WO2021073183A1 - 始终显示方法及移动设备 - Google Patents

始终显示方法及移动设备 Download PDF

Info

Publication number
WO2021073183A1
WO2021073183A1 PCT/CN2020/102523 CN2020102523W WO2021073183A1 WO 2021073183 A1 WO2021073183 A1 WO 2021073183A1 CN 2020102523 W CN2020102523 W CN 2020102523W WO 2021073183 A1 WO2021073183 A1 WO 2021073183A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock
mobile device
display
interface
algorithm program
Prior art date
Application number
PCT/CN2020/102523
Other languages
English (en)
French (fr)
Inventor
周健
肖啸
胡凯
李建彬
马塾亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20877468.7A priority Critical patent/EP4033341A4/en
Priority to US17/768,963 priority patent/US20240105114A1/en
Publication of WO2021073183A1 publication Critical patent/WO2021073183A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G9/00Visual time or date indication means
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G9/00Visual time or date indication means
    • G04G9/0064Visual time or date indication means in which functions not related to time can be displayed
    • G04G9/007Visual time or date indication means in which functions not related to time can be displayed combined with a calculator or computing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/14Time supervision arrangements, e.g. real time clock
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3265Power saving in display device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0686Adjustment of display parameters with two or more screen areas displaying information with different brightness or colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/08Arrangements within a display terminal for setting, manually or automatically, display parameters of the display terminal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light

