WO2021072720A1 - 获取雷达位置的方法、雷达以及可移动平台 - Google Patents

获取雷达位置的方法、雷达以及可移动平台 Download PDF

Info

Publication number
WO2021072720A1
WO2021072720A1 PCT/CN2019/111773 CN2019111773W WO2021072720A1 WO 2021072720 A1 WO2021072720 A1 WO 2021072720A1 CN 2019111773 W CN2019111773 W CN 2019111773W WO 2021072720 A1 WO2021072720 A1 WO 2021072720A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
ground
coefficients
coefficient
surrounding environment
Prior art date
Application number
PCT/CN2019/111773
Other languages
English (en)
French (fr)
Inventor
崔健
陈晓智
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980034352.XA priority Critical patent/CN112166340B/zh
Priority to PCT/CN2019/111773 priority patent/WO2021072720A1/zh
Publication of WO2021072720A1 publication Critical patent/WO2021072720A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the present application relates to the technical field of movable platforms, and in particular to a method for acquiring the position of a radar, a radar, and a movable platform.
  • the radar In the actual use of the radar, it is often necessary to know the position information of the radar relative to the ground, so as to remove part of the point cloud data (such as the ground point cloud) from the point cloud data of the surrounding environment obtained by the radar to obtain useful point cloud data.
  • part of the point cloud data such as the ground point cloud
  • the current method of obtaining the position information of the radar relative to the ground is to obtain the position information of the binocular camera relative to the ground, and then obtain the radar according to the position information of the binocular camera relative to the ground, the external parameters of the binocular camera and the external parameters of the radar. Position information relative to the ground.
  • the above methods need to rely on the depth of the binocular camera.
  • the depth of the binocular camera is obtained from the image taken by the binocular camera, and the image taken by the binocular camera depends on the lighting conditions, weather conditions, image texture, etc., black sky or light If the depth of the binocular camera is not accurate or the image texture is not good, the position information of the radar relative to the ground will be inaccurate. Moreover, the accuracy of the external parameters of the binocular camera also depends on the accuracy of the calibration of the binocular camera. Therefore, the introduction of errors in the calibration of the binocular camera will also make the final position information of the radar relative to the ground inaccurate.
  • the embodiments of the present application provide a method for acquiring the position of a radar, a radar, and a movable platform, and the acquisition of position information of the radar relative to the ground is more accurate.
  • an embodiment of the present application provides a method for obtaining the position of a radar, including: sampling the surrounding environment by a radar to obtain the collected data of the radar; and obtaining the surroundings of the radar according to the collected data of the radar Environmental information; according to the surrounding environment information, determine the position information of the radar relative to the surrounding environment.
  • an embodiment of the present application provides a radar, including: a data acquisition device, the data acquisition device is configured to sample the surrounding environment to obtain the collected data of the radar; a processor, the processor and the The radar communication connection is used to perform the following operations: obtain the collected data of the radar from the data collection device; obtain the surrounding environment information of the radar according to the collected data of the radar; determine the surrounding environment information according to the surrounding environment information The position information of the radar relative to the surrounding environment.
  • the self-application embodiment provides a movable platform, including: a radar, the radar is used to sample the surrounding environment to obtain the collected data of the radar; the processor is connected to the radar in communication, and To perform the following operations: obtain the collected data of the radar from the radar; obtain the surrounding environment information of the radar according to the collected data of the radar; determine the relative position of the radar relative to the surroundings according to the surrounding environment information Location information of the environment.
  • a radar the radar is used to sample the surrounding environment to obtain the collected data of the radar
  • the processor is connected to the radar in communication, and To perform the following operations: obtain the collected data of the radar from the radar; obtain the surrounding environment information of the radar according to the collected data of the radar; determine the relative position of the radar relative to the surroundings according to the surrounding environment information Location information of the environment.
  • the self-application embodiment provides a computer-readable storage medium, including a program or instruction.
  • the program or instruction runs on a computer, the first aspect and any possible design of the first aspect The method is executed.
  • the present application is highly efficient and accurate in obtaining the position information of the radar relative to the surrounding environment.
  • Figure 1 is a schematic diagram of an application scenario provided by an embodiment of the application
  • FIG. 2 is a first flowchart of a method for acquiring a radar position provided by an embodiment of the application
  • FIG. 3 is a second flowchart of a method for acquiring a radar position provided by an embodiment of the application
  • FIG. 4 is a schematic structural diagram of a radar provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of another movable platform provided by an embodiment of the application.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the application.
  • one or more radars 12 are mounted on a movable platform 11.
  • the radar 12 installed in the front of the vehicle can be used to detect the situation in front of the vehicle, and realize functions such as car following and early warning.
  • the radar 12 installed in the rear of the vehicle can be used to detect the situation behind the vehicle, and realize the reversing and parking instructions. And other functions.
  • the radar 12 can be arranged at any suitable position of the movable platform 11 to obtain information about the surrounding environment of the radar.
  • the movable platform 11 can be a vehicle, an unmanned aerial vehicle, a robot, and the like.
  • the radar 12 may be millimeter wave radar, microwave radar, lidar, etc., which is not limited in this embodiment.
  • Fig. 2 is a first flowchart of a method for acquiring a radar position provided by an embodiment of the application.
  • the execution subject of this embodiment may be a device for acquiring the position of the radar, the device for acquiring the position of the radar is all or part of the radar, or the device for acquiring the position of the radar is all or part of the movable platform, see FIG. Methods include:
  • step S201 the surrounding environment is sampled by the radar to obtain the collected data of the radar.
  • the radar can send detection signals to the surrounding environment, and the detection signals are reflected by objects in the surrounding environment to generate echo signals.
  • the data collected by the radar can be echo signals, or it can be used to perform echo signals.
  • the data obtained after sampling, such as the collected data of radar, can be the point cloud data of the surrounding environment.
  • Step S202 Acquire surrounding environment information of the radar according to the collected data of the radar.
  • the surrounding environment information of the radar may include the ground where the radar is located.
  • the surrounding environment information of the radar may also be other environment information, such as obstruction information such as trees and walls, which is not limited in this embodiment.
  • obtaining the surrounding environment information of the radar according to the collected data of the radar may include: obtaining the information of the ground where the radar is located based on the collected data of the radar.
  • the ground on which the radar is located may be the ground on which the movable platform on which the radar is located operates.
  • the random sample consensus (RANSAC) algorithm can be used to obtain the surrounding environment information of the radar according to the collected data of the radar, so that the method of obtaining the radar position in this embodiment is highly efficient and fast in calculation. , Which can achieve efficient and fast radar position acquisition.
  • Step S203 Determine the position information of the radar relative to the surrounding environment according to the surrounding environment information of the radar.
  • the position information of the radar relative to the ground can be determined according to the information of the ground where the radar is located.
  • a set of position information of the radar relative to the ground may include at least one of the following: a pitch angle, a roll angle, and a height of the radar relative to the ground.
  • the surrounding environment can be sampled in real time by the radar. Therefore, multiple sets of radar data can be obtained, and correspondingly, multiple sets of position information of the radar relative to the surrounding environment can be obtained.
  • the post-processing can be filtering processing.
  • the filtering process may be any one of the following: median filtering process, average filtering process, or weighted average filtering process.
