WO2021072679A1 - 自适应调整灯源亮度、色度、色温的控制方法 - Google Patents

自适应调整灯源亮度、色度、色温的控制方法 Download PDF

Info

Publication number
WO2021072679A1
WO2021072679A1 PCT/CN2019/111483 CN2019111483W WO2021072679A1 WO 2021072679 A1 WO2021072679 A1 WO 2021072679A1 CN 2019111483 W CN2019111483 W CN 2019111483W WO 2021072679 A1 WO2021072679 A1 WO 2021072679A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromaticity
light
color temperature
brightness
white
Prior art date
Application number
PCT/CN2019/111483
Other languages
English (en)
French (fr)
Inventor
肖高利
Original Assignee
肖高利
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肖高利 filed Critical 肖高利
Priority to PCT/CN2019/111483 priority Critical patent/WO2021072679A1/zh
Publication of WO2021072679A1 publication Critical patent/WO2021072679A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/08Controlling the distribution of the light emitted by adjustment of elements by movement of the screens or filters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources

Definitions

  • the invention relates to the technical field of LEDs, in particular to a control method for adaptively adjusting the brightness, chromaticity, and color temperature of a light source.
  • LED As a lighting source.
  • the light source has strict requirements on the color rendering index in lighting fixtures.
  • the LED lighting market is still in a chaotic state, and the color rendering index of each company is uneven.
  • LED blue light poses a threat to the health of the fundus and easily induces related ophthalmic diseases, which becomes a restrictive issue in the promotion and application of LED lighting products.
  • the color rendering index refers to the degree to which an object is illuminated by a certain light source and a standard light source (usually using sunlight as a standard light source) to restore its essential color. It can be simply understood as chromatic aberration, the lower the color rendering index, the greater the chromatic aberration. The higher the color rendering index is conducive to improving the ability to recognize colors. However, the color rendering index of most of the existing fluorescent lamps and low-quality LED light sources is concentrated around 70, that is, about 30% of the original color of the object is lost. Long-term living and learning under such a lighting environment will inevitably lead to a decline in color discrimination ability. And decline, weak color, poor color recognition ability, etc. appear.
  • the current white light LED technology mainly adopts the manufacturing process of blue chip coated with phosphor powder, which follows the light-emitting principle of fluorescent tube to a certain extent. Due to the lack of red and green light components, this technology is inherently opposite. The defect of insufficient color rendering index. In addition, the spectrum of this white light has obvious blue spectrum peaks between 400nm and 500nm. However, blue light in this range has the potential to damage the retina.
  • CN201020648895.7 discloses a small LED endoscope lighting source. Its purpose is to aim at some technical problems as an endoscope lighting white light LED. The main reason is that the light energy of the white light LED is in the blue range of 400-480nm. Very strong energy causes its color temperature to be generally above 7000K, while the general endoscope requires a light source color temperature of 6000 ⁇ 500K, which needs to supplement the problem of light energy in the yellow-green range, and provides a portable, long life, and cost-effective Low endoscope cold light source, and at the same time, the color temperature of the light source can be adjusted according to needs to realize the small LED endoscope illumination light source with multi-color temperature light source illumination.
  • the small LED endoscope illumination light source adopts the method of combining white LED and red and green LED, and the brightness and chromaticity of light are adjusted through the control circuit to realize the light source illumination with multi-color temperature;
  • the power source is connected with the light source after the power switch is switched on.
  • the control circuit is connected, the brightness adjustment switch and the chromaticity adjustment switch are input to the control circuit, and the control circuit is output to the light source;
  • the light source is a combination of white light and traffic lights;
  • the white light LED is located at the center of the circle, and red and green LED lights are placed on the circumference , Red and green LED lights are placed at intervals and the LED light sources of the same color are symmetrically distributed.
  • the technical problem solved by the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a practical situation where the adjustment according to the current has little effect on the chromaticity value and color temperature value of a single light source, so only the influence on the brightness is considered, although
