种空气流并控制生长室210内的气氛。尽管本文描述了示例性的构造,但是应当理解,气氛控制系统300可以变化,同时保持在本发明的范围内。
根据所示例的实施方式,气氛控制系统300包括空气供应源302,所述空气供应源用于将进气流(例如,由箭头304标识)提供到生长室210中。这种 进气流304可以进入生长室210并与生长室210内存在的空气(即,如总体上由附图标记306标识的室空气)混合。值得注意的是,室空气306内的各种气体的浓度可通过调节进气流304内的相同气体的浓度来改变。由此,本发明的方面涉及调节进气流304及其气体浓度。
具体地,进气流304可以借助进气管道310进入生长室210中。更具体地,空气供应源302可以流体地连接到或设置在进气管道310的入口312内,以便推动进气流304通过。进气管道310的出口314可以流体地连接到生长室210。值得注意的是,空气供应源302通常可以是适于引入生长室210中以促进植物生长的任何合适的空气源或其他气体源。例如,根据所示实施方式,空气供应源302是气泵316,所述气泵流体连接到进气管道310,用于从周围环境318(例如,园艺设备100周围)吸入空气并推动进气流304进入生长室210中。
为了调节进气流304内的气体浓度,气氛控制系统300还可以包括一个或多个渗透膜320,这些渗透膜被构造为调节进气流304内的一种或多种气体的浓度。例如,渗透膜320是进气流304可以通过的膜,但是这些膜可以被选择性地激励、通电或放置在磁场内以控制通过其的气体浓度。例如,渗透膜320可以被选择为调节特定气体的浓度,例如,氧气(O 2)、二氧化碳(CO 2)或氮气(N 2)的浓度。
气氛控制系统300可以包括控制器,诸如专用控制器或室内花园电器100的控制器174,所述控制器可以可操作地连接到渗透膜320,用于选择性地激励渗透膜320中的一个或多个,以调节进气流304内的气体浓度。这样,通过调节气泵316的操作和渗透膜320的激励,控制器174可以操纵或调节室空气306内的气体浓度。
应当理解,可以对渗透膜320和气氛控制系统300的流动控制结构进行变更和修改,而仍然在本发明的范围内。例如,根据所示的实施方式,气氛控制系统300包括在进气管道310内彼此相邻堆叠的三个渗透膜320(例如,用于调节O 2、CO 2和N 2)。然而,根据可选实施方式,渗透膜320可以设置在箱体102或内胆120周围的不同位置处,用于调节通过其的气体流量。另外,在空气供应源302中可以不需要气泵316,可以仅依赖于进入生长室210中的空气的自然流动。
根据另一些实施方式,气氛控制系统300可以包括流体地连接到生长室210的辅助气体源322。根据这种实施方式,辅助气体源322可以包含具有期望成分的浓缩气体,诸如纯二氧化碳(CO 2)、氮气(N 2)等。控制阀324可调节这种浓缩气体从辅助气体源322到生长室210中的流动。根据示例性实施方式,诸如在室空气306内的气体浓度远远偏离期望范围并且需要快速调节的情况下,可以使用这种辅助气体源322。
为了监测室空气306内的气体浓度,气氛控制系统300还可以包括气体传感器330,所述气体传感器设置在生长室310内,用于检测这种浓度。由此,根据示例性实施方式,控制器174与气体传感器330通信地连接,并且被配置为至少部分地基于由气体传感器330检测到的浓度来选择性地激励渗透膜320。这样,气体传感器330可以提供反馈以在生长室210内实现准确的气体浓度和理想的生长气氛。
除了调节进气流304之外,气氛控制系统300还可以包括用于调节排出空气的特征(例如,在本文中总体上由附图标记340标识)。在这点上,根据所示实施方式,气氛控制系统300包括排气管道342,所述排气管道与生长室210流体连通,用于允许排出空气340的流离开生长室210。另外,流动调节装置344可以可操作地连接到排气管道342以调节排出空气340的流。根据示例性实施方式,流动调节装置344是在控制排出空气340的流的位置之间枢转的风门346,如下所述。然而,应当理解,流动调节装置344可以是任何其它合适的流动控制装置。
根据所示实施方式,排气管道342被分成非过滤部350和过滤部352。另外,风门346在将排出空气340通过非过滤部350直接引导到周围环境318的第一位置(例如,如图9所示)与用于将排出空气340引导通过过滤部352的第二位置(未示出)之间枢转。值得注意的是,过滤部352还可以包括用于处理、过滤或调节排出空气340的流的过滤元件或过滤装置354,如下文更详细地描述。