Definitions

  • This application relates to the field of electronic technology, and in particular to a method for always displaying and a mobile device.
  • AOD always on display
  • AOD is a way to display specific content in part of the screen without lighting the entire screen. Users can view the time, date, power and other information when the mobile device is sleeping, without waking up the screen, which is convenient and quick to view information .
  • OLED display screens that are used in AOD functions, and OLED screens include video mode (video mode) and command mode (command mode).
  • the command mode OLED screen is equipped with random access memory (RAM).
  • the RAM inside the OLED screen can cache the refresh interface sent to the OLED screen from the mobile device side.
  • the command mode OLED screen can use the internal Refresh the display of the RAM storage refresh interface.
  • the video mode OLED screen has no internal RAM, and the AOD function is realized through the line buffer inside the integrated circuit (IC) module.
  • the line buffer can store part of the screen but cannot display it in full screen. , Only part of the area can be displayed.
  • OLED screens in video mode without RAM can only be refreshed with 1bit or 2bit algorithms.
  • the default refresh algorithm is only applicable to one scenario, for example, a single-clock interface or a dual-clock interface.
  • a single algorithm cannot adapt to multiple scenarios, and the display effect is poor.
  • This application provides an always-display method and a mobile device, which can adapt the single-clock style and the multi-clock style of the AOD function of the mobile device, and adaptively use different algorithm programs to ensure the best display effect and improve user experience.
  • a method of always displaying AOD is provided, which is applied to a mobile device, and the method includes: the mobile device runs a first algorithm program in the screen rest state to display a first clock interface, and the first clock interface is displayed on the mobile device.
  • a clock interface where the second clock style corresponds to a second clock interface, and the second clock style is different from the first clock style;
  • the mobile device switches the first algorithm program to the second algorithm in response to the switching instruction Program;
  • the mobile device runs the second algorithm program in the screen rest state, displays the second clock interface, the second clock interface is displayed in the second display area of the display screen of the mobile device, the second clock interface and the first A clock interface is different, and the size of the second display area is different from the size of the first display area, and the first algorithm program is different from the second algorithm program.
  • the single-clock style and the multi-clock style of the AOD function of the mobile device are automatically adapted, and different algorithm programs are used for display adaptively to ensure the best display effect.
  • the method can use a 2bit algorithm program to determine the display area and display strategy for the single clock style set by the user, so that the display area is smaller.
  • the time, location, date, etc. in the single clock window The information also presents a smaller display effect, no edge glitch phenomenon, and improves the display effect;
  • the 1bit algorithm program is used to determine the display area and display strategy, which expands the display area and can adapt to multiple
  • the display of two clock windows ensures that the time, location, date and other information in each clock window can be presented in the display area.
  • the first clock style is a single clock and the second clock style is a multi-clock; or the first clock style is a multi-clock and the second clock style is Single clock.
  • the single clock is used to display a clock window on the mobile device, and the clock window can move within a corresponding display area of the display screen;
  • the multi-clock is used to display at least two clock windows on the mobile device, the at least two clock windows can move within the corresponding display area of the display screen, and the corresponding display area of the display screen is smaller than the entire display area of the display screen .
  • This method can move the clock window (single clock window or multiple clock window) in the corresponding display area of the display screen, and there will be no situation where the same static picture is always displayed in a certain part, which prevents the burning problem and prolongs the use of the screen. life.
  • the first algorithm program when the first clock style is a single clock and the second clock style is a multi-clock, the first algorithm program is a 2-bit algorithm program , The second algorithm program is a 1-bit algorithm program; or, when the first clock pattern is a multi-clock and the second clock pattern is a single clock, the first algorithm program is a 1-bit algorithm program, and the second algorithm program It is a 2-bit algorithm program.
  • the display screen includes an organic light-emitting diode OLED display screen, and the OLED display screen has no internal random access memory, and the switching instruction is used to instruct the slave The first algorithm program is switched to the second algorithm program.
  • the mobile device runs the first algorithm program in the off-screen state to display a first clock interface, and the first clock interface is displayed on the mobile device The first display area of the display screen; the mobile device receives a switching instruction, the switching instruction is an instruction generated by the mobile device being switched from the first clock style to the second clock style, and the first clock style corresponds to the first A clock interface, where the second clock style corresponds to a second clock interface, and the second clock style is different from the first clock style; the mobile device switches the first algorithm program to the second algorithm program in response to the switching instruction; the The mobile device runs the second algorithm program in the off-screen state to display the second clock interface, which is displayed on the second display area of the display screen of the mobile device, and the second clock interface and the first clock interface Different, and the size of the second display area is different from the size of the first display area, the second algorithm program is different from the first algorithm program, including: the mobile device runs the first algorithm program in the
  • the user can perform a corresponding switching operation in the setting application, so that the mobile device can switch from the single-clock style to the dual-clock style, or from the dual-clock style to the single-clock style.
  • the mobile device runs the first algorithm program in the off-screen state to display a first clock interface, and the first clock interface is displayed on the mobile device The first display area of the display screen; the mobile device receives a switching instruction, the switching instruction is an instruction generated by the mobile device being switched from the first clock style to the second clock style, and the first clock style corresponds to the first A clock interface, where the second clock style corresponds to a second clock interface, and the second clock style is different from the first clock style; the mobile device switches the first algorithm program to the second algorithm program in response to the switching instruction; the The mobile device runs the second algorithm program in the off-screen state to display the second clock interface, which is displayed on the second display area of the display screen of the mobile device, and the second clock interface and the first clock interface Different, and the size of the second display area is different from the size of the first display area, the second algorithm program is different from the first algorithm program, including: the mobile device runs the first algorithm program in the
  • the mobile device can also receive the user's switching instruction in the off-screen state.
  • the user's gestures such as air gestures or other shortcut gestures, etc.
  • the switching operation can be performed by detecting the user's gestures. This application does not deal with the method for the user to switch the clock style limited.
  • the 1bit algorithm program is used for AOD display, so that the display area is larger than the display area determined by the 2bit algorithm program, which enlarges the display area and can adapt to the display of multiple clock windows.
  • the time, location, date and other information in each clock window can be displayed in the display area; moreover, because the time, location, date and other information in the clock window are displayed in small fonts when multiple clocks are displayed, the font edge glitches can be avoided. Sensitive, good effect, does not affect the user's visual effect.
  • the clock window can be moved, and there will be no situation where the same static picture is always displayed in a certain part, which prevents the problem of screen burn and prolongs the service life of the screen.
  • a mobile device including: a display screen; a camera; one or more processors; a memory; and a plurality of programs, wherein the plurality of programs are stored in the memory, and the plurality of programs include instructions
  • the mobile device is caused to execute the first aspect or any one of the possible always-display methods of the first aspect.
  • a graphical user interface on a mobile device has a display screen, a camera, a memory, and one or more processors, and the one or more processors are used to execute data stored in the memory.
  • One or more computer programs, and the graphical user interface includes a graphical user interface that is displayed when the mobile device executes the always-on display method in any one of the possible implementations of any one of the foregoing aspects.
  • a device in a fourth aspect, is provided, the device is included in a mobile device, and the device has the function of realizing the behavior of the mobile device in the foregoing first aspect and possible implementation manners of the foregoing first aspect.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions. For example, a display module or unit, a detection module or unit, a processing module or unit, and so on.
  • a computer storage medium including computer instructions, which when the computer instructions are executed on a mobile device, cause the mobile device to execute any of the possible always-display methods in the first aspect.
  • a computer program product is provided.
  • the mobile device executes the first aspect or any one of the possible always-display methods in the first aspect.
  • Figure 1 is a schematic structural diagram of an example of a mobile device provided by the present application.
  • Fig. 2 is a block diagram of the software structure of a mobile device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the structure of two display screens provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an example of a graphical user interface for setting an AOD display provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of an AOD display graphical user interface provided by the present application.
  • Fig. 6 is a schematic diagram of another example of the graphical user interface displayed by the AOD provided by the present application.
  • FIG. 7 is a schematic diagram of an AOD display area provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of an example of an always-on display method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a method for always displaying on a mobile device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an implementation process of a method for always displaying on a mobile device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a possible composition of an example of a mobile device provided by an embodiment of the present application.
  • the embodiment of the present application provides an always-display method, which can be applied to a mobile device or a separate application.
  • the always-display method provided by the embodiments of this application can be applied to mobile phones, tablet computers, wearable devices, in-vehicle devices, augmented reality (AR)/virtual reality (VR) devices, notebook computers, and super mobile personal computers.
  • AR augmented reality
  • VR virtual reality
  • UMPC ultra-mobile personal computer
  • PDA personal digital assistant
  • FIG. 1 shows a schematic structural diagram of a mobile device 100.
  • the mobile device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2.
  • Mobile communication module 150 wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, and Subscriber identification module (subscriber identification module, SIM) card interface 195, etc.
  • SIM Subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light Sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the mobile device 100.
  • the mobile device 100 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait.
  • AP application processor
  • modem processor modem processor
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the different processing units may be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the mobile device 100.
  • the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 to store instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory can store instructions or data that the processor 110 has just used or used cyclically. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided, the waiting time of the processor 110 is reduced, and the efficiency of the system is improved.
  • the processor 110 can automatically determine the display strategy according to the clock style set by the user, and send a display strategy control instruction (for example, a switching instruction) to the integrated circuit (IC) module of the display screen to control the mobile device's
  • a display strategy control instruction for example, a switching instruction
  • the IC module runs the switched algorithm program to realize the constant display of the corresponding clock pattern.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, and a universal asynchronous transceiver (universal asynchronous) interface.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB Universal Serial Bus
  • the I2C interface is a bidirectional synchronous serial bus, which includes a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may include multiple sets of I2C buses.
  • the processor 110 may couple the touch sensor 180K, the charger, the flash, the camera 193, etc., respectively through different I2C bus interfaces.
  • the processor 110 may couple the touch sensor 180K through an I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to implement the touch function of the mobile device 100.
  • the I2S interface can be used for audio communication.
  • the processor 110 may include multiple sets of I2S buses.
  • the processor 110 may be coupled with the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170.
  • the audio module 170 may transmit audio signals to the wireless communication module 160 through an I2S interface, so as to realize the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communication to sample, quantize and encode analog signals.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 may also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a two-way communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • the UART interface is generally used to connect the processor 110 and the wireless communication module 160.
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to realize the Bluetooth function.
  • the audio module 170 may transmit audio signals to the wireless communication module 160 through a UART interface, so as to realize the function of playing music through a Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with the display screen 194, the camera 193 and other peripheral devices.
  • the MIPI interface includes a camera serial interface (camera serial interface, CSI), a display serial interface (display serial interface, DSI), and so on.
  • the processor 110 and the camera 193 communicate through a CSI interface to implement the shooting function of the mobile device 100.
  • the processor 110 and the display screen 194 communicate through a DSI interface to implement the display function of the mobile device 100.
  • the GPIO interface can be configured through software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193, the display screen 194, the wireless communication module 160, the audio module 170, the sensor module 180, and so on.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that complies with the USB standard specification, and specifically may be a Mini USB interface, a Micro USB interface, a USB Type C interface, and so on.
  • the USB interface 130 can be used to connect a charger to charge the mobile device 100, and can also be used to transfer data between the mobile device 100 and peripheral devices. It can also be used to connect earphones and play audio through earphones. This interface can also be used to connect to other mobile devices, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present application is merely a schematic description, and does not constitute a structural limitation of the mobile device 100.
  • the mobile device 100 may also adopt different interface connection modes or a combination of multiple interface connection modes in the foregoing embodiments.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the charging management module 140 may receive the charging input of the wired charger through the USB interface 130.
  • the charging management module 140 may receive the wireless charging input through the wireless charging coil of the mobile device 100. While the charging management module 140 charges the battery 142, the power management module 141 can also supply power to the mobile device.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charge management module 140, and supplies power to the processor 110, the internal memory 121, the external memory, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110.
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the mobile device 100 can be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor, and the baseband processor.
  • the antenna 1 and the antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the mobile device 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 may provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the mobile device 100.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic wave radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing. After the low-frequency baseband signal is processed by the baseband processor, it is passed to the application processor.
  • the application processor outputs a sound signal through an audio device (not limited to the speaker 170A, the receiver 170B, etc.), or displays an image or video through the display screen 194.
  • the modem processor may be an independent device. In other embodiments, the modem processor may be independent of the processor 110 and be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the mobile device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), and global navigation satellites. System (global navigation satellite system, GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 may also receive the signal to be sent from the processor 110, perform frequency modulation, amplify it, and convert it into electromagnetic waves to radiate through the antenna 2.
  • the antenna 1 of the mobile device 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the mobile device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the mobile device 100 implements a display function through a GPU, a display screen 194, and an application processor.
  • the GPU is an image processing microprocessor, which is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • the processor 110 may include one or more GPUs, which execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos, and the like.
  • the display screen 194 includes a display panel.
  • the display panel can use liquid crystal display (LCD), organic light-emitting diode (OLED), active matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrix organic light-emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • active-matrix organic light-emitting diode active-matrix organic light-emitting diode
  • AMOLED flexible light-emitting diode (FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (QLED), etc.
  • the mobile device 100 may include one or N display screens 194, where N is a positive integer greater than one.
  • the display screen 194 may be an OLED screen, specifically, it may be a video mode (video mode) display screen. There is no RAM inside the video mode OLED screen.
  • the realization of the AOD function involved in this application is achieved through integrated circuits (integrated Circuit (IC) is implemented by the line buffer (line buffer) inside the module.
  • the line buffer can store part of the screen, but it cannot be displayed on the full screen and can only display a part of the area.
  • the line buffer can store a 1-bit algorithm program and a 2-bit algorithm program.
  • the display screen 194 may be an OLED screen, specifically, it may be a video mode (video mode) display screen. There is no RAM inside the video mode OLED screen.
  • the realization of the AOD function involved in this application is achieved through integrated circuits (integrated Circuit (IC) is implemented by the line buffer (line buffer) inside the module.
  • the line buffer can store part of the screen, but it cannot be displayed on the full screen and can only display a part of the area.
  • the line buffer can store a 1-bit algorithm program and a 2-bit algorithm program.
  • the mobile device 100 can implement a shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, and an application processor.
  • the ISP is used to process the data fed back by the camera 193. For example, when taking a picture, the shutter is opened, the light is transmitted to the photosensitive element of the camera through the lens, the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing and is converted into an image visible to the naked eye.
  • ISP can also optimize the image noise, brightness, and skin color. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 193.
  • the camera 193 is used to capture still images or videos.