  • the adjustment of the current of the monochromatic light source can neglect the change of the chromaticity and color temperature of the monochromatic light source itself, but the brightness, chromaticity, and color temperature of the mixed color light can be changed significantly after changing the current of each monochromatic light source; for the adjustment to obtain the set brightness and color
  • It is necessary to change the current of the red, green and white lights adjust the current of each light source according to the brightness, chromaticity and color temperature of the red, green, and white lights to achieve any ratio of mixing, as close to natural light as possible, and make the display
  • the color index is close to 100 to improve the color rendering index.
  • Another technical problem solved by the present invention is that the currents of the red, green and white lights can be controlled by each control circuit under the configuration of software to preset different color temperatures, and at the same time, different color temperature control switching can be completed.
  • the technical solution of the present invention is the control method for adaptively adjusting the brightness, chromaticity, and color temperature of the light source.
  • the special feature is that it includes the following steps:
  • Y r t a r ⁇ Y r ;
  • Y g t ag ⁇ Y g ;
  • Y w t a w ⁇ Y w ;
  • x and y represent the chromaticity value
  • Y represents the brightness value
  • C represents the color temperature value
  • represents the ratio value adjusted to the aforementioned theoretical brightness
  • r represents the red light
  • g represents the green light
  • w represents the white light
  • abs represents mathematics Calculate the absolute value.
  • the current gain described in step (6) is adjusted as i+ ⁇ i, when Y'-Y t ⁇ 0, ⁇ i is positive, and when Y'-Y t >0, ⁇ i is negative.
  • step (2) the calculation formula of the color temperature value in step (2) is:
  • x and y respectively represent the chromaticity value
  • ct represents the current color temperature value
  • te represents the intermediate calculation process value
  • the main control chip of the control circuit controls the currents of the red, green, and white lights through each control module under the configuration of software.
  • a filter is arranged in front of the white lamp to filter out part of the blue light.
  • the present invention can adjust the current of each light source according to the brightness, chromaticity and color temperature of the red light, green light and white light respectively to achieve any proportion of mixing, as close to natural light as possible, and make the color rendering index close to 100.
  • the main control chip of the present invention can control the currents of the red, green and white lights through each control circuit to preset different color temperatures under the configuration of software, and can complete different color temperature control switching at the same time.
  • Figure 1 is an exploded schematic diagram of the structure of the LED lamp of the present invention
  • Figure 2 is a schematic diagram of the structure assembly of the LED lamp of the present invention.
  • Figure 3 is a schematic cross-sectional view of the structure assembly of the LED lamp of the present invention.
  • Figure 4 is a circuit block diagram of the lamp holder control board of the present invention.
  • Fig. 5 is a schematic diagram of the selection of the optical filter of the present invention.
  • Fig. 6 is a schematic diagram of the selection of optical filters of the present invention.
  • Figure 7 is a white light LED spectrum curve of the present invention.
  • Fig. 8 is a flow chart of the present invention for adaptively adjusting the brightness, chromaticity and color temperature of LED red, green and white lights.
  • the LED lamp 4 with improved color rendering index includes a housing 6.
  • the housing 6 is sequentially provided with an LED lamp holder 1 control board 2 and a white lamp 41 installed on the control board 2
  • the green light 42 and the red light 43 are separated on both sides of the white light 41.
  • a filter 3 for filtering out part of the blue light is arranged in front of the white light 41, and a filter 3 is arranged in front of the filter 3 to cover the effective area of the LED light 4.
  • the filter 3 can be configured as a band-pass filter or a cut-off filter.
  • the method for increasing the color rendering index of the lamp source and changing the color temperature of the lamp source includes the following steps:
  • the white light 41 among the white light 41, the green light 42, and the red light 43 is filtered by the filter 3 to filter out the blue peaks, and then the red light 43 and the green light 42 are mixed with the red light 43 and the green light 42 through the scattering plate 5 to form a single mixed color light;
  • the control board 2 adjusts the current ratio based on the original brightness, chromaticity, and color temperature of the red light 43, green light 42, and white light 41 to achieve the purpose of adjusting the color mixing spectrum.