仍然参见图9,气氛控制系统300可以包括气味传感器356,所述气味传感器通常被配置为检测令人愉快的或难闻的气味、挥发性有机化合物(VOC)的水平、或排出空气340的流的其他气味相关的特性。控制器174可以与气味传 感器356可操作地连接,并且可以基于检测到的气味调节风门346的位置。例如,如果气味传感器356检测到高水平的VOC或难闻气味,则风门346可以移位到第二位置,以便引导排出空气340流通过过滤部352,更具体地,流过过滤装置354。这样,在排放到周围环境318之前,可以从排出空气340流中去除有害的VOC或难闻的气味。相反,如果检测到令人愉快的气味或低VOC,则可以控制风门346通过非过滤部350直接排放排出空气340。
值得注意的是,进气管道310的出口314可以设置在用于将进气流304供应到生长室210中的任何合适的位置处。例如,如图9中示意性地示例,出口314直接设置在内胆120的侧壁内。另外,进气流304可以被提供到处于密封位置的单个腔室(例如,第一室212)中、进入处于密封位置的两个腔室(例如,第一室212和第二室214)中、进入处于显示位置的第三室216中、或任何其它合适的位置。根据另一些实施方式,应当理解,根据可选实施方式,进气管道310的出口314可以流体地连接到根室244。
类似地,排气管道的入口360可以设置在任何合适的位置处。例如,根据一个示例性实施方式,进气管道310的出口314设置在第一室212内,而排气管道342的入口360设置在第二室214内。根据另一些实施方式,多个进气管道和多个排气管道可以独立地用于调节腔室212至216中的每一个内的气体浓度。其它配置是可行的,并且在本发明的范围内。
既然已经根据示例性实施方式描述了园艺设备100的构造,将描述调节室内花园电器内的气氛的示例性方法400。尽管以下讨论涉及操作园艺设备100的示例性方法400,但是本领域技术人员应当理解,示例性方法400适用于操作各种其他园艺设备和/或气氛控制系统或组件。
现在参见图10,方法400包括:在步骤410处,监测生长室内气体的浓度。例如,继续上面的示例,气氛控制系统300可以使用气体传感器330来检测室空气306内的某些特定气体的浓度。控制器174还可以被配置为例如基于正在生长的特定植物124获得这种气体的期望气体浓度或这种气体的期望范围。步骤420还可以包括确定期望范围之外的气体的浓度。当这种气体浓度落在期望范围之外时,气氛控制系统300可以通过引入进气流304来实施校正动作以校正这种气体浓度。
具体地,步骤430包括使用空气供应源推动空气流通过一个或多个渗透膜并进入生长室中。例如,如上所述,气泵316可以从周围环境318吸入空气并且推动所述空气通过进气管道310。进气流304可以穿过多个渗透膜320,各个渗透膜可以被构造为调节特定气体的流量或增加所述特定气体的浓度。
另外,步骤440包括选择性地激励一个或多个渗透膜,以便调节空气流内的气体浓度,以将气体的浓度调节到期望的范围内。具体地,控制器174还可以选择性地激励或通电各个渗透膜320以控制进气流304内的总气体浓度。进气流304可以进入生长室210中并与室空气306混合,以产生更接近期望范围或目标浓度的新浓度。在室空气306的气体浓度不能移动到期望范围内的情况下,气氛控制系统300还可以使用辅助气体源322和控制阀324来补充这种气体,以便达到用于期望的或改善的植物生长的目标气体浓度。
步骤450还可以包括调节流动调节装置,所述流动调节装置可操作地连接到排气管道,以调节通过排气管道的排出空气流。例如,如上根据示例性实施方式所述,风门346可以用于控制通过排气管道342的空气流。例如,当有低VOC或令人愉快的气味时,风门346可以引导排出空气340通过非过滤部350。相反,如果在室内花园电器100内种植生成难闻气味或高VOC的植物,则可以调节风门346,以引导排出空气340通过过滤部352和过滤装置354,以便降低VOC或改善气味。根据另一些实施方式,风门346可以被构造为完全关闭或封闭排气管道342。根据可选实施方式,可以对风门346的操作、过滤装置354的类型、期望的气体浓度范围等进行变更和修改。
图10描述了为了示例和讨论的目的而以特定顺序执行的步骤。使用本文所提供的发明内容,本领域普通技术人员将理解,本文所述的任何方法的步骤可以以各种方式改编、重新排列、扩展、省略或修改,而不脱离本发明的范围。而且,虽然使用园艺设备100作为示例来说明了方法400的各方面,但是应当理解,这些方法可以应用于具有任意其他合适的构造的任何园艺设备或气氛控制系统的操作。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任何装置或系统并且执行所包含的任何方法)。本发明的可专利范围通过权利要求进行限定,并且可 以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (20)