  • the object generates an optical image through the lens and is projected to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transfers the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • the mobile device 100 may include one or N cameras 193, and N is a positive integer greater than one.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the mobile device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the mobile device 100 may support one or more video codecs. In this way, the mobile device 100 can play or record videos in multiple encoding formats, such as: moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, and so on.
  • MPEG moving picture experts group
  • MPEG2 MPEG2, MPEG3, MPEG4, and so on.
  • NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • applications such as intelligent cognition of the mobile device 100 can be implemented, such as image recognition, face recognition, voice recognition, text understanding, and so on.
  • the external memory interface 120 may be used to connect an external memory card, such as a Micro SD card, so as to expand the storage capacity of the mobile device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example, save music, video and other files in an external memory card.
  • the internal memory 121 may be used to store computer executable program code, where the executable program code includes instructions.
  • the processor 110 executes various functional applications and data processing of the mobile device 100 by running instructions stored in the internal memory 121.
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, at least one application program (such as a sound playback function, an image playback function, etc.) required by at least one function.
  • the data storage area can store data (such as audio data, phone book, etc.) created during the use of the mobile device 100.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, a universal flash storage (UFS), and the like.
  • UFS universal flash storage
  • the mobile device 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. For example, music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into an analog audio signal for output, and is also used to convert an analog audio input into a digital audio signal.
  • the audio module 170 can also be used to encode and decode audio signals.
  • the audio module 170 may be provided in the processor 110, or part of the functional modules of the audio module 170 may be provided in the processor 110.
  • the speaker 170A also called “speaker” is used to convert audio electrical signals into sound signals.
  • the mobile device 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the mobile device 100 answers a call or voice message, it can receive the voice by bringing the receiver 170B close to the human ear.
  • the microphone 170C also called “microphone”, “microphone”, is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 170C through the human mouth, and input the sound signal into the microphone 170C.
  • the mobile device 100 may be provided with at least one microphone 170C. In other embodiments, the mobile device 100 may be provided with two microphones 170C, which can implement noise reduction functions in addition to collecting sound signals. In other embodiments, the mobile device 100 may also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions.
  • the earphone interface 170D is used to connect wired earphones.
  • the earphone interface 170D may be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, and a cellular telecommunications industry association (cellular telecommunications industry association of the USA, CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA, CTIA
  • the pressure sensor 180A is used to sense the pressure signal and can convert the pressure signal into an electrical signal.
  • the pressure sensor 180A may be provided on the display screen 194.
  • the gyro sensor 180B may be used to determine the movement posture of the mobile device 100.
  • the angular velocity of the mobile device 100 around three axes ie, x, y, and z axes
  • the air pressure sensor 180C is used to measure air pressure.
  • the mobile device 100 calculates the altitude based on the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the mobile device 100 can use the magnetic sensor 180D to detect the opening and closing of the flip holster.
  • the mobile device 100 can detect the opening and closing of the flip according to the magnetic sensor 180D.
  • features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the mobile device 100 in various directions (generally three axes). When the mobile device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of a mobile device, used in applications such as horizontal and vertical screen switching, and pedometer.
  • the mobile device 100 can measure the distance by infrared or laser.
  • the proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector such as a photodiode.
  • the ambient light sensor 180L is used to sense the brightness of the ambient light.
  • the mobile device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived brightness of the ambient light.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the mobile device 100 is in a pocket to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the mobile device 100 can use the collected fingerprint characteristics to implement fingerprint unlocking, access application locks, fingerprint photographs, fingerprint answering calls, and so on.
  • the temperature sensor 180J is used to detect temperature. In some embodiments, the mobile device 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy.
  • Touch sensor 180K also called "touch panel”.
  • the touch sensor 180K may be disposed on the display screen 194, and the touch screen is composed of the touch sensor 180K and the display screen 194, which is also called a “touch screen”.
  • the touch sensor 180K is used to detect touch operations acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • the visual output related to the touch operation can be provided through the display screen 194.
  • the touch sensor 180K may also be disposed on the surface of the mobile device 100, which is different from the position of the display screen 194.
  • the bone conduction sensor 180M can acquire vibration signals. In some embodiments, the bone conduction sensor 180M can obtain the vibration signal of the vibrating bone mass of the human voice.
  • the button 190 includes a power-on button, a volume button, and so on.
  • the button 190 may be a mechanical button. It can also be a touch button.
  • the mobile device 100 may receive key input, and generate key signal input related to user settings and function control of the mobile device 100.
  • the motor 191 can generate vibration prompts. The motor 191 can be used for incoming call vibration notification, and can also be used for touch vibration feedback.
  • touch operations that act on different applications can correspond to different vibration feedback effects.
  • Acting on touch operations in different areas of the display screen 194, the motor 191 can also correspond to different vibration feedback effects.
  • Different application scenarios for example: time reminding, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 may be an indicator light, which may be used to indicate the charging status, power change, or to indicate messages, missed calls, notifications, and so on.
  • the SIM card interface 195 is used to connect to the SIM card.
  • the SIM card can be inserted into the SIM card interface 195 or pulled out from the SIM card interface 195 to achieve contact and separation with the mobile device 100.
  • the mobile device 100 may support 1 or N SIM card interfaces, and N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM cards, Micro SIM cards, SIM cards, etc.
  • the same SIM card interface 195 can insert multiple cards at the same time. The types of the multiple cards can be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 may also be compatible with external memory cards.
  • the mobile device 100 interacts with the network through the SIM card to implement functions such as call and data communication.
  • the mobile device 100 adopts an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the mobile device 100 and cannot be separated from the mobile device 100.
  • the software system of the mobile device 100 may adopt a layered architecture, an event-driven architecture, a microkernel architecture, a microservice architecture, or a cloud architecture.
  • the embodiment of the present application takes an Android system with a layered architecture as an example to illustrate the software structure of the mobile device 100 by way of example.
  • FIG. 2 is a block diagram of another example of a hierarchical structure of a mobile device 100 according to an embodiment of the present application.
  • the hierarchical structure divides the software into several layers, and each layer has a clear role and division of labor. Communication between layers through software interface.
  • a mobile device may include an application layer 10, a system on chip (SOC) 20, a display screen 30, and a sensor module 50.
  • SOC system on chip
  • the display screen module 30 may further include a line buffer (line buffer) 40.
  • the application layer 10 may include a series of application packages. As shown in Figure 2, the application package may include a setting application. In addition, it should be understood that the application layer may also include other applications such as photo album, calendar, call, map, navigation, WLAN, Bluetooth, music, video, short message, etc. This application does not limit this.
  • the setting application of the application layer 10 includes an AOD display module and a clock style setting module for always displaying.
  • the AOD display module can correspond to the "Interest screen display” switch in the setting application, and the user can turn on or turn off the always-on display function of the mobile device through the "Interest screen display” switch.
  • the clock style setting module can correspond to the dual clock switch in the date and time menu in the setting application, and the user can turn on or off the dual clock display function of the mobile device through the "dual clock” switch.
  • first clock interface may be a single-clock style clock interface
  • second clock interface may be a multi-clock style (for example, a dual-clock style or a triple-clock style) clock interface; or, the first clock interface may be a multi-clock interface.
  • Style for example, dual-clock style or triple-clock style
  • the second clock interface may be a single-clock style clock interface.
  • always on display AOD
  • the content that is always displayed includes but is not limited to at least one of the following: date, weather, temperature, unread messages, battery information, missed calls, and any other content that needs to be reminded, which is not limited in this application.
  • the SOC 20 may have a complete central processing unit (CPU), read-only memory (ROM), random access memory (RAM), etc.
  • CPU central processing unit
  • ROM read-only memory
  • RAM random access memory
  • SOC20 uses various interfaces and lines to connect various parts of the entire mobile equipment, and executes the movement by running or executing software programs and/or modules stored in the memory, and calling data stored in the memory.
  • Various functions of the equipment and processing data are examples of the equipment and processing data.
  • the SOC 20 may include various types of drivers.
  • the SOC 20 may include a display drive module, a sensor drive module, etc., where the display drive module is used for display of the display screen, and the sensor drive module is used for detecting input signals of various sensors.
  • the touch sensor can detect the user's touch operation, etc., which will not be repeated here.
  • the display screen 30 can refer to the display screen 194 introduced in FIG. 1, which will not be repeated here.
  • FIG. 3 is a schematic diagram of the structure of two display screens provided by an embodiment of the present application.
  • the current AOD function uses the OLED screen.
  • the background technology introduces the current two OLED displays.
  • the command mode OLED screen uses internal RAM to refresh the display, while the video mode OLED screen does not have internal RAM, which is controlled by the IC of the display 30.
  • the module immediately refreshes the data to the panel.
  • the structure of the command mode OLED screen can be as shown in Figure 3 (a).
  • the command mode OLED screen has RAM inside, and the data of SOC 20 can be sent to the RAM of the display at a speed of 60HZ first, and then displayed
  • the IC module of the screen 30 retrieves the data from the RAM and refreshes it on the panel. If there is no data refresh, the SOC 20 can stop data transmission, and the display IC module continuously fetches data from RAM and refreshes it on the panel, maintaining a refresh rate of 60HZ.
  • the structure of the OLED screen in video mode can be as shown in Figure 3(b).
  • the OLED screen in video mode has no RAM, and the data of SOC 20 is sent to the IC module of the display 30 and the IC of the display 30 at a speed of 60HZ.
  • the module immediately refreshes the data on the panel. Regardless of whether there is data refresh, the SOC 20 must maintain a refresh rate of 60HZ to send data to the display screen 30 for display on the display panel 30.
  • the IC module of the display 30 of the video mode OLED screen includes a line buffer inside the IC module, and the video mode OLED screen is implemented through the line buffer inside the IC.
  • the line buffer can store part of the screen but cannot display it in full screen. , Only part of the area can be displayed.
  • a mobile device with the structure shown in FIG. 1 and FIG. 2 will be taken as an example to introduce a method of always displaying.
  • the mobile device has the video shown in (b) in FIG. 3 OLED screen.
  • the following describes the always display method provided by the embodiment of the present application in detail with reference to the accompanying drawings and application scenarios.
  • FIG 4 is a schematic diagram of an example of a graphical user interface (GUI) for setting AOD display provided by an embodiment of the present application.
  • GUI graphical user interface
  • Figure 4(a) shows the interface after the mobile phone is unlocked, and the screen display of the mobile phone
  • the system displays the currently output interface content 401, and the interface content 401 may be the main interface of the mobile phone.
  • the interface content 401 displays a variety of applications (Apps), such as music, photo albums, cameras, settings, etc. It should be understood that the interface content 401 may also include other more applications, which is not limited in this application.
  • Apps applications
  • the interface content 401 may also include other more applications, which is not limited in this application.
  • the user performs a click operation on the setting application.
  • the mobile phone displays the main setting interface 402 as shown in (b) in FIG. 4.
  • the main setting interface 402 may include a variety of menu options, such as wireless and network, device connection, desktop and wallpaper, time and date, sound, etc. shown in Figure (b).
  • the user performs a click operation on the desktop and wallpaper.
  • the mobile phone displays a desktop and wallpaper interface 403 as shown in (c) in FIG. 4, and the interface 403 may include a "display on screen" switch.
  • the user performs a click operation on the "Interest Screen Display” switch, and in response to the user's click operation, the mobile phone displays the information screen display function interface as shown in Figure 4 (d) 404.
  • the interface 404 includes multiple function menus related to the screen display of the mobile phone, such as the screen display switch, the start time and end time of the screen display, and other options. Among them, when the user turns on the "Interest screen display” switch 60, the mobile phone turns on the rest screen display function.
  • Fig. 5 is a schematic diagram of an AOD display graphical user interface provided by the present application.
  • the "display on screen" switch 60 is turned on.
  • the user can also set the clock style of the mobile phone.
  • Clock styles include single clock and multiple clocks (this application takes dual clocks as an example for illustration). It should be understood that the clock style of a mobile device may also include more option styles, such as three clocks, For multiple clock types such as four clocks, this application will take single clock and dual clocks as examples to introduce the clock display strategy of mobile devices. This application does not limit this.
  • the default clock style is single clock.
  • the user performs a click operation on the setting application.
  • the mobile phone displays the main interface 502 of the setting application as shown in Figure 5 (b).
  • the main setting interface 502 may include various menu options.
  • the user performs a click operation on the "Time and Date” option.
  • the mobile phone displays an interface 503 of the "Time and Date” option as shown in Figure 5 (c).
  • the interface 503 may include " Dual clock” switch.
  • the mobile phone can default the "dual clock” switch to the OFF state, that is, the current mobile phone's clock style is single clock, or the user Clicking the "dual clock” switch through this interface 503 is turned off, so that the current clock style of the mobile phone is a single clock, which is not limited in this application.
  • the mobile phone currently has the always-on display function enabled, and the always-on display can display a single clock interface.
  • the mobile phone may display a single clock display interface 505 as shown in (e) in FIG. 5.
  • the single clock display interface 505 can include the current location of the mobile phone "Beijing, China", current time, date, information, current battery level of the mobile phone, weather, etc., and can also display other applications currently running on the mobile phone, such as music. It should be understood that the present application does not limit the content and quantity displayed on the single clock display interface 505.
  • Fig. 6 is a schematic diagram of another example of the graphical user interface displayed by the AOD provided by the present application.
  • the user turns on the "display on screen" switch 60 according to the operation in FIG. 4.
  • the user performs a click operation on the setting application.
  • the mobile phone displays the main interface 602 of the setting application as shown in Figure 6 (b).
  • the user performs a click operation on the "Time and Date” option.
  • the mobile phone displays an interface 603 of the "Time and Date” option as shown in Figure 6 (c).
  • the interface 603 may include " Dual clock" switch.
  • the user performs a click operation on the "dual clock” switch.
  • the mobile phone can make the "dual clock” switch in the ON state, that is, the current The phone's clock display style is dual clocks.
  • the mobile phone currently has the always-display function turned on, and the display style is dual clock.
  • the user clicks on the lock screen application on the main interface, or presses the mechanical lock screen button, and the mobile phone enters the screen rest state.
  • the mobile phone may display a dual clock display interface 605 as shown in (e) in FIG. 6.
  • the dual clock interface 605 may include the mobile phone's common location "Beijing, China” and the current location "New York, USA", and the current time, date, information, current battery level, weather, etc. corresponding to the two locations respectively.
  • It can also display other applications currently running on the phone, such as music. It should be understood that the present application does not limit the content and quantity displayed on the dual clock interface 605.
  • the mobile phone can display the dual clock interface when the current location is different from the time zone of the resident city, that is, the mobile phone displays the dual clock on its lock screen, or the mobile phone is on its main interface Display dual clocks, which is not limited in this application.
  • the dual clock display mode may occur when the user's common location changes, or the timekeeping mode of the common location changes; or the dual clock display mode may occur when the user adds two different locations ,
  • the user’s common location is Beijing, China.
  • the mobile phone detects that the current location changes to New York, USA or the mobile phone detects a change in the current timing (for example, East 8th district time to West 5th district time)
  • the mobile phone displays the frequently used location and Two clock interfaces for the current location; or, if the user adds Beijing and Shanghai as frequently used locations, the mobile phone can display two clock interfaces in the rest screen state.
  • the interface has the same time and can display different weather, etc. This application does not do this limited.
  • the OLED display screen currently used by the AOD function includes a video mode (video mode) and a command mode (command mode).
  • video mode video mode
  • command mode command mode
  • the OLED screen in the video mode does not have RAM inside and needs to continuously refresh the display panel, so it does not need a frame buffer, that is, there is no need for random access memory (RAM) in the screen.
  • RAM random access memory
  • FIG. 7 is a schematic diagram of an AOD display area provided by an embodiment of the present application. Taking the upper left corner of the mobile phone display as the origin O, the Cartesian coordinate system XOY is established. This application takes a mobile phone with a resolution of 1080 ⁇ 2400 as an example, with 1080 pixels on the X axis and 2400 pixels on the Y axis.
  • Figure 7 (a) is a schematic diagram of the display area of the AOD function using a 1-bit algorithm program. As shown in Figure 7 (a), when the 1bit algorithm program is used to realize the AOD function, the display area is shown as the shaded area in Figure (a), the X direction is 0-1080, the Y direction is 300-1370, and the mobile phone information In the screen state, the single-clock interface and the multi-clock interface can be displayed in the shaded area.
  • Figure 7 (b) is a schematic diagram of the display area of the AOD function using a 2bit algorithm program. As shown in Figure 7 (b), when the 2bit algorithm program is used to realize the AOD function, the display area is shown as the shaded area in Figure (b), the X direction is 300-780, the Y direction is 300-1470, and the mobile phone information In the screen state, the single-clock interface and the multi-clock interface can be displayed in the shaded area.