  • the method of adjusting the current of each LED lamp 4 includes adjusting the current of the LED lamp 4 to change the brightness, chromaticity, and color temperature of the current LED lamp 4, that is, obtaining the current brightness, chromaticity, and color temperature of the current LED lamp 4 through an optical instrument. Chromaticity and color temperature, adjust the current size of white light 41, green light 42, red light 43 before leaving the factory to achieve adaptive adjustment of the brightness, chromaticity and color temperature ratio of white light 41, green light 42, red light 43 to achieve the goal The brightness, chromaticity and color temperature of the mixed light.
  • x and y respectively represent the chromaticity value
  • ct represents the current color temperature value
  • te represents the intermediate calculation process value
  • the main control chip of the present invention controls the current of the red light, green light, and white light through each control module under the configuration of software, so as to realize the change of the brightness value, chromaticity value and color temperature value after mixing. .
  • a variety of color temperatures can be preset according to actual needs, and can be selected arbitrarily in actual use.
  • the common white light spectrum curve is shown in Figure 7.
  • the white light spectrum has obvious blue spectrum peaks between 400nm and 500nm.
  • the bandpass filter of Figure 5 and Figure 6 can be used or cut off. Filter to filter out the blue peaks, according to the center wavelength and half-wave width of the peak of the blue spectrum of the current white light, select a bandpass filter with a difference of ⁇ 5nm from the center wavelength and a half-wave width of ⁇ 5nm. Choose a cut-off filter with a cut-off wavelength of 400nm and a total transmission wavelength of 500nm.
  • control method for adaptively adjusting the brightness, chromaticity, and color temperature of the red, green, and white lights of the LED light includes the following steps:
  • Y r t a r ⁇ Y r ;
  • Y g t ag ⁇ Y g ;
  • Y w t a w ⁇ Y w ;
  • x and y represent the chromaticity value
  • Y represents the brightness value
  • C represents the color temperature value
  • represents the ratio value adjusted to the aforementioned theoretical brightness
  • r represents the red light
  • g represents the green light
  • w represents the white light
  • abs represents mathematics Calculate the absolute value.
  • the current gain described in step (6) is the adjustment of i+ ⁇ i, when Y'-Y t ⁇ 0, ⁇ i is positive, and when Y'-Y t > 0, ⁇ i is negative.
  • the calculation formula of the color temperature value in step (2) is:
  • x and y respectively represent the chromaticity value
  • ct represents the current color temperature value
  • te represents the intermediate calculation process value
  • the algorithm for improving the color rendering index of LED lights to approximate the natural spectrum includes:
  • Respectively are the ratio values to which the brightness should be adjusted under the current current
  • X T , Y T , Z T represent the target tristimulus value of the mixed color LED
  • X r , Y r , Z r represent the current tristimulus value of the red LED
  • X g , Y g , Z g represent the green LED
  • X w , Y w , Z w represent the current tristimulus value of the white LED
  • x T , y T represent the current color coordinates of the mixed color LED
  • x r , y r represent the current color coordinates of the red LED
  • X g , y g represent the current color coordinates of the green light LED
  • x w , y w represent the current color coordinates of the white light LED
  • the ratio of current brightness should be adjusted by formula (2), that is, a r ⁇ Y r , a g ⁇ Y g , a w ⁇ Y w are the chromaticity, brightness and color temperature of the target color mixture, respectively, red and green.
  • the brightness value to be adjusted to the white light theory at this time, it is necessary to adjust the current size by trial and error, use a spectrometer to collect the brightness value, and compare whether the brightness value obtained after adjusting the current is equal to the brightness value calculated by the algorithm, if not, continue to adjust
  • the current value repeats the process of comparing the brightness value collected by the spectrometer, and the successive approximation makes the brightness after the adjustment of the final current gain coincide with the brightness value that should be adjusted theoretically.
  • the calculation formula of the color temperature is:
  • x and y respectively represent the chromaticity value, ct represents the current color temperature value, and te represents the intermediate calculation process value;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种自适应调整灯源亮度、色度、色温的控制方法。包括:⑴系统初始化;⑵分别设置红灯(43)、绿灯(42)、白灯(41)的初始电流增益,光谱仪采集各灯珠的光谱曲线,得色度、亮度、色温;⑶依采集白灯(41)的光谱曲线,选用对应滤光片(3)置于白灯(41)前方;⑷采集红灯(43)、绿灯(42)及经滤光片(3)的白灯(41)的色度、亮度、色温值;⑸设置混灯后的亮度、色度、色温值,依提高LED灯显色指数逼近自然光谱的算法得红绿白灯的理论调整值;⑹设置电流增益;⑺采集当前电流增益下的红灯(43)、绿灯(42)及经过滤光片(3)的白灯(41)的色度、亮度、色温;⑻判断 abs((Yr '-Yr t)/Yr t)≤△e&&abs((Yg '-Yg t)/Yg t)≤△e&&abs((Yw '-Yw t)/Yw t)≤△e; ⑼若判断为否,则返回步骤⑹;⑽若判断为是,则当前电流增益满足要求i r+△i r、i g+△i g、i w+△i w

