WO2021071248A1 - Composé hétérocyclique, diode électroluminescente organique le comprenant, composition pour couche organique de diode électroluminescente organique, et procédé de fabrication de diode électroluminescente organique - Google Patents
Composé hétérocyclique, diode électroluminescente organique le comprenant, composition pour couche organique de diode électroluminescente organique, et procédé de fabrication de diode électroluminescente organique Download PDFInfo
- Publication number
- WO2021071248A1 WO2021071248A1 PCT/KR2020/013665 KR2020013665W WO2021071248A1 WO 2021071248 A1 WO2021071248 A1 WO 2021071248A1 KR 2020013665 W KR2020013665 W KR 2020013665W WO 2021071248 A1 WO2021071248 A1 WO 2021071248A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- substituted
- unsubstituted
- formula
- organic light
- Prior art date
Links
- 150000002391 heterocyclic compounds Chemical class 0.000 title claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000000203 mixture Substances 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims abstract description 11
- 239000012044 organic layer Substances 0.000 title abstract description 17
- 125000003118 aryl group Chemical group 0.000 claims description 95
- 150000001875 compounds Chemical class 0.000 claims description 92
- -1 C60 aliphatic Chemical class 0.000 claims description 71
- 239000000463 material Substances 0.000 claims description 69
- 239000011368 organic material Substances 0.000 claims description 61
- 125000001072 heteroaryl group Chemical group 0.000 claims description 52
- 229910052739 hydrogen Inorganic materials 0.000 claims description 52
- 239000001257 hydrogen Substances 0.000 claims description 52
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 48
- 125000000217 alkyl group Chemical group 0.000 claims description 43
- 125000002950 monocyclic group Chemical group 0.000 claims description 32
- 125000003367 polycyclic group Chemical group 0.000 claims description 31
- 238000002347 injection Methods 0.000 claims description 28
- 239000007924 injection Substances 0.000 claims description 28
- 125000000732 arylene group Chemical group 0.000 claims description 18
- 230000000903 blocking effect Effects 0.000 claims description 18
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 17
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 14
- 230000005525 hole transport Effects 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- 125000003342 alkenyl group Chemical group 0.000 claims description 12
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 12
- 125000003545 alkoxy group Chemical group 0.000 claims description 11
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims description 11
- 125000005549 heteroarylene group Chemical group 0.000 claims description 11
- 125000000623 heterocyclic group Chemical group 0.000 claims description 11
- 125000000304 alkynyl group Chemical group 0.000 claims description 10
- 229910052736 halogen Inorganic materials 0.000 claims description 10
- 150000002367 halogens Chemical class 0.000 claims description 10
- 229910052701 rubidium Inorganic materials 0.000 claims description 8
- 101150020251 NR13 gene Proteins 0.000 claims description 6
- 125000003277 amino group Chemical group 0.000 claims description 6
- 238000001771 vacuum deposition Methods 0.000 claims description 4
- UFHFLCQGNIYNRP-VVKOMZTBSA-N Dideuterium Chemical compound [2H][2H] UFHFLCQGNIYNRP-VVKOMZTBSA-N 0.000 claims 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 15
- 239000010410 layer Substances 0.000 description 130
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 102
- 125000001424 substituent group Chemical group 0.000 description 60
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 41
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 27
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 26
- 238000002360 preparation method Methods 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 23
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical group C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 22
- 125000004432 carbon atom Chemical group C* 0.000 description 19
- 239000012153 distilled water Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 229910052805 deuterium Inorganic materials 0.000 description 18
- 239000002904 solvent Substances 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000007795 chemical reaction product Substances 0.000 description 15
- 238000004440 column chromatography Methods 0.000 description 15
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 125000004122 cyclic group Chemical group 0.000 description 9
- 239000010409 thin film Substances 0.000 description 9
- 239000002019 doping agent Substances 0.000 description 8
- 125000003960 triphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12)* 0.000 description 8
- IPWKHHSGDUIRAH-UHFFFAOYSA-N bis(pinacolato)diboron Chemical compound O1C(C)(C)C(C)(C)OB1B1OC(C)(C)C(C)(C)O1 IPWKHHSGDUIRAH-UHFFFAOYSA-N 0.000 description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 125000006267 biphenyl group Chemical group 0.000 description 6
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 5
- FZTLLUYFWAOGGB-UHFFFAOYSA-N 1,4-dioxane dioxane Chemical compound C1COCCO1.C1COCCO1 FZTLLUYFWAOGGB-UHFFFAOYSA-N 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 229920000767 polyaniline Polymers 0.000 description 5
- UJCQCUHXXOYHGI-UHFFFAOYSA-N 2-chloro-4,6-diphenyl-1,3,5-triazine Chemical compound ClC1=NC(=NC(=N1)C1=CC=CC=C1)C1=CC=CC=C1.ClC1=NC(=NC(=N1)C1=CC=CC=C1)C1=CC=CC=C1 UJCQCUHXXOYHGI-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000005401 electroluminescence Methods 0.000 description 4
- 238000004770 highest occupied molecular orbital Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 229940126062 Compound A Drugs 0.000 description 3
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 3
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 3
- ABRVLXLNVJHDRQ-UHFFFAOYSA-N [2-pyridin-3-yl-6-(trifluoromethyl)pyridin-4-yl]methanamine Chemical compound FC(C1=CC(=CC(=N1)C=1C=NC=CC=1)CN)(F)F ABRVLXLNVJHDRQ-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 125000000714 pyrimidinyl group Chemical group 0.000 description 3
- 0 *C1C(C2=C(*3)C=CCC2)=C3C=CC1 Chemical compound *C1C(C2=C(*3)C=CCC2)=C3C=CC1 0.000 description 2
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 2
- USYQKCQEVBFJRP-UHFFFAOYSA-N 1-bromo-3-phenylbenzene Chemical group BrC1=CC=CC(C=2C=CC=CC=2)=C1 USYQKCQEVBFJRP-UHFFFAOYSA-N 0.000 description 2
- CRJISNQTZDMKQD-UHFFFAOYSA-N 2-bromodibenzofuran Chemical compound C1=CC=C2C3=CC(Br)=CC=C3OC2=C1 CRJISNQTZDMKQD-UHFFFAOYSA-N 0.000 description 2
- DDQJKLTYOLGRMF-UHFFFAOYSA-N 2-bromodibenzofuran Chemical compound C1=CC=C2C3=CC(Br)=CC=C3OC2=C1.C1=CC=C2C3=CC(Br)=CC=C3OC2=C1 DDQJKLTYOLGRMF-UHFFFAOYSA-N 0.000 description 2
