WO2021071336A1 - 시선 검출 기반의 스마트 안경 표시 장치 - Google Patents

시선 검출 기반의 스마트 안경 표시 장치 Download PDF

Info

Publication number
WO2021071336A1
WO2021071336A1 PCT/KR2020/013860 KR2020013860W WO2021071336A1 WO 2021071336 A1 WO2021071336 A1 WO 2021071336A1 KR 2020013860 W KR2020013860 W KR 2020013860W WO 2021071336 A1 WO2021071336 A1 WO 2021071336A1
Authority
WO
WIPO (PCT)
Prior art keywords
gaze
distance
display
smart glasses
overlay image
Prior art date
Application number
PCT/KR2020/013860
Other languages
English (en)
French (fr)
Inventor
인성일
임승준
Original Assignee
주식회사 메디씽큐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메디씽큐 filed Critical 주식회사 메디씽큐
Priority to CN202080070346.2A priority Critical patent/CN114615947A/zh
Priority to EP20875187.5A priority patent/EP4043943A4/en
Priority to US17/767,638 priority patent/US20230258949A1/en
Priority to JP2022521335A priority patent/JP2022551642A/ja
Publication of WO2021071336A1 publication Critical patent/WO2021071336A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/462Displaying means of special interest characterised by constructional features of the display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00216Electrical control of surgical instruments with eye tracking or head position tracking control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/061Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/365Correlation of different images or relation of image positions in respect to the body augmented reality, i.e. correlating a live optical image with another image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • A61B2090/502Headgear, e.g. helmet, spectacles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0866Detecting organic movements or changes, e.g. tumours, cysts, swellings involving foetal diagnosis; pre-natal or peri-natal diagnosis of the baby
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye

Definitions

  • the present invention relates to a smart glasses display device based on gaze detection, and more particularly, to a gaze detection based smart glasses display device that detects a user's gaze and provides a natural overlay image according to the gaze direction through smart glasses. .
  • VR Virtual Reality
  • AR Augmented Reality
  • MR Mixed Reality
  • VR, AR and MR technologies using smart glasses are emerging as an alternative to nurturing medical experts and psychological treatment to respond to the increasing demand for medical services such as psychological diseases caused by the advent of the aging age and intensifying competition.
  • VR, AR, and MR have been extended to all areas of medical care, such as surgery, treatment, and rehabilitation, away from the conventionally limited use for trauma treatment.
  • training training is possible by implementing virtual patients or organs, and medical staff can make appropriate plans before surgery and test them in advance.
  • the present invention provides an innovative display method that prevents the doctor's gaze from dispersing during diagnosis by displaying at a desired point in time and at a desired point in a medical device through equipment such as AR, MR, and VR.
  • the problem to be solved by the present invention is to detect the user's gaze and display an image or image containing relevant information in a specific area that intuitively feels comfortable, so that the user can more accurately grasp the patient's affected area or the inside of the body through a virtual object. It is to provide a smart glasses display device based on gaze detection.
  • the smart glasses display device based on gaze detection irradiates a laser to an eyeball including a fundus to determine a first distance from the fundus and a control from the surface of the eyeball.
  • a plurality of distance measuring units for measuring the distance A gaze detector configured to detect a gaze direction based on the first distance and the second distance;
  • An image acquisition unit that acquires an overlay image;
  • a screen synthesizing unit for recognizing a gaze matching object within a certain range in the gaze direction and calculating a position to display the overlay image at a designated location according to the gaze matching object;
  • a display unit in the form of smart glasses to display the overlay image at the calculated position.
  • the line of sight detector may sense the position of the pupil based on information on whether the distance measured by each of the plurality of distance measuring units is a first distance or a second distance.
  • the gaze detection unit may detect a gaze direction by sensing a direction toward the pupil from the eyeball based on a first distance measured by some of the plurality of distance measurement units.
  • At least a portion of the plurality of distance measuring units may be disposed along a support for supporting the display unit.
  • the display unit provides a screen including a circular guide area
  • the screen combining unit detects the user's gaze direction when the gaze moves along the provided guide area, and based on the gaze direction detected according to the guide area.
  • a reference value for gaze correction can be obtained.
  • the line of sight correction reference value may include an eccentricity, flatness, or a focal position of an ellipse.
  • the screen synthesizing unit may sense light irradiated by the gaze matching object and extract a reference point for displaying the overlay image.
  • the screen synthesizing unit may extract a point spaced apart from the reference point by a predetermined interval as a screen boundary point.
  • the display unit may display the overlay image in a 3D stereoscopic shape.
  • the display unit may include a microdisplay, a lens, a panel, and a splitter.
  • the gaze detection-based smart glasses display method irradiates a laser to the eyeball including the fundus by a plurality of distance measuring units to determine a first distance from the fundus and a second distance from the surface of the eyeball.
  • the position of the pupil may be sensed based on information on whether a distance measured by each of the plurality of distance measuring units is a first distance or a second distance.
  • the direction of the eyeball may be detected by sensing a direction in which the pupil is directed from the eyeball based on a first distance measured by some of the plurality of distance measuring units.
  • the method for displaying gaze detection-based smart glasses includes the steps of: providing, by the display unit, a screen including a circular guide area; When the user's gaze moves along the provided guide area, detecting the user's gaze direction and obtaining a gaze correction reference value based on the detected gaze direction according to the guide area.
  • the line of sight correction reference value may include an eccentricity, flatness, or a focal position of an ellipse.
  • the step of calculating the display position may include sensing light irradiated by the eye-catching object and extracting a reference point for displaying the overlay image.
  • the calculating of the display position may further include extracting a point spaced apart from the reference point as a screen boundary point.
  • the displaying step may include displaying the overlay image in a 3D stereoscopic shape.
  • the computer-readable recording medium irradiates a laser to the eyeball including the fundus by a plurality of distance measuring units to determine a first distance from the fundus and a second distance from the surface of the eyeball. It measures, detects a gaze direction based on the first distance and the second distance, acquires an overlay image, recognizes a gaze target within a certain range in the gaze direction, and a designated position according to the gaze target Commands for displaying the overlay image at the calculated position may be stored by calculating a position so that the overlay image can be displayed on a display unit in the form of smart glasses.
  • the present invention can provide a device capable of displaying necessary information without dispersing the doctor's gaze at a desired viewpoint and a desired point by using VR, AR, and MR.
  • the present invention has an effect of displaying an augmented reality image that moves based on the gaze movement in a specific area that the user feels intuitively and comfortably, so that the user can grasp the affected part of the patient or the inside of the body through a virtual object with concentration without dispersing the gaze.
  • FIG. 1 is an exemplary view showing a display process of smart glasses according to an embodiment of the present invention.
  • FIG. 2A is a schematic diagram of a smart glasses display system based on gaze detection according to an embodiment of the present invention.
  • FIG. 2B is a block diagram of a smart glasses display device based on gaze detection according to an embodiment of the present invention.
  • FIG. 2C is a block diagram of a smart glasses display device based on gaze detection according to an embodiment of the present invention.
  • 3A and 3B are diagrams for explaining a calibration mode according to line-of-sight detection according to an embodiment of the present invention.
  • FIG. 4 is an exemplary diagram illustrating a process of generating an image on a display according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a method of displaying smart glasses according to another exemplary embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a method of displaying smart glasses according to another exemplary embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a method of displaying smart glasses according to an exemplary embodiment of the present invention.
  • 1 is an exemplary view showing a process of displaying an overlay image according to an embodiment of the present invention.
  • 2A is a schematic diagram of an augmented reality display system based on gaze detection according to an embodiment of the present invention.
  • 2B is a block diagram of a smart glasses display device based on gaze detection according to an embodiment of the present invention.
  • 2C is a block diagram of a device for displaying smart glasses according to an exemplary embodiment of the present invention.
  • 3A and 3B are diagrams for explaining a gaze direction correction according to gaze detection according to an embodiment of the present invention.
  • 4 is a diagram for explaining a process of displaying an overlay image on a display.
  • the image or image acquired from the image acquisition unit 205 is applied to a specific area on the display according to the gaze matching object 200 in augmented reality, mixed reality, or virtual reality. It includes a gaze detection-based smart glasses display device 100 and a gaze detection server 900 that displays an overlay image or an image.
  • the gaze detection-based smart glasses display device 100 and the gaze detection server 900 are shown in separate forms, the gaze detection-based smart glasses display device 100 and the gaze detection server ( 900) may be mounted in one housing. When mounted in one housing, the gaze detection-based smart glasses display device 100 and the gaze detection server 900 may be connected by wire.
  • the line-of-sight object 200 and the image acquisition unit 205 are implemented in one device as an ultrasound scanner is illustrated, but the line-of-sight object 200 and the image acquisition unit 205 are separate devices. May be.
  • the eye contact object 200 may be a scalpel or a surgical site of a surgical patient.
  • the image acquisition unit 205 may be, for example, a unit that acquires an image indicating an area in which the scalpel should not pass through the nerves of a surgical patient from an image stored in the gaze detection server 900.
  • the gaze detection server 900 may store an image in which the patient's nerves are displayed based on the image captured by the patient before the surgery.
  • the gaze detection-based smart glasses display device 100 detects the user's gaze by a plurality of built-in distance measuring units 11, and displays the image acquired from the image acquisition unit 205 on the screen of the display unit 103. It is a device that can be displayed on.
  • the smart glasses display device 100 recognizes the eye contact object 200 and then displays the image acquired from the image acquisition unit 205 in a predetermined area with respect to the recognized eye contact object 200.
  • the eye contact object 200 may be an electronic device or a general tool used for surgery or treatment.
  • the eye contact object 200 may be an ultrasound scanner, scissors, clips, scalpels, or the like. In the present embodiment, description will be made on the basis that the line-of-sight object 200 is an ultrasound scanner.
  • the gaze detection-based smart glasses display device 100 includes the screen 114 projected from the microdisplay 110 (refer to FIG. 2B) of the display unit 103 with both lenses 111, the panel 112, and the splitter. It may be reflected through (113) and visible to the eye.
  • an external screen shot through the external camera 12 of the smart glasses display device 100 or a separate separate camera in the see-through mode while utilizing the HMD display is an overlay screen through the screen of VR. It may be a form that overlaps with and shows.
  • the smart glasses display device 100 based on gaze detection includes a pupil sensing unit 101, a gaze detection unit 102, a display unit 103, a screen synthesizing unit 104, and It may include a control unit 105.
  • the pupil sensing unit 101, the gaze detection unit 102, and the display unit 103, the screen synthesis unit 104 and the control unit 105 may be composed of software, hardware, or a combination of software and hardware, those skilled in the art These components can be implemented using appropriate means.
  • the pupil sensing unit 101 is configured to sense the pupil of the user, and includes a plurality of distance measuring units 11.
  • a plurality of distance measuring units 11 may be disposed along the edge of the eyeglasses of the smart glasses display device 100 based on gaze detection.
  • the distance measuring unit 11 senses the position of the pupil 15 in order to determine the movement of the user's gaze, and is a sensor including a laser light emitting unit and a light receiving unit, and preferably irradiates an infrared laser in a wavelength band without damage to the eyesight of the pupil. do.
  • a laser irradiation line LL irradiated from the distance measuring unit 11 is illustrated.
  • the plurality of distance measuring units 11 irradiate infrared rays to the eyeball 10, and then the distance reflected from the fundus of the eyeball through the pupil 15 (d1 + d2) or directly reflected from the surface of the eyeball. It is possible to measure the distance (d2). That is, the reflection distance may be divided into a distance d1 from the fundus to the eyeball surface (or pupil) and a distance d2 from the eyeball surface to the sensor unit 114. In this case, the position of the pupil is sensed by measuring the distances d1 and d2 obtained through the plurality of sensors.
  • the laser light irradiated by some of the user's distance measuring unit 11 passes through the pupil 15 and then is reflected from the fundus inside the user's eyeball 10, and again through the pupil 15, the distance measuring unit 11 ) Is sensed.
  • the plurality of laser lights irradiated by the plurality of distance measuring units 11 may pass through the pupil.