  • the position information of the radar relative to the surrounding environment can be obtained through the surrounding environment data collected by the radar itself, and the position information of the radar relative to the ground does not need to be converted into the position information of the radar relative to the ground through a binocular camera or other device, which avoids passing through The error is introduced when the position information of the binocular camera or other device relative to the ground is converted into the position information of the radar relative to the ground, and the acquisition of the position information of the radar relative to the ground is efficient and accurate.
  • Fig. 3 is a second flowchart of a method for acquiring a radar position provided by an embodiment of the application. Referring to Fig. 3, the method of this embodiment includes:
  • step S301 the surrounding environment is sampled by the radar to obtain the collected data of the radar.
  • step S201 For the specific implementation of this step, refer to the specific implementation of step S201 in the embodiment shown in FIG. 2, which will not be repeated here.
  • Step S302 Obtain the equation of the ground where the radar is located according to the collected data of the radar.
  • the meaning of the collected data of the radar is the same as that described in the embodiment shown in FIG. 2 and will not be repeated here; further, the equation of the ground where the radar is located is that of the ground where the radar is located in the embodiment shown in FIG. 2 information.
  • the RANSAC algorithm is used to obtain the equation of the ground where the radar is located.
  • the RANSAC algorithm is used to obtain the equation of the ground where the radar is located, which can be specifically:
  • each data in the point cloud data of the surrounding environment may be a three-dimensional coordinate, and each three-dimensional coordinate corresponds to a point.
  • A is the coefficient related to the X axis of the ground coordinate system
  • B is the coefficient related to the Y axis of the ground coordinate system
  • C is the coefficient related to the ground coordinate system.
  • D is a constant term.
  • the plane equation indicates that the intersections of the ground and the three coordinate axes are S(-D/A,0,0), T(0,-D/B,0), U(0,0,-D/C). Among them, if C ⁇ 0, the direction of the Z-axis of the ground coordinate system is downward; if C>0, the direction of the Z-axis of the ground coordinate system is upward.
  • Step S303 Obtain the position information of the radar relative to the ground according to the coefficients of the plane equation of the ground where the radar is located.
  • obtaining the information of the radar relative to the ground can be achieved through steps a1 to a2:
  • preprocessing the coefficients of the plane equation on the ground where the radar is located to obtain the preprocessed coefficients includes: normalizing the coefficients of the plane equation to obtain the normalized coefficients, and the normalized coefficients are The coefficient after pretreatment.
  • normalizing the coefficients of the plane equation to obtain the normalized coefficients includes: normalizing the coefficients of the plane equation to obtain the normalized coefficients And obtain the inverse number of the normalized coefficient.
  • the inverse number of the normalized coefficient is the normalized coefficient; or, obtain the inverse number of the coefficient of the plane equation, and obtain the inverse number of the coefficient of the plane equation.
  • the opposite number is normalized to obtain the normalized coefficient. It is understandable that all the coefficients or part of the coefficients of the plane equation can be normalized to obtain the preprocessed coefficients.
  • the coefficient A related to the X axis of the plane equation can be normalized by the following formula to obtain the first coefficient A 1 :
  • a 1 A/sqrt(A 2 +B 2 +C 2 );
  • a 1 -A/sqrt(A 2 +B 2 +C 2 ).
  • sqrt() represents the square root calculation function.
  • the coefficient B related to the Y-axis of the plane equation can be normalized by the following formula to obtain the second coefficient B 1 :
  • B 1 -B/sqrt(A 2 +B 2 +C 2 ).
  • the coefficient C related to the Z axis of the plane equation can be normalized by the following formula to obtain the third coefficient C 1 :
  • the constant term D of the plane equation can be normalized by the following formula to obtain the fourth coefficient D 1 :
  • D 1 D/sqrt(A 2 +B 2 +C 2 );
  • D 1 -D/sqrt(A 2 +B 2 +C 2 ).
  • a2 according to the preprocessed coefficient, obtain the radar relative to the ground information.
  • the preprocessed coefficients may include: the first coefficient of the plane equation related to the X axis of the ground coordinate system in the plane equation where the radar is located and/or the first coefficient after the preprocessing and/or the Y axis of the plane equation and the ground coordinate system
  • the second coefficient after the correlation coefficient is preprocessed and/or the third coefficient after the preprocessing of the coefficient related to the Z axis of the ground coordinate system and/or the fourth coefficient after the constant term in the plane equation is preprocessed.
  • obtaining the information of the radar relative to the ground may include: obtaining the pitch angle of the radar relative to the ground according to the first coefficient.
  • the pitch angle P of the radar relative to the ground can be obtained by the following formula:
  • arccos() represents the arc cosine function
  • a 1 is the first coefficient
  • obtaining the position information of the radar relative to the ground may include: obtaining the roll angle of the radar relative to the ground according to the second coefficient and the third coefficient.
  • the roll angle R of the radar relative to the ground can be calculated by the following formula:
  • R -arccos(B 1 /sqrt(B 1 2 +C 1 2 )) ⁇ 180°/ ⁇ +90°;
  • B 1 is the second coefficient
  • C 1 is the third coefficient
  • obtaining the position information of the radar relative to the ground includes: obtaining the height of the radar relative to the ground according to the fourth coefficient.
  • the height H of the radar relative to the ground can be obtained by the following formula:
  • D 1 is the fourth coefficient.
  • post-processing the multiple sets of position information of the radar relative to the ground, and the post-processing is used to filter out abnormal position information in the multiple sets of position information.
  • the meaning of post-processing refers to the description in the embodiment shown in FIG. 2, and will not be repeated here.
  • the position information of the radar relative to the ground can be used to obtain ground information, such as the slope of the ground, the height difference between the ground on both sides of the vehicle when the vehicle is turning, and the height of other objects on the ground.
  • the method for acquiring the position of the radar in this embodiment makes the acquisition of the position information of the radar relative to the ground more efficient and accurate.
  • FIG. 4 is a schematic structural diagram of a radar provided by an embodiment of this application. As shown in FIG. 4, the radar of this embodiment includes: a data acquisition device 41 and a processor 42.
  • the data acquisition device 41 is configured to sample the surrounding environment to obtain the collected data of the radar; the processor, the processor 42 is connected to the data acquisition device 41, and is configured to perform the following operations: Obtain the collected data of the radar; obtain the surrounding environment information of the radar according to the collected data of the radar; determine the position information of the radar relative to the surrounding environment according to the surrounding environment information.
  • the surrounding environment includes the ground on which the radar is located, and when the processor 42 is configured to perform acquisition of the radar's surrounding environment information according to the collected data of the radar, it is specifically configured to: The data collected by the radar is used to obtain information on the ground where the radar is located.
  • the information of the ground includes a plane equation of the ground.
  • the processor 42 when configured to perform the operation of determining the position information of the radar relative to the surrounding environment according to the surrounding environment information, it is specifically configured to: according to the coefficients of the plane equation of the ground To obtain the position information of the radar relative to the ground.
  • the processor 42 when used to perform the operation of obtaining the position information of the radar relative to the ground according to the coefficients of the plane equation of the ground, it is specifically used to:
  • the coefficient of is preprocessed to obtain the preprocessed coefficient; according to the preprocessed coefficient, the position information of the radar relative to the ground is obtained.
  • the processor 42 when used to preprocess the coefficients of the plane equation of the ground to obtain the preprocessed coefficients, it is specifically used to: normalize the coefficients of the plane equation Processing to obtain a normalized coefficient, and the normalized coefficient is a coefficient after the preprocessing.
  • the processor 42 when used to perform normalization processing on the coefficients of the plane equation to obtain the normalized coefficients, it is specifically used to: normalize the coefficients of the plane equation Processing to obtain the normalized coefficients, and obtain the inverse number of the normalized coefficients, the inverse number of the normalized coefficients is the normalized coefficient; or, to obtain the plane equation The inverse number of the coefficient, and normalize the inverse number of the coefficient of the plane equation to obtain the normalized coefficient.