- 125000005916 2-methylpentyl group Chemical group 0.000 description 2
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 2
- GKTLHQFSIDFAJH-UHFFFAOYSA-N 3-(9h-carbazol-3-yl)-9-phenylcarbazole Chemical compound C1=CC=CC=C1N1C2=CC=C(C=3C=C4C5=CC=CC=C5NC4=CC=3)C=C2C2=CC=CC=C21 GKTLHQFSIDFAJH-UHFFFAOYSA-N 0.000 description 2
- XRMZKCQCINEBEI-UHFFFAOYSA-N 4-bromo-2-fluoro-1-iodobenzene Chemical compound FC1=CC(Br)=CC=C1I XRMZKCQCINEBEI-UHFFFAOYSA-N 0.000 description 2
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 2
- 101150003085 Pdcl gene Proteins 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 2
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical compound C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 description 2
- IYYZUPMFVPLQIF-ALWQSETLSA-N dibenzothiophene Chemical group C1=CC=CC=2[34S]C3=C(C=21)C=CC=C3 IYYZUPMFVPLQIF-ALWQSETLSA-N 0.000 description 2
- 238000000434 field desorption mass spectrometry Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 125000004857 imidazopyridinyl group Chemical group N1C(=NC2=C1C=CC=N2)* 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 125000004957 naphthylene group Chemical group 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical group [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- UGOMMVLRQDMAQQ-UHFFFAOYSA-N xphos Chemical compound CC(C)C1=CC(C(C)C)=CC(C(C)C)=C1C1=CC=CC=C1P(C1CCCCC1)C1CCCCC1 UGOMMVLRQDMAQQ-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- SSJXIUAHEKJCMH-PHDIDXHHSA-N (1r,2r)-cyclohexane-1,2-diamine Chemical compound N[C@@H]1CCCC[C@H]1N SSJXIUAHEKJCMH-PHDIDXHHSA-N 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- ICPSWZFVWAPUKF-UHFFFAOYSA-N 1,1'-spirobi[fluorene] Chemical group C1=CC=C2C=C3C4(C=5C(C6=CC=CC=C6C=5)=CC=C4)C=CC=C3C2=C1 ICPSWZFVWAPUKF-UHFFFAOYSA-N 0.000 description 1
- CRXBTDWNHVBEIC-UHFFFAOYSA-N 1,2-dimethyl-9h-fluorene Chemical group C1=CC=C2CC3=C(C)C(C)=CC=C3C2=C1 CRXBTDWNHVBEIC-UHFFFAOYSA-N 0.000 description 1
- QTPLEVOKSWEYAC-UHFFFAOYSA-N 1,2-diphenyl-9h-fluorene Chemical group C=1C=CC=CC=1C1=C2CC3=CC=CC=C3C2=CC=C1C1=CC=CC=C1 QTPLEVOKSWEYAC-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 1
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical group C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 1
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical group C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000006218 1-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006023 1-pentenyl group Chemical group 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- VFBJMPNFKOMEEW-UHFFFAOYSA-N 2,3-diphenylbut-2-enedinitrile Chemical group C=1C=CC=CC=1C(C#N)=C(C#N)C1=CC=CC=C1 VFBJMPNFKOMEEW-UHFFFAOYSA-N 0.000 description 1
- DSQMLISBVUTWJB-UHFFFAOYSA-N 2,6-diphenylaniline Chemical group NC1=C(C=2C=CC=CC=2)C=CC=C1C1=CC=CC=C1 DSQMLISBVUTWJB-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000006176 2-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- WONYVCKUEUULQN-UHFFFAOYSA-N 2-methyl-n-(2-methylphenyl)aniline Chemical group CC1=CC=CC=C1NC1=CC=CC=C1C WONYVCKUEUULQN-UHFFFAOYSA-N 0.000 description 1
- JTMODJXOTWYBOZ-UHFFFAOYSA-N 2-methyl-n-phenylaniline Chemical group CC1=CC=CC=C1NC1=CC=CC=C1 JTMODJXOTWYBOZ-UHFFFAOYSA-N 0.000 description 1
- 125000006024 2-pentenyl group Chemical group 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000006027 3-methyl-1-butenyl group Chemical group 0.000 description 1
- DDTHMESPCBONDT-UHFFFAOYSA-N 4-(4-oxocyclohexa-2,5-dien-1-ylidene)cyclohexa-2,5-dien-1-one Chemical class C1=CC(=O)C=CC1=C1C=CC(=O)C=C1 DDTHMESPCBONDT-UHFFFAOYSA-N 0.000 description 1
- 125000004920 4-methyl-2-pentyl group Chemical group CC(CC(C)*)C 0.000 description 1
- ZSMRRZONCYIFNB-UHFFFAOYSA-N 6,11-dihydro-5h-benzo[b][1]benzazepine Chemical group C1CC2=CC=CC=C2NC2=CC=CC=C12 ZSMRRZONCYIFNB-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- QXDWMAODKPOTKK-UHFFFAOYSA-N 9-methylanthracen-1-amine Chemical group C1=CC(N)=C2C(C)=C(C=CC=C3)C3=CC2=C1 QXDWMAODKPOTKK-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- RSNIQENUASYGEP-UHFFFAOYSA-N C(c(cc1)cc2c1c(c(-c1ccc(c(cc(cc3)-c4ccccc4)c3[n]3-c4ccccc4)c3c1)ccc1)c1[o]2)[n+]1c(-c2ccccc2)nc(-c2ccccc2)[n-]1 Chemical compound C(c(cc1)cc2c1c(c(-c1ccc(c(cc(cc3)-c4ccccc4)c3[n]3-c4ccccc4)c3c1)ccc1)c1[o]2)[n+]1c(-c2ccccc2)nc(-c2ccccc2)[n-]1 RSNIQENUASYGEP-UHFFFAOYSA-N 0.000 description 1
- XBAAPQFIRDHUBW-UHFFFAOYSA-N C(c1ccccc1)[n+]1c(-c(cc2)cc3c2c(c(-c(cc2)ccc2-c(cc2)cc4c2c2ccccc2[n]4-c2ccccc2)ccc2)c2[o]3)nc(-c2ccccc2)[n-]1 Chemical compound C(c1ccccc1)[n+]1c(-c(cc2)cc3c2c(c(-c(cc2)ccc2-c(cc2)cc4c2c2ccccc2[n]4-c2ccccc2)ccc2)c2[o]3)nc(-c2ccccc2)[n-]1 XBAAPQFIRDHUBW-UHFFFAOYSA-N 0.000 description 1
- YUIVYVFBRORXIO-UHFFFAOYSA-N C1(=CC=CC=C1)NC1=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C1=2 Chemical group C1(=CC=CC=C1)NC1=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C1=2 YUIVYVFBRORXIO-UHFFFAOYSA-N 0.000 description 1
- SYQQVRYLQNCTEG-UHFFFAOYSA-N CC1(c(ccc(-c2ccccc2)c2)c2N2c3ccccc3)C2=CC(c2cccc3c2c(ccc(-c2nc(-c4cccc(-c5ccccc5)c4)nc(-c4cccc(-c5ccccc5)c4)n2)c2)c2[o]3)=CC1 Chemical compound CC1(c(ccc(-c2ccccc2)c2)c2N2c3ccccc3)C2=CC(c2cccc3c2c(ccc(-c2nc(-c4cccc(-c5ccccc5)c4)nc(-c4cccc(-c5ccccc5)c4)n2)c2)c2[o]3)=CC1 SYQQVRYLQNCTEG-UHFFFAOYSA-N 0.000 description 1
- AMIPDZHLRQSPQC-UHFFFAOYSA-N C[N](Cc1c-2ccc(-c3cccc4c3c(ccc(C3=CNC(c5ccccc5)=NC(c5ccccc5)=N3)c3)c3[o]4)c1)(c1ccccc1)c1c-2c(cccc2)c2cc1 Chemical compound C[N](Cc1c-2ccc(-c3cccc4c3c(ccc(C3=CNC(c5ccccc5)=NC(c5ccccc5)=N3)c3)c3[o]4)c1)(c1ccccc1)c1c-2c(cccc2)c2cc1 AMIPDZHLRQSPQC-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UJOBWOGCFQCDNV-UHFFFAOYSA-N Carbazole Natural products C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- FTVPJNHMGFXQIB-UHFFFAOYSA-N ClC1=C(C(=CC=C1)OC)B(O)O.ClC1=C(C(=CC=C1)OC)B(O)O Chemical compound ClC1=C(C(=CC=C1)OC)B(O)O.ClC1=C(C(=CC=C1)OC)B(O)O FTVPJNHMGFXQIB-UHFFFAOYSA-N 0.000 description 1
- XPCZSPDILIFGAB-UHFFFAOYSA-N ClC=1C(=C(C=CC1)B(O)O)OC.ClC=1C(=C(C=CC1)B(O)O)OC Chemical compound ClC=1C(=C(C=CC1)B(O)O)OC.ClC=1C(=C(C=CC1)B(O)O)OC XPCZSPDILIFGAB-UHFFFAOYSA-N 0.000 description 1
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical group CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical group C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 1