  • the laser light that has not passed through the pupil is reflected from the surface of the eyeball 10, but is incident on the light receiving unit of the distance measuring unit 11.
  • the length d1 from the fundus to the eyeball surface and the length d2 from the eyeball surface 10 to the display unit 103 may be measured using lasers irradiated by the plurality of distance measuring units 11. That is, since the distance (d1+d2) passing through the pupil 15 is relatively shorter than the distance (d1 + d2) not passing through the pupil 15, the location of the user's pupil 15 is determined through length comparison. I can grasp it. In addition, based on whether the laser light irradiated by one distance measuring unit 11 passes through the pupil and/or the distance measured from the passed light according to the distance information of the plurality of distance measuring units 11, the pupil from the eyeball You can accurately determine this direction.
  • the present invention measures distances to the fundus from various locations where the plurality of distance measuring units 11 are located, as shown in FIG. 4, so that it is possible to derive a very detailed gaze direction.
  • the plurality of distance measuring units 11 are upper (L1) and lower ( It is placed along L2).
  • the location of the distance measuring unit 11 is not limited thereto, and is disposed on the side of the rear side of the eyeglass frame of the smart glasses display device 100 based on gaze detection, or the display unit 103 of the smart glasses display device 100 It may be disposed directly on the lens 111 or the panel 112.
  • the gaze detection unit 102 is configured to sense a user's gaze direction for an augmented reality image to be displayed on the display unit 103, and the distance (d1 + d2) reflected from the fundus of the eyeball through the pupil, and the surface of the eyeball The gaze direction may be detected based on the distance d2 directly reflected from and the position of the pupil.
  • the pupil sensing unit 101 and the line of sight detection unit 102 will be described later with reference to FIGS. 3A to 3B.
  • the display unit 103 is a component that displays the image acquired from the gaze matching object 200 on the display unit 103 as an augmented reality, virtual reality, or mixed reality image.
  • the display unit 103 may include a microdisplay 10, a lens 111, a panel 112, and a splitter 13.
  • the microdisplay 10 irradiates an image through the lens 111 disposed in front, the irradiated image reaches a region of the panel 112 through the lens 111 and then the display panel 12
  • the image is totally reflected by the splitter 13 attached to one side, and the image 114 can be seen by the user's eyes again by the splitter 13 in front of the eye.
  • the display unit 103 may display the image or image acquired by the image acquisition unit 205 as an augmented reality, virtual reality, or mixed reality image, as well as various information related to the acquired image. For example, when a medical staff cuts a blood vessel of a patient during surgery, the remaining time until safely connecting the blood vessels remains approximately 60.0 seconds may be displayed by overlapping with the first image 210 as the second image 220. .
  • the augmented reality, virtual reality, or mixed image (hereinafter referred to as an overlay image) acquired by the image acquisition unit 205 displays the display 103 at a specific position designated according to the eye contact object 200.
  • the image acquired by the image acquisition unit 205 may be an ultrasound image of a mother undergoing ultrasound examination.
  • the smart glasses display device 100 recognizes whether the eye-catching object 200 (the ultrasound scanner in the embodiment of FIG. 4) is within a specific range 250 from the eye line direction.
  • the overlay image acquired by the acquisition unit 205 is superimposed on a specific position (eg, an ultrasound irradiation surface of the ultrasound scanner in the case of an ultrasound scanner) according to the eye contact object 200.
  • the image is displayed on the left and right lenses of the smart glasses display device 100 based on gaze detection.
  • the left lens and/or the right lens may display the same image.
  • the left-eye image T1 ′ and the right-eye image T1 ′ of the same object are displayed so that the user may recognize the virtual object T1 in a three-dimensional shape (3D).
  • the image may move within the display unit 103 based on the user's gaze movement. A detailed description of this will be described later.
  • the screen synthesizing unit 104 may arrange and synthesize the image or image acquired by the image acquisition unit 205 in an appropriate position.
  • the screen synthesizing unit 104 checks the position of the gaze matching object 200 through the image acquired from the external camera 12, and calculates the position at which the overlay image should be displayed in conjunction with the gaze direction.
  • the position where the overlay image is to be displayed is an ultrasound irradiation surface of the ultrasound scanner.
  • the screen synthesizing unit 104 may control the display 103 to display the ultrasound image at the calculated position.
  • the doctor can check whether the scanned screen is well displayed while looking at the ultrasound irradiation surface. Therefore, the doctor can perform an ultrasound examination while adjusting the position of the fetus and the desired part to be scanned well without distracting the eyes.
  • the screen synthesizing unit 104 may display an image of the external camera 12 and an image of the image acquisition unit 205 by overlapping the image. However, even in this case, after calculating the position where the overlay image should be displayed in conjunction with the gaze direction, the image of the external camera 12 and the image of the image acquisition unit 205 are superimposed and displayed.
  • the control unit 105 may perform a function of controlling overall operations of the pupil sensing unit 101, the gaze detection unit 102, the display unit 103, and the screen combining unit 104.
  • the screen synthesizing unit 104 provides an arbitrary screen 300 displaying a circular guide area TR to the user through the display 103 in the calibration mode.
  • the calibration mode is a mode for measuring the user's gaze direction, and is.
  • the gaze detection unit 102 detects the gaze direction of the user.
  • the ideal user's ideal has an ideal circular trajectory, but the actual user's actual eyes are narrower in width and wider in vertical width than the ideal user's ideal. It is formed to have an elliptical orbit.
  • the gaze direction in which the user can comfortably gaze generally has an elliptical shape rather than an exact circular shape.
  • the screen synthesizing unit 104 calculates a gaze correction reference value based on the actual gaze direction measured in the calibration mode.
  • the gaze correction reference value may include values representing the ellipse, such as eccentricity, flatness, and a focal position of the ellipse.
  • the smart glasses display device 100 may correct the gaze direction detected by the gaze detection unit 102 based on the gaze correction reference value. Accordingly, it is possible to accurately estimate the gaze direction that the user actually intends to look at, and the accuracy of the display position of the overlay image is remarkably increased in screen processing.
  • the position of the eye contact object 200 is determined based on the image acquired through the external camera 12, but the present invention is not limited thereto.
  • the screen synthesizing unit 104 may grasp the position of the eye aligning object 200 by using beacons 260 mounted on at least three positions of the eye aligning object 200. That is, the screen synthesizing unit 104 may periodically detect the signal of the beacon 260 mounted on the gaze matching object 200 to determine the position of the gaze matching object 200.
  • the line-of-sight object 200 may be light irradiated by a light irradiation unit 260 mounted on one surface of an ultrasound scanner.
  • a light irradiation unit 260 mounted on one surface of an ultrasound scanner For example, when a doctor wants to view an entire ultrasound image at a desired location while examining through an ultrasound scanner, the doctor turns on the light irradiation unit 260 mounted on the ultrasound scanner to display the desired location.
  • the screen boundary points P1-P4 and P2 are centered on the irradiated point as shown in FIG. 5.
  • -P3 is calculated.
  • the screen synthesizing unit 104 may calculate the position of the overlay image 210 based on the light irradiated by the light irradiation unit 260, which is the line-of-sight object 200.
  • some components may be deleted or new components may be added according to the needs of those skilled in the art.
  • it may further include a controller connected to the smart glasses display device 100 based on gaze detection by wired or wirelessly.
  • the eye contact object 200 may be a scalpel and a face of a person to be operated on.
  • the overlay image 210 may be a predetermined operating line. For example, when a doctor holds a scalpel and performs an operation in which a patient's face is incised, an image of the operating line may be overlaid on the patient's face. In this case, when the patient's face and the scalpel are detected among the images captured by the external camera 12 within a certain range of the operator's gaze direction, the surgical line, which is an overlay image, is overlapped and displayed on the patient's face.
  • the screen synthesizing unit 104 is a surgery that is the gaze-matching target 200
  • the position of the overlay image 210 may be calculated based on the subject's face.
  • the overlay image 210 may be information about a situation for reference (information on whether the depth at which the knife to be picked enters the skin is appropriate).
  • positions of nerves/blood vessels that should never be touched during surgery may be displayed as the overlay image 210.
  • the overlay image 210 to be overlaid (or overlapped) may be displayed by a known image processing method including a block search or edge detection method of an image.
  • the present invention displays an overlay image that moves based on the gaze direction on a specific area of the smart glasses, so that the gaze of the medical staff is not distracted and only the original tasks such as surgery or examination can be concentrated.
  • the display method of smart glasses by irradiating a laser to the eyeball including the fundus by a plurality of distance measuring units 11, the first distance from the fundus and from the surface of the eyeball. It includes a distance measurement step (S110) of measuring the second distance.
  • the gaze detection unit 102 is based on whether the distance measured by each distance measuring unit 11 is reflected from the fundus or reflected from the eyeball surface, that is, based on the first distance and the second distance. The direction of the gaze can be detected. (Gaze detection step, S120)
  • the display method of smart glasses acquires an overlay image.
  • the overlay image can be obtained from an ultrasound scanner, an external camera, a separate connected camera, or a server storing an image/image.
  • the line of sight detection unit 102 may sense the position of the pupil based on information on whether the distance measured by each of the plurality of distance measuring units is a first distance or a second distance.
  • the gaze detection unit 102 may detect the direction of the eyeball by sensing a direction in which the pupil is directed from the eyeball based on a first distance measured by some of the distance measurement units among the plurality of distance measurement units.
  • the screen synthesizing unit 104 may calculate a position so as to recognize the gaze matching object within a certain range in the gaze direction and display the overlay image at a designated position according to the gaze matching object.
  • Display position calculation step, S140 At this time, after the screen combining unit 104 provides a screen including a circular guide area by the display unit 103, when the user moves the line of sight along the provided guide area , The user's gaze direction may be detected, and a gaze correction reference value may be obtained based on the gaze direction detected according to the guide area.
  • the operation of calculating the display position may include sensing light irradiated by the eye-catching object and extracting a reference point for displaying the overlay image.
  • the step of calculating the display position may further include extracting a point spaced apart from the reference point by a predetermined interval as a screen boundary point.
  • the display unit 103 in the form of smart glasses may include a display step of displaying the overlay image at the calculated position.
  • the present invention it is possible to provide a device capable of displaying necessary information without dispersing the doctor's gaze at a desired viewpoint and a desired point by using VR, AR, and MR.
  • the present invention displays an augmented reality image that moves based on gaze movement in a specific area that the user feels intuitively and comfortably, so that the user can grasp the affected part of the patient or the inside of the body through a virtual object with concentration without dispersing the gaze. have.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Biophysics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Remote Sensing (AREA)
  • Robotics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Eye Examination Apparatus (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