  • the display area is small.
  • the X direction has reduced the area by half, the display effect is good, but the display area is small; moreover, when displaying multiple clocks, the display There is a lot of content, because the font cannot be moved, part of the area will always be displayed. Due to the characteristics of the OLED screen, when a certain part displays the same still image for a long time, it will cause irreversible loss of organic materials, image retention, and even screen burn problems.
  • FIG. 8 is a schematic flowchart of an example of an always display method provided by an embodiment of the present application.
  • the method can be implemented in a mobile device (such as a mobile phone, a tablet computer, etc.) having a touch screen and a camera as shown in FIG. 1 and FIG. 2 .
  • the method 800 includes:
  • the mobile device runs the first algorithm program in the screen rest state, and displays a first clock interface, where the first clock interface is displayed in the first display area of the display screen of the mobile device.
  • the mobile device receives a switching instruction, where the switching instruction is an instruction generated by the mobile device being switched from the first clock pattern to the second clock pattern.
  • the mobile device switches the first algorithm program to the second algorithm program in response to the switching instruction.
  • the mobile device runs the second algorithm program in the screen rest state to display the second clock interface, and the second clock interface is displayed in the second display area of the display screen of the mobile device.
  • first clock style corresponds to the first clock interface
  • second clock style corresponds to a second clock interface
  • the second clock interface is different from the first clock interface
  • the second display The size of the area is different from the size of the first display area
  • the second algorithm program is different from the first algorithm program
  • the second display style is different from the first display style.
  • the mobile device can determine to start the AOD function.
  • the user can perform the operation described in FIG. 4, turn on the "Interest Screen Display” switch 60, and turn on the AOD function of the mobile device.
  • the mobile device is in the state of enabling the AOD function.
  • the mobile device receives the switching instruction through the operation methods shown in FIGS. 5 and 6, and by performing the corresponding switching operation in the settings application.
  • the mobile device receives the switching instruction through the operation methods shown in FIGS. 5 and 6, and by performing the corresponding switching operation in the settings application.
  • FIGS. 5 and 6 The related description in 6 makes the clock style of the mobile device switch from single clock to dual clock, or from dual clock to single clock.
  • the mobile device can also receive a switching instruction in the screen rest state. For example, when the mobile device is in a black screen scenario, it can detect the user's gestures (such as air gestures or other shortcut gestures), and the user's gestures can be detected by detecting the user's gestures.
  • this application does not limit the method for the user to switch the clock style.
  • the first clock interface is a single clock interface
  • the second clock interface is a multiple clock interface.
  • the first clock style is a single clock
  • the second clock style is a multiple clock.
  • the first clock interface is a multiple clock interface
  • the second clock interface is a single clock interface.
  • the first clock style is a dual clock
  • the second clock style is a single clock.
  • first clock interface and the second clock interface are used to distinguish two different clock interfaces in always-display styles.
  • the first clock interface is a single clock interface
  • the second clock interface is a dual clock interface.
  • the user can perform the operations shown in Figure 6 (a) to (c), that is, according to the user switching operation, Switch the phone from a single clock interface to a dual clock interface.
  • the display area of the first clock interface on the display screen is the first display area.
  • the interface 505 includes only one clock window, which may include the current location, time, date, etc., and the clock window may also include weather, application icons And more other content, this application does not limit this.
  • the interface 402 may include two clock windows, and each clock window of the two clock windows may include a different location and the time and date corresponding to the location.
  • each clock window may also include weather, application icons and more other content, which is not limited in this application.
  • the switching instruction of the present application may be sent to the display screen by the processor of the mobile device.
  • the user switches from the single-clock interface to the dual-clock interface, and the user's switching operation may be the operation shown in Fig. 6 (a) to (c).
  • the mobile device According to the user's switching operation, the mobile device generates a switching instruction by the mobile device's processor and sends it to the display screen IC module.
  • This application does not limit the timing for the processor to send the switching instruction to the display screen IC module.
  • the first algorithm program is a 2-bit algorithm program
  • the second algorithm program is a 1-bit algorithm program
  • the switching instruction includes instruction information of a 1-bit algorithm program.
  • the mobile device first displays a single clock window on the display with a 2-bit algorithm program.
  • the processor of the device sends a switching instruction to the display screen IC module.
  • the switching instruction includes the instruction information of the 2-bit algorithm program, which is used to instruct the display screen IC module to run the 2-bit algorithm program to display the dual clock interface.
  • the single-clock interface is used to display a clock window on the mobile device
  • the clock window can move within the corresponding display area of the display screen of the mobile device, and the corresponding display area of the display screen is smaller than the The entire display area of the display.
  • the display area When using the 2bit algorithm program to perform AOD display, it may include a shaded display area as shown in (b) in FIG. 7, for example, the display area is called the first display area.
  • the range of the first display area is 300-780 in the X direction, and 300-1450 in the Y direction.
  • the single-clock interface of the mobile device can be displayed in the first display area, and when the screen of the mobile device is large enough, the single-clock interface can be moved in the first display area.
  • the single clock moves within the corresponding display area, which can be automatically moved up and down, left and right regularly according to a preset rule, or it can be adapted to the current mobile device based on information such as the gravity sensor and gyroscope of the mobile device.
  • the status changes to move, this application does not limit this.
  • the 2bit algorithm program is used for AOD display.
  • the display area of the single clock is small.
  • the time, location, date and other information in the single clock window are also Presents a smaller display effect, no edge burrs, and improves the display effect, thereby enhancing the user's visual experience;
  • the clock window can be moved in the corresponding display area of the display screen, and there will be no part of the same static picture always displayed Circumstances to prevent burn-in problems, thereby extending the life of the screen.
  • the multi-clock interface is used to display at least two clock windows on the mobile device, the at least two clock interfaces can move within the corresponding display area of the display screen, and the corresponding display area of the display screen The display area is smaller than the entire display area of the display.
  • the display area of the shaded part as shown in Figure 7 (a) can be included.
  • the display area is called the second display area, and the second display
  • the range of the area is larger than the first display area.
  • the range of the second display area is 0-1080 in the X direction, and 300-1350 in the Y direction.
  • Both the dual clocks of the mobile device can be displayed in the second display area, and the dual clocks can be moved in the second display area.
  • the movement of the multi-clock window within the corresponding display area of the display screen can be automatically and regularly moved up and down, left and right according to a preset rule, or it can be based on information such as the gravity sensor and gyroscope of the mobile device.
  • the movement is adapted to the current state change of the mobile device.
  • the movement of each clock window in the multi-clock window in the second display area may be synchronized or not, which is not limited in this application.
  • the 1bit algorithm program is used for AOD display, so that the display area is larger than the display area determined by the 2bit algorithm program, which enlarges the display area and can adapt to the display of the multi-clock interface, ensuring that each The time, location, date and other information of the clock can be presented in the display area; moreover, because the time, location, date and other information in the clock window are displayed in small fonts when multiple clocks are displayed, the font edge burr can be made insensitive and the effect Good, it does not affect the user's visual effect; in addition, in a larger display area, the clock window can be moved, and there will be no situation where the same static picture is always displayed in a certain part, which prevents the screen burn problem and prolongs the life of the screen.
  • the first clock interface is a dual clock interface
  • the second clock interface is a single clock interface.
  • the first clock style is a dual clock
  • the second clock style is a single clock. This process is for the user to switch from the dual-clock style to the single-clock style.
  • the first clock interface can be a dual clock interface
  • the second clock interface can be a single clock interface.
  • the user can click the dual clock switch in Figure 6 (c) to turn off the dual clock display, that is, according to the user switching operation , Switch the phone from dual clock interface to single clock interface.
  • first clock interface and the second clock interface in this application are used to distinguish different clock interfaces in two different clock styles.
  • first clock interface is a dual-clock interface
  • second clock interface is a single-clock interface.
  • the user can click the dual-clock switch, so that as shown in Figure 5 (c), the dual-clock switch is The OFF state is to switch the mobile phone from dual clock mode to single clock mode according to the user's switching operation.
  • the first clock interface includes content displayed by the dual clocks, such as the time and date in the two clock windows.
  • the second clock interface is a single clock interface, which may include content displayed by a clock, such as the time and date in a clock window.
  • the switching instruction in this implementation manner may be sent by the processor of the mobile device to the display screen.
  • the user switches from the dual-clock interface to the single-clock interface, and the mobile device generates a switching instruction from the processor of the mobile device according to the user's switching operation, and sends it to the display screen IC module.
  • the first algorithm program is a 1-bit algorithm program
  • the second algorithm program is a 2-bit algorithm program.
  • the switching instruction includes the instruction information of the 2-bit algorithm program.
  • the mobile device first displays the dual-clock interface on the display with a 1-bit algorithm program.
  • the processor of the mobile device sends a switching instruction to the display IC module.
  • the switching instruction includes the instruction information of the 1-bit algorithm program, which is used to instruct the display IC module to run the 1-bit algorithm program to display the single-clock interface.
  • FIG. 9 is a schematic diagram of a method for always displaying a mobile device according to an embodiment of the present application. As shown in FIG. 9, the always displaying method of the present application adapts the single-clock interface and the multiple-clock interface of the AOD function of the mobile device to adapt to Use different algorithms for display to ensure the best display effect.
  • the user can turn on the always-display function of the mobile device through the AOD setting and clock style setting of the mobile device, and set the clock style (for example, single clock or dual clock).
  • the processor of the mobile device sends an instruction to the IC module of the display screen, and the instruction includes the instruction information of the 2-bit algorithm program.
  • the IC module receives the instruction information of the 2-bit algorithm program, it calls and runs the stored 2-bit algorithm program, and displays the single clock interface according to the 2-bit algorithm program.
  • This method uses a 2bit algorithm program to determine the display area and display effect for the single clock style set by the user, so that the display area is smaller.
  • the time, location, date and other information in the single clock window are also displayed smaller.
  • the display effect of, there is no edge burr phenomenon, and the display effect is improved;
  • the processor of the mobile device sends an instruction to the IC module of the display screen, and the instruction includes the instruction information of the 1-bit algorithm program.
  • the IC module receives the instruction information of the 1-bit algorithm program, it calls and runs the stored 1-bit algorithm program, and displays the dual clock interface according to the 1-bit algorithm program.
  • This method uses a 1-bit algorithm program to determine the display area and display effect for multiple clocks set by the user (such as dual clocks), expands the display area, can adapt to the display of multiple clock windows, and guarantees the time, place, and date in each clock window And other information can be presented in the display area.
  • the clock window can be moved, and there will be no situation where the same static picture is always displayed in a certain part, which prevents the problem of screen burn and prolongs the service life of the screen.
  • FIG. 10 is a schematic diagram of the implementation process of the method for always displaying on a mobile device according to an embodiment of the present application. As shown in FIG. 10, the method is executed by the SOC 20 and the display screen 30 of the mobile device. The method includes:
  • the SOC 20 determines that the mobile device is in the AOD state, and the display style of the mobile device is a single clock. It should be understood that, as shown in FIG. 4, when the user turns on the always display switch 60 in the setting application, the SOC 20 can determine that the mobile device has the always display function turned on. Similarly, as shown in Figure 5, when the user turns off the dual-clock switch in the settings application, or the mobile device defaults the dual-clock switch to OFF, the SOC 20 can determine that the display style of the mobile device is single. clock.
  • the SOC 20 sends an instruction to the IC module of the display screen 30, and the instruction includes the instruction information of the 2-bit algorithm program.
  • the IC module of the display screen 30 displays the single clock interface according to the 2-bit algorithm program.
  • S1050 According to the user switching operation, it is determined that the display style of the mobile device is switched from a single clock to a dual clock. As shown in Figure 5, when the user turns on the dual clock switch in the settings application, the SOC 20 can determine that the display style of the mobile device is dual clock.
  • the mobile device is in the AOD state, and generates a switching instruction.
  • the switching instruction includes instruction information of a 1-bit algorithm program.
  • the SOC 20 sends a switching instruction to the IC module of the display screen 30, where the switching instruction includes instruction information of a 1-bit algorithm program.
  • the IC module of the display screen 30 displays the dual clock interface according to the 1-bit algorithm program.
  • a mobile device can also switch from a dual clock interface to a single clock interface, that is, switching from the display strategy corresponding to the 1-bit algorithm program to the 2-bit algorithm The display strategy corresponding to the program will not be repeated here.
  • the single-clock interface and the multi-clock interface of the AOD function of the mobile device are adapted, and different algorithms are used for adaptive display to ensure the best display effect.
  • This method uses a 2bit algorithm to determine the display area and display strategy for the single clock display style set by the user, so that the display area is smaller.
  • the time, location, date and other information in the single clock window are also displayed smaller
  • the display effect is free from edge glitches, and the display effect is improved;
  • the display area and display strategy are determined by 1bit algorithm, which expands the display area and can adapt to the display of multiple clock windows , To ensure that the time, location, date and other information in each clock window can be presented in the display area.
  • the clock window can be moved, and there will be no situation where the same static picture is always displayed in a certain part, which prevents the problem of screen burn and prolongs the service life of the screen.
  • the mobile device includes hardware and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art can use different methods for each specific application in combination with the embodiments to implement the described functions, but such implementation should not be considered as going beyond the scope of the present application.
  • the mobile device can be divided into functional modules according to the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware. It should be noted that the division of modules in this embodiment is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 11 shows a schematic diagram of a possible composition of the mobile device 1100 involved in the foregoing embodiment.
  • the mobile device 1100 may include: a display unit 1101, a detection unit 1102, and a processing unit 1103.
  • the display unit 1101 can be used to support the mobile device 1100 to perform the AOD display in the above steps, and/or other processes used in the technology described herein.
  • the detection unit 1102 may be used to support the mobile device 1100 to perform the above-mentioned step 610, etc., and/or other processes used in the technology described herein.
  • the processing unit 1103 may be used to support the mobile device 1100 to perform the foregoing steps 620, 630, etc., and/or other processes used in the technology described herein.
  • the mobile device provided in this embodiment is used to execute the above-mentioned always-display method, and therefore can achieve the same effect as the above-mentioned implementation method.
  • the mobile device may include a processing module, a storage module, and a communication module.
  • the processing module can be used to control and manage the actions of the mobile device. For example, it can be used to support the mobile device to execute the steps performed by the display unit 1101, the detection unit 1102, and the processing unit 1103.
  • the storage module can be used to support the mobile device to execute the storage program code and data.
  • the communication module can be used to support communication between mobile devices and other devices.
  • the processing module may be a processor or a controller. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of digital signal processing (DSP) and a microprocessor, and so on.
  • the storage module may be a memory.
  • the communication module may specifically be a radio frequency circuit, a Bluetooth chip, a Wi-Fi chip, and other devices that interact with other mobile devices.
  • the mobile device involved in this embodiment may be a device having the structure shown in FIG. 1 and FIG. 2.
  • This embodiment also provides a computer storage medium in which computer instructions are stored.
  • the mobile device executes the above-mentioned related method steps to implement the always-on display method in the above-mentioned embodiment.
  • This embodiment also provides a computer program product, which when the computer program product runs on a computer, causes the computer to execute the above-mentioned related steps, so as to realize the always-display method in the above-mentioned embodiment.
  • the embodiments of the present application also provide a device.
  • the device may specifically be a chip, component or module.
  • the device may include a processor and a memory connected to each other.
  • the memory is used to store computer execution instructions.
  • the processor can execute the computer-executable instructions stored in the memory, so that the chip executes the always-display method in the foregoing method embodiments.
  • the mobile device, computer storage medium, computer program product, or chip provided in this embodiment are all used to execute the corresponding method provided above. Therefore, the beneficial effects that can be achieved can refer to the corresponding method provided above. The beneficial effects of the method will not be repeated here.
  • the disclosed device and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate, and the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, and the software product is stored in a storage medium. It includes several instructions to make a device (may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read only memory (read only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Telephone Function (AREA)
  • Controls And Circuits For Display Device (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种智能始终显示方法和移动设备,该方法通过对移动设备的AOD功能的单时钟样式和多时钟样式进行适配,自适应使用不同的算法程序,具体地,针对用户设置的单时钟样式使用2bit算法程序确定显示区域和算法程序,使得显示区域较小,为了适应较小的显示区域,单时钟窗口内的时间、地点、日期等信息也呈现较小的显示效果,不存在边沿毛刺现象,提升显示效果;针对用户设置的多时钟样式(例如双时钟)使用1bit算法程序确定显示区域和算法程序,扩大了显示区域,可以适应多个时钟的显示,保证每个时钟的时间、地点、日期等信息都可以呈现在对应的显示区域中。