- 229930192627 Naphthoquinone Natural products 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 125000004054 acenaphthylenyl group Chemical group C1(=CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- YUENFNPLGJCNRB-UHFFFAOYSA-N anthracen-1-amine Chemical group C1=CC=C2C=C3C(N)=CC=CC3=CC2=C1 YUENFNPLGJCNRB-UHFFFAOYSA-N 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- LPTWEDZIPSKWDG-UHFFFAOYSA-N benzenesulfonic acid;dodecane Chemical compound OS(=O)(=O)C1=CC=CC=C1.CCCCCCCCCCCC LPTWEDZIPSKWDG-UHFFFAOYSA-N 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000006616 biphenylamine group Chemical group 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- RHBPBPGCWWCJBG-UHFFFAOYSA-N c(cc1)ccc1-c(cc1)cc([n](c2c3)-c4ccccc4)c1c2ccc3-c1cccc2c1c(ccc(-c1nc(-c3ccccc3)cc(-c3ccccc3)n1)c1)c1[o]2 Chemical compound c(cc1)ccc1-c(cc1)cc([n](c2c3)-c4ccccc4)c1c2ccc3-c1cccc2c1c(ccc(-c1nc(-c3ccccc3)cc(-c3ccccc3)n1)c1)c1[o]2 RHBPBPGCWWCJBG-UHFFFAOYSA-N 0.000 description 1
- VKOHDFXTTBSEFO-UHFFFAOYSA-N c(cc1)ccc1-c(cc1)cc(c(c2c3)ccc3-c3cccc4c3c(ccc(-c3nc(-c5cccc(-c6ccccc6)c5)nc(-c5ccccc5)n3)c3)c3[o]4)c1[n]2-c1ccccc1 Chemical compound c(cc1)ccc1-c(cc1)cc(c(c2c3)ccc3-c3cccc4c3c(ccc(-c3nc(-c5cccc(-c6ccccc6)c5)nc(-c5ccccc5)n3)c3)c3[o]4)c1[n]2-c1ccccc1 VKOHDFXTTBSEFO-UHFFFAOYSA-N 0.000 description 1
- FQNDRPOUPZOBTF-UHFFFAOYSA-N c(cc1)ccc1-c(cc1)cc2c1c(ccc(-c1cccc3c1c(ccc(-c1nc(-c4ccccc4)nc(-c4ccccc4)n1)c1)c1[o]3)c1)c1[n]2-c1ccccc1 Chemical compound c(cc1)ccc1-c(cc1)cc2c1c(ccc(-c1cccc3c1c(ccc(-c1nc(-c4ccccc4)nc(-c4ccccc4)n1)c1)c1[o]3)c1)c1[n]2-c1ccccc1 FQNDRPOUPZOBTF-UHFFFAOYSA-N 0.000 description 1
- DVTNWCLCRCOTTB-UHFFFAOYSA-N c(cc1)ccc1-c(cc1)ccc1-c1nc(-c(cc2)cc3c2c(c(-c(cc2)ccc2-c(cc2)cc4c2c2ccccc2[n]4-c2ccccc2)ccc2)c2[o]3)nc(-c2ccccc2)n1 Chemical compound c(cc1)ccc1-c(cc1)ccc1-c1nc(-c(cc2)cc3c2c(c(-c(cc2)ccc2-c(cc2)cc4c2c2ccccc2[n]4-c2ccccc2)ccc2)c2[o]3)nc(-c2ccccc2)n1 DVTNWCLCRCOTTB-UHFFFAOYSA-N 0.000 description 1
- HMWZHOKCBWPSNC-UHFFFAOYSA-N c(cc1)ccc1-c(cc1)ccc1-c1nc(-c2ccccc2)nc(-c(cc2)cc3c2c(c(-c2ccc(c4ccccc4[n]4-c5ccccc5)c4c2)ccc2)c2[o]3)n1 Chemical compound c(cc1)ccc1-c(cc1)ccc1-c1nc(-c2ccccc2)nc(-c(cc2)cc3c2c(c(-c2ccc(c4ccccc4[n]4-c5ccccc5)c4c2)ccc2)c2[o]3)n1 HMWZHOKCBWPSNC-UHFFFAOYSA-N 0.000 description 1
- WPWZOPYPJYMZJT-UHFFFAOYSA-N c(cc1)ccc1-c1cc(-c2nc(-c(cc3)cc4c3c(c(-c(cc3)cc5c3c3ccccc3[n]5-c3ccccc3)ccc3)c3[o]4)nc(-c3ccccc3)n2)cc(-c2ccccc2)c1 Chemical compound c(cc1)ccc1-c1cc(-c2nc(-c(cc3)cc4c3c(c(-c(cc3)cc5c3c3ccccc3[n]5-c3ccccc3)ccc3)c3[o]4)nc(-c3ccccc3)n2)cc(-c2ccccc2)c1 WPWZOPYPJYMZJT-UHFFFAOYSA-N 0.000 description 1
- HTOMWMBHGYYUGI-UHFFFAOYSA-N c(cc1)ccc1-c1cc(-c2nc(-c3cccc(-c4ccccc4)c3)nc(-c(cc3)cc4c3c(c(-c(cc3)cc5c3c3ccccc3[n]5-c3ccccc3)ccc3)c3[o]4)n2)ccc1 Chemical compound c(cc1)ccc1-c1cc(-c2nc(-c3cccc(-c4ccccc4)c3)nc(-c(cc3)cc4c3c(c(-c(cc3)cc5c3c3ccccc3[n]5-c3ccccc3)ccc3)c3[o]4)n2)ccc1 HTOMWMBHGYYUGI-UHFFFAOYSA-N 0.000 description 1
- YISLQPUTDCFBHC-UHFFFAOYSA-N c(cc1)ccc1-c1nc(-c(cc2)cc3c2c(c(-c(cc2)cc4c2c2ccccc2[n]4-c2ccccc2)ccc2)c2[o]3)nc(-c2ccccc2)c1 Chemical compound c(cc1)ccc1-c1nc(-c(cc2)cc3c2c(c(-c(cc2)cc4c2c2ccccc2[n]4-c2ccccc2)ccc2)c2[o]3)nc(-c2ccccc2)c1 YISLQPUTDCFBHC-UHFFFAOYSA-N 0.000 description 1
- VWVIYORDVKQILM-UHFFFAOYSA-N c(cc1)ccc1-c1nc(-c2ccc(c3ccccc3[o]3)c3c2)nc(-c(cc2)cc3c2c(c(-c(cc2)cc4c2c2ccccc2[n]4-c2ccccc2)ccc2)c2[o]3)n1 Chemical compound c(cc1)ccc1-c1nc(-c2ccc(c3ccccc3[o]3)c3c2)nc(-c(cc2)cc3c2c(c(-c(cc2)cc4c2c2ccccc2[n]4-c2ccccc2)ccc2)c2[o]3)n1 VWVIYORDVKQILM-UHFFFAOYSA-N 0.000 description 1
- PMPMIEKAPJUWIX-UHFFFAOYSA-N c(cc1)ccc1-c1nc(-c2cccc(-c(cc3)cc4c3c3ccccc3c3c4cccc3)c2)nc(-c(cc2)cc3c2c(c(-c(cc2)cc4c2c2c(cccc5)c5ccc2[n]4-c2ccccc2)ccc2)c2[o]3)n1 Chemical compound c(cc1)ccc1-c1nc(-c2cccc(-c(cc3)cc4c3c3ccccc3c3c4cccc3)c2)nc(-c(cc2)cc3c2c(c(-c(cc2)cc4c2c2c(cccc5)c5ccc2[n]4-c2ccccc2)ccc2)c2[o]3)n1 PMPMIEKAPJUWIX-UHFFFAOYSA-N 0.000 description 1
- AFGCJUYBPKPIOI-UHFFFAOYSA-N c(cc1)ccc1-c1nc(-c2cccc3c2[s]c2ccccc32)nc(-c(cc2)cc3c2c(c(-c(cc2)cc4c2c(cccc2)c2[n]4-c2ccccc2)ccc2)c2[o]3)n1 Chemical compound c(cc1)ccc1-c1nc(-c2cccc3c2[s]c2ccccc32)nc(-c(cc2)cc3c2c(c(-c(cc2)cc4c2c(cccc2)c2[n]4-c2ccccc2)ccc2)c2[o]3)n1 AFGCJUYBPKPIOI-UHFFFAOYSA-N 0.000 description 1
- CTFFOKWQLZXBGY-UHFFFAOYSA-N c(cc1)ccc1-c1nc(-c2ccccc2)nc(-c(cc2)cc3c2c(c(-c(cc2)cc4c2c2ccccc2[n]4-c2ccccc2)ccc2)c2[o]3)n1 Chemical compound c(cc1)ccc1-c1nc(-c2ccccc2)nc(-c(cc2)cc3c2c(c(-c(cc2)cc4c2c2ccccc2[n]4-c2ccccc2)ccc2)c2[o]3)n1 CTFFOKWQLZXBGY-UHFFFAOYSA-N 0.000 description 1
- UESKLRBJOJSZCM-UHFFFAOYSA-N c(cc1)ccc1-c1nc(-c2ccccc2)nc(-c(cc2)cc3c2c(c(-c(cc2)ccc2-c2cccc(-c(cc4)cc5c4c(cccc4)c4[n]5-c4ccccc4)c2)ccc2)c2[o]3)n1 Chemical compound c(cc1)ccc1-c1nc(-c2ccccc2)nc(-c(cc2)cc3c2c(c(-c(cc2)ccc2-c2cccc(-c(cc4)cc5c4c(cccc4)c4[n]5-c4ccccc4)c2)ccc2)c2[o]3)n1 UESKLRBJOJSZCM-UHFFFAOYSA-N 0.000 description 1
- SBSXAZKSLRJNPJ-UHFFFAOYSA-N c(cc1)ccc1-c1nc(-c2ccccc2)nc(-c(cc2)cc3c2c(c(-c2ccc(c(ccc(-c4ccc(c5ccccc5c5ccccc55)c5c4)c4)c4[n]4-c5ccccc5)c4c2)ccc2)c2[o]3)n1 Chemical compound c(cc1)ccc1-c1nc(-c2ccccc2)nc(-c(cc2)cc3c2c(c(-c2ccc(c(ccc(-c4ccc(c5ccccc5c5ccccc55)c5c4)c4)c4[n]4-c5ccccc5)c4c2)ccc2)c2[o]3)n1 SBSXAZKSLRJNPJ-UHFFFAOYSA-N 0.000 description 1
- SLAWVFVVLAZDMD-UHFFFAOYSA-N c(cc1)ccc1-c1nc(-c2ccccc2)nc(-c(cc2)cc3c2c(c(-c2cccc(-c(cc4)cc5c4c(cccc4)c4[n]5-c4ccccc4)c2)ccc2)c2[o]3)n1 Chemical compound c(cc1)ccc1-c1nc(-c2ccccc2)nc(-c(cc2)cc3c2c(c(-c2cccc(-c(cc4)cc5c4c(cccc4)c4[n]5-c4ccccc4)c2)ccc2)c2[o]3)n1 SLAWVFVVLAZDMD-UHFFFAOYSA-N 0.000 description 1
- CLKBVNFTSJPYRO-UHFFFAOYSA-N c(cc1)ccc1-c1nc(-c2ccccc2)nc(-c(cc2)ccc2-c(cc2)cc3c2c(c(-c(cc2)cc4c2c2ccccc2[n]4-c2ccccc2)ccc2)c2[o]3)n1 Chemical compound c(cc1)ccc1-c1nc(-c2ccccc2)nc(-c(cc2)ccc2-c(cc2)cc3c2c(c(-c(cc2)cc4c2c2ccccc2[n]4-c2ccccc2)ccc2)c2[o]3)n1 CLKBVNFTSJPYRO-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 125000002676 chrysenyl group Chemical group C1(=CC=CC=2C3=CC=C4C=CC=CC4=C3C=CC12)* 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004851 cyclopentylmethyl group Chemical group C1(CCCC1)C* 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000004431 deuterium atom Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- 125000005266 diarylamine group Chemical group 0.000 description 1
- 125000005331 diazinyl group Chemical group N1=NC(=CC=C1)* 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical group C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 1
- 125000005303 dithiazolyl group Chemical group S1SNC(=C1)* 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- ZONYXWQDUYMKFB-UHFFFAOYSA-N flavanone Chemical compound O1C2=CC=CC=C2C(=O)CC1C1=CC=CC=C1 ZONYXWQDUYMKFB-UHFFFAOYSA-N 0.000 description 1
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- DCZNSJVFOQPSRV-UHFFFAOYSA-N n,n-diphenyl-4-[4-(n-phenylanilino)phenyl]aniline Chemical class C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 DCZNSJVFOQPSRV-UHFFFAOYSA-N 0.000 description 1
- BSEKBMYVMVYRCW-UHFFFAOYSA-N n-[4-[3,5-bis[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]phenyl]-3-methyl-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=C(C=C(C=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 BSEKBMYVMVYRCW-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002791 naphthoquinones Chemical class 0.000 description 1