  1. 一种园艺设备,其特征在于,所述园艺设备包括:
    内胆,所述内胆设置在箱体内并限定生长室;
    生长模块,所述生长模块安装在所述内胆内并限定多个孔口,每个所述孔口用于放置植物容器;以及
    气氛控制系统,所述气氛控制系统包括:
    空气供应源,所述空气供应源用于向所述生长室提供进气流;
    一个或多个渗透膜,所述一个或多个渗透膜中的每一个在被激励时对所述进气流中一种或多种气体的浓度进行调节;以及
    控制器,所述控制器可操作地连接到所述一个或多个渗透膜,所述控制器选择性地激励所述一个或多个渗透膜。
  2. 根据权利要求1所述的园艺设备,其特征在于,其还包括:
    进气管道,所述进气管道流体连接到所述生长室,其中,所述一个或多个渗透膜设置在所述进气管道内。
  3. 根据权利要求2所述的园艺设备,其特征在于,所述空气供应源包括连接到所述进气管道的气泵。
  4. 根据权利要求3所述的园艺设备,其特征在于,其还包括:
    气体传感器,所述气体传感器设置在所述生长室中,用于检测所述生长室中的一种或多种气体的浓度,所述控制器被配置为至少部分地基于由所述气体传感器检测到的气体浓度来选择性地激励所述一个或多个渗透膜。
  5. 根据权利要求4所述的园艺设备,其特征在于,所述一个或多个渗透膜被选择用于调节所述进气流中的氧气、二氧化碳和氮气中至少一种的浓度。
  6. 根据权利要求5所述的园艺设备,其特征在于,所述一个或多个渗透膜依次堆叠,每一个所述渗透膜被构造为增加所述一种气体或多种气体中至少一种的浓度。
  7. 根据权利要求5所述的园艺设备,其特征在于,其还包括:
    辅助气体源,所述辅助气体源与所述生长室流体连接,用于将所需成分的浓缩气体提供到所述生长室中。
  8. 根据权利要求1所述的园艺设备,其特征在于,其还包括:
    排气管道,所述排气管道与所述生长室连通,用于供所述生长室内的空气排出;和
    流动调节装置,所述流动调节装置可操作地连接到所述排气管道,用于调节所述排气管道排出空气的流量。
  9. 根据权利要求8所述的园艺设备,其特征在于,所述排气管道被分成过滤部和非过滤部,其中,所述流动调节装置选择性地引导气流通过所述过滤部或所述非过滤部。
  10. 根据权利要求9所述的园艺设备,其特征在于,其还包括:
    空气过滤装置,所述空气过滤装置设置在所述排气管道的所述过滤部内。
  11. 根据权利要求9所述的园艺设备,其特征在于,其还包括:
    气味传感器,其中,所述控制器可操作地连接到所述气味传感器和所述流动调节装置,所述控制器被配置为至少部分地基于自所述气味传感器的反馈引导所述空气流通过所述过滤部。
  12. 根据权利要求8所述的园艺设备,其特征在于,所述流动调节装置是风门。
  13. 根据权利要求8所述的园艺设备,其特征在于,所述生长模块包括可绕 轴线旋转的中心毂和多个隔板,所述多个隔板基本上沿着所述中心毂径向延伸,以限定多个沿着周向隔开的生长室。
  14. 根据权利要求13所述的园艺设备,其特征在于,所述进气管道的出口设置在所述多个生长室的第一室内,所述排气管道的入口设置在所述多个生长室的第二室内。
  15. 根据权利要求1所述的园艺设备,其特征在于,所述生长模块限定内部根室,并且其中,所述进气管道流体连接到所述根室。
  16. 一种控制室内园艺设备生长室内气氛的方法,其特征在于,所述方法包括以下步骤:
    监测所述生长室内的气体浓度;
    确定所述气体浓度在期望范围之外;
    使用空气供应源推动空气流通过一个或多个渗透膜进入所述生长室中;以及
    选择性地激励所述一个或多个渗透膜,调节所述空气流内的气体浓度,以将生长室内的气体浓度调节到所述期望范围之内。
  17. 根据权利要求16所述的方法,其特征在于,所述一个或多个渗透膜被选择用于调节所述空气流中的氧气、二氧化碳或氮气中的至少一种的浓度。
  18. 根据权利要求16所述的方法,其特征在于,其还包括以下步骤:
    使用设置在所述生长室中的气体传感器检测所述生长室中的一种或多种气体的浓度;以及
    至少部分地基于由所述气体传感器检测到的所述浓度来选择性地激励所述一个或多个渗透膜。
  19. 根据权利要求16所述的方法,其特征在于,其还包括以下步骤:
    调节流动调节装置,所述流动调节装置连接到排气管道,通过操作调节所述排气管道排出空气的流量。
  20. 根据权利要求19所述的方法,其特征在于,其还包括以下步骤:
    从设置在排气管道内的气味传感器获得反馈;以及
    至少部分地基于来自所述气味传感器的反馈来调节流动调节装置,以引导所述排出空气流经所述排气管道的过滤部。
PCT/CN2020/120636 2019-10-14 2020-10-13 用于室内园艺设备的气氛控制系统 WO2021073503A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080071645.8A CN114554834B (zh) 2019-10-14 2020-10-13 用于室内园艺设备的气氛控制系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/600,714 US20210105955A1 (en) 2019-10-14 2019-10-14 Atmosphere control system for an indoor gardening appliance
US16/600,714 2019-10-14