Description

始终显示方法及移动设备
本申请要求于2019年10月18日提交中国专利局、申请号为201910995673.8、申请名称为“始终显示方法及移动设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种始终显示方法及移动设备。
背景技术
随着移动设备的快速发展和功能的完善,越来越多的应用被安装在用户的移动设备中,用户使用移动设备的频率也越来越频繁。为了节省移动设备的电量消耗,对移动设备采用始终显示(always on display,AOD)显示一些时间、日期、电量等信息。
AOD是一种在不点亮整块屏幕的情况下,在屏幕的部分区域显示特定内容,用户可以在移动设备休眠情况下,查看时间、日期、电量等信息,无需唤醒屏幕,方便快捷查看信息。
目前,AOD功能都使用的有机发光二极管(organic light emitting devices,OLED)显示屏,OLED屏包括视频模式(video mode)和命令模式(command mode)。其中,命令模式的OLED屏内部设置有随机存取存储器(random access memory,RAM),OLED屏内部的RAM可以缓存移动设备侧发给OLED屏的刷新界面,命令模式的OLED屏可以利用屏内部的RAM存储的刷新界面进行显示刷新。而视频模式的OLED屏由于内部没有设置RAM,AOD功能的实现是通过集成电路(integrated circuit,IC)模块内部的线缓冲器(line buffer)实现的,line buffer可以存储一部分画面,但是不能全屏显示,只能显示部分区域。
因此,没有RAM的视频模式的OLED屏,只能应用1bit算法或2bit算法进行刷新,然而默认的刷新算法,只适用于一种场景,例如,单时钟界面或双时钟界面,当用户通过手动设置改变AOD显示模式时,单一的算法无法适应多种场景,显示效果较差。
发明内容
本申请提供一种始终显示方法及移动设备,可以对移动设备的AOD功能的单时钟样式和多时钟样式进行适配,自适应使用不同的算法程序,保证最佳显示效果,提升用户体验。
第一方面,提供了一种始终显示AOD方法,应用于移动设备,该方法包括:移动设备在息屏状态下运行第一算法程序,显示第一时钟界面,该第一时钟界面显示于该移动设备的显示屏的第一显示区域;该移动设备收到切换指令,该切换指令是使得该移动设备从该第一时钟样式切换到第二时钟样式产生的指令,该第一时钟样式对应第一时钟界面,所 述第二时钟样式对应第二时钟界面,所述第二时钟样式与所述第一时钟样式不同;该移动设备响应于该切换指令,将该第一算法程序切换到第二算法程序;该移动设备在息屏状态下运行第二算法程序,显示该第二时钟界面,该第二时钟界面显示于该移动设备的显示屏的第二显示区域,该第二时钟界面与该第一时钟界面不同,且该第二显示区域的大小与该第一显示区域的大小不同,该第一算法程序与该第二算法程序不同。
通过以上方法,移动设备的AOD功能的单时钟样式和多时钟样式实现自动适配,自适应使用不同的算法程序进行显示,以保证最佳的显示效果。
示例性的,该方法可以针对用户设置的单时钟样式使用2bit算法程序确定显示区域和显示策略,使得显示区域较小,为了适应较小的显示区域,单时钟窗口内的时间、地点、日期等信息也呈现较小的显示效果,不存在边沿毛刺现象,提升显示效果;针对用户设置的多时钟样式(例如双时钟)使用1bit算法程序确定显示区域和显示策略,扩大了显示区域,可以适应多个时钟窗口的显示,保证每个时钟窗口内的时间、地点、日期等信息都可以呈现在显示区域中。
结合第一方面,在第一方面的某些实现方式中,该第一时钟样式为单时钟,该第二时钟样式为多时钟;或者该第一时钟样式为多时钟,该第二时钟样式为单时钟。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,该单时钟用于在该移动设备上显示一个时钟窗口,该时钟窗口能够在该显示屏的相应显示区域内移动;该多时钟用于在该移动设备上显示至少两个时钟窗口,该至少两个时钟窗口能够在该显示屏的相应显示区域内移动,该显示屏的相应显示区域小于该显示屏的全部显示区域。
该方法可以在显示屏的相应显示区域内,时钟窗口(单时钟窗口或者多时钟窗口)可以移动,不会存在某个部位一直显示同一静态画面的情况,防止烧屏问题,从而延长屏幕的使用寿命。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,在该第一时钟样式为单时钟,该第二时钟样式为多时钟时,该第一算法程序是2比特算法程序,该第二算法程序是1比特算法程序;或者,在该第一时钟样式为多时钟,该第二时钟样式为单时钟时,该第一算法程序是1比特算法程序,该第二算法程序是2比特算法程序。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,该显示屏包括有机发光二极管OLED显示屏,该OLED显示屏内部没有随机存取存储器,该切换指令用于指示从该第一算法程序切换到该第二算法程序。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,该移动设备在息屏状态下运行第一算法程序,显示第一时钟界面,该第一时钟界面显示于该移动设备的显示屏的第一显示区域;该移动设备收到切换指令,该切换指令是该移动设备从该第一时钟样式被切换到第二时钟样式产生的指令,该第一时钟样式对应该第一时钟界面,该第二时钟样式对应第二时钟界面,该第二时钟样式与该第一时钟样式不同;该移动设备响应于该切换指令,将该第一算法程序切换到第二算法程序;该移动设备在息屏状态下运行第二算法程序,显示该第二时钟界面,该第二时钟界面显示于该移动设备的显示屏的第二显示区域,该第二时钟界面与该第一时钟界面不同,且该第二显示区域的大小与该第一显示区域的大小不同,该第二算法程序与该第一算法程序不同,包括:该移动设备在息屏状态下运行第一算法程序,显示第一时钟界面,该第一时钟界面显示于该移动设备的显示屏的第一显示 区域;移动设备检测到第一操作,该第一操作用于解锁;移动设备响应于该第一操作,显示解锁后的界面;移动设备检测到作用于设置图标的第二操作,显示设置界面;移动设备在AOD设置界面检测到从该第一时钟样式切换到第二时钟样式的第三操作,该第一时钟样式对应第一时钟界面,该第二时钟样式对应第二时钟界面,该第二时钟样式与该第一时钟样式不同;移动设备响应于该第三操作,产生该切换指令;移动设备响应于该切换指令,将该第一算法程序切换为该第二算法程序;移动设备进入息屏状态后,在息屏状态下运行第二算法程序,显示该第二时钟界面,该第二时钟界面显示于该移动设备的显示屏的第二显示区域,该第二时钟界面与该第一时钟界面不同,且该第二显示区域的大小与该第一显示区域的大小不同,该第二算法程序与该第一算法程序不同。
通过上述方法,用户可以在设置应用中执行相应的切换操作,使得移动设备可以从单时钟样式切换到双时钟样式,或者从双时钟样式切换到单时钟样式。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,该移动设备在息屏状态下运行第一算法程序,显示第一时钟界面,该第一时钟界面显示于该移动设备的显示屏的第一显示区域;该移动设备收到切换指令,该切换指令是该移动设备从该第一时钟样式被切换到第二时钟样式产生的指令,该第一时钟样式对应该第一时钟界面,该第二时钟样式对应第二时钟界面,该第二时钟样式与该第一时钟样式不同;该移动设备响应于该切换指令,将该第一算法程序切换到第二算法程序;该移动设备在息屏状态下运行第二算法程序,显示该第二时钟界面,该第二时钟界面显示于该移动设备的显示屏的第二显示区域,该第二时钟界面与该第一时钟界面不同,且该第二显示区域的大小与该第一显示区域的大小不同,该第二算法程序与该第一算法程序不同,包括:该移动设备在息屏状态下运行第一算法程序,显示第一时钟界面,该第一时钟界面显示于该移动设备的显示屏的第一显示区域;移动设备息屏状态下收到切换指令,该切换指令是该移动设备从该第一时钟样式被切换到第二时钟样式产生的指令,该第一时钟样式对应该第一时钟界面,该第二时钟样式对应第二时钟界面,该第二时钟样式与该第一时钟样式不同;移动设备响应于该切换指令,将该第一算法程序切换到第二算法程序;移动设备在息屏状态下运行第二算法程序,显示该第二时钟界面,该第二时钟界面显示于该移动设备的显示屏的第二显示区域,该第二时钟界面与该第一时钟界面不同,且该第二显示区域的大小与该第一显示区域的大小不同,该第二算法程序与该第一算法程序不同,该第二时钟样式与该第一时钟样式不同。
通过上述方法,移动设备还可以在息屏状态下接收用户的切换指令。示例性的,在移动设备黑屏场景时,可以检测用户的手势(例如隔空手势或者其他快捷手势等),通过检测到用户的手势而执行切换操作,本申请对用户切换时钟样式的方法不做限定。
通过上述技术方案,当移动设备显示多时钟窗口时,使用1bit算法程序进行AOD显示,使得显示区域大于2bit算法程序确定的显示区域,扩大了显示区域,可以适应多个时钟窗口的显示,保证每个时钟窗口内的时间、地点、日期等信息都可以呈现在显示区域中;而且,因为多时钟显示时,时钟窗口内的时间、地点、日期等信息显示字体较小,可以使得字体边沿毛刺不敏感,效果好,不影响用户的视觉效果。此外,在较大的显示区域中,时钟窗口可以移动,不会存在某个部位一直显示同一静态画面的情况,防止烧屏问题,从而延长屏幕的使用寿命。
第二方面,提供了一种移动设备,包括:显示屏;摄像头;一个或多个处理器;存储 器;以及多个程序,其中该多个程序被存储在该存储器中,该多个程序包括指令,当该指令被该移动设备执行时,使得该移动设备执行第一方面或者第一方面的任意一种可能的始终显示方法。
第三方面,提供了一种移动设备上的图形用户界面,该移动设备具有显示屏、摄像头、存储器、以及一个或多个处理器,该一个或多个处理器用于执行存储在该存储器中的一个或多个计算机程序,该图形用户界面包括该移动设备执行上述任一方面任一项可能的实现中的始终显示方法时显示的图形用户界面。
第四方面,提供了一种装置,该装置包含在移动设备中,该装置具有实现上述第一方面及上述第一方面的可能实现方式中移动设备行为的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块或单元。例如,显示模块或单元、检测模块或单元、处理模块或单元等。
第五方面,提供了一种计算机存储介质,包括计算机指令,当计算机指令在移动设备上运行时,使得移动设备执行上述第一方面任一项可能的始终显示方法。
第六方面,提供了一种计算机程序产品,当计算机程序产品在移动设备上运行时,使得移动设备执行上述第一方面或者第一方面的任意一种可能的始终显示方法。
附图说明
图1是本申请提供的一例移动设备的结构示意图。
图2是本申请实施例的移动设备的软件结构框图。
图3是本申请实施例提供的两种显示屏的结构示意图。
图4是本申请实施例提供的一例设置AOD显示的图形用户界面示意图。
图5是本申请提供的一例AOD显示的图形用户界面示意图。
图6是本申请提供的又一例AOD显示的图形用户界面示意图。
图7是本申请实施例提供的一例AOD显示区域示意图。
图8是本申请实施例提供的一例始终显示方法的示意性性流程图。
图9是本申请实施例提供的移动设备始终显示方法的示意图。
图10是本申请实施例提供的移动设备始终显示方法的实现过程示意图。
图11是本申请实施例提供的一例移动设备可能的组成示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
以下,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请实施例提供了一种始终显示方法,该方法可以应用于移动设备,也可是单独的 应用程序。本申请实施例提供的始终显示方法可以应用于手机、平板电脑、可穿戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等移动设备上,本申请实施例对移动设备的具体类型不作任何限制。
示例性的,图1示出了移动设备100的结构示意图。移动设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本申请实施例示意的结构并不构成对移动设备100的具体限定。在本申请另一些实施例中,移动设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是移动设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在本申请中,处理器110可以根据用户设置时钟样式,自动确定显示策略,向显示屏的集成电路(integrated circuit,IC)模块发送显示策略控制指令(例如,切换指令),以控制移动设备的IC模块运行切换后的算法程序来实现对应时钟样式的始终显示。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus, USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现移动设备100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现移动设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现移动设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为移动设备100充电,也可以用于移动设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他移动设备,例如AR设备等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对移动设备100的结构限定。在本申请另一些实施例中,移动设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过移动设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的 同时,还可以通过电源管理模块141为移动设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
移动设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。移动设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在移动设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在移动设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,移动设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得移动设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division  multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
移动设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,移动设备100可以包括1个或N个显示屏194,N为大于1的正整数。
在本申请中,显示屏194可以是OLED屏,具体地,可以是视频模式(video mode)的显示屏,视频模式OLED屏内部没有RAM,本申请涉及的AOD功能的实现是通过集成电路(integrated circuit,IC)模块内部的线缓冲器(line buffer)实现的,line buffer可以存储一部分画面,但是不能全屏显示,只能显示部分区域。示例性的,line buffer可以存储1比特算法程序和2比特算法程序,当显示屏的IC模块接收处理器发送的指令后,针对不同的时钟样式调用不同的算法,以始终显示对应的时钟界面。在本申请中,显示屏194可以是OLED屏,具体地,可以是视频模式(video mode)的显示屏,视频模式OLED屏内部没有RAM,本申请涉及的AOD功能的实现是通过集成电路(integrated circuit,IC)模块内部的线缓冲器(line buffer)实现的,line buffer可以存储一部分画面,但是不能全屏显示,只能显示部分区域。示例性的,line buffer可以存储1比特算法程序和2比特算法程序,当显示屏的IC模块接收处理器发送的指令后,针对不同的时钟样式调用不同的算法,以进行AOD显示。
移动设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成 电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,移动设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当移动设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。移动设备100可以支持一种或多种视频编解码器。这样,移动设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现移动设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展移动设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行移动设备100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储移动设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