  • the preprocessed coefficients include: the first coefficients after the preprocessed coefficients related to the X-axis of the ground coordinate system in the plane equation; the processor 42 is used to execute the acquisition of the radar During the operation of the position information relative to the ground, it is specifically used to obtain the pitch angle of the radar relative to the ground according to the first coefficient.
  • the preprocessed coefficients include: the second coefficient after the preprocessed coefficients related to the Y axis of the ground coordinate system in the plane equation and the coefficients related to the Z axis of the ground coordinate system are preprocessed
  • the preprocessed third coefficient when the processor 42 is used to perform the operation of acquiring the position information of the radar relative to the ground, it is specifically used to: according to the second coefficient and the third coefficient, Obtain the roll angle of the radar relative to the ground.
  • the coefficients after the preprocessing include: the fourth coefficient after the constant term in the plane equation is preprocessed; the processor 42 is used to perform the acquisition of the radar relative to the ground During the operation of the position information, it is specifically used to obtain the height of the radar relative to the ground according to the fourth coefficient.
  • the direction of the Z axis of the ground coordinate system is downward; if C>0, the direction of the Z axis of the ground coordinate system is upward.
  • the processor 42 is further configured to perform the following operations after determining the position information of the radar relative to the surrounding environment according to the surrounding environment information:
  • Post-processing is performed on multiple sets of position information of the radar relative to the surrounding environment, and the post-processing is used to filter out abnormal location information in the multiple sets of position information.
  • the post-processing is filtering processing.
  • the filtering processing is any one of the following: median filtering processing, average filtering processing, or weighted average filtering processing.
  • the processor 42 when configured to perform the operation of acquiring information about the surrounding environment of the radar according to the collected data of the radar, it is specifically configured to: adopt random sample consistency according to the collected data of the radar.
  • the RANSAC algorithm obtains the surrounding environment information of the radar.
  • each position information of the radar relative to the ground includes at least one of the following: a pitch angle, a roll angle, and a height of the radar relative to the ground.
  • the radar of this embodiment can be used to implement the technical solutions in the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the embodiment of the present application also provides a movable platform on which the radar in the embodiment shown in FIG. 4 is mounted.
  • FIG. 5 is a schematic structural diagram of another movable platform provided by an embodiment of this application.
  • the movable platform of this embodiment includes a radar 51 and a processor 52.
  • the radar 51 is used to sample the surrounding environment to obtain the collected data of the radar 51; the processor 52 is communicatively connected with the radar 51, and is configured to perform the following operations: Obtain the radar 51 from the radar 51 According to the collected data of the radar 51, the surrounding environment information of the radar 51 is obtained; according to the surrounding environment information, the position information of the radar 51 relative to the surrounding environment is determined.
  • the surrounding environment includes the ground on which the radar 51 is located, and when the processor 52 is configured to perform the acquisition of the surrounding environment information of the radar 51 according to the collected data of the radar 51, it is specifically configured to: According to the collected data of the radar 51, information on the ground where the radar 51 is located is obtained.
  • the information of the ground includes a plane equation of the ground.
  • the processor 52 when configured to perform the operation of determining the position information of the radar 51 relative to the surrounding environment according to the surrounding environment information, it is specifically configured to: Coefficient to obtain the position information of the radar 51 relative to the ground.
  • the processor 52 when used to perform the operation of obtaining the position information of the radar 51 relative to the ground according to the coefficients of the plane equation of the ground, it is specifically used to:
  • the coefficients of the equation are preprocessed to obtain the preprocessed coefficients; according to the preprocessed coefficients, the position information of the radar 51 relative to the ground is obtained.
  • the processor 52 when used to preprocess the coefficients of the plane equation of the ground to obtain the preprocessed coefficients, it is specifically used to: normalize the coefficients of the plane equation Processing to obtain a normalized coefficient, and the normalized coefficient is a coefficient after the preprocessing.
  • the processor 52 when used to perform normalization processing on the coefficients of the plane equation to obtain the normalized coefficients, it is specifically used to: normalize the coefficients of the plane equation Processing to obtain the normalized coefficients, and obtain the inverse number of the normalized coefficients, the inverse number of the normalized coefficients is the normalized coefficient; or, to obtain the plane equation The inverse number of the coefficient, and normalize the inverse number of the coefficient of the plane equation to obtain the normalized coefficient.
  • the preprocessed coefficients include: the first coefficients after the preprocessed coefficients related to the X-axis of the ground coordinate system in the plane equation; the processor 52 is used to execute the acquisition of the radar During the operation of the position information of the radar 51 relative to the ground, it is specifically used to obtain the pitch angle of the radar 51 relative to the ground according to the first coefficient.
  • the preprocessed coefficients include: the second coefficient after the preprocessed coefficients related to the Y axis of the ground coordinate system in the plane equation and the coefficients related to the Z axis of the ground coordinate system are preprocessed
  • the preprocessed third coefficient when the processor 52 is used to perform the operation of acquiring the position information of the radar 51 relative to the ground, it is specifically used to: according to the second coefficient and the third coefficient , Obtain the roll angle of the radar 51 relative to the ground.
  • the coefficients after the preprocessing include: the fourth coefficient after the constant term in the plane equation has been preprocessed; the processor 52 is configured to perform the acquisition of the radar 51 relative to the During the operation of the position information on the ground, it is specifically used to obtain the height of the radar 51 relative to the ground according to the fourth coefficient.
  • A is a coefficient related to the X axis of the ground coordinate system
  • the B is a coefficient related to the Y axis of the ground coordinate system
  • the C is a coefficient related to the Z axis of the ground coordinate system
  • the D is a constant term.
  • the direction of the Z axis of the ground coordinate system is downward; if C>0, the direction of the Z axis of the ground coordinate system is upward.
  • the processor 52 is configured to perform the following operations after determining the position information of the radar 51 relative to the surrounding environment according to the surrounding environment information: Post-processing is performed on the multiple sets of location information of the surrounding environment, and the post-processing is used to filter out abnormal location information in the multiple sets of location information.
  • the post-processing is filtering processing.
  • the filtering processing is any one of the following: median filtering processing, average filtering processing, or weighted average filtering processing.
  • the processor 52 when configured to perform the operation of acquiring information about the surrounding environment of the radar 51 based on the collected data of the radar 51, it is specifically configured to: use random data based on the collected data of the radar 51.
  • the sample-consistent RANSAC algorithm obtains the surrounding environment information of the radar 51.
  • each position information of the radar 51 relative to the ground includes at least one of the following: a pitch angle, a roll angle, and a height of the radar 51 relative to the ground.
  • the movable platform of this embodiment can be used to implement the technical solutions in the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • a person of ordinary skill in the art can understand that all or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a computer readable storage medium. When the program is executed, it executes the steps including the foregoing method embodiments; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种获取雷达(12,51)位置的方法、雷达(12,51)以及可移动平台(11),方法包括:通过雷达(12,51)对周围环境进行采样,以得到雷达(12,51)的采集数据(S201);根据雷达(12,51)的采集数据,获取雷达(12,51)的周围环境信息(S202);根据雷达(12,51)的周围环境信息,确定雷达(12,51)相对于周围环境的位置信息(S203)。使得获取雷达(12,51)位置的效率高且获取到的雷达(12,51)位置较准确。