Publications (1)

Publication Number Publication Date
WO2021073503A1 true WO2021073503A1 (zh) 2021-04-22

Family

ID=75382024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120636 WO2021073503A1 (zh) 2019-10-14 2020-10-13 用于室内园艺设备的气氛控制系统

Country Status (3)

Country Link
US (1) US20210105955A1 (zh)
CN (1) CN114554834B (zh)
WO (1) WO2021073503A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11903351B2 (en) * 2018-08-02 2024-02-20 Pod Farms, LLC Grow cups for hydroponic growing systems
KR20210088335A (ko) * 2020-01-06 2021-07-14 엘지전자 주식회사 식물 재배 장치
US11785894B2 (en) * 2021-09-10 2023-10-17 Haier Us Appliance Solutions, Inc. Indoor gardening appliance including grow tower with modular grow modules

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201766925U (zh) * 2010-07-26 2011-03-23 顾华良 一种绿色食品助长机
CN102398731A (zh) * 2010-06-30 2012-04-04 株式会社电装 通风装置
CN108184500A (zh) * 2018-03-27 2018-06-22 金陵科技学院 一种山地玫瑰培养箱及其培养方法
CN209314419U (zh) * 2018-11-16 2019-08-30 湖南农业大学 一种家用自动化温室

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4411226C1 (de) * 1994-03-31 1995-08-17 Alexander Strebelow Keimgerät zur Aufzucht von Keimen oder Sprossen
US5711159A (en) * 1994-09-07 1998-01-27 General Electric Company Energy-efficient refrigerator control system
CN1273565A (zh) * 1997-10-03 2000-11-15 Usf过滤分离集团公司 液流的净化
JP4867075B2 (ja) * 2001-03-21 2012-02-01 宇部興産株式会社 庫内の湿度及び/又は酸素ガス濃度を制御可能な収納庫
US20050034367A1 (en) * 2003-06-12 2005-02-17 Morrow Robert C. Expandable plant growth system
US20070065546A1 (en) * 2005-09-22 2007-03-22 Gert Jorgensen Controlled atmosphere in a container
JP4867413B2 (ja) * 2006-03-20 2012-02-01 栗田工業株式会社 逆浸透膜供給水の評価方法及び装置と水処理装置の運転管理方法
CN101600647A (zh) * 2006-07-31 2009-12-09 新技源有限公司 发电装置
JP6331248B2 (ja) * 2012-01-16 2018-05-30 パナソニックIpマネジメント株式会社 植物育成装置
ES2718304T3 (es) * 2012-11-01 2019-07-01 Mitsubishi Australia Ltd Mejoras en el control de la composición de gas dentro de un contenedor
WO2014136163A1 (ja) * 2013-03-08 2014-09-12 パナソニック株式会社 植物栽培における空調装置
KR101408285B1 (ko) * 2014-01-02 2014-06-17 김문영 에어하우스를 이용한 식물재배공장
US10039244B2 (en) * 2014-03-04 2018-08-07 Greenonyx Ltd Systems and methods for cultivating and distributing aquatic organisms
CN104255336B (zh) * 2014-09-04 2016-08-24 苏州久荣光照明电器有限公司 一种智能控制植物生长室
WO2016061672A1 (en) * 2014-10-21 2016-04-28 Avid Growing Systems Inc. System, apparatus and method for growing marijuana
US20180184602A1 (en) * 2015-06-23 2018-07-05 Corsica Innovations Inc. Plant growing system and method
JP6137249B2 (ja) * 2015-08-28 2017-05-31 ダイキン工業株式会社 庫内空気調節装置及びそれを備えたコンテナ用冷凍装置
DE102016216961A1 (de) * 2016-09-07 2018-03-08 BSH Hausgeräte GmbH Kältegerät mit Geruchssensor und Überwachungsvorrichtung für ein Kältegerät