移动设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。移动设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当移动设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。移动设备100可以设置至少一个麦克风170C。在另一些实施例中,移动设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,移动设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪, 还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动移动设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。陀螺仪传感器180B可以用于确定移动设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定移动设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。气压传感器180C用于测量气压。在一些实施例中,移动设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。磁传感器180D包括霍尔传感器。移动设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当移动设备100是翻盖机时,移动设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。加速度传感器180E可检测移动设备100在各个方向上(一般为三轴)加速度的大小。当移动设备100静止时可检测出重力的大小及方向。还可以用于识别移动设备姿态,应用于横竖屏切换,计步器等应用。距离传感器180F,用于测量距离。移动设备100可以通过红外或激光测量距离。接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。环境光传感器180L用于感知环境光亮度。移动设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测移动设备100是否在口袋里,以防误触。指纹传感器180H用于采集指纹。移动设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。温度传感器180J用于检测温度。在一些实施例中,移动设备100利用温度传感器180J检测的温度,执行温度处理策略。触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于移动设备100的表面,与显示屏194所处的位置不同。骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。移动设备100可以接收按键输入,产生与移动设备100的用户设置以及功能控制有关的键信号输入。马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和移动设备100的接触和分离。移动设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。移动设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,移动设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在移动设备100中,不能和移动设备100分离。
移动设备100的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本申请实施例以分层架构的Android系统为例,示例性说明移动设备100的软件结构。
图2是本申请实施例的移动设备100的另一例分层结构框图。分层结构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,如图2所示,以移动设备可以包括应用程序层10、系统芯片(system on chip,SOC)20、显示屏30和传感器模块50。其中在本申请的实施例中,对于视频模式OLED屏,显示屏模块30还可以包括线缓冲器(line buffer)40。
应用程序层10可以包括一系列应用程序包。如图2所示,应用程序包可以包括设置应用,此外,应理解,应用程序层还可以包括相册、日历、通话、地图、导航、WLAN、蓝牙、音乐、视频、短信息等其他应用程序,本申请对此不做限定。
在本申请中,应用程序层10的设置应用中包括用于进行始终显示的AOD显示模块和时钟样式设置模块。AOD显示模块可以对应于设置应用中“息屏显示”开关,用户可以通过该“息屏显示”开关开启或者关闭移动设备的始终显示功能。时钟样式设置模块可以对应于设置应用中日期和时间菜单中的双时钟开关,用户可以通过该“双时钟”开关开启或者关闭移动设备的双时钟显示功能。
应理解,第一时钟界面可以是单时钟样式的时钟界面,第二时钟界面可以是多时钟样式(例如,双时钟样式或三时钟样式)的时钟界面;或者,第一时钟界面可以是多时钟样式(例如,双时钟样式或三时钟样式)的时钟界面,第二时钟界面可以是单时钟样式的时钟界面。此外,始终显示(always on display,AOD)还可以称为息屏提醒,息屏显示等,此处不限定。始终显示的内容除了时间信息还包括但不限于以下至少一种:日期,天气,温度,未读消息,电量信息,未接电话等任意需要提醒的内容,本申请对此不做限定。
SOC 20可以具有完备的中央处理器(central processing unit,CPU),只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)等。SOC20作为移动端设备的控制中心,利用各种接口和线路连接整个移动设备的各个部分,通过运行或执行存储在存储器内的软件程序和/或模块,以及调用存储在存储器内的数据,执行移动设备的各种功能和处理数据。
SOC 20可以包括各类驱动,例如在本申请中,SOC 20可以包括显示驱动模块、传感器驱动模块等,其中显示驱动模块用于显示屏的显示,传感器驱动模块用于各类传感器检测输入信号,例如使得触摸传感器可以检测用户的触摸操作等,这里不再过多赘述。
显示屏30可以参照图1中介绍的显示屏194,这里不再赘述。
图3是本申请实施例提供的两种显示屏的结构示意图。当前AOD功能都使用的OLED屏,背景技术介绍了当前的两种OLED显示屏,命令模式的OLED屏利用内部的RAM进行显示刷新,而视频模式的OLED屏没有内部RAM,由显示屏30的IC模块立即将数据刷新到面板上。
下面结合图3两种屏幕的架构图介绍命令模式的OLED屏和视频模式的OLED屏的区别。命令模式的OLED屏的结构可以如图3中的(a)图所示,命令模式的OLED屏内部有RAM,SOC 20的数据可以按照60HZ的速度先发送到显示屏的RAM中,在由显示屏30的IC模块从RAM中取出数据刷新到面板上。如果没有数据刷新,SOC 20可以停止数据发送,显示屏IC模块内部不断从RAM中取出数据,刷新到面板上,保持60HZ的刷新率。
视频模式的OLED屏的结构可以如图3中的(b)图所示,视频模式的OLED屏没有RAM,SOC 20的数据按照60HZ的速度发送给显示屏30的IC模块,显示屏30的IC模块立即将数据刷新到面板上,不管是否有数据刷新,SOC 20必须保持60HZ的刷新率发送数据给显示屏30,在显示屏30的面板的显示。具体地,视频模式的OLED屏的显示屏30的IC模块内部包括线缓冲器(line buffer),视频模式的OLED屏通过IC内部的line buffer实现的,line buffer可以存储一部分画面,但是不能全屏显示,只能显示部分区域。
为了便于理解,在本申请中,将以具有图1和图2所示结构的移动设备为例,介绍一种始终显示的方法,该移动设备具有图3中的(b)图所示的视频的OLED屏。下面结合附图和应用场景,对本申请实施例提供的始终显示方法进行具体阐述。
应理解,下面以手机为例进行说明,但并不构成限定,相应的方法同样适用于平板电脑、可穿戴设备、车载设备、AR设备,VR设备、笔记本电脑、超级移动个人计算机、上网本、个人数字助理等移动设备上。
图4是本申请实施例提供的一例设置AOD显示的图形用户界面(graphical user interface,GUI)的示意图,其中,图4中的(a)图示出了手机解锁后的界面,手机的屏幕显示系统显示了当前输出的界面内容401,该界面内容401可以为手机的主界面。该界面内容401显示了多款应用程序(application,App),例如音乐、相册、相机、设置等,应理解,界面内容401还可以包括其他更多的应用程序,本申请对此不作限定。
如图4中的(a)图所示,用户执行对设置应用的点击操作,响应于用户的点击操作,手机显示如图4中的(b)图所示设置主界面402。该设置主界面402可以包括多种菜单选项,例如,图(b)中示出的无线和网络、设备连接、桌面与壁纸、时间与日期、声音等。用户执行对桌面与壁纸的点击操作,响应于用户的点击操作,手机显示如图4中的(c)图所示的桌面与壁纸界面403,该界面403可以包括“息屏显示”开关。
如图4中的(c)图所示,用户执行对“息屏显示”开关的点击操作,响应于用户的点击操作,手机显示如图4中的(d)图所示息屏显示功能界面404。在该界面404上,包括多个与手机息屏显示相关的功能菜单,例如息屏显示开关、息屏显示的开始时间、结束时间等选项。其中,当用户开启“息屏显示”开关60,手机开启了息屏显示功能。
图5是本申请提供的一例AOD显示的图形用户界面示意图。示例性的,当用户按照图4中的操作,开启“息屏显示”开关60。用户还可以设置手机的时钟样式,时钟样式包括单时钟和多时钟(本申请以双时钟为例进行说明),应理解,移动设备的时钟样式还可 以包括更多的选项样式,例如三时钟、四时钟等多时钟类型,本申请将以单时钟和双时钟为例,介绍移动设备的时钟显示策略,本申请对此不做限定,通常情况下,默认的时钟样式为单时钟。
如图5中的(a)图所示,用户执行对设置应用的点击操作,响应于用户的点击操作,手机显示如图5中的(b)图所示设置应用的主界面502。该设置主界面502可以包括多种菜单选项。用户执行对“时间与日期”选项的点击操作,响应于用户的点击操作,手机显示如图5中的(c)图所示的“时间与日期”选项的界面503,该界面503可以包括“双时钟”开关。
如图5中的(c)图所示,在用户不进行设置的情况下,手机可以默认该“双时钟”开关为关闭(OFF)状态,即当前手机的时钟样式为单时钟,或者,用户通过该界面503点击“双时钟”开关为关闭状态,使得当前手机的时钟样式为单时钟,本申请对此不做限定。
通过图4和图5中的(a)至(c)图的操作,手机当前开启了始终显示功能,而且始终显示可以显示单时钟界面。如图5中的(d)图所示,用户在主界面上点击锁屏应用,或者通过按压机械锁屏按键,手机进入息屏状态。响应于用户的锁屏操作,手机可以显示如图5中的(e)图所示的单时钟显示界面505。
该单时钟显示界面505可以包括手机当前的所在地“中国北京”、当前时间、日期、信息、手机当前电量、天气等,此外,还可以显示手机当前运行的其他应用,例如音乐等。应理解,本申请对单时钟显示界面505显示的内容和数量不做限定。
图6是本申请提供的又一例AOD显示的图形用户界面示意图。示例性的,当用户按照图4中的操作,开启“息屏显示”开关60之后。如图6中的(a)图所示,用户执行对设置应用的点击操作,响应于用户的点击操作,手机显示如图6中的(b)图所示设置应用的主界面602。用户执行对“时间与日期”选项的点击操作,响应于用户的点击操作,手机显示如图6中的(c)图所示的“时间与日期”选项的界面603,该界面603可以包括“双时钟”开关。
如图6中的(c)图所示,用户执行对该“双时钟”开关的点击操作,响应于用户的点击操作,手机可以使得该“双时钟”开关为开启(ON)状态,即当前手机的时钟显示样式为双时钟。
通过图4和图6中的(a)至(c)图的操作,手机当前开启了始终显示功能,而且显示样式为双时钟。如图6中的(d)图所示,用户在主界面上点击锁屏应用,或者通过按压机械锁屏按键,手机进入息屏状态。响应于用户的锁屏操作,手机可以显示如图6中的(e)图所示的双时钟显示界面605。
可选地,该双时钟界面605可以包括手机常用地点“中国北京”和当前所在地点“美国纽约”,以及两个地点分别对应的当前时间、日期、信息、手机当前电量、天气等,此外,还可以显示手机当前运行的其他应用,例如音乐等。应理解,本申请对双时钟界面605显示的内容和数量不做限定。
应理解,当手机的显示样式为双时钟时,手机可以在当前位置与常驻城市的时区不同时,显示双时钟界面,即手机在其锁屏界面显示双时钟,或者,手机在其主界面显示双时钟,本申请对此不做限定。
示例性的,该双时钟显示的方式可以发生在当用户的常用地点发生变化,或者常用地的计时方式发生变化时;或者,该双时钟显示的方式可以发生在用户添加2个不同的地点时,本申请对此不做限定。例如,用户常用地点为中国北京,当手机检测当前地点变化为美国纽约或者手机检测到当前计时(例如东八区时间到西五区时间)发生变化时,手机在息屏状态下显示常用地点和当前地点两种时钟界面;或者,用户将北京、上海添加为常用地点,手机可以在息屏状态下显示两个时钟界面,该界面时间一致,可以显示不同的天气等,本申请对此不做限定。
以上结合图4至图6介绍了本申请手机的AOD功能,应理解,当前AOD功能都使用的OLED显示屏,OLED屏包括视频模式(video mode)和命令模式(command mode)。其中,视频模式的OLED屏由于内部没有RAM,需要持续性刷新显示面板,因此不需要帧缓冲器,即屏幕内不需要随机存取存储器(random access memory,RAM)。根据图3中的(b)图的介绍,可知视频模式的OLED屏AOD功能的实现是通过显示屏集成电路(integrated circuit,IC)内部的线缓冲器(line buffer)实现的,line buffer可以存储一部分画面,但是不能全屏显示,只能显示部分区域。
line buffer显示AOD技术主要通过两种实现方式,具体包括1bit算法程序和2bit算法程序。图7是本申请实施例提供的一例AOD显示区域示意图。以手机显示屏的左上角为原点O,建立直角坐标系XOY,本申请以分辨率1080×2400的手机为例,在X轴上为1080个像素,Y轴上2400个像素。
图7中的(a)图是利用1bit算法程序的AOD功能显示区域示意图。如图7中的(a)图所示,使用1bit算法程序实现AOD功能时,显示区域如图(a)的阴影区域所示,X方向为0-1080,Y方向为300-1370,手机息屏状态时,可以在该阴影区域显示单时钟界面和多时钟界面。
图7中的(b)图是利用2bit算法程序的AOD功能显示区域示意图。如图7中的(b)图所示,使用2bit算法程序实现AOD功能时,显示区域如图(b)的阴影区域所示,X方向为300-780,Y方向为300-1470,手机息屏状态时,可以在该阴影区域显示单时钟界面和多时钟界面。
由图可知,当通过1bit算法程序实现的AOD功能时,显示区域大,但是受到1bit算法程序的限制,显示效果较差,显示单时钟时,由于字体较大,字体边沿有毛刺现象,显示的内容效果较差,用户体验较差。
当通过2bit算法程序实现的AOD功能时,受到算法限制,显示区域小,相对1bit算法显示区域,X方向缩小了一半区域,显示效果好,但是显示区域小;而且,当显示多时钟时,显示内容多,由于字体无法移动,部分区域会一直显示。由于OLED屏的特性,当某个部位长时间显示相同静止画面,会导致不可逆的有机材质损耗,出现残影,甚至烧屏问题。
图8是本申请实施例提供的一例始终显示方法的示意性性流程图,该方法可以在如图1、图2所示的具有触摸屏和摄像头的移动设备(例如手机、平板电脑等)中实现。如图8所示,该方法800包括:
810,移动设备在息屏状态下运行第一算法程序,显示第一时钟界面,所述第一时钟界面显示于所述移动设备的显示屏的第一显示区域。
820,移动设备收到切换指令,所述切换指令是所述移动设备从所述第一时钟样式被切换到第二时钟样式产生的指令。
830,移动设备响应于所述切换指令,将所述第一算法程序切换到第二算法程序。
840,移动设备在息屏状态下运行第二算法程序,显示所述第二时钟界面,所述第二时钟界面显示于所述移动设备的显示屏的第二显示区域。
应理解,所述第一时钟样式对应所述第一时钟界面,所述第二时钟样式对应第二时钟界面,所述第二时钟界面与所述第一时钟界面不同,且所述第二显示区域的大小与所述第一显示区域的大小不同,所述第二算法程序与所述第一算法程序不同,所述第二显示样式与所述第一显示样式不同。
还应理解,当用户开启移动设备的AOD功能时,移动设备就可以确定启动AOD功能。示例性的,用户可以执行如图4中介绍的操作,开启“息屏显示”开关60,开启移动设备的AOD功能。本申请中,移动设备为开启AOD功能的状态。
还应理解,在本申请中,移动设备收到切换指令,可以是通过图5和图6示出的操作方法,通过在设置应用中执行相应的切换操作,具体地,请参照图5和图6中的相关描述,使得移动设备的时钟样式从单时钟切换到双时钟,或者从双时钟切换到单时钟。
此外,移动设备还可以在息屏状态下接收切换指令,示例性的,在移动设备黑屏场景时,可以检测用户的手势(例如隔空手势或者其他快捷手势等),通过检测到用户的手势而执行时钟样式的切换操作,本申请对用户切换时钟样式的方法不做限定。在一种可能的实现方式中,该第一时钟界面为单时钟界面,该第二时钟界面为多时钟界面,换言之,所述第一时钟样式为单时钟,所述第二时钟样式为多时钟;或者,该第一时钟界面为多时钟界面,该第二时钟界面为单时钟界面,换言之,所述第一时钟样式为双时钟,所述第二时钟样式为单时钟。
应理解,本申请中第一时钟界面和第二时钟界面用于区分两种不同的始终显示样式下的时钟界面。示例性的,例如第一时钟界面为单时钟界面,第二时钟界面为双时钟界面,用户可以执行如图6中(a)图至(c)图所示的操作,即根据用户切换操作,将手机从单时钟界面切换到双时钟界面。
还应理解,当第一时钟界面为单时钟界面时,第一时钟界面在显示屏上的显示区域为第一显示区域。示例性的,如图5中的(e)图所示,该界面505上仅包括一个时钟窗口,该时钟窗口内可以包括当前所在地、时间、日期等,该时钟窗口还可以包括天气、应用图标等更多其他内容,本申请对此不做限定。
当第二时钟界面为双时钟界面时,例如两个时钟窗口中的时间、日期等,且该第二时钟界面在显示屏上的显示区域为第二显示区域。示例性的,如图6中的(e)图所示,该界面402上可以包括两个时钟窗口,该两个时钟窗口的每个时钟窗口内可以包括不同地点以及该地点对应的时间、日期等,此外,每个时钟窗口还可以包括天气、应用图标等更多其他内容,本申请对此不做限定。
还应理解,本申请的切换指令可以是由移动设备的处理器向显示屏发送的。具体地,用户从单时钟界面切换到双时钟界面,用户的切换操作可以是如图6中(a)图至(c)图所示的操作。移动设备根据用户的切换操作,由移动设备的处理器生成切换指令,发送给显示屏IC模块。本申请对处理器向显示屏IC模块发送切换指令的时机不做限定。
可选地,第一算法程序是2比特算法程序,该第二算法程序是1比特算法程序。