- 125000005184 naphthylamino group Chemical group C1(=CC=CC2=CC=CC=C12)N* 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- 125000003933 pentacenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C12)* 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- 125000001828 phenalenyl group Chemical group C1(C=CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 description 1
- 125000004625 phenanthrolinyl group Chemical group N1=C(C=CC2=CC=C3C=CC=NC3=C12)* 0.000 description 1
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 1
- 125000001644 phenoxazinyl group Chemical group C1(=CC=CC=2OC3=CC=CC=C3NC12)* 0.000 description 1
- ASUOLLHGALPRFK-UHFFFAOYSA-N phenylphosphonoylbenzene Chemical group C=1C=CC=CC=1P(=O)C1=CC=CC=C1 ASUOLLHGALPRFK-UHFFFAOYSA-N 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001935 tetracenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C12)* 0.000 description 1
- 125000005247 tetrazinyl group Chemical group N1=NN=NC(=C1)* 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000004305 thiazinyl group Chemical group S1NC(=CC=C1)* 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 125000005033 thiopyranyl group Chemical group 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- 125000005580 triphenylene group Chemical group 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/82—Carbazoles; Hydrogenated carbazoles
- C07D209/86—Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/04—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/0803—Compounds with Si-C or Si-Si linkages
- C07F7/081—Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
- C07F7/0812—Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/0803—Compounds with Si-C or Si-Si linkages
- C07F7/081—Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
- C07F7/0812—Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
- C07F7/0814—Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring is substituted at a C ring atom by Si
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/12—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/622—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6574—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6576—Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1088—Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1092—Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
- H10K50/171—Electron injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/18—Carrier blocking layers
Definitions
- the present specification relates to a heterocyclic compound, an organic light-emitting device including the same, a composition for an organic material layer of the organic light-emitting device, and a method of manufacturing an organic light-emitting device.
- An electroluminescent device is a type of self-luminous display device, and has advantages in that it has a wide viewing angle, excellent contrast, and a fast response speed.
- the organic light-emitting device has a structure in which an organic thin film is disposed between two electrodes. When a voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from the two electrodes are combined in the organic thin film to form a pair, and then emit light while disappearing.
- the organic thin film may be composed of a single layer or multiple layers as necessary.
- the material of the organic thin film may have a light emitting function as needed.
- a compound capable of constituting an emission layer by itself may be used, or a compound capable of serving as a host or a dopant of the host-dopant-based emission layer may be used.
- a compound capable of performing a role of hole injection, hole transport, electron blocking, hole blocking, electron transport, and electron injection may be used.
- materials usable in an organic light-emitting device such as an appropriate energy level, electrochemical stability, and thermal stability, and can play various roles required in an organic light-emitting device depending on the substituent
- Patent Document 1 U.S. Patent No. 4,356,429
- the present application relates to a heterocyclic compound, an organic light-emitting device including the same, a composition for an organic material layer of the organic light-emitting device, and a method of manufacturing an organic light-emitting device.
- a heterocyclic compound represented by the following Formula 1 is provided.
- N-Het is a substituted or unsubstituted monocyclic or polycyclic C2 to C60 heterocyclic group containing at least one N,
- L and L1 are the same as or different from each other, and are each independently a direct bond; A substituted or unsubstituted C6 to C60 arylene group; Or a substituted or unsubstituted C2 to C60 heteroarylene group,
- Ar1 and Ar2 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; -CN; Or a substituted or unsubstituted C1 to C60 alkyl group,
- Z1 is a substituted or unsubstituted C6 to C60 aryl group; Or represented by the following formula A,
- X1 is O; S; CR11R12; Or NR13,
- R1 to R4 are the same as or different from each other, and each independently hydrogen; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group, or two or more groups adjacent to each other are bonded to each other to form a substituted or unsubstituted C6 to C60 aliphatic or aromatic hydrocarbon ring or a substituted or unsubstituted C2 to C60 heterocycle To form,
- R11 to R13, R, R'and R" are the same as or different from each other, and each independently a substituted or unsubstituted C1 to C60 alkyl group; a substituted or unsubstituted C6 to C60 aryl group; or a substituted or unsubstituted Is a C2 to C60 heteroaryl group,
- c and d are integers from 0 to 3
- a and e are integers from 0 to 5.
- the first electrode A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes a heterocyclic compound represented by Formula 1 above.
- the first electrode A second electrode provided to face the first electrode;
- one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes a heterocyclic compound represented by Formula 1 above.
- a composition for an organic material layer of an organic light emitting device including a heterocyclic compound represented by Formula 1 and a heterocyclic compound represented by Formula 2 is provided.
- Ra and Rb are the same as or different from each other, and each independently a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
- Rc and Rd are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; Cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C2 to C60 alkenyl group; A substituted or unsubstituted C2 to C60 alkynyl group; A substituted or unsubstituted C1 to C60 alkoxy group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; A substituted or unsubstituted C2 to C60 heteroaryl group; And it is selected from the group consisting of a substituted or unsubstituted amine group,
- r and s are integers from 0 to 7.