Description

获取雷达位置的方法、雷达以及可移动平台 技术领域
本申请涉及可移动平台技术领域,尤其涉及一种获取雷达位置的方法、雷达以及可移动平台。
背景技术
在雷达实际使用过程中,往往需要知道雷达相对于地面的位置信息,以从雷达获取的周围环境的点云数据中,去除部分点云数据(比如地面点云),得到有用的点云数据。
目前获取雷达相对于地面的位置信息的方法为获取到双目相机相对于地面的位置信息后,根据双目相机相对于地面的位置信息、双目相机的外参和雷达的外参,得到雷达相对于地面的位置信息。
上述方法需要依赖于双目相机的深度,双目相机的深度是根据双目相机拍摄的图像获得的,而双目相机拍摄的图像依赖于光照条件、天气条件、图像纹理等,黑天或者光线不好或者图像纹理不好情况下得到的双目相机的深度不准确,进而会造成雷达相对于地面的位置信息不准确。而且双目相机的外参的精度还依赖于双目相机标定的精度,因此双目相机标定的误差的引入,也会使得最终获取的雷达相对于地面的位置信息不准确。
发明内容
本申请实施例提供一种获取雷达位置的方法、雷达以及可移动平台,获取雷达相对于地面的位置信息较准确。
第一方面,本申请实施例提供一种获取雷达位置的方法,包括:通过雷达对周围环境进行采样,以得到所述雷达的采集数据;根据所述雷达的采集数据,获取所述雷达的周围环境信息;根据所述周围环境信息,确定所述雷达相对于所述周围环境的位置信息。
第二方面,本申请实施例提供一种雷达,包括:数据采集装置,所述数据采集装置用于对周围环境进行采样,得到所述雷达的采集数据;处理器, 所述处理器与所述雷达通信连接,用于执行如下操作:从所述数据采集装置获取所述雷达的采集数据;根据所述雷达的采集数据,获取所述雷达的周围环境信息;根据所述周围环境信息,确定所述雷达相对于所述周围环境的位置信息。
第三方面,本身申请实施例提供一种可移动平台,包括:雷达,所述雷达用于对周围环境进行采样,得到所述雷达的采集数据;所述处理器与所述雷达通信连接,用于执行如下操作:从所述雷达获取所述雷达的采集数据;根据所述雷达的采集数据,获取所述雷达的周围环境信息;根据所述周围环境信息,确定所述雷达相对于所述周围环境的位置信息。
第四方面,本身申请实施例提供一种计算机可读存储介质,包括程序或指令,当所述程序或指令在计算机上运行时,第一方面以及第一方面任一可能的设计中所述的方法被执行。
本申请中无需先获取双目相机或者其它装置相对于周围环境的位置信息再将双目相机或者其它装置相对于周围环境的位置信息转换成雷达相对于周围环境的的位置信息,而是直接通过雷达自身采集的周围环境数据获取雷达相对于周围环境的位置信息,因此本申请获取雷达相对于周围环境的位置信息的效率高且准确。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的应用场景示意图;
图2为本申请实施例提供的获取雷达位置的方法的流程图一;
图3为本申请实施例提供的获取雷达位置的方法的流程图二;
图4为本申请实施例提供的雷达的结构示意图;
图5为本申请实施例提供的另一可移动平台的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为本申请实施例提供的应用场景示意图,参见图1,可移动平台11上搭载有一个或多个雷达12。例如,安装于诸如车前的雷达12可以用于探测车辆前方的情况,实现跟车、预警等功能,安装于诸如车后的雷达12可以用于探测车辆后方的情况,实现倒车、泊车指示等功能。雷达12可以设置于可移动平台11的任意合适位置,用于获取雷达的周围环境信息。
其中,可移动平台11可为车辆、无人机、机器人等。雷达12可为毫米波雷达、微波雷达、激光雷达等,本实施例中并不限制。
首先采用具体的实施例对本申请的获取雷达位置的方法进行说明。
图2为本申请实施例提供的获取雷达位置的方法的流程图一。本实施例的执行主体可为获取雷达位置的装置,获取雷达位置的装置为雷达的全部或部分,或者,获取雷达位置的装置为可移动平台的全部或部分,参见图2,本实施例的方法包括:
步骤S201、通过雷达对周围环境进行采样,以得到雷达的采集数据。
在一种方式中,雷达可向周围环境发出探测信号,探测信号被周围环境中的物体反射后产生回波信号,其中,雷达的采集数据可为回波信号,还可为对回波信号进行采样后得到的数据,比如雷达的采集数据可为周围环境的点云数据。
步骤S202、根据雷达的采集数据,获取雷达的周围环境信息。
其中,雷达的周围环境信息可包括雷达所在的地面,此外,雷达的周围环境信息还可以其它的环境信息,例如树木、墙壁等遮挡物信息,本实施例中并不限制。
在雷达的周围环境信息包括雷达所在的地面的情况下,根据雷达的采集数据,获取雷达的周围环境信息,可包括:根据雷达的采集数据,获取雷达所在的地面的信息。本实施例中,雷达所在的地面可为雷达所在的可移动平台所运行的地面。
可选地,可根据雷达的采集数据,采用随机样本一致性(random sample consensus,简称RANSAC)算法获取雷达的周围环境信息,使得本实施例中的获取雷达位置的方法实现效率高,运算速度快,可实现高效快速的雷达位置的获取。
步骤S203、根据雷达的周围环境信息,确定雷达相对于周围环境的位置信息。
其中,若雷达的周围环境信息为雷达所在的地面的信息,则可根据雷达的所在的地面的信息,确定雷达相对于地面的位置信息。雷达相对于地面的一组位置信息可包括如下中的至少一项:雷达相对于地面的俯仰角、翻滚角、高度。
可以理解的是,可通过雷达实时的对周围环境进行采样,因此,可得到多组雷达的采集数据,相应地,可得到雷达相对于周围环境的多组位置信息。
可选地,在得到雷达相对于周围环境的多组位置信息之后,还包括:对雷达相对于周围环境的多组位置信息进行后处理,后处理用于滤除多组位置信息中的异常位置信息。其中,后处理可为滤波处理。滤波处理可为以下中的任一个:中值滤波处理或均值滤波处理或加权平均滤波处理。
本实施例中可通过雷达自身采集的周围环境数据获取雷达相对于周围环境的位置信息,无需通过双目相机或者其它装置相对有地面的位置信息转换成雷达相对于地面的位置信息,避免了通过双目相机或者其它装置相对于地面的位置信息转换成雷达相对于地面的位置信息时误差的引入,获取雷达相对于地面的位置信息的效率高且准确。
图3为本申请实施例提供的获取雷达位置的方法的流程图二。参见图3,本实施例的方法包括:
步骤S301、通过雷达对周围环境进行采样,以得到雷达的采集数据。
其中,该步骤的具体实现参见图2所示的实施例中的步骤S201的具体实现,此处不再赘述。
步骤S302、根据雷达的采集数据,获取雷达所在的地面的方程。
其中,雷达的采集数据的含义同图2所示的实施例中的阐述,在此不赘述;进一步地,雷达所在的地面的方程即为图2所示的实施例中的雷达所在的地面的信息。
可选地,根据雷达的采集数据,采用RANSAC算法获取雷达所在的地面的方程。
其中,采用RANSAC算法获取雷达所在的地面的方程,具体可为:
在雷达采集的数据为周围环境的点云数据时,周围环境的点云数据中的每个数据可为一个三维坐标,每个三维坐标对应一个点。
(1)在周围环境的点云数据组成的集合{P}中随机抽取N个数据,根据N个数据拟合平面1:A 1x+B 1y+C 1z+D 1=0。获取N个数据所对应的点距离平面1的距离,统计N个数据所对应的点中与平面1的距离小于预设阈值的点(也可称为内值点(inliers))的数目E1。
(2)按照步骤1的方法重复执行预设次数,获取对应的内值点最多的一次拟合平面过程所得到的拟合平面A 0x+B 0y+C 0z+D 0=0。
(3)获取集合{P}中对应的点与平面A 0x+B 0y+C 0z+D 0=0之间的距离小于预设阈值的所有预选数据,根据所有预选数据重新拟合平面:得到平面Ax+By+Cz+D=0,平面Ax+By+Cz+D=0即为雷达所在的地面的平面方程。
在雷达所在的地面方程为Ax+By+Cz+D=0时,A为与地面坐标系的X轴相关的系数,B为与地面坐标系的Y轴相关的系数,C为与地面坐标系的Z轴相关的系数,D为常数项。该平面方程指示地面与三坐标轴的交点分别为S(-D/A,0,0),T(0,-D/B,0),U(0,0,-D/C)。其中,若C≤0,则地面坐标系的Z轴的朝向向下;若C>0,则地面坐标系的Z轴的朝向向上。
步骤S303、根据雷达所在的地面的平面方程的系数,获取雷达相对于地面的位置信息。
在一种方案中,根据雷达所在的地面的平面方程的系数,获取雷达相对于该地面的信息可通过步骤a1~a2实现:
a1、对雷达所在的地面的平面方程的系数进行预处理,得到预处理后的系数。
可选地,对雷达所在的地面的平面方程的系数进行预处理,得到预处理后的系数,包括:对该平面方程的系数进行归一化处理,得到归一化系数,归一化系数为预处理后的系数。
其中,若地面坐标系的Z轴的朝向向下,对该平面方程的系数进行归一化处理,得到归一化系数包括:对平面方程的系数进行归一化处理,得到归 一化处理后的系数,并获取归一化处理后的系数的相反数,归一化处理后的系数的相反数为归一化系数;或者,获取平面方程的系数的相反数,并对平面方程的系数的相反数进行归一化处理,得到归一化系数。可以理解的是,可以对该平面方程的所有系数或者部分系数进行归一化处理,得到预处理后的系数。
在一种方式中,可通过如下公式对该平面方程的与X轴相关的系数A进行归一化处理,得到第一系数A 1
若地面坐标系的Z轴的朝向向上:A 1=A/sqrt(A 2+B 2+C 2);
若地面坐标系的Z轴的朝向向下:A 1=-A/sqrt(A 2+B 2+C 2)。
其中,sqrt()表示平方根计算函数。
在一种方式中,可通过如下公式对该平面方程的与Y轴相关的系数B进行归一化处理,得到第二系数B 1
若地面坐标系的Z轴的朝向向上:B 1=B/sqrt(A 2+B 2+C 2);
若地面坐标系的Z轴的朝向向下:B 1=-B/sqrt(A 2+B 2+C 2)。
在一种方式中,可通过如下公式对该平面方程的与Z轴相关的系数C进行归一化处理,得到第三系数C 1
若地面坐标系的Z轴的朝向向上:C 1=C/sqrt(A 2+B 2+C 2);
若地面坐标系的Z轴的朝向向下:C 1=-C/sqrt(A 2+B 2+C 2)。
在一种方式中,可通过如下公式对该平面方程的常数项D进行归一化处理,得到第四系数D 1
若地面坐标系的Z轴的朝向向上:D 1=D/sqrt(A 2+B 2+C 2);