相应地,该切换指令包括1比特算法程序的指示信息。换言之,移动设备先以2比特算法程序在显示屏上显示单时钟窗口,当用户在息屏状态下通过隔空手势或黑屏手势完成切换操作,将时钟样式从单时钟切换到双时钟之后,移动设备的处理器便向显示屏IC模块发送切换指令,该切换指令包括2比特算法程序的指示信息,用于指示显示屏IC模块运行2比特算法程序显示双时钟界面。
在一种可能的实现方式中,该单时钟界面用于在移动设备上显示一个时钟窗口,该时钟窗口能够在移动设备的显示屏的相应显示区域内移动,且显示屏的相应显示区域小于该显示屏的全部显示区域。
当利用2bit算法程序进行AOD显示时,可以包括如图7中的(b)图所示的阴影部分的显示区域,例如,该显示区域称为第一显示区域。该第一显示区域的范围在X方向上为300-780,Y方向为300-1450。移动设备的单时钟界面可以显示在该第一显示区域内,且当移动设备的屏幕足够大时,该单时钟界面可以在该第一显示区域内进行移动。
还应理解,该单时钟在该相应显示区域内进行移动,可以是自动的按照预设的规律上下、左右定期移动,也可以是根据移动设备的重力传感器、陀螺仪等信息,适应当前移动设备的状态变化进行移动,本申请对此不做限定。
通过上述技术方案,当移动设备显示单时钟时,使用2bit算法程序进行AOD显示,单时钟的显示区域较小,为了适应较小的显示区域,单时钟窗口内的时间、地点、日期等信息也呈现较小的显示效果,不存在边沿毛刺现象,提升显示效果,从而提升用户的视觉体验;此外,时钟窗口可以在显示屏的相应显示区域中移动,不会存在某个部位一直显示同一静态画面的情况,防止烧屏问题,从而延长屏幕的使用寿命。
在一种可能的实现方式中,该多时钟界面用于在该移动设备上显示至少两个时钟窗口,该至少两个时钟界面能够在该显示屏的相应显示区域内移动,该显示屏的相应显示区域小于该显示屏的全部显示区域。
当利用1bit算法程序对应的显示策略进行AOD显示时,可以包括如图7中的(a)图所示的阴影部分的显示区域,例如,该显示区域称为第二显示区域,该第二显示区域的范围大于该第一显示区域。例如,该第二显示区域的范围在X方向上为0-1080,Y方向为300-1350。移动设备的双时钟都可以显示在该第二显示区域内,且该双时钟可以在该第二显示区域内进行移动。
还应理解,该多时钟窗口在该显示屏的相应显示区域内进行移动,可以是自动的按照预设的规律上下、左右定期移动,也可以是根据移动设备的重力传感器、陀螺仪等信息,适应当前移动设备的状态变化进行移动,此外,多时钟窗口中每个时钟窗口的在该第二显示区域内的移动可以同步也可以不同步,本申请对此不做限定。
通过上述技术方案,当移动设备显示多时钟界面时,使用1bit算法程序进行AOD显示,使得显示区域大于2bit算法程序确定的显示区域,扩大了显示区域,可以适应多时钟界面的显示,保证每个时钟的时间、地点、日期等信息都可以呈现在显示区域中;而且,因为多时钟显示时,时钟窗口内的时间、地点、日期等信息显示字体较小,可以使得字体边沿毛刺不敏感,效果好,不影响用户的视觉效果;此外,在较大的显示区域中,时钟窗口可以移动,不会存在某个部位一直显示同一静态画面的情况,防止烧屏问题,从而延长 屏幕的使用寿命。
或者,在另一种可能的实现方式中,第一时钟界面为双时钟界面,第二时钟界面为单时钟界面,换言之,第一时钟样式为双时钟,第二时钟样式为单时钟。该过程为用户从双时钟样式切换到单时钟样式。
示例性的,例如第一时钟界面可以为双时钟界面,第二时钟界面可以为单时钟界面,用户可以点击图6中的(c)图的双时钟开关关闭双时钟显示,即根据用户切换操作,将手机从双时钟界面切换到单时钟界面。
应理解,本申请中第一时钟界面和第二时钟界面用于区分两种不同的时钟样式下的不同时钟界面。在该种实现方式中,第一时钟界面为双时钟界面,第二时钟界面为单时钟界面,用户可以点击双时钟开关,使得如图5中的(c)图所示,该双时钟开关为关闭(OFF)状态,即根据用户切换操作,将手机从双时钟样式切换到单时钟样式。
此时,第一时钟界面包括双时钟显示的内容,例如两个时钟窗口中的时间、日期等。第二时钟界面为单时钟界面,可以包括一个时钟显示的内容,例如一个时钟窗口中的时间、日期等。
应理解,该种实现方式中切换指令可以是由移动设备的处理器向显示屏发送的。具体地,用户从双时钟界面切换到单时钟界面,移动设备根据用户的切换操作由移动设备的处理器生成切换指令,发送给显示屏IC模块。
可选地,第一算法程序是1比特算法程序,该第二算法程序是2比特算法程序。
相应地,该切换指令包括2比特算法程序的指示信息。换言之,移动设备先以1比特算法程序在显示屏上显示双时钟界面,当用户通过切换操作将时钟样式从双时钟切换到单时钟之后,移动设备的处理器便向显示屏IC模块发送切换指令,该切换指令包括1比特算法程序的指示信息,用于指示显示屏IC模块运行1比特算法程序显示单时钟界面。图9是本申请实施例提供的移动设备始终显示方法的示意图,如图9所示,本申请的始终显示方法通过对移动设备的AOD功能的单时钟界面和多时钟界面进行适配,自适应使用不同的算法进行显示,以保证最佳的显示效果。
具体地,如图9所示,用户可以通过移动设备的AOD设置和时钟样式设置,开启移动设备的始终显示功能,并设置时钟样式(例如,单时钟或双时钟)。当用户将时钟样式设置为单时钟时,移动设备的处理器向显示屏的IC模块发送指令,该指令包括2比特算法程序的指示信息。IC模块接收到该2比特算法程序的指示信息之后,调用并运行存储的2比特算法程序,根据2比特算法程序显示单时钟界面。
该方法针对用户设置的单时钟样式使用2bit算法程序确定显示区域和显示效果,使得显示区域较小,为了适应较小的显示区域,单时钟窗口内的时间、地点、日期等信息也呈现较小的显示效果,不存在边沿毛刺现象,提升显示效果;
或者,当用户将时钟样式设置为双时钟时,移动设备的处理器向显示屏的IC模块发送指令,该指令包括1比特算法程序的指示信息。IC模块接收到该1比特算法程序的指示信息之后,调用并运行存储的1比特算法程序,根据1比特算法程序显示双时钟界面。
该方法针对用户设置的多时钟(例如双时钟)使用1bit算法程序确定显示区域和显示效果,扩大了显示区域,可以适应多个时钟窗口的显示,保证每个时钟窗口内的时间、地点、日期等信息都可以呈现在显示区域中。此外,在较大的显示区域中,时钟窗口可以 移动,不会存在某个部位一直显示同一静态画面的情况,防止烧屏问题,从而延长屏幕的使用寿命。
图10是本申请实施例提供的移动设备始终显示方法的实现过程示意图,如图10所示,该方法由移动设备的SOC 20和显示屏30执行,该方法包括:
S1010,SOC 20确定移动设备处于息屏AOD状态,且移动设备显示样式为单时钟。应理解,如图4所示的操作,当用户在设置应用中开启了始终显示开关60,SOC 20就可以确定移动设备开启了始终显示功能。同样地,如图5所示的操作,当用户在设置应用中关闭了双时钟开关,或者移动设备默认该双时钟开关为关闭(OFF)状态时,SOC 20就可以确定移动设备显示样式为单时钟。
S1020,SOC 20向显示屏30的IC模块发送指令,该指令包括2比特算法程序的指示信息。
S1030,显示屏30的IC模块接收SOC 20发送的指令后,调用并运行存储的2比特算法程序。
S1040,显示屏30的IC模块根据2比特算法程序显示单时钟界面。
S1050,根据用户切换操作,确定移动设备的显示样式从单时钟切换到双时钟。如图5所示的操作,当用户在设置应用中开启了双时钟开关,SOC 20就可以确定移动设备显示样式为双时钟。
S1060,移动设备处于息屏AOD状态,产生切换指令,该切换指令包括1比特算法程序的指示信息。
S1070,SOC 20向显示屏30的IC模块发送切换指令,该切换指令包括1比特算法程序的指示信息。
S1080,显示屏30的IC模块接收SOC 20发送的切换指令后,调用并运行存储的1比特算法程序。
S1090,显示屏30的IC模块根据1比特算法程序显示双时钟界面。
以上介绍了移动设备由单时钟界面切换为双时钟界面的实现过程,同样地,移动设备也可以由双时钟界面切换为单时钟界面,即由1比特算法程序对应的显示策略切换到2比特算法程序对应的显示策略,此处不再赘述。
通过以上方法,对移动设备的AOD功能的单时钟界面和多时钟界面进行适配,自适应使用不同的算法进行显示,以保证最佳的显示效果。该方法针对用户设置的单时钟显示样式使用2bit算法确定显示区域和显示策略,使得显示区域较小,为了适应较小的显示区域,单时钟窗口内的时间、地点、日期等信息也呈现较小的显示效果,不存在边沿毛刺现象,提升显示效果;针对用户设置的多时钟显示样式(例如双时钟)使用1bit算法确定显示区域和显示策略,扩大了显示区域,可以适应多个时钟窗口的显示,保证每个时钟窗口内的时间、地点、日期等信息都可以呈现在显示区域中。此外,在较大的显示区域中,时钟窗口可以移动,不会存在某个部位一直显示同一静态画面的情况,防止烧屏问题,从而延长屏幕的使用寿命。
可以理解的是,移动设备为了实现上述功能,其包含了执行各个功能相应的硬件和/或软件模块。结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方 式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以结合实施例对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本实施例可以根据上述方法示例对移动设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块可以采用硬件的形式实现。需要说明的是,本实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图11示出了上述实施例中涉及的移动设备1100的一种可能的组成示意图,如图11所示,该移动设备1100可以包括:显示单元1101、检测单元1102和处理单元1103。
其中,显示单元1101可以用于支持移动设备1100执行上述步骤中的AOD显示等,和/或用于本文所描述的技术的其他过程。
检测单元1102可以用于支持移动设备1100执行上述步骤610等,和/或用于本文所描述的技术的其他过程。
处理单元1103可以用于支持移动设备1100执行上述步骤620、630等,和/或用于本文所描述的技术的其他过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本实施例提供的移动设备,用于执行上述始终显示方法,因此可以达到与上述实现方法相同的效果。
在采用集成的单元的情况下,移动设备可以包括处理模块、存储模块和通信模块。其中,处理模块可以用于对移动设备的动作进行控制管理,例如,可以用于支持移动设备执行上述显示单元1101、检测单元1102和处理单元1103执行的步骤。存储模块可以用于支持移动设备执行存储程序代码和数据等。通信模块,可以用于支持移动设备与其他设备的通信。
其中,处理模块可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理(digital signal processing,DSP)和微处理器的组合等等。存储模块可以是存储器。通信模块具体可以为射频电路、蓝牙芯片、Wi-Fi芯片等与其他移动设备交互的设备。
在一个实施例中,当处理模块为处理器,存储模块为存储器时,本实施例所涉及的移动设备可以为具有图1和图2所示结构的设备。
本实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机指令,当该计算机指令在移动设备上运行时,使得移动设备执行上述相关方法步骤实现上述实施例中的始终显示方法。
本实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例中的始终显示方法。
另外,本申请的实施例还提供一种装置,这个装置具体可以是芯片,组件或模块,该装置可包括相连的处理器和存储器;其中,存储器用于存储计算机执行指令,当装置运行 时,处理器可执行存储器存储的计算机执行指令,以使芯片执行上述各方法实施例中的始终显示方法。
其中,本实施例提供的移动设备、计算机存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
通过以上实施方式的描述,所属领域的技术人员可以了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种始终显示方法,应用于移动设备,其特征在于,所述方法包括:
    所述移动设备在息屏状态下运行第一算法程序,显示第一时钟界面,所述第一时钟界面显示于所述移动设备的显示屏的第一显示区域;
    所述移动设备收到切换指令,所述切换指令是使得所述移动设备从所述第一时钟样式切换到第二时钟样式产生的指令,所述第一时钟样式对应所述第一时钟界面,所述第二时钟样式对应第二时钟界面,所述第二时钟样式与所述第一时钟样式不同;
    所述移动设备响应于所述切换指令,将所述第一算法程序切换到第二算法程序;
    所述移动设备在息屏状态下运行第二算法程序,显示所述第二时钟界面,所述第二时钟界面显示于所述移动设备的显示屏的第二显示区域,所述第二时钟界面与所述第一时钟界面不同,且所述第二显示区域的大小与所述第一显示区域的大小不同,所述第二算法程序与所述第一算法程序不同。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时钟样式为单时钟,所述第二时钟样式为多时钟;或者
    所述第一时钟样式为多时钟,所述第二时钟样式为单时钟。
  3. 根据权利要求2所述的方法,其特征在于,所述单时钟用于在所述移动设备上显示一个时钟窗口,所述时钟窗口能够在所述显示屏的相应显示区域内移动;
    所述多时钟用于在所述移动设备上显示至少两个时钟窗口,所述至少两个时钟窗口能够在所述显示屏的相应显示区域内移动,所述显示屏的相应显示区域小于所述显示屏的全部显示区域。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    在所述第一时钟样式为单时钟,所述第二时钟样式为多时钟时,所述第一算法程序是2比特算法程序,所述第二算法程序是1比特算法程序;或者,
    在所述第一时钟样式为多时钟,所述第二时钟样式为单时钟时,
    所述第一算法程序是1比特算法程序,所述第二算法程序是2比特算法程序。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述显示屏是视频模式的有机发光二极管OLED显示屏,所述OLED显示屏内部没有随机存取存储器,所述切换指令用于指示从所述第一算法程序切换到所述第二算法程序。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述移动设备在息屏状态下运行第一算法程序,显示第一时钟界面,所述第一时钟界面显示于所述移动设备的显示屏的第一显示区域;所述移动设备收到切换指令,所述切换指令是所述移动设备从所述第一时钟样式被切换到第二时钟样式产生的指令,所述第一时钟样式对应所述第一时钟界面,所述第二时钟样式对应第二时钟界面,所述第二时钟样式与所述第一时钟样式不同;所述移动设备响应于所述切换指令,将所述第一算法程序切换到第二算法程序;所述移动设备在息屏状态下运行第二算法程序,显示所述第二时钟界面,所述第二时钟界面显示于所述移动设备的显示屏的第二显示区域,所述第二时钟界面与所述第一时钟界面不同,且所述第二显示区域的大小与所述第一显示区域的大小不同,所述第二算法程序与所述第一 算法程序不同,包括:
    所述移动设备在息屏状态下运行第一算法程序,显示第一时钟界面,所述第一时钟界面显示于所述移动设备的显示屏的第一显示区域;
    所述移动设备检测到第一操作,所述第一操作用于解锁;
    所述移动设备响应于所述第一操作,显示解锁后的界面;
    所述移动设备检测到作用于设置图标的第二操作,显示设置界面;
    所述移动设备在AOD设置界面检测到从所述第一时钟样式切换到第二时钟样式的第三操作,所述第一时钟样式对应第一时钟界面,所述第二时钟样式对应第二时钟界面,所述第二时钟样式与所述第一时钟样式不同;
    所述移动设备响应于所述第三操作,产生所述切换指令;
    所述移动设备响应于所述切换指令,将所述第一算法程序切换为所述第二算法程序;
    所述移动设备进入息屏状态后,在息屏状态下运行第二算法程序,显示所述第二时钟界面,所述第二时钟界面显示于所述移动设备的显示屏的第二显示区域,所述第二时钟界面与所述第一时钟界面不同,且所述第二显示区域的大小与所述第一显示区域的大小不同,所述第二算法程序与所述第一算法程序不同。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,所述切换指令是所述移动设备在息屏状态下获取的。
  8. 一种移动设备,其特征在于,包括:OLED显示屏,一个或多个处理器;存储器;以及多个程序,其中所述多个程序被存储在所述存储器中,所述多个程序包括指令,当所述指令被所述移动设备执行时,使得所述移动设备执行如权利要求1至7中任一项所述的始终显示方法。
  9. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在移动设备上运行时,使得所述移动设备执行如权利要求1至7中任一项所述的始终显示方法。
  10. 一种移动设备上的图形用户界面,其特征在于,所述移动设备具有显示屏、摄像头、存储器、以及一个或多个处理器,所述一个或多个处理器用于执行存储在所述存储器中的一个或多个计算机程序,其特征在于,所述图形用户界面包括所述移动设备执行如权利要求1至7中任意一项所述的方法时显示的图形用户界面。
PCT/CN2020/102523 2019-10-18 2020-07-17 始终显示方法及移动设备 WO2021073183A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20877468.7A EP4033341A4 (en) 2019-10-18 2020-07-17 CONTINUOUS DISPLAY METHOD AND MOBILE DEVICE
US17/768,963 US20240105114A1 (en) 2019-10-18 2020-07-17 Always On Display Method and Mobile Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910995673.8 2019-10-18
CN201910995673.8A CN112684969B (zh) 2019-10-18 2019-10-18 始终显示方法及移动设备