Description

自适应调整灯源亮度、色度、色温的控制方法 技术领域
本发明涉及LED技术领域,特别涉及一种自适应调整灯源亮度、色度、色温的控制方法。
背景技术
近年来,随着LED技术的不断发展,使LED作为照明光源成为可能,然而光源在照明灯具中对显色指数有着严格的要求。遗憾的是LED照明灯市场仍处于较为混乱的状态,各家显色指数参差不齐。另外LED也被证实LED蓝光会对眼底健康造成威胁,容易诱发相关眼科疾病,成为LED照明产品推广应用的限制性问题。
显色指数是指物体用某一光源照明和用标准光源(一般以太阳光做标准光源)照明时,其还原本质颜色的程度。可以简单理解为色差,显色指数越低,色差越大。显色指数越高有利于提高对色彩的识别能力。然而现有的大部分荧光灯和劣质LED光源的显色指数集中在70左右,即损失了物体本来颜色的30%左右,在这样的照明环境下长期生活和学习,必然会导致辨色能力的下降和衰退,出现色弱、辨色能力差等情况。
当前白光LED技术,主要采用蓝光芯片覆涂荧光粉的制作工艺,从一定程度上沿袭了荧光灯管的发光原理,这种技术由于红光和绿光成分的缺少,使之天性上就存在着对显色指数不足的缺陷。另外此种白光的光谱在400nm到500nm之间存在明显的蓝光光谱尖峰。然而此波段范围的蓝光存在对视网膜损伤的潜能。
综上所述,现有技术存在以下的不足:
⑴目前现有方案通过调整覆涂材料成本较高。
⑵且通过覆涂材料的调整,在使用过程中易受到温度的影响。
⑶有的通过增加红粉来提高R9等的显色指数,成本较高。
⑷通过增加红绿蓝灯珠的方案,不能有效降低蓝光的干扰,同时不能任意调整发光的亮度、色度达到提高显色指数的效果。
CN201020648895.7公开了一种小型LED内窥镜照明光源,它的目的是针对但作为内窥镜照明白光LED还存在一些技术性的问题,主要是白光LED的光能量在400-480nm的蓝光范围有很强的能量,导致其色温一般都在7000K以上,而一般内窥镜对光源色温的要求是6000±500K,需要补充黄绿范围的光能量的问题,而提供一种便携式、寿命长、成本低的内窥镜冷光源,同时可以根据需要调整光源的色温来实现多色温的光源照明的小型LED内窥镜照明光源。该技术方案:所述小型LED内窥镜照明光源,光源采用白光LED和红绿LED结合的方法,通过控制电路来调整光亮度和光色度,实现多色温的光源照明;电源通过电源开关后与 控制电路连接,亮度调节开关和色度调节开关输入到控制电路上,控制电路输出到光源上;所述光源为白光和红绿灯的组合;所述白光LED位于圆心,在圆周上安放红绿LED灯,红、绿LED灯间隔安放且颜色相同的LED光源对称分布。其不足之处表现在仅通过增加红绿来降低蓝光的能量比例,但是蓝光本身危害并未减弱,也即未采用其他技术来减少蓝光,同时未提及如何有效提高显色指数。
技术问题
本发明所解决的技术问题在于克服上述现有技术的不足而提供一种依据电流的调整对单个灯源的色度值及色温值影响很小的实际情况,故仅考虑对亮度的影响,虽然单色光源电流的调整对单色光源本身色度、色温改变可忽略,但是改变各单色光源的电流后混色光的亮度、色度、色温可显著变化;为调整得到设定的亮度、色度、色温,需要更改红绿白灯的电流大小,根据红灯、绿灯、白灯的亮度、色度、色温分别调整各光源的电流来实现任意比例的混合,尽可能的逼近自然光,使得显色指数逼近100以提高显色指数的自适应调整LED红绿白灯亮度、色度、色温的控制方法。本发明所解决的另一技术问题是根据实际需要可以在软件的配置下通过各控制电路分别控制红绿白灯的电流预设不同的色温,同时可以完成不同的色温控制切换。
技术解决方案
本发明的技术解决方案是所述自适应调整灯源亮度、色度、色温的控制方法,其特殊之处在于,包括以下步骤:
⑴系统启动,初始化;
⑵分别设置红、绿、白灯的初始电流增益i r、i g、i w,光谱仪采集各灯珠的光谱曲线,得到灯珠的色度、亮度、色温值;
⑶根据采集的白色灯的光谱曲线,选用对应滤光片置于白色灯前方;
⑷采集红灯、绿灯及经过滤光片的白灯的色度、亮度、色温值x r、y r、Y r、C r、x g、y g、Y g、C g、x w、y w、Y w、C w
⑸设置混灯后的亮度、色度、色温值,根据红绿白灯比例调整提高LED灯显色指数逼近自然光谱的算法计算得到红绿白灯的理论调整值,
Y r t=a r×Y r;Y g t=a g×Y g;Y w t=a w×Y w
⑹设置电流增益为i r+△i r、i g+△i g、i w+△i w
⑺采集当前电流增益下的红灯、绿灯及经过滤光片的白灯的色度、亮度、色温值x r'、y r'、Y r'、C r'、x g'、y g'、Y g'、C g'、x w'、y w'、Y w'、C w';