- the compound described in the present specification can be used as an organic material layer material of an organic light emitting device.
- the compound may serve as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, and the like in the organic light emitting device.
- the compound can be used as a material for the light emitting layer of the organic light emitting device.
- the compound may be used alone as a light-emitting material, and two compounds may be used together as a light-emitting material, and may be used as a host material for a light-emitting layer.
- an N-containing ring is substituted at position 3 of one benzene ring of the dibenzofuran structure, and a specific substituent is substituted on another benzene ring in which the N-containing ring is not substituted in the dibenzofuran structure.
- electrons of the LUMO on the N-containing ring side are delocalized to have a more electron-stable structure, and provide an appropriate energy level and thermal stability to the device.
- An organic light-emitting device having improved lifespan, driving stability, and efficiency may be manufactured by using the compounds of Formula 1 above.
- 1 to 3 are diagrams each schematically showing a stacked structure of an organic light emitting device according to an exemplary embodiment of the present application.
- "when a substituent is not indicated in the chemical formula or compound structure” may mean that all positions that can come as a substituent are hydrogen or deuterium. That is, deuterium is an isotope of hydrogen, and some hydrogen atoms may be deuterium, which is an isotope, and in this case, the content of deuterium may be 0% to 100%.
- deuterium is one of the isotopes of hydrogen and is an element having a deuteron consisting of one proton and one neutron as a nucleus, and hydrogen- It can be expressed as 2, and the element symbol can also be written as D or 2H.
- an isotope meaning an atom having the same atomic number (Z) but different mass number (A) has the same number of protons, but neutrons
- the number of (neutron) can be interpreted as other elements.
- the total number of substituents that the phenyl group can have is 5 (T1 in the formula), of which the number of deuterium is 1 (T2 in the formula), it will be expressed as 20%.
- T1 in the formula the total number of substituents that the phenyl group can have
- T2 in the formula the number of deuterium is 1
- I can. That is, 20% of the deuterium content in the phenyl group can be represented by the following structural formula.
- the "phenyl group having a deuterium content of 0%” may mean a phenyl group that does not contain deuterium atoms, that is, has 5 hydrogen atoms.
- the halogen may be fluorine, chlorine, bromine or iodine.
- the alkyl group includes a straight chain or branched chain having 1 to 60 carbon atoms, and may be further substituted by other substituents.
- the number of carbon atoms of the alkyl group may be 1 to 60, specifically 1 to 40, more specifically, 1 to 20.
- Specific examples include methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, 1-methyl-butyl group, 1- Ethyl-butyl group, pentyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 4-methyl- 2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhexyl group, cyclopentylmethyl group, cyclohexylmethyl group, octyl group, n-octyl group,
- the alkenyl group includes a linear or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
- the number of carbon atoms of the alkenyl group may be 2 to 60, specifically 2 to 40, and more specifically, 2 to 20.
- Specific examples include vinyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 3-methyl-1 -Butenyl group, 1,3-butadienyl group, allyl group, 1-phenylvinyl-1-yl group, 2-phenylvinyl-1-yl group, 2,2-diphenylvinyl-1-yl group, 2-phenyl-2 -(Naphthyl-1-yl)vinyl-1-yl group, 2,2-bis(diphenyl-1-yl)vinyl-1-yl group, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
- the alkynyl group includes a linear or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
- the number of carbon atoms of the alkynyl group may be 2 to 60, specifically 2 to 40, and more specifically, 2 to 20.
- the alkoxy group may be a straight chain, branched chain, or cyclic chain.
- the number of carbon atoms of the alkoxy group is not particularly limited, it is preferably 1 to 20 carbon atoms.
- the cycloalkyl group includes monocyclic or polycyclic having 3 to 60 carbon atoms, and may be further substituted by other substituents.
- the polycyclic refers to a group in which a cycloalkyl group is directly connected or condensed with another ring group.
- the other cyclic group may be a cycloalkyl group, but may be a different type of cyclic group, such as a heterocycloalkyl group, an aryl group, a heteroaryl group, and the like.
- the number of carbon atoms of the cycloalkyl group may be 3 to 60, specifically 3 to 40, and more specifically 5 to 20.
- the heterocycloalkyl group includes O, S, Se, N or Si as a hetero atom, includes monocyclic or polycyclic having 2 to 60 carbon atoms, and may be further substituted by other substituents.
- the polycyclic means a group in which a heterocycloalkyl group is directly connected or condensed with another ring group.
- the other cyclic group may be a heterocycloalkyl group, but may be a different type of cyclic group, such as a cycloalkyl group, an aryl group, a heteroaryl group, and the like.
- the number of carbon atoms of the heterocycloalkyl group may be 2 to 60, specifically 2 to 40, and more specifically 3 to 20.
- the aryl group includes monocyclic or polycyclic having 6 to 60 carbon atoms, and may be further substituted by other substituents.
- the polycyclic refers to a group in which an aryl group is directly connected or condensed with another ring group.
- the other cyclic group may be an aryl group, but may be another type of cyclic group, such as a cycloalkyl group, a heterocycloalkyl group, a heteroaryl group, and the like.
- the number of carbon atoms of the aryl group may be 6 to 60, specifically 6 to 40, and more specifically 6 to 25.
- aryl group examples include phenyl group, biphenyl group, triphenyl group, naphthyl group, anthryl group, chrysenyl group, phenanthrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, phenalenyl group, pyre Nyl group, tetracenyl group, pentacenyl group, indenyl group, acenaphthylenyl group, 2,3-dihydro-1H-indenyl group, condensed ring groups thereof, etc. may be mentioned, but the present invention is not limited thereto.
- the fluorenyl group may be substituted, and adjacent substituents may be bonded to each other to form a ring.
- fluorenyl group When the fluorenyl group is substituted, it may be represented by the following structure, but is not limited thereto.
- the heteroaryl group includes S, O, Se, N, or Si as a hetero atom, includes a monocyclic or polycyclic having 2 to 60 carbon atoms, and may be further substituted by other substituents.
- the polycyclic means a group in which a heteroaryl group is directly connected or condensed with another ring group.
- the other cyclic group may be a heteroaryl group, but may be another type of cyclic group such as a cycloalkyl group, a heterocycloalkyl group, an aryl group, and the like.
- the number of carbon atoms of the heteroaryl group may be 2 to 60, specifically 2 to 40, and more specifically 3 to 25.
- heteroaryl group examples include pyridyl group, pyrrolyl group, pyrimidyl group, pyridazinyl group, furanyl group, thiophene group, imidazolyl group, pyrazolyl group, oxazolyl group, isoxazolyl group, thiazolyl Group, isothiazolyl group, triazolyl group, furazinyl group, oxadiazolyl group, thiadiazolyl group, dithiazolyl group, tetrazolyl group, pyranyl group, thiopyranyl group, diazinyl group, oxazinyl group , Thiazinyl group, dioxynyl group, triazinyl group, tetrazinyl group, quinolyl group, isoquinolyl group, quinazolinyl group, isoquinazolinyl group, quinozoliryl group, naphthyridyl group,
- the amine group is a monoalkylamine group; Monoarylamine group; Monoheteroarylamine group; -NH 2 ; Dialkylamine group; Diarylamine group; Diheteroarylamine group; Alkylarylamine group; Alkylheteroarylamine group; And it may be selected from the group consisting of an arylheteroarylamine group, the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
- amine group examples include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, naphthylamine group, biphenylamine group, dibiphenylamine group, anthracenylamine group, 9- Methyl-anthracenylamine group, diphenylamine group, phenylnaphthylamine group, ditolylamine group, phenyltolylamine group, triphenylamine group, biphenylnaphthylamine group, phenylbiphenylamine group, biphenylfluore
- nilamine group phenyltriphenylenylamine group, biphenyltriphenylenylamine group, and the like, but are not limited thereto.
- an arylene group means that the aryl group has two bonding positions, that is, a divalent group. Except that each of these is a divalent group, the description of the aryl group described above may be applied.
- the heteroarylene group refers to a heteroaryl group having two bonding positions, that is, a divalent group. Except that each of these is a divalent group, the description of the aforementioned heteroaryl group may be applied.
- the phosphine oxide group includes a diphenylphosphine oxide group, a dinaphthylphosphine oxide, and the like, but is not limited thereto.
- the silyl group is a substituent including Si and the Si atom is directly connected as a radical, represented by -SiR104R105R106, R104 to R106 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Alkyl group; Alkenyl group; Alkoxy group; Cycloalkyl group; Aryl group; And it may be a substituent consisting of at least one of a heterocyclic group.