若地面坐标系的Z轴的朝向向下:D 1=-D/sqrt(A 2+B 2+C 2)。
a2、根据预处理后的系数,获取雷达相对于该地面的信息。
其中,预处理后的系数可包括:雷达所在的地面的平面方程中与地面坐标系的X轴相关的系数被预处理后的第一系数和/或该平面方程中与地面坐标系的Y轴相关的系数被预处理后的第二系数和/或与地面坐标系的Z轴相关的系数被预处理后的第三系数和/或该平面方程中常数项被预处理后的第四系数。
(1)若预处理后的系数包括:第一系数,则获取雷达相对于该地面的信息可包括:根据第一系数,获取雷达相对于地面的俯仰角。
在一种方式中,可通过如下公式获取雷达相对于地面的俯仰角P:
P=arccos(A 1)*180°/π–90°;
其中,arccos()表示反余弦函数,A 1为第一系数。
(2)若预处理后的系数包括第二系数和第三系数,则获取雷达相对于地面的位置信息可包括:根据第二系数和第三系数,获取雷达相对于地面的翻滚角。
在一种方式中,可通过如下公式计算雷达相对于地面的翻滚角R:
R=-arccos(B 1/sqrt(B 1 2+C 1 2))×180°/π+90°;
其中,B 1为第二系数,C 1为第三系数。
(3)若预处理后的系数包括第四系数,则获取雷达相对于地面的位置信息,包括:根据第四系数,获取雷达相对于地面的高度。
在一种方式中,可通过如下公式获取雷达相对于地面的高度H:
H=|D 1|。
其中,D 1为第四系数。
相应地,在得到雷达相对于地面的多组位置信息之后,还包括:对雷达相对于地面的多组位置信息进行后处理,后处理用于滤除多组位置信息中的异常位置信息。其中,后处理的含义参照图2所示的实施例中的阐述,此处不再赘述。
其中,雷达相对于地面的位置信息可用于获取地面的信息,比如地面的坡度,车辆转弯时车辆两侧地面的高度差,还可用于获取在该地面上的其它物体的高度等等。
本实施例获取雷达位置的方法使得获取雷达相对于地面的位置信息的效率高且准确。
以上对本申请所涉及的获取雷达位置的方法进行了说明,下面对本申请实施例涉及的装置进行说明。
图4为本申请实施例提供的雷达的结构示意图,如图4所示,本实施例的雷达包括:数据采集装置41和处理器42。
数据采集装置41,用于对周围环境进行采样,得到所述雷达的采集数据;处理器,所述处理器42与所述数据采集装置41连接,用于执行如下操作:从所述数据采集装置获取所述雷达的采集数据;根据所述雷达的采集数据, 获取所述雷达的周围环境信息;根据所述周围环境信息,确定所述雷达相对于所述周围环境的位置信息。
可选地,所述周围环境包括所述雷达所在的地面,所述处理器42在用于执行根据所述雷达的采集数据,获取所述雷达的周围环境信息时,具体用于:根据所述雷达的采集数据,获取所述雷达所在的地面的信息。
可选地,所述地面的信息包括所述地面的平面方程。
可选地,所述处理器42在用于执行根据所述周围环境信息,确定所述雷达相对于所述周围环境的位置信息的操作时,具体用于:根据所述地面的平面方程的系数,获取所述雷达相对于所述地面的位置信息。
可选地,所述处理器42在用于执行根据所述地面的平面方程的系数,获取所述雷达相对于所述地面的位置信息的操作时,具体用于:对所述地面的平面方程的系数进行预处理,得到预处理后的系数;根据所述预处理后的系数,获取所述雷达相对于所述地面的位置信息。
可选地,所述处理器42在用于执行对所述地面的平面方程的系数进行预处理,得到预处理后的系数的操作时,具体用于:对所述平面方程的系数进行归一化处理,得到归一化系数,所述归一化系数为所述预处理后的系数。
可选地,所述处理器42在用于执行对所述平面方程的系数进行归一化处理,得到归一化系数的操作时,具体用于:对所述平面方程的系数进行归一化处理,得到归一化处理后的系数,并获取归一化处理后的系数的相反数,归一化处理后的系数的相反数为所述归一化系数;或者,获取所述平面方程的系数的相反数,并对所述平面方程的系数的相反数进行归一化处理,得到所述归一化系数。
可选地,所述预处理后的系数包括:所述平面方程中与地面坐标系的X轴相关的系数被预处理后的第一系数;所述处理器42在用于执行获取所述雷达相对于所述地面的位置信息的操作时,具体用于:根据所述第一系数,获取所述雷达相对于所述地面的俯仰角。
可选地,所述预处理后的系数包括:所述平面方程中与地面坐标系的Y轴相关的系数被预处理后的第二系数和与所述地面坐标系的Z轴相关的系数被预处理后的第三系数;所述处理器42在用于执行获取所述雷达相对于所述地面的位置信息的操作时,具体用于:根据所述第二系数和所述第三系数, 获取所述雷达相对于所述地面的翻滚角。
可选地,所述根据所述预处理后的系数包括:所述平面方程中常数项被预处理后的第四系数;所述处理器42在用于执行获取所述雷达相对于所述地面的位置信息的操作时,具体用于:根据所述第四系数,获取所述雷达相对于所述地面的高度。
可选地,所述平面方程为:Ax+By+Cz+D=0;其中,所述A为与地面坐标系的X轴相关的系数,所述B为与所述地面坐标系的Y轴相关的系数,所述C为所述地面坐标系的Z轴相关的系数,所述D为常数项。
可选地,若C≤0,则所述地面坐标系的Z轴的朝向向下;若C>0,则所述地面坐标系的Z轴的朝向向上。
可选地,所述处理器42在用于执行根据所述周围环境信息,确定所述雷达相对于所述周围环境的位置信息之后,还用于执行如下操作:
对所述雷达相对于所述周围环境的多组位置信息进行后处理,所述后处理用于滤除所述多组位置信息中的异常位置信息。
可选地,所述后处理为滤波处理。
可选地,所述滤波处理为以下中的任一个:中值滤波处理或均值滤波处理或加权平均滤波处理。
可选地,所述处理器42在用于执行根据所述雷达的采集数据,获取所述雷达的周围环境信息的操作时,具体用于:根据所述雷达的采集数据,采用随机样本一致性RANSAC算法获取所述雷达的周围环境信息。
可选地,所述雷达相对于所述地面的每个位置信息包括以下至少一项:所述雷达相对于所述地面的俯仰角、翻滚角、高度。
本实施例的雷达,可以用于执行上述各方法实施例中的技术方案,其实现原理和技术效果类似,此处不再赘述。
本申请实施例还提供一种可移动平台,可移动平台上搭载有图4所示的实施例中的雷达。
图5为本申请实施例提供的另一可移动平台的结构示意图,本实施例的可移动平台,包括:雷达51和处理器52。
所述雷达51用于对周围环境进行采样,得到所述雷达51的采集数据;所述处理器52与所述雷达51通信连接,用于执行如下操作:从所述雷达51获取 所述雷达51的采集数据;根据所述雷达51的采集数据,获取所述雷达51的周围环境信息;根据所述周围环境信息,确定所述雷达51相对于所述周围环境的位置信息。
可选地,所述周围环境包括所述雷达51所在的地面,所述处理器52在用于执行根据所述雷达51的采集数据,获取所述雷达51的周围环境信息时,具体用于:根据所述雷达51的采集数据,获取所述雷达51所在的地面的信息。
可选地,所述地面的信息包括所述地面的平面方程。
可选地,所述处理器52在用于执行根据所述周围环境信息,确定所述雷达51相对于所述周围环境的位置信息的操作时,具体用于:根据所述地面的平面方程的系数,获取所述雷达51相对于所述地面的位置信息。
可选地,所述处理器52在用于执行根据所述地面的平面方程的系数,获取所述雷达51相对于所述地面的位置信息的操作时,具体用于:对所述地面的平面方程的系数进行预处理,得到预处理后的系数;根据所述预处理后的系数,获取所述雷达51相对于所述地面的位置信息。
可选地,所述处理器52在用于执行对所述地面的平面方程的系数进行预处理,得到预处理后的系数的操作时,具体用于:对所述平面方程的系数进行归一化处理,得到归一化系数,所述归一化系数为所述预处理后的系数。
可选地,所述处理器52在用于执行对所述平面方程的系数进行归一化处理,得到归一化系数的操作时,具体用于:对所述平面方程的系数进行归一化处理,得到归一化处理后的系数,并获取归一化处理后的系数的相反数,归一化处理后的系数的相反数为所述归一化系数;或者,获取所述平面方程的系数的相反数,并对所述平面方程的系数的相反数进行归一化处理,得到所述归一化系数。
可选地,所述预处理后的系数包括:所述平面方程中与地面坐标系的X轴相关的系数被预处理后的第一系数;所述处理器52在用于执行获取所述雷达51相对于所述地面的位置信息的操作时,具体用于:根据所述第一系数,获取所述雷达51相对于所述地面的俯仰角。
可选地,所述预处理后的系数包括:所述平面方程中与地面坐标系的Y轴相关的系数被预处理后的第二系数和与所述地面坐标系的Z轴相关的系数 被预处理后的第三系数;所述处理器52在用于执行获取所述雷达51相对于所述地面的位置信息的操作时,具体用于:根据所述第二系数和所述第三系数,获取所述雷达51相对于所述地面的翻滚角。
可选地,所述根据所述预处理后的系数包括:所述平面方程中常数项被预处理后的第四系数;所述处理器52在用于执行获取所述雷达51相对于所述地面的位置信息的操作时,具体用于:根据所述第四系数,获取所述雷达51相对于所述地面的高度。
可选地,所述平面方程为:Ax+By+Cz+D=0;
其中,所述A为与地面坐标系的X轴相关的系数,所述B为与所述地面坐标系的Y轴相关的系数,所述C为所述地面坐标系的Z轴相关的系数,所述D为常数项。
可选地,若C≤0,则所述地面坐标系的Z轴的朝向向下;若C>0,则所述地面坐标系的Z轴的朝向向上。
可选地,所述处理器52在用于执行根据所述周围环境信息,确定所述雷达51相对于所述周围环境的位置信息之后,还用于执行如下操作:对所述雷达51相对于所述周围环境的多组位置信息进行后处理,所述后处理用于滤除所述多组位置信息中的异常位置信息。
可选地,所述后处理为滤波处理。
可选地,所述滤波处理为以下中的任一个:中值滤波处理或均值滤波处理或加权平均滤波处理。
可选地,所述处理器52在用于执行根据所述雷达51的采集数据,获取所述雷达51的周围环境信息的操作时,具体用于:根据所述雷达51的采集数据,采用随机样本一致性RANSAC算法获取所述雷达51的周围环境信息。
可选地,所述雷达51相对于所述地面的每个位置信息包括以下至少一项:所述雷达51相对于所述地面的俯仰角、翻滚角、高度。
本实施例的可移动平台,可以用于执行上述各方法实施例中的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而 前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (52)