⑻判断abs((Y r'-Y r t)/Y r t)≤△e&&abs((Y g'-Y g t)/Y g t)≤△e&&abs((Y w'-Y wt)/Y wt)≤△e;
⑼若判断为否,则返回步骤⑹;
⑽若判断为是,则当前电流增益i r+△i r、i g+△i g、i w+△i w满足要求;
式中:x、y分别代表色度值,Y代表亮度值,C代表色温值;α代表前述理论亮度调整到的比例值;r代表红灯;g代表绿灯;w代表白灯;abs代表数学计算取绝对值。
作为优选:步骤⑹所述的电流增益为i+△i的调整,当Y'-Y t<0时△i取正,当Y'-Y t>0时△i取负。
作为优选:步骤⑵所述色温值的计算公式为:
te=(x-0.332)/(y-0.1858)                                            (3)
ct=5514.31-437*te*te*te+3601*te*te-6831*te                      (4)
式中,x、y分别代表色度值,ct代表当前色温值,te代表中间计算过程值;
由公式⑶、公式⑷可知,改变各单色LED灯的电流比例,将改变混色后的色度值,色度值的改变将改变混色后的色温。
作为优选:控制电路的主控芯片在软件的配置下通过各控制模块分别控制红、绿、白灯的电流。
有益效果
⑴本发明在白灯前面设置有滤光片用以滤除部分蓝光。
⑵本发明可根据红灯、绿灯、白灯的亮度、色度、色温进行分别调整各光源的电流来实现任意比例的混合,尽可能的逼近自然光,使得显色指数逼近100。
⑶本发明的主控芯片可以在软件的配置下通过各控制电路分别控制红绿白灯的电流预设不同的色温,同时可以完成不同的色温控制切换。
附图说明
图1是本发明LED灯的结构分解示意图;
图2是本发明LED灯的结构装配示意图;
图3是本发明LED灯的结构装配剖面示意图;
图4是本发明灯头控制板的电路框图;
图5是本发明滤光片选配示意图;
图6是本发明滤光片选配示意图;
图7是本发明白光LED光谱曲线;
图8是本发明自适应调整LED红绿白灯亮度、色度、色温控制流程图。
主要组件符号说明:
LED灯头1              LED控制板2            滤光片3
LED灯4                白灯41                绿灯42
红灯43                散射板5               灯壳6
本发明的最佳实施方式
本发明下面将结合附图作进一步详述:
请参阅图1至图3所示,该提高显色指数的LED灯4,包括壳体6,所述壳体6内依次设有LED灯头1控制板2、控制板2上安装的白灯41、分立在白灯41两边的绿灯42、红灯43,所述白灯41前方设置用以滤除部分蓝光的滤光片3,所述滤光片3前方设置一覆盖LED灯4有效面积的散射板5。滤光片3可设置为带通滤光片或截止滤光片。
请参阅图1至图4所示,所述提高显色指数的灯源及改变灯源色温的方法,包括以下步骤:
⑴白灯41、绿灯42、红灯43中的白灯41经过滤光片3过滤掉蓝光的尖峰后,与红灯43和绿灯42经过散射板5实现混色目的形成单一混色光线;
⑵控制板2基于红灯43、绿灯42、白灯41原有的亮度、色度、色温进行电流比例调整达到调整混色光谱的目的。
本实施例中,调整各LED灯4电流的方法包括,调整LED灯4电流以改变当前LED灯4的亮度、色度及色温,即,通过光学仪器获取当前LED灯4当前电流下的亮度、色度及色温,在出厂前调整白灯41、绿灯42、红灯43的电流大小来达到自适应地调整白灯41、绿灯42、红灯43的亮度、色度、色温配比,实现目标混光的亮度、色度及色温。
本实施例中,可预设多种混色后的目标亮度值、色度值及色温值,色温的计算公式为:
te=(x-0.332)/(y-0.1858)
ct=5514.31-437*te*te*te+3601*te*te-6831*te
式中,x、y分别代表色度值,ct代表当前色温值,te代表中间计算过程值;
改变各单色LED灯4的电流比例,将改变混色后的色度值,色度值的改变将改变混色后的色温;故能根据需要进行色温配置。
请参阅图4所示,本发明的主控芯片在软件的配置下,通过各控制模块分别控制红灯、绿灯、白灯的电流,实现改变混灯后的亮度值、色度值和色温值。同时可以根据实际需要预设多种色温,实际使用时可任意选择。