본 발명은 안저를 포함하는 안구에 레이저를 조사하여 안저부터의 제1 거리 및 안구의 표면으로부터의 제2 거리를 측정하는 복수의 거리측정부; 제1 거리 및 제2 거리에 기초하여 시선 방향을 검출하는 시선검출부; 오버레이 이미지를 획득하는 이미지 취득부; 시선 방향에서 일정 범위 내에 있는 시선맞춤대상체를 인식하고, 시선맞춤대상체에 따라 지정된 위치에 오버레이 이미지를 디스플레이할 수 있도록 위치를 연산하는 화면합성부; 및 연산된 위치에 오버레이 이미지를 디스플레이 하며 스마트 안경 형태의 디스플레이부를 포함하는, 시선 검출 기반의 스마트 안경 표시 장치를 제공한다. 따라서, 본 발명에 따르면, 의사의 시선을 방해하지 않으면서도 관련 정보를 자연스럽게 표시할 수 있는 디스플레이 방법 및 장치가 제공된다.

Description

시선 검출 기반의 스마트 안경 표시 장치
본 발명은 시선 검출 기반의 스마트 안경 표시 장치에 관한 것으로서, 보다 상세하게는 사용자의 시선을 검출하고 시선 방향에 따른 자연스러운 오버레이 이미지를 스마트 안경을 통하여 제공하는 시선 검출 기반의 스마트 안경 표시 장치에 관한 것이다.
최근 들어 가상현실(Virtual Reality, “VR”), 증강현실(Augmented Reality, “AR”), 또는 혼합현실(Mixed Reality, “MR”)의 응용분야로 의료 및 헬스케어가 각광을 받고 있다. 고령화 시대의 도래와 경쟁 심화로 인한 심리질환 등 의료서비스 수요 증가에 대응하기 위한 의료전문가 육성 및 심리치료 대안으로 스마트 안경을 활용한 VR, AR 및 MR 기술이 부상하고 있다. 특히, 종래에는 트라우마 치료에 제한적으로 활용했던 것에서 벗어나 VR, AR 및 MR은 수술, 치료, 재활 등 의료 전 영역으로 적용 범위가 확대되고 있다. VR, AR 및 MR을 이용하면 가상 환자나 장기를 구현하여 수련 교육이 가능하며, 의료진이 수술 전 적합한 계획을 세우고 사전에 테스트할 수 있다.
VR, AR 및 MR을 이용하지 않았던 종래의 의료장비, 예컨대, 초음파 스캐너는 표시하고자 하는 초음파 영상을 별도의 모니터 화면으로 확인해야 하므로 의사가 치료를 위해 환자와 모니터를 교대로 확인해야 한다는 번거로움이 존재하였다. 또는, 원격 수술 장비 또는 로봇 수술 장비들도 수술에 필요한 각종 정보들을 의료진에게 효율적으로 보여주지 못하는 경우가 많았다. 따라서, 필요한 정보를 보기 위해 고개를 돌리거나, 또는 수술 시 필요한 정보 없이 의사의 직감으로 치료해야 하는 경우가 발생하게 된다.
이러한 번거로움 및 시선 분산으로 인하여, 진단 시 의사의 집중을 방해하는 요소로 작용하였다. 특히, 진단 또는 수술 중에 관련 정보 화면을 봐야 하는 상황이 발생하였을 때에 의료진의 집중력이 흩어지는 상황이 발생하게 되면, 환자는 위험에 처하거나, 또는 집중해서 관찰해야 할 부분을 놓칠 수도 있다.
따라서, 종래의 의료 장비에 VR, AR 및 MR을 도입하여, 진단 시 의사의 집중력을 최대화할 수 있고 의료진의 편의성을 최대한으로 도모할 수 있는 디스플레이 방법에 대한 수요가 점차적으로 증가하고 있다.
발명의 배경이 되는 기술은 본 발명에 대한 이해를 보다 용이하게 하기 위해 작성되었다. 발명의 배경이 되는 기술에 기재된 사항들이 선행기술로 존재한다고 인정하는 것으로 이해되어서는 안된다.
본 발명은 의료기기에서 AR, MR, VR 등의 장비를 통하여 의사가 원하는 시점 및 원하는 지점에 표시하여 진단 시 의사의 시선 분산을 막는 획기적인 디스플레이 방법을 제공한다.
특히, 본 발명이 해결하고자 하는 과제는 사용자의 시선을 검출하여 관련 정보를 담은 이미지 또는 영상을 직관적으로 편하게 느끼는 특정영역에 표시하여 사용자가 가상의 오브젝트를 통해 환자의 환부 또는 신체 내부를 보다 정확하게 파악할 수 있는 시선 검출 기반의 스마트 안경 표시 장치를 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
전술한 바와 같은 과제를 해결하기 위하여 본 발명의 실시예에 따른 시선 검출 기반의 스마트 안경 표시 장치는 안저를 포함하는 안구에 레이저를 조사하여 상기 안저부터의 제1 거리 및 상기 안구의 표면으로부터의 제2 거리를 측정하는 복수의 거리측정부; 상기 제1 거리 및 상기 제2 거리에 기초하여 시선 방향을 검출하는 시선검출부; 오버레이 이미지를 획득하는 이미지 취득부; 상기 시선 방향에서 일정 범위 내에 있는 시선맞춤대상체를 인식하고, 상기 시선맞춤대상체에 따라 지정된 위치에 상기 오버레이 이미지를 디스플레이할 수 있도록 위치를 연산하는 화면합성부; 및 상기 연산된 위치에 상기 오버레이 이미지를 디스플레이 하며 스마트 안경 형태의 디스플레이부를 포함할 수 있다.
이 경우, 상기 시선검출부는 상기 복수의 거리측정부 각각에서 측정된 거리가 제1 거리인지 또는 제 2 거리인지의 정보에 기초하여 동공의 위치를 센싱할 수 있다.
이 때, 상기 시선검출부는 상기 복수의 거리측정부 중 일부의 거리측정부에서 측정된 제1 거리에 의하여 상기 안구에서 동공이 향하는 방향을 센싱하여 시선 방향을 검출할 수 있다.
또한, 상기 복수의 거리측정부의 적어도 일부는 상기 디스플레이부를 지지하는 지지대를 따라 배치될 수 있다.
또한, 상기 디스플레이부는 원형 형상의 가이드 영역을 포함한 화면을 제공하고, 상기 화면합성부는 제공된 가이드 영역을 따라 시선이 이동되면, 사용자의 시선 방향을 검출하고, 가이드 영역에 따라 검출된 시선 방향에 기초하여 시선 보정 기준값을 구할 수 있다.
또한, 상기 시선 보정 기준 값은 이심률, 편평도 또는 타원의 초점 위치를 포함할 수 있다.
또한, 상기 화면합성부는 상기 시선맞춤대상체가 조사하는 광을 센싱하고, 상기 오버레이 이미지를 표시하기 위한 기준점을 추출할 수 있다.
또한, 상기 화면합성부는 상기 기준점으로부터 일정 간격 이격된 지점을 화면 경계점으로 추출할 수 있다.
또한, 상기 디스플레이부는 상기 오버레이 이미지를 3D입체 형상으로 표시할 수 있다.
또한, 상기 디스플레이부는 마이크로디스플레이, 렌즈, 패널, 및 스플리터를 포함할 수 있다.
한편, 본 발명에 따른 시선 검출 기반 스마트 안경 표시 방법은, 복수의 거리측정부에 의하여 안저를 포함하는 안구에 레이저를 조사하여 상기 안저부터의 제1 거리 및 상기 안구의 표면으로부터의 제2 거리를 측정하는 거리측정단계; 상기 제1 거리 및 상기 제2 거리에 기초하여 시선 방향을 검출하는 시선검출단계; 오버레이 이미지를 획득하는 이미지획득단계; 상기 시선 방향에서 일정 범위 내에 있는 시선맞춤대상체를 인식하고, 상기 시선맞춤대상체에 따라 지정된 위치에 상기 오버레이 이미지를 디스플레이할 수 있도록 위치를 연산하는 표시위치연산단계; 및 스마트 안경 형태의 디스플레이부를 통해 상기 연산된 위치에 상기 오버레이 이미지를 디스플레이 하는 표시단계를 할 수 있다.
이 경우, 상기 시선검출단계는 상기 복수의 거리측정부 각각에서 측정된 거리가 제1 거리인지 또는 제 2 거리인지의 정보에 기초하여 동공의 위치를 센싱할 수 있다.
상기 시선검출단계는 상기 복수의 거리측정부 중 일부의 거리측정부에서 측정된 제1 거리에 의하여 상기 안구에서 동공이 향하는 방향을 센싱하여 시선 방향을 검출할 수 있다.
또한, 시선 검출 기반의 스마트 안경 표시 방법은 상기 디스플레이부가 원형 형상의 가이드 영역을 포함한 화면을 제공하는 단계; 제공된 가이드 영역을 따라 사용자의 시선이 이동되면, 사용자의 시선 방향을 검출하고, 가이드 영역에 따라 검출된 시선 방향에 기초하여 시선 보정 기준값을 구하는 단계;를 더 포함할 수 있다.
또한, 상기 시선 보정 기준값은 이심률, 편평도 또는 타원의 초점 위치를 포함할 수 있다.
또한, 상기 표시위치연산단계는 상기 시선맞춤대상체가 조사하는 광을 센싱하고, 상기 오버레이 이미지를 표시하기 위한 기준점을 추출하는 단계를 포함할 수 있다.
또한, 상기 표시위치연산단계는 상기 기준점으로부터 일정 간격 이격된 지점을 화면 경계점으로 추출하는 단계를 더 포함할 수 있다.
또한, 상기 표시단계는 상기 오버레이 이미지를 3D입체 형상으로 표시하는 단계를 포함할 수 있다.
한편, 본 발명의 실시예에 따른 컴퓨터 판독 가능 기록매체는 복수의 거리측정부에 의하여 안저를 포함하는 안구에 레이저를 조사하여 상기 안저부터의 제1 거리 및 상기 안구의 표면으로부터의 제2 거리를 측정하고, 상기 제1 거리 및 상기 제2 거리에 기초하여 시선 방향을 검출하고, 오버레이 이미지를 획득하고, 상기 시선 방향에서 일정 범위 내에 있는 시선맞춤대상체를 인식하고, 상기 시선맞춤대상체에 따라 지정된 위치에 상기 오버레이 이미지를 디스플레이할 수 있도록 위치를 연산하고, 스마트 안경 형태의 디스플레이부를 통해 상기 연산된 위치에 상기 오버레이 이미지를 디스플레이 하는 명령어들을 저장할 수 있다.
본 발명에 따른 과제의 해결수단은 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
기본적으로 본 발명은 VR, AR 및 MR을 활용하여 의사가 원하는 시점 및 원하는 지점에 의사의 시선을 분산시키지 않고 필요한 정보를 디스플레이 할 수 있는 장치를 제공할 수 있다.
본 발명은 시선 움직임을 기반으로 움직이는 증강현실 이미지를 사용자가 직관적으로 편하게 느끼는 특정영역에 표시하여 사용자가 가상의 오브젝트를 통해 환자의 환부 또는 신체 내부를 시선 분산 없이 집중력 있게 파악할 수 있는 효과가 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 본 발명의 일 실시예에 따른 스마트 안경의 표시 과정을 나타낸 예시도이다.
도 2a는 본 발명의 일 실시예에 따른 시선 검출 기반의 스마트 안경 표시 시스템의 개략도이다.
도 2b는 본 발명의 일 실시예에 따른 시선 검출 기반의 스마트 안경 표시 장치의 구성도이다.
도 2c는 본 발명의 일 실시예에 따른 시선 검출 기반의 스마트 안경 표시 장치의 블록도이다.
도 3a 및 도 3b는 본 발명의 일 실시예에 따른 시선 검출에 따른 캘리브레이션 모드를 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 디스플레이에 화상이 생성되는 과정을 설명하기 위한 예시도이다.
도 5는 본 발명의 다른 실시예에 따른 스마트 안경 표시 방법을 나타낸 도면이다.
도 6은 본 발명의 다른 실시예에 따른 스마트 안경 표시 방법을 나타낸 도면이다.
도 7은 본 발명의 실시예에 따른 스마트 안경 표시 방법을 나타낸 도면이다.