WO2018068042A1 (en) * 2016-10-07 2018-04-12 Hydro Grow Llc Plant growing apparatus and method
CN106628640B (zh) * 2016-12-02 2019-01-18 青岛海尔股份有限公司 气调保鲜储物装置
CN106642915A (zh) * 2016-12-09 2017-05-10 青岛海尔股份有限公司 具有气调保鲜功能的冷藏冷冻装置
US11083139B2 (en) * 2017-09-15 2021-08-10 Blazing Bits, LLC High-growth system and method for cultivating autoflowering cannabis
EP3764769A4 (en) * 2018-03-16 2021-12-08 Alinda Chandra Mondal MANAGEMENT OF A SOIL ECOSYSTEM AND SMART AGRICULTURAL ARRANGEMENT
CN208754774U (zh) * 2018-08-20 2019-04-19 阜阳市鸿福农业科技股份有限公司 一种草莓高架栽培装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102398731A (zh) * 2010-06-30 2012-04-04 株式会社电装 通风装置
CN201766925U (zh) * 2010-07-26 2011-03-23 顾华良 一种绿色食品助长机
CN108184500A (zh) * 2018-03-27 2018-06-22 金陵科技学院 一种山地玫瑰培养箱及其培养方法
CN209314419U (zh) * 2018-11-16 2019-08-30 湖南农业大学 一种家用自动化温室

Also Published As

Publication number Publication date
CN114554834B (zh) 2024-02-20
CN114554834A (zh) 2022-05-27
US20210105955A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2021073503A1 (zh) 用于室内园艺设备的气氛控制系统
WO2020224465A1 (zh) 具有旋转室的室内园艺中心
US11240974B2 (en) Indoor garden center with a resilient sealing element
US20210084845A1 (en) Nutrient dosing system for an indoor gardening appliance
WO2022117006A1 (zh) 室内花园中心的照明系统操作方法
US11457571B2 (en) Modular lighting system for an indoor garden center
US11766000B2 (en) Gas sensing assembly for an indoor garden center
WO2023036095A1 (zh) 园艺电器
US11503774B2 (en) Grow lighting profiles for indoor garden center
US11343976B2 (en) Indoor garden center with a plant pod detection system
US11160218B2 (en) Indoor garden center with rotating compartments and environmental control
WO2022012389A1 (zh) 用于室内花园中心的补水系统及其操作方法
WO2023061451A1 (zh) 园艺电器及在园艺电器中培养植物的方法
US20220394938A1 (en) Vacation mode for an indoor gardening appliance
US20220142067A1 (en) Hydration system for an indoor gardening appliance
US20220007664A1 (en) Indoor garden center with a ripening control system
US11696534B2 (en) Climate control system for an indoor garden center
WO2023098782A1 (zh) 具有相机的植物生长电器
US20220007595A1 (en) Hydration system for an indoor gardening appliance
US11240968B2 (en) Pollen distribution system for an indoor gardening appliance
US11528851B2 (en) Indoor garden center with a moisture management system
US11974530B2 (en) Hydration system for an indoor garden center
US20230076358A1 (en) Indoor garden center environmental control system
US20230397544A1 (en) System and method for thermal radiation management for gardening appliance
US20220386544A1 (en) Hydration and sanitization system for an indoor gardening appliance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876120

Country of ref document: EP

Kind code of ref document: A1