  1. 一种获取雷达位置的方法,其特征在于,包括:
    通过雷达对周围环境进行采样,以得到所述雷达的采集数据;
    根据所述雷达的采集数据,获取所述雷达的周围环境信息;
    根据所述周围环境信息,确定所述雷达相对于所述周围环境的位置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述周围环境包括所述雷达所在的地面,所述雷达的采集数据,获取所述雷达的周围环境信息,包括:
    所述雷达的采集数据,获取所述雷达所在的地面的信息。
  3. 根据权利要求2所述的方法,其特征在于,所述地面的信息包括所述地面的平面方程。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述周围环境信息,确定所述雷达相对于所述周围环境的位置信息,包括:
    根据所述地面的平面方程的系数,获取所述雷达相对于所述地面的位置信息。
  5. 根据权利要求4所述的方法,其特征在于,根据所述地面的平面方程的系数,获取所述雷达相对于所述地面的位置信息,包括:
    对所述地面的平面方程的系数进行预处理,得到预处理后的系数;
    根据所述预处理后的系数,获取所述雷达相对于所述地面的位置信息。
  6. 根据权利要求5所述的方法,其特征在于,所述对所述地面的平面方程的系数进行预处理,得到预处理后的系数,包括:
    对所述平面方程的系数进行归一化处理,得到归一化系数,所述归一化系数为所述预处理后的系数。
  7. 根据权利要求6所述的方法,其特征在于,所述对所述平面方程的系数进行归一化处理,得到归一化系数,包括:
    对所述平面方程的系数进行归一化处理,得到归一化处理后的系数,并获取归一化处理后的系数的相反数,归一化处理后的系数的相反数为所述归一化系数;或者,
    获取所述平面方程的系数的相反数,并对所述平面方程的系数的相反数进行归一化处理,得到所述归一化系数。
  8. 根据权利要求5-7任一项所述的方法,其特征在于,所述预处理后的 系数包括:所述平面方程中与地面坐标系的X轴相关的系数被预处理后的第一系数;所述获取所述雷达相对于所述地面的位置信息,包括:
    根据所述第一系数,获取所述雷达相对于所述地面的俯仰角。
  9. 根据权利要求5-7任一项所述的方法,其特征在于,所述预处理后的系数包括:所述平面方程中与地面坐标系的Y轴相关的系数被预处理后的第二系数和与所述地面坐标系的Z轴相关的系数被预处理后的第三系数;所述获取所述雷达相对于所述地面的位置信息,包括:
    根据所述第二系数和所述第三系数,获取所述雷达相对于所述地面的翻滚角。
  10. 根据权利要求5-7任一项所述的方法,其特征在于,所述根据所述预处理后的系数包括:所述平面方程中常数项被预处理后的第四系数;所述获取所述雷达相对于所述地面的位置信息,包括:
    根据所述第四系数,获取所述雷达相对于所述地面的高度。
  11. 根据权利要求3~7任一项所述的方法,其特征在于,所述平面方程为:Ax+By+Cz+D=0;
    其中,所述A为与地面坐标系的X轴相关的系数,所述B为与所述地面坐标系的Y轴相关的系数,所述C为所述地面坐标系的Z轴相关的系数,所述D为常数项。
  12. 根据权利要求11所述的方法,其特征在于,
    若C≤0,则所述地面坐标系的Z轴的朝向向下;
    若C>0,则所述地面坐标系的Z轴的朝向向上。
  13. 根据权利要求1-7任一项所述的方法,其特征在于,所述根据所述周围环境信息,确定所述雷达相对于所述周围环境的位置信息之后,还包括:
    对所述雷达相对于所述周围环境的多组位置信息进行后处理,所述后处理用于滤除所述多组位置信息中的异常位置信息。
  14. 根据权利要求13所述的方法,其特征在于,所述后处理为滤波处理。
  15. 根据权利要求14所述的方法,其特征在于,所述滤波处理为以下中的任一个:中值滤波处理或均值滤波处理或加权平均滤波处理。
  16. 根据权利要求1-7任一项所述的方法,其特征在于,根据所述雷达的采集数据,获取所述雷达的周围环境信息,包括:
    根据所述雷达的采集数据,采用随机样本一致性RANSAC算法获取所述雷达的周围环境信息。
  17. 根据权利要2所述的方法,其特征在于,所述雷达相对于所述地面的每个位置信息包括以下至少一项:所述雷达相对于所述地面的俯仰角、翻滚角、高度。
  18. 一种可移动平台,其特征在于,包括:
    雷达,所述雷达用于对周围环境进行采样,得到所述雷达的采集数据;
    所述处理器与所述雷达通信连接,用于执行如下操作:
    从所述雷达获取所述雷达的采集数据;
    根据所述雷达的采集数据,获取所述雷达的周围环境信息;
    根据所述周围环境信息,确定所述雷达相对于所述周围环境的位置信息。
  19. 根据权利要求18所述的可移动平台,其特征在于,所述周围环境包括所述雷达所在的地面,所述处理器在用于执行根据所述雷达的采集数据,获取所述雷达的周围环境信息时,具体用于:
    根据所述雷达的采集数据,获取所述雷达所在的地面的信息。
  20. 根据权利要求19所述的可移动平台,其特征在于,所述地面的信息包括所述地面的平面方程。
  21. 根据权利要求20所述的可移动平台,其特征在于,所述处理器在用于执行根据所述周围环境信息,确定所述雷达相对于所述周围环境的位置信息的操作时,具体用于:
    根据所述地面的平面方程的系数,获取所述雷达相对于所述地面的位置信息。
  22. 根据权利要求21所述的可移动平台,其特征在于,所述处理器在用于执行根据所述地面的平面方程的系数,获取所述雷达相对于所述地面的位置信息的操作时,具体用于:
    对所述地面的平面方程的系数进行预处理,得到预处理后的系数;
    根据所述预处理后的系数,获取所述雷达相对于所述地面的位置信息。
  23. 根据权利要求22所述的可移动平台,其特征在于,所述处理器在用于执行对所述地面的平面方程的系数进行预处理,得到预处理后的系数的操作时,具体用于:
    对所述平面方程的系数进行归一化处理,得到归一化系数,所述归一化系数为所述预处理后的系数。
  24. 根据权利要求23所述的可移动平台,其特征在于,所述处理器在用于执行对所述平面方程的系数进行归一化处理,得到归一化系数的操作时,具体用于:
    对所述平面方程的系数进行归一化处理,得到归一化处理后的系数,并获取归一化处理后的系数的相反数,归一化处理后的系数的相反数为所述归一化系数;或者,
    获取所述平面方程的系数的相反数,并对所述平面方程的系数的相反数进行归一化处理,得到所述归一化系数。
  25. 根据权利要求22-24任一项所述的可移动平台,其特征在于,所述预处理后的系数包括:所述平面方程中与地面坐标系的X轴相关的系数被预处理后的第一系数;所述处理器在用于执行获取所述雷达相对于所述地面的位置信息的操作时,具体用于:
    根据所述第一系数,获取所述雷达相对于所述地面的俯仰角。
  26. 根据权利要求22-24任一项所述的可移动平台,其特征在于,所述预处理后的系数包括:所述平面方程中与地面坐标系的Y轴相关的系数被预处理后的第二系数和与所述地面坐标系的Z轴相关的系数被预处理后的第三系数;所述处理器在用于执行获取所述雷达相对于所述地面的位置信息的操作时,具体用于:
    根据所述第二系数和所述第三系数,获取所述雷达相对于所述地面的翻滚角。
  27. 根据权利要求22-24任一项所述的可移动平台,其特征在于,所述根据所述预处理后的系数包括:所述平面方程中常数项被预处理后的第四系数;所述处理器在用于执行获取所述雷达相对于所述地面的位置信息的操作时,具体用于:
    根据所述第四系数,获取所述雷达相对于所述地面的高度。
  28. 根据权利要求20~24任一项所述的可移动平台,其特征在于,所述平面方程为:Ax+By+Cz+D=0;
    其中,所述A为与地面坐标系的X轴相关的系数,所述B为与所述地面 坐标系的Y轴相关的系数,所述C为所述地面坐标系的Z轴相关的系数,所述D为常数项。
  29. 根据权利要求28所述的可移动平台,其特征在于,
    若C≤0,则所述地面坐标系的Z轴的朝向向下;
    若C>0,则所述地面坐标系的Z轴的朝向向上。
  30. 根据权利要求18-24任一项所述的可移动平台,其特征在于,所述处理器在用于执行根据所述周围环境信息,确定所述雷达相对于所述周围环境的位置信息之后,还用于执行如下操作:
    对所述雷达相对于所述周围环境的多组位置信息进行后处理,所述后处理用于滤除所述多组位置信息中的异常位置信息。
  31. 根据权利要求30所述的可移动平台,其特征在于,所述后处理为滤波处理。
  32. 根据权利要求31所述的可移动平台,其特征在于,所述滤波处理为以下中的任一个:中值滤波处理或均值滤波处理或加权平均滤波处理。
  33. 根据权利要求18-24任一项所述的可移动平台,其特征在于,所述处理器在用于执行根据所述雷达的采集数据,获取所述雷达的周围环境信息的操作时,具体用于:
    根据所述雷达的采集数据,采用随机样本一致性RANSAC算法获取所述雷达的周围环境信息。
  34. 根据权利要19所述的可移动平台,其特征在于,所述雷达相对于所述地面的位置信息包括以下至少一项:所述雷达相对于所述地面的俯仰角、翻滚角、高度。
  35. 一种雷达,其特征在于,包括:
    数据采集装置,用于对周围环境进行采样,得到所述雷达的采集数据;
    处理器,所述处理器与所述数据采集装置通信连接,用于执行如下操作:
    从所述数据采集装置获取所述雷达的采集数据;
    根据所述雷达的采集数据,获取所述雷达的周围环境信息;
    根据所述周围环境信息,确定所述雷达相对于所述周围环境的位置信息。
  36. 根据权利要求35所述的雷达,其特征在于,所述周围环境包括所述 雷达所在的地面,所述处理器在用于执行根据所述雷达的采集数据,获取所述雷达的周围环境信息时,具体用于:
    根据所述雷达的采集数据,获取所述雷达所在的地面的信息。
  37. 根据权利要求36所述的雷达,其特征在于,所述地面的信息包括所述地面的平面方程。
  38. 根据权利要求37所述的雷达,其特征在于,所述处理器在用于执行根据所述周围环境信息,确定所述雷达相对于所述周围环境的位置信息的操作时,具体用于:
    根据所述地面的平面方程的系数,获取所述雷达相对于所述地面的位置信息。
  39. 根据权利要求38所述的雷达,其特征在于,所述处理器在用于执行根据所述地面的平面方程的系数,获取所述雷达相对于所述地面的位置信息的操作时,具体用于:
    对所述地面的平面方程的系数进行预处理,得到预处理后的系数;
    根据所述预处理后的系数,获取所述雷达相对于所述地面的位置信息。
  40. 根据权利要求39所述的雷达,其特征在于,所述处理器在用于执行对所述地面的平面方程的系数进行预处理,得到预处理后的系数的操作时,具体用于:
    对所述平面方程的系数进行归一化处理,得到归一化系数,所述归一化系数为所述预处理后的系数。
  41. 根据权利要求40所述的雷达,其特征在于,所述处理器在用于执行对所述平面方程的系数进行归一化处理,得到归一化系数的操作时,具体用于:
    对所述平面方程的系数进行归一化处理,得到归一化处理后的系数,并获取归一化处理后的系数的相反数,归一化处理后的系数的相反数为所述归一化系数;或者,
    获取所述平面方程的系数的相反数,并对所述平面方程的系数的相反数进行归一化处理,得到所述归一化系数。
  42. 根据权利要求39-41任一项所述的雷达,其特征在于,所述预处理后的系数包括:所述平面方程中与地面坐标系的X轴相关的系数被预处理后 的第一系数;所述处理器在用于执行获取所述雷达相对于所述地面的位置信息的操作时,具体用于:
    根据所述第一系数,获取所述雷达相对于所述地面的俯仰角。
  43. 根据权利要求39-41任一项所述的雷达,其特征在于,所述预处理后的系数包括:所述平面方程中与地面坐标系的Y轴相关的系数被预处理后的第二系数和与所述地面坐标系的Z轴相关的系数被预处理后的第三系数;所述处理器在用于执行获取所述雷达相对于所述地面的位置信息的操作时,具体用于:
    根据所述第二系数和所述第三系数,获取所述雷达相对于所述地面的翻滚角。
  44. 根据权利要求39-41任一项所述的雷达,其特征在于,所述根据所述预处理后的系数包括:所述平面方程中常数项被预处理后的第四系数;所述处理器在用于执行获取所述雷达相对于所述地面的位置信息的操作时,具体用于:
    根据所述第四系数,获取所述雷达相对于所述地面的高度。
  45. 根据权利要求37~41任一项所述的雷达,其特征在于,所述平面方程为:Ax+By+Cz+D=0;
    其中,所述A为与地面坐标系的X轴相关的系数,所述B为与所述地面坐标系的Y轴相关的系数,所述C为所述地面坐标系的Z轴相关的系数,所述D为常数项。
  46. 根据权利要求45所述的雷达,其特征在于,
    若C≤0,则所述地面坐标系的Z轴的朝向向下;
    若C>0,则所述地面坐标系的Z轴的朝向向上。
  47. 根据权利要求35-41任一项所述的雷达,其特征在于,所述处理器在用于执行根据所述周围环境信息,确定所述雷达相对于所述周围环境的位置信息之后,还用于执行如下操作:
    对所述雷达相对于所述周围环境的多组位置信息进行后处理,所述后处理用于滤除所述多组位置信息中的异常位置信息。
  48. 根据权利要求47所述的雷达,其特征在于,所述后处理为滤波处理。
  49. 根据权利要求48所述的雷达,其特征在于,所述滤波处理为以下中 的任一个:中值滤波处理或均值滤波处理或加权平均滤波处理。
  50. 根据权利要求35-41任一项所述的雷达,其特征在于,所述处理器在用于执行根据所述雷达的采集数据,获取所述雷达的周围环境信息的操作时,具体用于:
    根据所述雷达的采集数据,采用随机样本一致性RANSAC算法获取所述雷达的周围环境信息。
  51. 根据权利要36所述的雷达,其特征在于,所述雷达相对于所述地面的位置信息包括以下至少一项:所述雷达相对于所述地面的俯仰角、翻滚角、高度。
  52. 一种计算机可读存储介质,包括程序或指令,当所述程序或指令在计算机上运行时,权利要求1~17任一所述的方法被执行。
PCT/CN2019/111773 2019-10-17 2019-10-17 获取雷达位置的方法、雷达以及可移动平台 WO2021072720A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980034352.XA CN112166340B (zh) 2019-10-17 2019-10-17 获取雷达位置的方法、雷达以及可移动平台
PCT/CN2019/111773 WO2021072720A1 (zh) 2019-10-17 2019-10-17 获取雷达位置的方法、雷达以及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111773 WO2021072720A1 (zh) 2019-10-17 2019-10-17 获取雷达位置的方法、雷达以及可移动平台