발명의 이점, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 발명의 실시예를 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 한정되는 것은 아니다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 본 명세서 상에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우, '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.
구성요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하며, 당업자가 충분히 이해할 수 있듯이 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시 가능할 수도 있다.
도 1은 본 발명의 일 실시예에 따른 오버레이 이미지 표시 과정을 나타낸 예시도이다. 도 2a는 본 발명의 일 실시예에 따른 시선 검출 기반의 증강현실 표시 시스템의 개략도이다. 도 2b는 본 발명의 일 실시예에 따른 시선 검출 기반의 스마트 안경 표시 장치의 구성도이다. 도 2c는 본 발명의 일 실시예에 따른 스마트 안경 표시 장치의 블록도이다. 도 3a 및 도 3b는 본 발명의 일 실시예에 따른 시선 검출에 따른 시선 방향 보정을 설명하기 위한 도면이다. 도 4는 디스플레이에 오버레이 이미지가 표시되는 과정을 설명하기 위한 도면이다.
도 1을 참조하면, 시선 검출 기반의 스마트 안경 표시 시스템은 이미지 취득부(205)로부터 획득된 이미지 또는 영상을 시선맞춤대상체(200)에 따른 디스플레이 상의 특정영역에 증강현실, 혼합현실 또는 가상현실의 오버레이 이미지 또는 영상으로 표시하는 시선 검출 기반의 스마트 안경 표시 장치(100) 및 시선 검출 서버(900)를 포함한다. 단, 도 1의 실시예에서는 시선 검출 기반의 스마트 안경 표시 장치(100)와 시선 검출 서버(900)가 분리된 형태로 도시되었지만, 시선 검출 기반의 스마트 안경 표시 장치(100)와 시선 검출 서버(900)는 하나의 하우징 내에 탑재될 수도 있다. 하나의 하우징 내에 탑재된 경우에는 시선 검출 기반의 스마트 안경 표시 장치 (100)와 시선 검출 서버(900)는 유선으로 연결될 수 있다.
또한 본 실시예에서는 시선맞춤대상체(200)과 이미지 취득부(205)가 초음파 스캐너로서 하나의 장치 내에 구현된 경우를 도시하였으나, 시선맞춤대상체(200)와 이미지 취득부(205)가 별도의 장치일 수도 있다. 예컨대, 원격 수술 로봇에서 시선맞춤대상체(200)는 메스일 수 있고 또는 수술환자의 수술 부위일 수 있다. 이미지 취득부(205)는 예컨대, 수술 환자의 신경으로 메스가 지나가면 안되는 영역을 표시한 이미지를 시선 검출 서버(900) 내에 저장된 이미지로부터 취득하는 유닛일 수도 있다. 다시 말해, 시선 검출 서버(900)에는 수술 환자가 수술 전에 촬영한 영상을 기초로 환자의 신경을 표시한 이미지가 저장될 수 있다.
시선 검출 기반의 스마트 안경 표시 장치(100)는 내장된 복수의 거리측정부(11)에 의해 사용자의 시선을 검출하고, 이미지 취득부(205)로부터 획득한 이미지를 디스플레이부(103)의 화면 상에 표시할 수 있는 장치이다. 여기서, 스마트 안경 표시 장치(100)는 시선맞춤대상체(200)를 인식한 후, 인식된 시선맞춤대상체(200)과 관련하여 미리 설정한 영역에 상기 이미지 취득부(205)로부터 취득한 영상을 표시한다. 이 때, 시선맞춤대상체(200)는 수술, 치료 등에 사용되는 전자기기 또는 일반 도구일 수도 있다. 예를 들면, 시선맞춤대상체(200)는 초음파 스캐너, 시저(scissors), 클립(clip), 메스(mes) 등일 수 있다. 본 실시예에서는 시선맞춤대상체(200)가 초음파 스캐너인 것을 기준으로 설명한다.
본 발명에서 시선 검출 기반의 스마트 안경 표시 장치(100)는 디스플레이부(103)의 마이크로디스플레이(110, 도 2b 참조)에서 프로젝션되는 화면(114)이 양쪽 렌즈(111), 패널(112) 및 스플리터(113)를 통해 반사되어 눈에 보여지는 방식일 수 있다. 또는 HMD 디스플레이를 활용하면서 씨스루(See-through) 모드에서 스마트 안경 표시 장치(100)의 외부 카메라(12)를 통해 또는 분리된 별도의 카메라를 통해 촬영한 외부 화면을 VR의 화면을 통하여 오버레이 화면과 중첩하여 보여주는 형태일 수도 있다.
도 2a, 도 2b 및 도 2c를 참조하면, 시선 검출 기반의 스마트 안경 표시 장치(100)는 동공 센싱부(101), 시선 검출부(102), 디스플레이부(103), 화면합성부(104) 및 제어부(105)를 포함할 수 있다. 이러한 동공 센싱부(101), 시선 검출부(102) 및 디스플레이부(103)는, 화면합성부(104) 및 제어부(105)는 소프트웨어, 하드웨어 또는 소프트웨어와 하드웨어의 조합으로 구성될 수 있으며, 당업자는 적절한 수단을 활용하여 이러한 구성요소들을 구현할 수 있다.
동공 센싱부(101)는 사용자의 동공을 센싱하는 구성으로, 복수의 거리측정부(11)를 포함한다. 이 때, 복수의 거리측정부(11)는 시선 검출 기반의 스마트 안경 표시 장치(100)의 안경태의 가장자리를 따라 복수개가 배치될 수 있다.
거리측정부(11)는 사용자의 시선 움직임을 파악하기 위해 동공(15)의 위치를 센싱하며 레이저 발광부와 수광부를 포함하는 센서로서, 바람직하게는 동공의 시력 손상이 없는 파장대의 적외선 레이저를 조사한다. 도 2a에서는 설명의 편의를 위해, 거리측정부(11)로부터 조사되는 레이저 조사선(LL)을 도시하였다.
도 4를 참조하면, 복수의 거리측정부(11)는 안구(10)에 적외선을 조사한 후, 동공(15)을 통하여 안구의 안저에서 반사된 거리(d1 + d2) 또는 안구의 표면에서 직접 반사된 거리(d2)를 측정할 수 있다. 즉, 반사 거리는 안저에서 안구 표면(또는 동공)까지의 거리(d1) 및 안구 표면에서 센서 유닛(114)까지의 거리(d2)로 구분할 수 있다. 이 경우, 복수의 센서를 통하여 구한 각각의 거리(d1 및 d2)를 측정하여 동공의 위치를 센싱한다.
구체적으로, 사용자의 일부 거리측정부(11)에서 조사한 레이저 광은 동공(15)을 통과한 후 사용자의 안구(10) 내측인 안저에서 반사되어 다시 동공(15)을 통해 다시 거리측정부(11)에서 센싱되게 된다.
이때, 복수의 거리측정부(11)에서 조사된 복수의 레이저 광 중 일부만 동공을 통과할 수 있다. 동공을 통과하지 못한 레이저 광은 안구(10)의 내부가 아닌 표면에서 반사되어 거리측정부(11)의 수광부에 입사하게 된다.
복수의 거리측정부(11)에서 조사되는 레이저를 이용하여 안저로부터 안구 표면까지의 길이(d1)와 안구 표면(10)에서 디스플레이부(103)까지의 길이(d2)를 측정할 수 있다. 즉, 동공(15)을 통과한 거리(d1+d2)는 동공(15)을 통과하지 않은 거리(d1 + d2)보다 길이가 상대적으로 짧기 때문에, 길이 비교를 통해 사용자 동공(15)의 위치를 파악할 수 있다. 또한, 복수의 거리측정부(11)의 거리 정보에 의하여 하나의 거리측정 유닛(11)에서 조사한 레이저 광이 동공을 통과하는지 여부 및/또는 통과한 광에서 측정된 거리에 기초하여, 안구에서 동공이 향한 방향을 정확하게 결정할 수 있다.
따라서, 본 발명은 도 4에 도시된 바와 같이, 복수의 거리측정부(11)가 위치한 다양한 위치에서 안저까지의 거리를 측정하므로 매우 상세한 시선 방향을 도출하는 것이 가능하다.
이 경우, 복수의 거리측정부(11)는 스마트 안경 표시 장치(100)의 상기 디스플레이부(103)를 지지하는 지지대(안경테)의 후면(얼굴과 바라보는 면)의 상측(L1) 및 하측(L2)을 따라 배치된다. 단, 거리측정부(11)의 위치는 이에 제한되지 않으며 시선 검출 기반의 스마트 안경 표시 장치(100)의 안경테의 후면의 측부에 배치되거나, 스마트 안경 표시 장치(100)의 디스플레이부(103)의 렌즈(111) 또는 패널(112)에 직접 배치될 수도 있다.
시선 검출부(102)는 디스플레이부(103) 상에 표시하기 위한 증강현실 이미지에 대한 사용자의 시선방향을 센싱하는 구성으로, 동공을 통하여 안구의 안저에서 반사된 거리(d1 + d2), 안구의 표면에서 직접 반사된 거리(d2) 및 동공의 위치에 기초하여 시선 방향을 검출할 수 있다. 동공 센싱부(101) 및 시선 검출부(102)와 관련한 보다 상세한 설명은 도 3a 내지 도 3b를 참조하여 후술하기로 한다.
디스플레이부(103)는 시선맞춤대상체(200)로부터 획득된 이미지를 디스플레이부(103)에 증강현실, 가상현실 또는 혼합현실 이미지로 표시하는 구성이다. 예컨대, 도 2b를 참조하면, 디스플레이부(103)는 마이크로디스플레이(10), 렌즈(111), 패널(112), 및 스플리터(13)를 포함할 수 있다. 이 경우, 마이크로디스플레이(10)가 정면에 배치된 렌즈(111)를 통해 상을 조사하면, 조사된 상은 렌즈(111)를 통해 패널(112)의 일 영역에 도달한 뒤 디스플레이 패널(12)의 일면에 부착된 스플리터(13, splitter)에 의해 상이 전반사(total reflection)되고, 다시 눈 앞쪽의 스플리터(13)에 의하여 상(114)이 사용자의 눈에 보여질 수 있다.
또한, 디스플레이부(103)는 이미지 취득부(205)에 의하여 획득한 이미지 또는 영상을 증강현실, 가상현실 또는 혼합현실 이미지로 표시할 뿐만 아니라, 상기 획득된 이미지 관련 다양한 정보들을 표시할 수 있다. 예를 들어, 의료진이 수술 시 환자의 혈관을 잘랐을 경우, 안전하게 혈관을 연결하기까지 남은 시간이 대략 60.0초 남았음을 제2 이미지(220)로 제1 이미지(210)와 함께 중첩하여 표시할 수 있다.
이미지 취득부(205)에서 획득한 증강현실, 가상현실 또는 혼합 이미지(이하, 오버레이 이미지), 예컨대, 초음파 스캐너로 스캐닝한 이미지는 시선맞춤대상체(200)에 따라 지정된 특정 위치에 디스플레이(103)를 통해 오버레이 된다. 예를 들면, 이미지 취득부(205)에서 획득한 이미지는 초음파 검진을 받는 산모의 초음파 영상일 수 있다. 이 경우, 스마트 안경 표시 장치(100)는 시선맞춤대상체(200)(도 4의 실시예에서는 초음파 스캐너)가 시선 방향으로부터 특정 범위(250) 내에 있는지를 인식한다. 그리고, 시선맞춤대상체(200)에 따른 특정 위치(예컨대, 초음파 스캐너의 경우, 초음파 스캐너의 초음파 조사면)에 취득부(205)에서 획득한 오버레이 이미지가 중첩되도록 한다.
이미지는 시선 검출 기반의 스마트 안경 표시 장치(100)의 좌측 렌즈 및 우측 렌즈에 표시된다. 이때, 좌측 렌즈 및/또는 우측 렌즈는 동일한 이미지를 표시할 수 있다. 이미지는 도 1b에 도시된 바와 같이, 동일 물체에 대한 좌안 이미지(T1') 및 우안 이미지(T1')가 표시되어 사용자가 입체 형상(3D)으로 가상 오브젝트(T1)를 인식할 수도 있다.