Publications (1)

Publication Number Publication Date
WO2021073183A1 true WO2021073183A1 (zh) 2021-04-22

Family

ID=75445168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102523 WO2021073183A1 (zh) 2019-10-18 2020-07-17 始终显示方法及移动设备

Country Status (4)

Country Link
US (1) US20240105114A1 (zh)
EP (1) EP4033341A4 (zh)
CN (1) CN112684969B (zh)
WO (1) WO2021073183A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116112597B (zh) 2020-09-03 2023-10-20 荣耀终端有限公司 具有灭屏显示功能的电子设备及其显示灭屏界面的方法、存储介质
CN113722028B (zh) * 2021-05-28 2022-10-28 荣耀终端有限公司 动态卡片显示方法及装置
CN115022204B (zh) * 2022-05-26 2023-12-05 阿里巴巴(中国)有限公司 Rtc的传输时延检测方法、装置以及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104850379A (zh) * 2010-10-01 2015-08-19 夏普株式会社 显示方法
CN106373515A (zh) * 2015-07-21 2017-02-01 三星电子株式会社 显示驱动器及包括该显示驱动器的显示装置
CN107621918A (zh) * 2017-09-08 2018-01-23 维沃移动通信有限公司 息屏显示内容的设置方法及移动终端
US20180176746A1 (en) * 2016-12-19 2018-06-21 Samsung Electronics Co., Ltd. Methods and apparatus for managing control data
CN109343759A (zh) * 2018-10-25 2019-02-15 维沃移动通信有限公司 一种息屏显示的控制方法及终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135977A (zh) * 2011-12-02 2013-06-05 腾讯科技(深圳)有限公司 一种浏览器中输入信息的方法和装置
CN104090755B (zh) * 2014-06-19 2017-10-13 上海斐讯数据通信技术有限公司 Android Launcher界面中长应用名称的垂直滚动显示方法
KR102573689B1 (ko) * 2016-09-29 2023-09-04 엘지디스플레이 주식회사 표시장치와 이를 이용한 aod 제어 방법 및 모바일 단말기
KR102374710B1 (ko) * 2017-03-28 2022-03-15 삼성전자주식회사 디스플레이의 저전력 구동 방법 및 이를 수행하는 전자 장치
CN110149442B (zh) * 2019-04-10 2021-05-18 华为技术有限公司 一种熄屏显示的控制方法及终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104850379A (zh) * 2010-10-01 2015-08-19 夏普株式会社 显示方法
CN106373515A (zh) * 2015-07-21 2017-02-01 三星电子株式会社 显示驱动器及包括该显示驱动器的显示装置
US20180176746A1 (en) * 2016-12-19 2018-06-21 Samsung Electronics Co., Ltd. Methods and apparatus for managing control data
CN107621918A (zh) * 2017-09-08 2018-01-23 维沃移动通信有限公司 息屏显示内容的设置方法及移动终端
CN109343759A (zh) * 2018-10-25 2019-02-15 维沃移动通信有限公司 一种息屏显示的控制方法及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4033341A4

Also Published As

Publication number Publication date
EP4033341A4 (en) 2022-11-30
CN112684969A (zh) 2021-04-20
US20240105114A1 (en) 2024-03-28
CN112684969B (zh) 2022-07-12
EP4033341A1 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
WO2020168965A1 (zh) 一种具有折叠屏的电子设备的控制方法及电子设备
EP4084450A1 (en) Display method for foldable screen, and related apparatus
WO2020156269A1 (zh) 一种具有柔性屏幕的电子设备的显示方法及电子设备
WO2021213120A1 (zh) 投屏方法、装置和电子设备
WO2020259452A1 (zh) 一种移动终端的全屏显示方法及设备
WO2021213164A1 (zh) 应用界面交互方法、电子设备和计算机可读存储介质
WO2020244623A1 (zh) 一种空鼠模式实现方法及相关设备
WO2021036771A1 (zh) 具有可折叠屏幕的电子设备及显示方法
WO2021052279A1 (zh) 一种折叠屏显示方法及电子设备
WO2021036770A1 (zh) 一种分屏处理方法及终端设备
WO2021063311A1 (zh) 具有折叠屏的电子设备的显示控制方法及电子设备
WO2021063237A1 (zh) 电子设备的控制方法及电子设备
WO2022033320A1 (zh) 蓝牙通信方法、终端设备及计算机可读存储介质
WO2020168968A1 (zh) 一种具有折叠屏的电子设备的控制方法及电子设备
WO2021190344A1 (zh) 多屏幕显示电子设备和电子设备的多屏幕显示方法
WO2021036785A1 (zh) 一种消息提醒方法及电子设备
WO2021073183A1 (zh) 始终显示方法及移动设备
WO2021036898A1 (zh) 折叠屏设备中应用打开方法及相关装置
WO2022042770A1 (zh) 控制通信服务状态的方法、终端设备和可读存储介质
EP4231147A1 (en) Drawing command processing method and related device therefor
WO2023103951A1 (zh) 一种折叠屏的显示方法及相关装置
WO2022068483A1 (zh) 应用启动方法、装置和电子设备
WO2022001258A1 (zh) 多屏显示方法、装置、终端设备及存储介质
WO2021218429A1 (zh) 应用窗口的管理方法、终端设备及计算机可读存储介质
WO2022017474A1 (zh) 任务处理方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877468

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17768963

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020877468

Country of ref document: EP

Effective date: 20220421