请参阅图5至图7所示,常见的白色灯光谱曲线如图7白光的光谱在400nm到500nm之间存在明显的蓝光光谱尖峰,可采用图5和图6的带通滤光片或者截止滤光片来滤除蓝光尖峰,根据当前白灯的蓝色光谱段尖峰的中心波长及半波宽度,选择与其中心波长相差≤5nm,半波宽度也≤5nm的带通滤光片,也可以选择截止波长为400nm且全透过波长为500nm的截止滤光片。
请参阅图8所示,所述自适应调整LED灯的红绿白灯亮度、色度、色温的控制方法,包括以下步骤:
⑴系统启动,初始化;
⑵分别设置红、绿、白灯的初始电流增益i r、i g、i w,光谱仪采集各灯珠的光谱曲线,得到灯珠的色度、亮度、色温值;
⑶根据采集的白色灯的光谱曲线,选用对应滤光片置于白色灯前方;
⑷采集红灯、绿灯及经过滤光片的白灯的色度、亮度、色温值x r、y r、Y r、C r、x g、y g、Y g、C g、x w、y w、Y w、C w
⑸设置混灯后的亮度、色度、色温值,根据红绿白灯比例调整提高LED灯显色指数逼近自然光谱的算法计算得到红绿白灯的理论调整值,
Y r t=a r×Y r;Y g t=a g×Y g;Y w t=a w×Y w
⑹设置电流增益为i r+△i r、i g+△i g、i w+△i w
⑺采集当前电流增益下的红灯、绿灯及经过滤光片的白灯的色度、亮度、色温值x r'、y r'、Y r'、C r'、x g'、y g'、Y g'、C g'、x w'、y w'、Y w'、C w';
⑻判断abs((Y r'-Y r t)/Y r t)≤△e&&abs((Y g'-Y g t)/Y g t)≤△e&&abs((Y w'-Y wt)/Y wt)≤△e;
⑼若判断为否,则返回步骤⑹;
⑽若判断为是,则当前电流增益i r+△i r、i g+△i g、i w+△i w满足要求;
式中:x、y分别代表色度值,Y代表亮度值,C代表色温值;α代表前述理论亮度调整到的比例值;r代表红灯;g代表绿灯;w代表白灯;abs代表数学计算取绝对值。
本实施例中,步骤⑹所述的电流增益为i+△i的调整,当Y'-Y t<0时△i取正,当Y'-Y t>0时△i取负。
本实施例中,步骤⑵所述色温值的计算公式为:
te=(x-0.332)/(y-0.1858)   (3)
ct=5514.31-437*te*te*te+3601*te*te-6831*te  (4)
式中,x、y分别代表色度值,ct代表当前色温值,te代表中间计算过程值;
由公式⑶、公式⑷可知,改变各单色LED灯的电流比例,将改变混色后的色度值,色度值的改变将改变混色后的色温。
请参阅图1至图8所示,所述提高LED灯显色指数逼近自然光谱的算法,包括:
为调整得到设定的亮度、色度、色温,需要更改红灯、绿灯、白灯的电流大小,以下所示为亮度调整算法:
Figure PCTCN2019111483-appb-000001
其中:
Figure PCTCN2019111483-appb-000002
Figure PCTCN2019111483-appb-000003
分别为在当前电流下亮度应该调整到的比例值;
式中:用X T、Y T、Z T表示混色LED的目标三刺激值,X r、Y r、Z r表示红灯LED的当前三刺激值,X g、Y g、Z g表示绿色LED的当前三刺激值,X w、Y w、Z w表示白灯LED的当前三刺激值,x T、y T表示混色LED的当前色坐标,x r、y r表示红灯LED的当前色坐标,x g、y g表示绿灯LED的当前色坐标,x w、y w表示白灯LED的当前色坐标;
经整理可得应该调整到的当前亮度的比例:
Figure PCTCN2019111483-appb-000004
通过公式(2)式即可得到应该调整当前亮度的比例,即a r×Y r,a g×Y g,a w×Y w分别为达到目标混色的色度、亮度色温各单独红、绿、白灯理论要调整到的亮度值;此时需要采用试凑法调整电流大小,采用光谱仪采集亮度值,对比调整电流后得到的亮度值是否与算法计算的亮度值相等,如果不相等继续调整电流值重复光谱仪采集亮度值做比对的过程,逐次逼近使得最终电流增益的调整后亮度与理论应该调整到的亮度值吻合。
本实施例中,所述色温的计算公式为:
te=(x-0.332)/(y-0.1858)    (3)
ct=5514.31-437*te*te*te+3601*te*te-6831*te  (4)
式中:x、y分别代表色度值,ct代表当前色温值,te代表中间计算过程值;
由公式⑴至公式⑷可知,改变各单色LED灯的电流比例,将改变混色后的色度值,色度值的改变将改变混色后的色温;故能根据需要预设不同的色温。
工业实用性
以上所述仅为本发明的较佳实施例,凡依本发明权利要求范围所做的均等变化与修饰,皆应属本发明权利要求的涵盖范围。