또한, 이미지는 사용자의 시선 움직임에 기초하여 디스플레이부(103) 내에서 이동할 수 있다. 이와 관련된 구체적인 설명은 추후 설명하기로 한다.
화면합성부(104)는 이미지 취득부(205)에서 획득한 이미지 또는 영상을 적절한 위치에 배치 및 합성할 수 있다. 화면합성부(104)는 외부 카메라(12)에서 획득한 영상을 통하여 시선맞춤대상체(200)의 위치를 확인하고, 시선 방향과 연동하여 오버레이 이미지가 디스플레이 되어야 할 위치를 연산한다. 도 4의 초음파 스캐너 실시예에서, 오버레이 이미지가 디스플레이될 위치는 초음파 스캐너의 초음파 조사면이다. 화면합성부(104)는 초음파 영상을 상기 연산된 위치에 표시하도록 디스플레이(103)을 제어할 수 있다. 이 경우, 의사는 산모의 배를 초음파로 스캐닝할 때, 초음파 조사면을 보면서 스캐닝한 화면이 잘 나오는지도 확인할 수 있다. 따라서, 의사는 시선을 분산시키지 않으면서도 태아의 위치, 원하는 부분이 잘 스캔될 수 있도록 조정하면서 초음파 검진을 할 수 있다.
스마트 안경 표시 장치(100)이 가상 현실을 보여주는 HMD인 경우에 화면합성부(104)는 외부 카메라(12)의 영상과 이미지 취득부(205)의 영상을 중첩시켜서 디스플레이 할 수 있다. 단 이 경우에도 시선 방향과 연동하여 오버레이 이미지가 디스플레이 되어야 할 위치를 연산한 후 외부 카메라(12)의 영상과 이미지 취득부(205)의 영상을 중첩시켜서 디스플레이한다.
제어부(105)는 동공 센싱부(101), 시선 검출부(102), 디스플레이부(103) 및 화면합성부(104)에 대한 전반적인 동작을 제어하는 기능을 수행할 수 있다.
이하에서는 도3a 및 도3b를 참조하여 화면합성부(104)가 동공의 위치 및 측정된 거리들(d1 및 d2)로부터 추정한 거리를 보정하는 방법에 대하여 상세하게 기술한다.
구체적으로, 도 3a에 도시된 바와 같이, 화면합성부(104)는 캘리브레이션 모드에서 디스플레이(103)를 통하여 사용자에게 원형 형상의 가이드 영역(TR)을 표시한 임의의 화면(300)을 제공한다. 여기서, 캘리브레이션 모드는 사용자의 시선 방향을 측정하는 모드로서, 이다. 사용자는 임의의 화면(300)에 표시된 가이드 영역(TR)을 따라 최초 시작 지점(SP)에서 가이드 영역(TR)의 가장자리를 따라 시계방향(사용자 기준, 한편, 반시계방향일 수 있음)으로 시선을 이동시키도록 안내받는다.
이때, 사용자가 가이드 영역(TR)을 따라 시선 방향을 이동시킬 때에 시선 검출부(102)는 사용자의 시선 방향을 검출한다. 이 경우, 도 3b에 도시된 바와 같이, 이상적인 사용자의 시선(ideal)은 이상적인 원형 궤도를 갖지만, 실제 사용자의 시선(actual)은 이상적인 사용자의 시선(ideal) 보다 가로 폭이 좁고, 세로 폭이 넓은 타원형 궤도를 갖도록 형성된다. 다시 말해, 사용자가 편하게 응시할 수 있는 시선 방향은 통상적으로 정확한 원형 형태가 아닌 타원 형태를 가지게 된다. 이 경우, 화면합성부(104)는 캘리브레이션 모드에서 측정한 실제 시선 방향에 기초하여 시선 보정 기준값을 구한다. 이 경우, 시선 보정 기준 값은 예컨대, 이심률, 편평도, 타원의 초점 위치 등 타원을 대표할 수 있는 값을 포함할 수 있다.
따라서, 본 발명에 따른 스마트 안경 표시 장치(100)는 시선 검출부(102)에서 검출한 시선 방향을 시선 보정 기준 값에 기초하여 보정할 수 있다. 따라서, 사용자가 실제 바라보고자 의도한 시선 방향을 정확하게 추정해 낼 수 있으며, 화면 처리에 있어서 오버레이 이미지의 표시위치의 정확성이 현저하게 증가하게 된다.
본 실시예에서는 외부 카메라(12)를 통하여 획득한 이미지에 기초하여 시선맞춤대상체(200)의 위치를 파악하였지만, 본 발명은 이에 제한되지 않는다. 예컨대, 화면합성부(104)는 시선맞춤대상체(200)의 적어도 3개의 위치에 탑재한 비콘(Beacon, 260)을 이용하여 시선맞춤대상체(200)의 위치를 파악할 수도 있다. 즉, 화면합성부(104)는 시선맞춤대상체(200)에 탑재된 비콘(260) 신호를 주기적으로 검출하여, 시선맞춤대상체(200)의 위치를 파악할 수 있다.
이하에서는 도 5를 참조하여 본 발명에 따른 또 다른 실시예에 대하여 설명한다.
도 5의 실시예에서는 시선맞춤대상체(200)는 초음파 스캐너의 일면에 장착된 광조사부(260)에서 조사하는 광 일 수 있다. 예컨대, 의사가 초음파 스캐너를 통하여 검진을 하는 중에 전체적인 초음파 영상을 원하는 곳에 보고 싶은 경우, 의사는 초음파 스캐너에 탑재된 광조사부(260)를 켜서 원하는 위치를 표시하게 된다.
이 경우, 외부카메라(12)를 통하여, 광조사부(260)에서 조사하는 광이 센싱되는 경우에는 도 5에 도시된 바와 같이, 광이 조사된 지점을 중심으로, 화면 경계점(P1-P4, P2-P3)을 연산한다. 여기서, 적외선 레이저가 조사된 지점을 기준점이라고 가정할 경우, 상기 기준점을 중심으로 대각선 방향으로 일정 간격 이격된 네 지점(P1, P2, P3, P4)을 화면 경계점으로 추출할 수 있다. 이에 따라, 화면합성부(104)는 시선맞춤대상체(200)인 광조사부(260)에서 조사하는 광을 기준으로 오버레이 이미지(210)의 위치를 연산할 수 있다.
한편, 도 2a는 일 실시예로서, 당업자의 필요에 따라 일부 구성 요소를 삭제하거나, 새로운 구성 요소를 추가할 수 있다. 예를 들면, 시선 검출 기반의 스마트 안경 표시 장치(100)와 유무선으로 연결되는 컨트롤러를 더 포함할 수도 있다..
이하에서는 도 6를 참조하여 본 발명에 따른 또 다른 실시예에 대하여 설명한다.
도 6의 실시예에서는 시선맞춤대상체(200)는 메스 및 수술 대상자의 얼굴일 수 있다. 또한, 이 경우에 오버레이 이미지(210)는 예정된 수술선 일 수 있다. 예컨대, 의사가 메스를 들고, 환자의 얼굴을 절개하는 수술을 진행할 경우에 수술선 이미지가 환자의 얼굴에 오버레이 될 수 있다. 이 경우, 수술자의 시선 방향의 일정 범위 내에 환자의 얼굴과 메스가 외부 카메라(12)에 의하여 촬영된 영상 중 검출되는 경우에, 환자의 얼굴 위에 오버레이 이미지인 수술선이 중첩되어 표시되게 된다. 즉, 시선 맞춤 대상체(200)는 복수개 일 수 있으며, 여러 조건(메스와 수술 대상자의 얼굴의 적어도 일부가 검출되는 경우)을 만족시킬 때에 화면합성부(104)는 시선맞춤대상체(200)인 수술 대상자의 얼굴을 기준으로 오버레이 이미지(210)의 위치를 연산할 수 있다. 또는 이 경우, 오버레이 이미지(210)는 참고를 위한 상황(집도되는 칼이 피부에 들어가는 깊이가 적절한지에 대한 정보)에 대한 정보가 될 수도 있다. 또는 수술 중 절대로 건드리면 안되는 신경/혈관의 위치 등이 오버레이 이미지(210)로서 표시될 수도 있다. 이때, 오버레이(혹은 중첩)되는 오버레이 이미지(210)는 영상의 블럭서치(block search)나 엣지(edge) 검출 방식 등을 포함한 기존에 알려진 영상처리 방법에 의해 표시될 수 있다.
따라서, 본 발명은 시선 방향에 기초하여 움직이는 오버레이 이미지를 스마트 안경의 특정영역에 표시함으로써 의료진의 시선을 분산시키지 않고 수술이나 검진 등의 본연의 작업에만 집중할 수 있게 한다.
이하에서는, 도 7을 참조하여, 본 발명의 일 실시예에 따른 시선 검출 기반 스마트 안경의 표시 방법에 대하여 상세히 설명한다.
먼저, 본 발명의 실시예에 따른 스마트 안경의 표시 방법은, 복수의 거리측정부(11)에 의하여 안저를 포함하는 안구에 레이저를 조사하여 상기 안저부터의 제1 거리 및 상기 안구의 표면으로부터의 제2 거리를 측정하는 거리측정단계(S110)를 포함한다.
이 경우, 시선검출부(102)는 각 거리측정부(11)에서 측정한 거리가 안저로부터 반사되어 나온 것인지, 또는 안구 표면에서 반사된 것인지, 즉, 상기 제1 거리 및 상기 제2 거리에 기초하여 시선 방향을 검출할 수 있다. (시선검출단계, S120)
한편, 스마트 안경의 표시 방법은 오버레이 이미지를 획득한다. 오버레이 이미지는 앞서 설명한 바와 같이, 초음파 스캐너, 외부 카메라, 별도의 연결된 카메라, 또는 이미지/영상을 저장하는 서버로부터 획득 가능하다. (이미지획득단계, S130) 이 경우, 시선검출부(102)는 상기 복수의 거리측정부 각각에서 측정된 거리가 제1 거리인지 또는 제 2 거리인지의 정보에 기초하여 동공의 위치를 센싱할 수 있다. 또는, 시선검출부(102)는 상기 복수의 거리측정부 중 일부의 거리측정부에서 측정된 제1 거리에 의하여 상기 안구에서 동공이 향하는 방향을 센싱하여 시선 방향을 검출할 수 있다.
화면합성부(104)는 상기 시선 방향에서 일정 범위 내에 있는 시선맞춤대상체를 인식하고, 상기 시선맞춤대상체에 따라 지정된 위치에 상기 오버레이 이미지를 디스플레이할 수 있도록 위치를 연산할 수 있다. (표시위치연산단계, S140) 이 때, 화면합성부(104)는 상기 디스플레이부(103)에 의해 원형 형상의 가이드 영역을 포함한 화면을 제공한 후, 사용자가 제공된 가이드 영역을 따라 시선을 이동하면, 사용자의 시선 방향을 검출하고, 가이드 영역에 따라 검출된 시선 방향에 기초하여 시선 보정 기준값을 구할 수 있다.
한편, 상기 표시위치연산단계(S140)는 상기 시선맞춤대상체가 조사하는 광을 센싱하고, 상기 오버레이 이미지를 표시하기 위한 기준점을 추출하는 단계를 포함할 수 있다. 이 경우, 상기 표시위치연산단계는 상기 기준점으로부터 일정 간격 이격된 지점을 화면 경계점으로 추출하는 단계를 더 포함할 수 있다.
마지막으로 스마트 안경 형태의 디스플레이부(103)는 상기 연산된 위치에 상기 오버레이 이미지를 디스플레이 하는 표시단계를 포함할 수 있다.
따라서, 본 발명에 따르면, VR, AR 및 MR을 활용하여 의사가 원하는 시점 및 원하는 지점에 의사의 시선을 분산시키지 않고 필요한 정보를 디스플레이 할 수 있는 장치를 제공할 수 있다.
또한, 본 발명은 시선 움직임을 기반으로 움직이는 증강현실 이미지를 사용자가 직관적으로 편하게 느끼는 특정영역에 표시하여 사용자가 가상의 오브젝트를 통해 환자의 환부 또는 신체 내부를 시선 분산 없이 집중력 있게 파악할 수 있는 효과가 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것은 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형실시될 수 있다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (19)