- silyl group examples include trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. It is not limited.
- the "adjacent" group means a substituent substituted on an atom directly connected to the atom where the corresponding substituent is substituted, a substituent located three-dimensionally closest to the corresponding substituent, or another substituent substituted on the atom where the corresponding substituent is substituted.
- I can.
- two substituents substituted with an ortho position in a benzene ring and two substituents substituted with the same carbon in an aliphatic ring may be interpreted as "adjacent" to each other.
- substitution means that the hydrogen atom bonded to the carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited as long as the position at which the hydrogen atom is substituted, that is, the position where the substituent can be substituted, When two or more are substituted, two or more substituents may be the same or different from each other.
- R, R'and R" are the same as or different from each other, and each independently a substituted or unsubstituted alkyl group; a substituted or unsubstituted aryl group; or a substituted or unsubstituted heteroaryl group.
- Chemical Formula 1 may be represented by the following Chemical Formula [1-A] or [1-B].
- R1 to R6, N-Het, L, L1, X1, Ar1, Ar2, a, c, d and e are the same as those in Formula 1,
- Z2 is a substituted or unsubstituted C6 to C60 aryl group.
- the aryl group is substituted on another benzene ring in which the N-containing ring is not substituted in the structure of dibenzofuran, thereby having a high T1 energy level of about 2.5 eV or more. Therefore, energy transfer from the host to the dopant is easy, and thus, it has excellent characteristics of luminous efficiency, such as a formula in which an arylene group or a heteroarylene group is substituted.
- Formula 1-A may be represented by the following Formula 3-A or 4-A.
- Formula 1-B may be represented by any one of the following Formula 3-B or 4-B.
- N-Het is substituted at position 3 of one benzene ring of dibenzofuran, and position 4 of the other benzene ring
- the current density is higher than in the case where it is substituted elsewhere, so that the driving voltage is lower and the triplet energy is also high.
- N-Het is substituted at position 3 of one benzene ring of dibenzofuran, and position 1 of the other benzene ring
- Td is lower than in the case where it is substituted elsewhere, and thermal stability is excellent, so that the lifespan characteristics of the organic light-emitting device are particularly excellent.
- R5 and R6 may be hydrogen.
- Ar1 and Ar2 are the same as or different from each other, and each independently, hydrogen; heavy hydrogen; -CN; Or a substituted or unsubstituted C1 to C60 alkyl group.
- Ar1 and Ar2 are the same as or different from each other, and are each independently hydrogen; Or a substituted or unsubstituted C1 to C60 alkyl group.
- Ar1 and Ar2 are the same as or different from each other, and are each independently hydrogen; Or a substituted or unsubstituted C1 to C20 alkyl group.
- Ar1 and Ar2 are the same as or different from each other, and are each independently hydrogen; Or a C1 to C20 alkyl group.
- Ar1 and Ar2 are hydrogen.
- L is a direct bond; A substituted or unsubstituted C6 to C60 arylene group; Or it may be a substituted or unsubstituted C2 to C60 heteroarylene group.
- L is a direct bond; A substituted or unsubstituted C6 to C40 arylene group; Or it may be a substituted or unsubstituted C2 to C40 heteroarylene group.
- L is a direct bond; A substituted or unsubstituted C6 to C40 monocyclic or polycyclic arylene group; Or it may be a substituted or unsubstituted C2 to C40 heteroarylene group.
- L is a direct bond; A substituted or unsubstituted C6 to C40 monocyclic arylene group; Or it may be a substituted or unsubstituted C10 to C40 polycyclic arylene group.
- L is a direct bond; C6 to C40 monocyclic arylene group; Or it may be a C10 to C40 polycyclic arylene group.
- L is a direct bond; Phenylene group; Biphenylene group; Or it may be a naphthylene group.
- L may be a direct bond
- L1 is a direct bond; A substituted or unsubstituted C6 to C60 arylene group; Or it may be a substituted or unsubstituted C2 to C60 heteroarylene group.
- L1 is a direct bond; A substituted or unsubstituted C6 to C40 arylene group; Or it may be a substituted or unsubstituted C2 to C40 heteroarylene group.
- L1 is a direct bond; A substituted or unsubstituted C6 to C40 monocyclic or polycyclic arylene group; Or it may be a substituted or unsubstituted C2 to C40 heteroarylene group.
- L1 is a direct bond; A substituted or unsubstituted C6 to C40 monocyclic arylene group; Or it may be a substituted or unsubstituted C10 to C40 polycyclic arylene group.
- L1 is a direct bond; C6 to C40 monocyclic arylene group; Or it may be a C10 to C40 polycyclic arylene group.
- L1 is a direct bond; Phenylene group; Biphenylene group; Or it may be a naphthylene group.
- R1 to R4 are the same as or different from each other, and each independently hydrogen; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group, or two or more groups adjacent to each other may be bonded to each other to form a substituted or unsubstituted C6 to C60 aromatic hydrocarbon ring.
- R1 to R4 are the same as or different from each other, and each independently hydrogen; A substituted or unsubstituted C1 to C40 alkyl group; A substituted or unsubstituted C6 to C40 aryl group; Or a substituted or unsubstituted C2 to C40 heteroaryl group, or two or more groups adjacent to each other may be bonded to each other to form a substituted or unsubstituted C6 to C40 aromatic hydrocarbon ring.
- R1 to R4 are the same as or different from each other, and each independently hydrogen; A C1 to C40 alkyl group; C6 to C40 aryl group; Or a C2 to C40 heteroaryl group, or two or more groups adjacent to each other may be bonded to each other to form a C6 to C40 aromatic hydrocarbon ring.
- R1 to R4 are the same as or different from each other, and each independently hydrogen; C6 to C40 monocyclic aryl group; Or a C10 to C40 polycyclic aryl group, or two or more groups adjacent to each other may be bonded to each other to form a C6 to C40 monocyclic aromatic hydrocarbon ring.
- R1 to R4 are the same as or different from each other, and each independently hydrogen; Phenyl group; Biphenyl group; Or a triphenylenyl group, or two or more groups adjacent to each other may be bonded to each other to form a benzene ring.
- R1 to R4 are the same as or different from each other, and each independently hydrogen; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group, or two or more groups adjacent to each other may be bonded to each other to form a substituted or unsubstituted C6 to C60 aromatic hydrocarbon ring.
- R1 to R4 are the same as or different from each other, and each independently hydrogen; A substituted or unsubstituted C1 to C40 alkyl group; A substituted or unsubstituted C6 to C40 aryl group; Or a substituted or unsubstituted C2 to C40 heteroaryl group, or two or more groups adjacent to each other may be bonded to each other to form a substituted or unsubstituted C6 to C40 aromatic hydrocarbon ring.
- R1 to R4 are the same as or different from each other, and each independently hydrogen; A C1 to C40 alkyl group; C6 to C40 aryl group; Or a C2 to C40 heteroaryl group, or two or more groups adjacent to each other may be bonded to each other to form a C6 to C40 aromatic hydrocarbon ring.
- R1 to R4 are the same as or different from each other, and each independently hydrogen; C6 to C40 monocyclic aryl group; Or a C10 to C40 polycyclic aryl group, or two or more groups adjacent to each other may be bonded to each other to form a C6 to C40 monocyclic aromatic hydrocarbon ring.
- R1 to R4 are the same as or different from each other, and each independently hydrogen; Phenyl group; Biphenyl group; Or a triphenylenyl group, or two or more groups adjacent to each other may be bonded to each other to form a benzene ring.
- X1 is O; S; CR11R12; Or NR13.
- X1 may be O.
- X1 may be S.
- X1 may be CR11R12.
- X1 may be NR13.
- X1 has a substituent of NR13
- the HOMO energy level is localized to one side, but when X1 has O, S, etc., it is delocalized compared to that. It has the characteristics of manufacturing an organic light emitting device with improved driving stability and improved efficiency.
- R11 to R13 are the same as or different from each other, and each independently a substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
- R11 to R13 are the same as or different from each other, and each independently a C1 to C60 alkyl group; C6 to C60 aryl group; Or it may be a C2 to C60 heteroaryl group.
- R11 to R13 may be the same as or different from each other, and each independently may be a C6 to C60 aryl group.
- R11 to R13 may be the same as or different from each other, and each independently may be a C6 to C40 monocyclic aryl group.
- R11 to R13 may be a phenyl group.