Claims (4)

  1. 一种自适应调整灯源亮度、色度、色温的控制方法,其特征在于,包括以下步骤:
    ⑴系统启动,初始化;
    ⑵分别设置红、绿、白灯的初始电流增益i r、i g、i w,光谱仪采集各灯珠的光谱曲线,得到灯珠的色度、亮度、色温值;
    ⑶根据采集的白色灯的光谱曲线,选用对应滤光片置于白色灯前方;
    ⑷采集红灯、绿灯及经过滤光片的白灯的色度、亮度、色温值x r、y r、Y r、C r、x g、y g、Y g、C g、x w、y w、Y w、C w
    ⑸设置混灯后的亮度、色度、色温值,根据红绿白灯比例调整提高LED灯显色指数逼近自然光谱的算法计算得到红绿白灯的理论调整值,
    Y r t=a r×Y r;Y g t=a g×Y g;Y w t=a w×Y w
    ⑹设置电流增益为i r+△i r、i g+△i g、i w+△i w
    ⑺采集当前电流增益下的红灯、绿灯及经过滤光片的白灯的色度、亮度、色温值x r'、y r'、Y r′、C r′、x g′、y g′、Y g′、C g′、x w′、y w′、Y w′、C w′;
    ⑻判断abs((Y r'-Y r t)/Y r t)≤△e&&abs((Y g′-Y g t)/Y g t)≤△e&&abs((Y w'-Y w t)/Y w t)≤△e;
    ⑼若判断为否,则返回步骤⑹;
    ⑽若判断为是,则当前电流增益i r+△i r、i g+△i g、i w+△i w满足要求;
    式中:x、y分别代表色度值,Y代表亮度值,C代表色温值;α代表前述理论亮度调整到的比例值;r代表红灯;g代表绿灯;w代表白灯;abs代表数学计算取绝对值。
  2. 根据权利要求1所述自适应调整LED红绿白灯亮度、色度、色温的控制方法,其特征在于,步骤⑹所述的电流增益为i+△i的调整,当Y'-Y t<0时△i取正,当Y'-Y t>0时△i取负。
  3. 根据权利要求1所述自适应调整LED红绿白灯亮度、色度、色温的控制方法,其特征在于,步骤⑵所述色温值的计算公式为:
    te=(x-0.332)/(y-0.1858)        (3)
    ct=5514.31-437*te*te*te+3601*te*te-6831*te      (4)
    式中,x、y分别代表色度值,ct代表当前色温值,te代表中间计算过程值;
    由公式⑶、公式⑷可知,改变各单色LED灯的电流比例,将改变混色后的色度值,色度值的改变将改变混色后的色温。
  4. 根据权利要求1所述自适应调整LED红绿白灯亮度、色度、色温的控制方法,其特征在于,控制电路的主控芯片在软件的配置下通过各控制模块分别控制红、绿、白灯的电流。
PCT/CN2019/111483 2019-10-16 2019-10-16 自适应调整灯源亮度、色度、色温的控制方法 WO2021072679A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111483 WO2021072679A1 (zh) 2019-10-16 2019-10-16 自适应调整灯源亮度、色度、色温的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111483 WO2021072679A1 (zh) 2019-10-16 2019-10-16 自适应调整灯源亮度、色度、色温的控制方法

Publications (1)

Publication Number Publication Date
WO2021072679A1 true WO2021072679A1 (zh) 2021-04-22

Family

ID=75538211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111483 WO2021072679A1 (zh) 2019-10-16 2019-10-16 自适应调整灯源亮度、色度、色温的控制方法