  1. 안저를 포함하는 안구에 레이저를 조사하여 상기 안저부터의 제1 거리 및 상기 안구의 표면으로부터의 제2 거리를 측정하는 복수의 거리측정부;
    상기 제1 거리 및 상기 제2 거리에 기초하여 시선 방향을 검출하는 시선검출부;
    오버레이 이미지를 획득하는 이미지 취득부;
    상기 시선 방향에서 일정 범위 내에 있는 시선맞춤대상체를 인식하고, 상기 시선맞춤대상체에 따라 지정된 위치에 상기 오버레이 이미지를 디스플레이할 수 있도록 위치를 연산하는 화면합성부; 및
    상기 연산된 위치에 상기 오버레이 이미지를 디스플레이 하며 스마트 안경 형태의 디스플레이부를 포함하는, 시선 검출 기반의 스마트 안경 표시 장치.
  2. 제1항에 있어서,
    상기 시선검출부는 상기 복수의 거리측정부 각각에서 측정된 거리가 제1 거리인지 또는 제 2 거리인지의 정보에 기초하여 동공의 위치를 센싱하는, 시선 검출 기반의 스마트 안경 표시 장치.
  3. 제1항에 있어서,
    상기 시선검출부는 상기 복수의 거리측정부 중 일부의 거리측정부에서 측정된 제1 거리에 의하여 상기 안구에서 동공이 향하는 방향을 센싱하여 시선 방향을 검출하는, 시선 검출 기반의 스마트 안경 표시 장치.
  4. 제1항에 있어서,
    상기 복수의 거리측정부의 적어도 일부는 상기 디스플레이부를 지지하는 지지대를 따라 배치되는, 시선 검출 기반의 스마트 안경 표시 장치.
  5. 제1항에 있어서,
    상기 디스플레이부는 원형 형상의 가이드 영역을 포함한 화면을 제공하고, 상기 화면합성부는 제공된 가이드 영역을 따라 시선이 이동되면, 사용자의 시선 방향을 검출하고, 가이드 영역에 따라 검출된 시선 방향에 기초하여 시선 보정 기준값을 구하는, 시선 검출 기반의 스마트 안경 표시 장치.
  6. 제5항에 있어서,
    상기 시선 보정 기준 값은 이심률, 편평도 또는 타원의 초점 위치를 포함하는, 시선 검출 기반의 스마트 안경 표시 장치.
  7. 제1항에 있어서,
    상기 화면합성부는 상기 시선맞춤대상체가 조사하는 광을 센싱하고, 상기 오버레이 이미지를 표시하기 위한 기준점을 추출하는, 시선 검출 기반의 스마트 안경 표시 장치.
  8. 제7항에 있어서,
    상기 화면합성부는 상기 기준점으로부터 일정 간격 이격된 지점을 화면 경계점으로 추출하는, 시선 검출 기반의 스마트 안경 표시 장치.
  9. 제1항에 있어서,
    상기 디스플레이부는 상기 오버레이 이미지를 3D입체 형상으로 표시하는, 시선 검출 기반의 스마트 안경 표시 장치.
  10. 제1항에 있어서,
    상기 디스플레이부는 마이크로디스플레이, 렌즈, 패널, 및 스플리터를 포함하는, 시선 검출 기반의 스마트 안경 표시 장치.
  11. 복수의 거리측정부에 의하여 안저를 포함하는 안구에 레이저를 조사하여 상기 안저부터의 제1 거리 및 상기 안구의 표면으로부터의 제2 거리를 측정하는 거리측정단계;
    상기 제1 거리 및 상기 제2 거리에 기초하여 시선 방향을 검출하는 시선검출단계;
    오버레이 이미지를 획득하는 이미지획득단계;
    상기 시선 방향에서 일정 범위 내에 있는 시선맞춤대상체를 인식하고, 상기 시선맞춤대상체에 따라 지정된 위치에 상기 오버레이 이미지를 디스플레이할 수 있도록 위치를 연산하는 표시위치연산단계; 및
    스마트 안경 형태의 디스플레이부를 통해 상기 연산된 위치에 상기 오버레이 이미지를 디스플레이 하는 표시단계를 포함하는, 시선 검출 기반의 스마트 안경 표시 방법.
  12. 제11항에 있어서,
    상기 시선검출단계는 상기 복수의 거리측정부 각각에서 측정된 거리가 제1 거리인지 또는 제 2 거리인지의 정보에 기초하여 동공의 위치를 센싱하는, 시선 검출 기반의 스마트 안경 표시 방법.
  13. 제11항에 있어서,
    상기 시선검출단계는 상기 복수의 거리측정부 중 일부의 거리측정부에서 측정된 제1 거리에 의하여 상기 안구에서 동공이 향하는 방향을 센싱하여 시선 방향을 검출하는, 시선 검출 기반의 스마트 안경 표시 방법.
  14. 제11항에 있어서,
    상기 디스플레이부가 원형 형상의 가이드 영역을 포함한 화면을 제공하는 단계;
    제공된 가이드 영역을 따라 사용자의 시선이 이동되면, 사용자의 시선 방향을 검출하고, 가이드 영역에 따라 검출된 시선 방향에 기초하여 시선 보정 기준값을 구하는 단계;를 더 포함하는,
    시선 검출 기반의 스마트 안경 표시 방법.
  15. 제14항에 있어서,
    상기 시선 보정 기준값은 이심률, 편평도 또는 타원의 초점 위치를 포함하는, 시선 검출 기반의 스마트 안경 표시 방법.
  16. 제11항에 있어서,
    상기 표시위치연산단계는 상기 시선맞춤대상체가 조사하는 광을 센싱하고, 상기 오버레이 이미지를 표시하기 위한 기준점을 추출하는 단계를 포함하는, 시선 검출 기반의 스마트 안경 표시 방법.
  17. 제16항에 있어서,
    상기 표시위치연산단계는 상기 기준점으로부터 일정 간격 이격된 지점을 화면 경계점으로 추출하는 단계를 더 포함하는, 시선 검출 기반의 스마트 안경 표시 방법.
  18. 제11항에 있어서,
    상기 표시단계는 상기 오버레이 이미지를 3D입체 형상으로 표시하는 단계를 포함하는, 시선 검출 기반의 스마트 안경 표시 방법.
  19. 복수의 거리측정부에 의하여 안저를 포함하는 안구에 레이저를 조사하여 상기 안저부터의 제1 거리 및 상기 안구의 표면으로부터의 제2 거리를 측정하고,
    상기 제1 거리 및 상기 제2 거리에 기초하여 시선 방향을 검출하고,
    오버레이 이미지를 획득하고,
    상기 시선 방향에서 일정 범위 내에 있는 시선맞춤대상체를 인식하고, 상기 시선맞춤대상체에 따라 지정된 위치에 상기 오버레이 이미지를 디스플레이할 수 있도록 위치를 연산하고,
    스마트 안경 형태의 디스플레이부를 통해 상기 연산된 위치에 상기 오버레이 이미지를 디스플레이 하는 명령어들을 저장하는, 컴퓨터 판독 가능 기록매체.
PCT/KR2020/013860 2019-10-10 2020-10-12 시선 검출 기반의 스마트 안경 표시 장치 WO2021071336A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080070346.2A CN114615947A (zh) 2019-10-10 2020-10-12 基于视线检测的智能眼镜显示装置及其方法
EP20875187.5A EP4043943A4 (en) 2019-10-10 2020-10-12 SMART GLASSES DISPLAY DEVICE BASED ON GAZE DETECTION
US17/767,638 US20230258949A1 (en) 2019-10-10 2020-10-12 Eye detection based smart glasses display device
JP2022521335A JP2022551642A (ja) 2019-10-10 2020-10-12 視線検出基盤のスマートグラス表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0125456 2019-10-10
KR1020190125456A KR102097390B1 (ko) 2019-10-10 2019-10-10 시선 검출 기반의 스마트 안경 표시 장치