- R13 may be a phenyl group.
- Formula A of Formula 1 may be represented by any one of Formulas 1-1 to 1-6 below.
- R31 to R34 are the same as or different from each other, and each independently a substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
- R35 and R36 are the same as or different from each other, and each independently hydrogen; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group.
- Z1 may be a substituted or unsubstituted C6 to C60 aryl group or represented by Formula A, and specifically, Z1 may be a substituted or unsubstituted C6 to C60 aryl group.
- Z1 may be a substituted or unsubstituted C6 to C40 aryl group.
- Z1 may be a substituted or unsubstituted monocyclic or polycyclic C6 to C40 aryl group.
- Z1 may be a substituted or unsubstituted monocyclic C6 to C40 aryl group.
- Z1 may be a substituted or unsubstituted polycyclic C10 to C40 aryl group.
- Z1 may be a monocyclic C6 to C40 aryl group.
- Z1 may be a polycyclic C10 to C40 aryl group.
- Z1 is a phenyl group; Or it may be a triphenylenyl group.
- Z2 may be a substituted or unsubstituted C6 to C60 aryl group.
- Z2 may be a substituted or unsubstituted C6 to C40 aryl group.
- Z2 may be a substituted or unsubstituted monocyclic or polycyclic C6 to C40 aryl group.
- Z2 may be a substituted or unsubstituted monocyclic C6 to C40 aryl group.
- Z2 may be a substituted or unsubstituted polycyclic C10 to C40 aryl group.
- Z2 may be a monocyclic C6 to C40 aryl group.
- Z2 may be a polycyclic C10 to C40 aryl group.
- Z2 is a phenyl group; Or it may be a triphenylenyl group.
- R31 to R34 are the same as or different from each other, and each independently a substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
- R31 to R34 may be the same as or different from each other, and each independently a substituted or unsubstituted C6 to C60 aryl group.
- R31 to R34 may be the same as or different from each other, and each may independently be a substituted or unsubstituted C6 to C40 aryl group.
- R31 to R34 may be the same as or different from each other, and each independently may be a substituted or unsubstituted C6 to C40 monocyclic or polycyclic aryl group.
- R31 to R34 are the same as or different from each other, and each independently a C6 to C40 monocyclic aryl group; Or it may be a C10 to C40 polycyclic aryl group.
- R31 to R34 are the same as or different from each other, and each independently a phenyl group; Or it may be a triphenylenyl group.
- R35 and R36 may be hydrogen.
- N-Het may be a substituted or unsubstituted monocyclic or polycyclic C2 to C60 heterocyclic group containing at least one N.
- N-Het may be a substituted or unsubstituted monocyclic or polycyclic C2 to C60 heterocyclic group containing 1 or more and 3 or less N.
- N-Het may be a substituted or unsubstituted monocyclic or polycyclic C2 to C60 heterocyclic group containing 1 or more and 3 or less N.
- N-Het may be a substituted or unsubstituted monocyclic or polycyclic C2 to C40 heterocyclic group including 1 or more and 3 or less N.
- N-Het may be a substituted or unsubstituted monocyclic C2 to C40 heterocyclic group including 1 or more and 3 or less N.
- N-Het may be selected from the following structural formulas.
- R41 to R45 are the same as or different from each other, and each independently hydrogen; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group.
- R41 to R45 are the same as or different from each other, and each independently, hydrogen; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
- R41 to R45 are the same as or different from each other, and each independently, hydrogen; A substituted or unsubstituted C1 to C40 alkyl group; A substituted or unsubstituted C6 to C40 aryl group; Or it may be a substituted or unsubstituted C2 to C40 heteroaryl group.
- R, R'and R" are the same as or different from each other, and each independently a substituted or unsubstituted C1 to C60 alkyl group; a substituted or unsubstituted C6 to C60 aryl group; or It may be a substituted or unsubstituted C2 to C60 heteroaryl group.
- R, R'and R" may be the same as or different from each other, and may each independently be a substituted or unsubstituted C6 to C60 aryl group.
- R, R'and R" are the same as or different from each other, and each independently may be a substituted or unsubstituted C6 to C60 monocyclic or polycyclic aryl group.
- R, R'and R" may be the same as or different from each other, and may each independently be a substituted or unsubstituted C6 to C40 monocyclic aryl group.
- R, R'and R" may be the same as or different from each other, and may each independently be a C6 to C20 monocyclic aryl group.
- R, R'and R" may be a phenyl group.
- Formula 1 may be represented by any one of the following compounds, but is not limited thereto.
- a compound having the inherent characteristics of the introduced substituent can be synthesized.
- a hole injection layer material, a hole transport material, a light emitting layer material, an electron transport layer material, and a substituent mainly used in the charge generation layer material used in manufacturing an organic light emitting device are introduced into the core structure to meet the conditions required by each organic material layer. It is possible to synthesize a material that makes it possible.
- the energy band gap can be finely adjusted, while the properties at the interface between organic substances can be improved, and the use of the material can be varied.
- the first electrode A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a heterocyclic compound according to Formula 1 above. to provide.
- the first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes one heterocyclic compound according to Formula 1 above. Provides.
- the first electrode may be an anode
- the second electrode may be a cathode
- the first electrode may be a cathode
- the second electrode may be an anode
- the organic light-emitting device may be a blue organic light-emitting device
- the heterocyclic compound according to Formula 1 may be used as a material of the blue organic light-emitting device.
- the heterocyclic compound according to Formula 1 may be included in the host material of the blue emission layer of the blue organic light emitting device.
- the organic light-emitting device may be a green organic light-emitting device, and the heterocyclic compound according to Formula 1 may be used as a material of the green organic light-emitting device.
- the heterocyclic compound according to Formula 1 may be included in the host material of the green emission layer of the green organic light emitting device.
- the organic light-emitting device may be a red organic light-emitting device
- the heterocyclic compound according to Formula 1 may be used as a material of the red organic light-emitting device.
- the heterocyclic compound according to Formula 1 may be included in the host material of the red emission layer of the red organic light emitting device.
- the organic light-emitting device of the present invention may be manufactured by a conventional method and material of an organic light-emitting device, except that one or more organic material layers are formed using the above-described heterocyclic compound.
- the heterocyclic compound may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
- the solution coating method refers to spin coating, dip coating, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
- the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
- the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like as an organic material layer.
- the structure of the organic light emitting device is not limited thereto, and may include a smaller number of organic material layers.
- the organic material layer may include an emission layer, and the emission layer may include the heterocyclic compound.
- the organic material layer may include an emission layer, the emission layer may include a host material, and the host material may include the heterocyclic compound.
- the organic material layer including the heterocyclic compound includes the heterocyclic compound represented by Formula 1 as a host, and may be used together with an iridium-based dopant.
- the organic material layer may include an electron injection layer or an electron transport layer, and the electron transport layer or the electron injection layer may include the heterocyclic compound.
- the organic material layer may include an electron blocking layer or a hole blocking layer, and the electron blocking layer or the hole blocking layer may include the heterocyclic compound.
- the organic light emitting device of the present invention is a light emitting layer, a hole injection layer, a hole transport layer. It may further include one layer or two or more layers selected from the group consisting of an electron injection layer, an electron transport layer, an electron blocking layer, and a hole blocking layer.
- FIG. 1 to 3 illustrate a stacking sequence of an electrode and an organic material layer of an organic light-emitting device according to an exemplary embodiment of the present application.
- the scope of the present application be limited by these drawings, and the structure of an organic light-emitting device known in the art may be applied to the present application.
- an organic light-emitting device in which an anode 200, an organic material layer 300, and a cathode 400 are sequentially stacked on a substrate 100 is shown.
- the structure is not limited thereto, and an organic light-emitting device in which a cathode, an organic material layer, and an anode are sequentially stacked on a substrate may be implemented as shown in FIG. 2.
- the organic light emitting device according to FIG. 3 includes a hole injection layer 301, a hole transport layer 302, a light emitting layer 303, a hole blocking layer 304, an electron transport layer 305, and an electron injection layer 306.
- a hole injection layer 301 a hole transport layer 302
- a light emitting layer 303 a hole transport layer 302
- a hole blocking layer 304 a hole blocking layer 304
- an electron transport layer 305 an electron injection layer 306.
- the scope of the present application is not limited by such a lamination structure, and other layers other than the light emitting layer may be omitted, or other necessary functional layers may be further added as necessary.
- the organic material layer including the compound of Formula 1 may further include other materials as necessary.