Country Status (1)

Country Link
WO (1) WO2021072679A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113692083A (zh) * 2021-08-30 2021-11-23 深圳市颖色摄影器材有限公司 一种自适应精准合光方法及其系统
WO2024021927A1 (zh) * 2022-07-25 2024-02-01 上海芯龙光电科技股份有限公司 一种基于rgbwcla七色合一的led全光谱色彩管理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7453195B2 (en) * 2004-08-02 2008-11-18 Lumination Llc White lamps with enhanced color contrast
CN102141210A (zh) * 2010-02-01 2011-08-03 深圳市光峰光电技术有限公司 高显色指数高亮度照明设备及其实现多色温调节的方法
CN102548112A (zh) * 2010-12-31 2012-07-04 上海广茂达光艺科技股份有限公司 混合光实现方法
CN102858054A (zh) * 2012-07-11 2013-01-02 深圳市绎立锐光科技开发有限公司 固态发光装置、固态发光光源、照明装置及其控制方法
CN103925533A (zh) * 2014-04-29 2014-07-16 上海亚明照明有限公司 一种婴幼儿护眼光源配光方法及可调光婴幼儿护眼灯
CN108463024A (zh) * 2018-02-08 2018-08-28 深圳万源光引科技有限公司 多色led混光照明方法及照明系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7453195B2 (en) * 2004-08-02 2008-11-18 Lumination Llc White lamps with enhanced color contrast
CN102141210A (zh) * 2010-02-01 2011-08-03 深圳市光峰光电技术有限公司 高显色指数高亮度照明设备及其实现多色温调节的方法
CN102548112A (zh) * 2010-12-31 2012-07-04 上海广茂达光艺科技股份有限公司 混合光实现方法
CN102858054A (zh) * 2012-07-11 2013-01-02 深圳市绎立锐光科技开发有限公司 固态发光装置、固态发光光源、照明装置及其控制方法
CN103925533A (zh) * 2014-04-29 2014-07-16 上海亚明照明有限公司 一种婴幼儿护眼光源配光方法及可调光婴幼儿护眼灯
CN108463024A (zh) * 2018-02-08 2018-08-28 深圳万源光引科技有限公司 多色led混光照明方法及照明系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113692083A (zh) * 2021-08-30 2021-11-23 深圳市颖色摄影器材有限公司 一种自适应精准合光方法及其系统
WO2024021927A1 (zh) * 2022-07-25 2024-02-01 上海芯龙光电科技股份有限公司 一种基于rgbwcla七色合一的led全光谱色彩管理系统

Similar Documents

Publication Publication Date Title
WO2016124106A1 (zh) 一种高显色指数的led光源模组及led灯具
JP6893786B2 (ja) 色の嗜好性が向上した光源
CN105723146B (zh) 用于更好的视觉敏锐度的光谱增强的白光
TWI479196B (zh) 一種發光二極體陣列的混光方法
CN107432069A (zh) 用于产生表示目标自然光的光的系统和方法
CN110719661B (zh) 提高灯源显色指数逼近自然光谱的算法
JP6032475B2 (ja) 照明装置
CN104918369B (zh) 基于led光源的功能照明系统
CN105042365A (zh) 高光色品质的白光led照明系统及其设计方法
CN109982478B (zh) 白光发光二极管的调光方法
WO2021072679A1 (zh) 自适应调整灯源亮度、色度、色温的控制方法
CN109862659B (zh) 色温调节方法及灯具
WO2021072677A1 (zh) 提高灯源显色指数逼近自然光谱的算法
WO2021072678A1 (zh) 提高显色指数的灯源及改变色温的方法
CN104524682A (zh) 一种基于人体睡眠生理节律的led灯具控制系统
AU2020104402A4 (en) High-efficiency two-tone dimming led street lamp based on mesopic vision
CN110621106B (zh) 自适应调整灯源亮度、色度、色温的控制方法
CN104948948B (zh) 应用衍射元件的双蓝光芯片激发色温可调led照明灯具
CN206708740U (zh) 光源模组和照明装置
CN210740006U (zh) 提高显色指数的灯源
WO2020027783A1 (en) Systems and methods for providing tunable warm white light
CN208924541U (zh) 可调节色温的led灯具
CN107654901A (zh) 一种自然光谱模组
CN110686172A (zh) 提高显色指数的灯源及改变色温的方法
CN109856894A (zh) 高显led影视拍摄灯及其色温调节方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949239

Country of ref document: EP

Kind code of ref document: A1