Publications (1)

Publication Number Publication Date
WO2021071336A1 true WO2021071336A1 (ko) 2021-04-15

Family

ID=70282239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013860 WO2021071336A1 (ko) 2019-10-10 2020-10-12 시선 검출 기반의 스마트 안경 표시 장치

Country Status (6)

Country Link
US (1) US20230258949A1 (ko)
EP (1) EP4043943A4 (ko)
JP (1) JP2022551642A (ko)
KR (1) KR102097390B1 (ko)
CN (1) CN114615947A (ko)
WO (1) WO2021071336A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115327782A (zh) * 2022-10-11 2022-11-11 歌尔股份有限公司 显示控制方法、装置、头戴显示设备以及可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102097390B1 (ko) * 2019-10-10 2020-04-06 주식회사 메디씽큐 시선 검출 기반의 스마트 안경 표시 장치
KR20230002093A (ko) 2021-06-29 2023-01-05 고려대학교 세종산학협력단 윙크 컨트롤 아이트래킹 기능 제어 장치 및 방법
CN115508979B (zh) * 2022-11-22 2023-03-21 深圳酷源数联科技有限公司 Ar眼镜自动调焦系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326946A (ja) * 1993-05-13 1994-11-25 Agency Of Ind Science & Technol 眼球運動追従型視覚提示装置
JP2008018015A (ja) * 2006-07-12 2008-01-31 Toshiba Corp 医用ディスプレイ装置及び医用ディスプレイシステム
JP2012008290A (ja) * 2010-06-23 2012-01-12 Softbank Mobile Corp 眼鏡型表示装置及びサーバ
WO2013179427A1 (ja) * 2012-05-30 2013-12-05 パイオニア株式会社 表示装置、ヘッドマウントディスプレイ、校正方法及び校正プログラム、並びに記録媒体
KR20150085710A (ko) * 2014-01-16 2015-07-24 삼성전자주식회사 디스플레이 장치 및 그 제어 방법
KR102097390B1 (ko) * 2019-10-10 2020-04-06 주식회사 메디씽큐 시선 검출 기반의 스마트 안경 표시 장치

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3735947B2 (ja) * 1996-06-26 2006-01-18 日産自動車株式会社 視線入力装置
EP1093006A4 (en) * 1998-06-03 2005-06-29 Nippon Sheet Glass Co Ltd HEAD VISUALIZATION DEVICE
US20060176242A1 (en) * 2005-02-08 2006-08-10 Blue Belt Technologies, Inc. Augmented reality device and method
US7967742B2 (en) * 2005-02-14 2011-06-28 Karl Storz Imaging, Inc. Method for using variable direction of view endoscopy in conjunction with image guided surgical systems
JP5490664B2 (ja) * 2009-11-18 2014-05-14 パナソニック株式会社 眼電位推定装置、眼電位算出方法、視線検出装置、ウェアラブルカメラ、ヘッドマウントディスプレイおよび電子めがね
JP5394299B2 (ja) * 2010-03-30 2014-01-22 富士フイルム株式会社 超音波診断装置
US9348143B2 (en) * 2010-12-24 2016-05-24 Magic Leap, Inc. Ergonomic head mounted display device and optical system
WO2012101888A1 (ja) * 2011-01-24 2012-08-02 オリンパスメディカルシステムズ株式会社 医療機器
JP5655644B2 (ja) * 2011-03-09 2015-01-21 富士通株式会社 視線検出装置及び視線検出方法
US9494797B2 (en) * 2012-07-02 2016-11-15 Nvidia Corporation Near-eye parallax barrier displays
TWI497991B (zh) * 2012-07-12 2015-08-21 Altek Corp 影像擷取裝置與其自動對焦方法
CN103557859B (zh) * 2013-10-10 2015-12-23 北京智谷睿拓技术服务有限公司 图像采集定位方法及图像采集定位系统
CN103838378B (zh) * 2014-03-13 2017-05-31 广东石油化工学院 一种基于瞳孔识别定位的头戴式眼睛操控系统
JP6443677B2 (ja) * 2015-03-12 2018-12-26 日本精機株式会社 ヘッドマウントディスプレイ装置
JP6693105B2 (ja) * 2015-12-01 2020-05-13 株式会社Jvcケンウッド 視線検出装置及び視線検出方法
US10303246B2 (en) * 2016-01-20 2019-05-28 North Inc. Systems, devices, and methods for proximity-based eye tracking
JP2017213191A (ja) * 2016-05-31 2017-12-07 富士通株式会社 視線検出装置、視線検出方法、及び視線検出プログラム
CN109310396B (zh) * 2016-06-20 2021-11-09 蝴蝶网络有限公司 用于辅助用户操作超声装置的自动图像获取
JP6617662B2 (ja) * 2016-08-24 2019-12-11 株式会社Jvcケンウッド 視線検出装置、視線検出方法、及びコンピュータプログラム
JP6922766B2 (ja) * 2018-01-31 2021-08-18 トヨタ自動車株式会社 コミュニケーションロボットおよびその制御プログラム
EP3540574B1 (en) * 2018-03-15 2021-08-11 HTC Corporation Eye tracking method, electronic device, and non-transitory computer readable storage medium
JPWO2021205965A1 (ko) * 2020-04-06 2021-10-14
WO2021242008A1 (en) * 2020-05-28 2021-12-02 Samsung Electronics Co., Ltd. Electronic device and operating method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326946A (ja) * 1993-05-13 1994-11-25 Agency Of Ind Science & Technol 眼球運動追従型視覚提示装置
JP2008018015A (ja) * 2006-07-12 2008-01-31 Toshiba Corp 医用ディスプレイ装置及び医用ディスプレイシステム
JP2012008290A (ja) * 2010-06-23 2012-01-12 Softbank Mobile Corp 眼鏡型表示装置及びサーバ
WO2013179427A1 (ja) * 2012-05-30 2013-12-05 パイオニア株式会社 表示装置、ヘッドマウントディスプレイ、校正方法及び校正プログラム、並びに記録媒体
KR20150085710A (ko) * 2014-01-16 2015-07-24 삼성전자주식회사 디스플레이 장치 및 그 제어 방법
KR102097390B1 (ko) * 2019-10-10 2020-04-06 주식회사 메디씽큐 시선 검출 기반의 스마트 안경 표시 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115327782A (zh) * 2022-10-11 2022-11-11 歌尔股份有限公司 显示控制方法、装置、头戴显示设备以及可读存储介质

Also Published As

Publication number Publication date
JP2022551642A (ja) 2022-12-12
KR102097390B1 (ko) 2020-04-06
CN114615947A (zh) 2022-06-10
US20230258949A1 (en) 2023-08-17
EP4043943A4 (en) 2023-11-08
EP4043943A1 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
WO2021071336A1 (ko) 시선 검출 기반의 스마트 안경 표시 장치
US20230255446A1 (en) Surgical visualization systems and displays
KR102365889B1 (ko) 입체 뷰어를 위한 눈 시선 추적을 통합하는 의료 디바이스, 시스템, 및 방법
US10448003B2 (en) System and method for triangulation-based depth and surface visualization
US20200197098A1 (en) Enhanced reality medical guidance systems and methods of use
US9916691B2 (en) Head mounted display and control method for head mounted display
RU2454198C2 (ru) Система и способ позиционирования электродов на теле пациента
US20030114741A1 (en) Projecting patient image data from radioscopic imaging methods and/or tomographic imaging methods onto video images
US20210321887A1 (en) Medical system, information processing apparatus, and information processing method
US9770168B2 (en) Device for imaging an eye
US11207150B2 (en) Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
JPH11509456A (ja) 画像誘導手術システム
US11317973B2 (en) Camera tracking bar for computer assisted navigation during surgery
US11382713B2 (en) Navigated surgical system with eye to XR headset display calibration
WO2015137741A1 (ko) 의료용 영상 시스템 및 이의 구동 방법
US20220008141A1 (en) Enhanced reality medical guidance systems and methods of use
JP2016158911A (ja) 画像表示装置を使った外科手術方法及び、その外科手術に用いる装置
US11698535B2 (en) Systems and methods for superimposing virtual image on real-time image
US20210177370A1 (en) Patient viewing system
WO2014011014A1 (ko) 안과용 장치 및 이의 치료위치 측정방법
KR20210042784A (ko) 시선 검출 기반의 스마트 안경 표시 장치
US11224329B2 (en) Medical observation apparatus
JPH08206083A (ja) 画像診断装置
JP2021045272A (ja) 鍼刺用エコーガイドシステム
RU2785887C1 (ru) Система визуализации для хирургического робота и хирургический робот

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875187

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521335

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020875187

Country of ref document: EP

Effective date: 20220510