Publications (1)

Publication Number Publication Date
WO2021072720A1 true WO2021072720A1 (zh) 2021-04-22

Family

ID=73859399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111773 WO2021072720A1 (zh) 2019-10-17 2019-10-17 获取雷达位置的方法、雷达以及可移动平台

Country Status (2)

Country Link
CN (1) CN112166340B (zh)
WO (1) WO2021072720A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1928589A (zh) * 2006-09-29 2007-03-14 清华大学 星载双基地雷达的杂波基带模拟信号产生方法
US20070253639A1 (en) * 2006-05-01 2007-11-01 The United States Of America As Represented By The Secretary Of The Navy Imagery analysis tool
CN107610176A (zh) * 2017-09-15 2018-01-19 斯坦德机器人(深圳)有限公司 一种基于Kinect的栈板动态识别与定位方法、系统及介质
CN109101690A (zh) * 2018-07-11 2018-12-28 深圳地平线机器人科技有限公司 用于渲染车辆自动驾驶模拟器中的场景的方法和装置
CN109814564A (zh) * 2019-01-29 2019-05-28 炬星科技(深圳)有限公司 目标对象的检测、避障方法、电子设备及存储介质
CN110197215A (zh) * 2019-05-22 2019-09-03 深圳市牧月科技有限公司 一种自主驾驶的地面感知点云语义分割方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104748746B (zh) * 2013-12-29 2017-11-03 刘进 智能机姿态测定及虚拟现实漫游方法
CN107340522B (zh) * 2017-07-10 2020-04-17 浙江国自机器人技术有限公司 一种激光雷达定位的方法、装置及系统
CN108376384B (zh) * 2018-03-12 2020-09-18 海信集团有限公司 视差图的矫正方法、装置及存储介质
CN110494863B (zh) * 2018-03-15 2024-02-09 辉达公司 确定自主车辆的可驾驶自由空间
CN109684921B (zh) * 2018-11-20 2022-05-27 吉林大学 一种基于三维激光雷达的道路边界检测与跟踪方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070253639A1 (en) * 2006-05-01 2007-11-01 The United States Of America As Represented By The Secretary Of The Navy Imagery analysis tool
CN1928589A (zh) * 2006-09-29 2007-03-14 清华大学 星载双基地雷达的杂波基带模拟信号产生方法
CN107610176A (zh) * 2017-09-15 2018-01-19 斯坦德机器人(深圳)有限公司 一种基于Kinect的栈板动态识别与定位方法、系统及介质
CN109101690A (zh) * 2018-07-11 2018-12-28 深圳地平线机器人科技有限公司 用于渲染车辆自动驾驶模拟器中的场景的方法和装置
CN109814564A (zh) * 2019-01-29 2019-05-28 炬星科技(深圳)有限公司 目标对象的检测、避障方法、电子设备及存储介质
CN110197215A (zh) * 2019-05-22 2019-09-03 深圳市牧月科技有限公司 一种自主驾驶的地面感知点云语义分割方法

Also Published As

Publication number Publication date
CN112166340A (zh) 2021-01-01
CN112166340B (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
Pandey et al. Automatic extrinsic calibration of vision and lidar by maximizing mutual information
CN112513679B (zh) 一种目标识别的方法和装置
CN107560592B (zh) 一种用于光电跟踪仪联动目标的精确测距方法
WO2021016854A1 (zh) 一种标定方法、设备、可移动平台及存储介质
CN111427028B (zh) 参数监测方法、装置、设备和存储介质
CN109828250B (zh) 一种雷达标定方法、标定装置及终端设备
CN112731307B (zh) 基于距离-角度联合估计的ratm-cfar检测器及检测方法
CN112967345B (zh) 鱼眼相机的外参标定方法、装置以及系统
CN113093128A (zh) 用于标定毫米波雷达的方法、装置、电子设备及路侧设备
WO2022126522A1 (zh) 物体识别方法、装置、可移动平台以及存储介质
CN112683228A (zh) 单目相机测距方法及装置
CN111798507A (zh) 一种输电线安全距离测量方法、计算机设备和存储介质
CN110992463B (zh) 一种基于三目视觉的输电导线弧垂的三维重建方法及系统
CN109871659B (zh) 一种超声波雷达的仿真方法及系统
CN117392241B (zh) 自动驾驶中的传感器标定方法、装置及电子设备
CN115097419A (zh) 一种激光雷达到imu的外参标定方法及装置
CN113177980B (zh) 用于自动驾驶的目标对象速度确定方法、装置及电子设备
WO2021072720A1 (zh) 获取雷达位置的方法、雷达以及可移动平台
Gao et al. Design and implementation of autonomous mapping system for ugv based on lidar
CN116692690A (zh) 一种吊车防撞预警方法、装置、设备及介质
CN112861887A (zh) 一种障碍物快速检测方法、系统及终端设备
CN112313535A (zh) 距离检测方法、距离检测设备、自主移动平台和存储介质
WO2022160879A1 (zh) 一种转换参数的确定方法和装置
CN114638898A (zh) 一种小型飞行目标检测方法和装置
Suzuki et al. Model-based vehicle position estimation using millimeter wave radar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949042

Country of ref document: EP

Kind code of ref document: A1