- the organic material layer may further include a heterocyclic compound represented by Formula 2 below.
- Ra and Rb are the same as or different from each other, and each independently a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
- Rc and Rd are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; Cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C2 to C60 alkenyl group; A substituted or unsubstituted C2 to C60 alkynyl group; A substituted or unsubstituted C1 to C60 alkoxy group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; A substituted or unsubstituted C2 to C60 heteroaryl group; And it is selected from the group consisting of a substituted or unsubstituted amine group,
- r and s are integers from 0 to 7.
- the exciplex phenomenon is a phenomenon in which energy of the size of the HOMO level of the donor (p-host) and the LUMO level of the acceptor (n-host) is released through electron exchange between two molecules.
- RISC Reverse Intersystem Crossing
- a donor (p-host) with good hole transport capability and an acceptor (n-host) with good electron transport capability are used as the host of the emission layer, holes are injected into the p-host and electrons are injected into the n-host. Can be lowered, thereby helping to improve the lifespan.
- Rc and Rd may be hydrogen.
- Ra and Rb in Formula 2 may be the same as or different from each other, and may each independently be a substituted or unsubstituted C6 to C60 aryl group.
- Ra and Rb in Formula 2 may be the same as or different from each other, and may each independently be a substituted or unsubstituted C6 to C40 aryl group.
- Ra and Rb in Formula 2 are the same as or different from each other, and each independently 1 selected from the group consisting of a C1 to C40 alkyl group, a C6 to C40 aryl group, -CN and -SiR201R202R203 It may be a C6 to C40 aryl group unsubstituted or substituted with the above substituents.
- Ra and Rb in Formula 2 are the same as or different from each other, and each independently a phenyl group, a phenyl group unsubstituted or substituted with -CN or -SiR201R202R203; A biphenyl group unsubstituted or substituted with a phenyl group; Naphthyl group; A fluorene group unsubstituted or substituted with a methyl group or a phenyl group; Spirobifluorene group; Or it may be a triphenylene group.
- R201, R202, and R203 in Formula 2 may be C6 to C60 aryl groups.
- R201, R202, and R203 in Formula 2 may be C6 to C40 aryl groups.
- R201, R202, and R203 in Formula 2 may be a phenyl group.
- Formula 2 may be represented by any one of the following compounds, but is not limited thereto.
- the compound of Formula 2 may be included in the emission layer of the organic material layer.
- the compound of Formula 2 may be included in the emission layer among the organic material layers, and specifically, may be used as a host material for the emission layer.
- the host material of the emission layer of the organic light emitting device may include the heterocyclic compound of Formula 1 and the heterocyclic compound of Formula 2 at the same time.
- a composition for an organic material layer of an organic light-emitting device comprising a heterocyclic compound represented by Formula 1 and a heterocyclic compound represented by Formula 2 is provided. .
- the heterocyclic compound represented by Formula 1 in the composition the weight ratio of the heterocyclic compound represented by Formula 2 may be 1: 10 to 10: 1, 1: 8 to 8: 1, and 1: 5 To 5: 1, may be 1: 2 to 2: 1, but is not limited thereto.
- the step of forming the organic material layer provides a method of manufacturing an organic light emitting device in which the heterocyclic compound represented by Formula 1 is formed using a thermal vacuum deposition method.
- the heterocyclic compound represented by Formula 1 and the two heterocyclic compounds represented by Formula 2 are pre-mixed to perform a thermal vacuum deposition method. It provides a method of manufacturing an organic light-emitting device that is formed by using.
- the pre-mixed means that the heterocyclic compound represented by Chemical Formula 1 and the two heterocyclic compounds represented by Chemical Formula 2 are first mixed and mixed in a park before depositing on the organic material layer. .
- the premixed material may be referred to as a composition for an organic material layer according to an exemplary embodiment of the present application.
- the cathode material Materials having a relatively large work function may be used as the cathode material, and transparent conductive oxides, metals, or conductive polymers may be used.
- the anode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ZnO: Al or SnO 2: a combination of a metal and an oxide such as Sb; Poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), conductive polymers such as polypyrrole and polyaniline, and the like, but are not limited thereto.
- the cathode material Materials having a relatively low work function may be used as the cathode material, and metal, metal oxide, or conductive polymer may be used.
- the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multilayered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
- a known hole injection material may be used.
- a phthalocyanine compound such as copper phthalocyanine disclosed in U.S. Patent No. 4,356,429 or a phthalocyanine compound disclosed in Advanced Material, 6, p.
- Starburst type amine derivatives such as tris(4-carbazoyl-9-ylphenyl)amine (TCTA), 4,4',4"-tri[phenyl(m-tolyl)amino]triphenylamine (m- MTDATA), 1,3,5-tris[4-(3-methylphenylphenylamino)phenyl]benzene (m-MTDAPB), polyaniline/dodecylbenzenesulfonic acid or poly( 3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), polyaniline/camphor sulfonic acid or polyaniline/ Poly(4-styrene-sulfonate) (Polyaniline/Poly(4-styrene-sulfonate)), etc. may be used.
- TCTA
- hole transport material pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, etc. may be used, and low molecular weight or high molecular weight materials may be used.
- Electron transport materials include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, fluorenone Derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, and the like may be used, and not only low-molecular substances but also high-molecular substances may be used.
- LiF is typically used in the art, but the present application is not limited thereto.
- Red, green, or blue light-emitting materials may be used as the light-emitting material, and if necessary, two or more light-emitting materials may be mixed and used. In this case, two or more light-emitting materials may be deposited as separate sources and used, or premixed and deposited as one source. Further, a fluorescent material may be used as the light emitting material, but it may also be used as a phosphorescent material. As the light-emitting material, a material that emits light by combining holes and electrons respectively injected from the anode and the cathode may be used alone, but materials in which a host material and a dopant material participate in light emission may be used.
- hosts of the same series may be mixed and used, or hosts of different types may be mixed and used.
- any two or more types of an n-type host material or a p-type host material may be selected and used as the host material of the light emitting layer.
- the organic light-emitting device may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
- the heterocyclic compound according to the exemplary embodiment of the present application may function in an organic electronic device including an organic solar cell, an organic photoreceptor, an organic transistor, etc. with a principle similar to that applied to an organic light emitting device.
- Compound 1-1-3 85.0g (258.7mM), 2-chloro-4,6-diphenyl-1,3,5-triazine (2-chloro-4,6-diphenyl-1,3,5-triazine ) 69.3g(258.7mM), Pd(PPh) 4 14.9g(12.9mM), K 2 CO 3 71.5g(517.4mM) 1,4-dioxane (1,4-dioxane)/H 2 O 1000/ After dissolving in 200 mL, it was refluxed for 24 hours.
- a glass substrate coated with a thin film of indium tin oxide (ITO) to a thickness of 1,500 ⁇ was washed with distilled water and ultrasonic waves. After washing with distilled water, ultrasonic cleaning was performed with a solvent such as acetone, methanol, and isopropyl alcohol, dried, and then treated with UVO (Ultraviolet Ozone) for 5 minutes using UV in a UV scrubber. Thereafter, the substrate was transferred to a plasma cleaner (PT), followed by plasma treatment to remove the ITO work function and residual film in a vacuum state, and transferred to a thermal evaporation equipment for organic deposition.
- ITO indium tin oxide
- the light emitting layer was thermally vacuum deposited thereon as follows.
- the emission layer was deposited by depositing 400 ⁇ of the compound of Table 6 as a host, and the green phosphorescent dopant was deposited by doping Ir(ppy) 3 by 7% of the thickness of the emission layer.
- 60 ⁇ of BCP was deposited as a hole blocking layer, and 200 ⁇ of Alq 3 was deposited as an electron transport layer thereon.
- lithium fluoride (LiF) was deposited on the electron transport layer to a thickness of 10 ⁇ to form an electron injection layer, and then an aluminum (Al) cathode was deposited on the electron injection layer to a thickness of 1,200 ⁇ to form a cathode.
- An electroluminescent device was manufactured.
- electroluminescence (EL) characteristics were measured with the M7000 of McScience, and the reference luminance was 6,000 through the life equipment measuring equipment (M6000) manufactured by McScience with the measurement result.
- M6000 life equipment measuring equipment
- Example 1 1-1 4.31 53.2 (0.247, 0.667) 227
- Example 2 1-2 4.30 55.8 (0.241, 0.671)
- Example 3 1-14 4.45 52.7 (0.251, 0.674)
- Example 4 1-18 4.38 54.0 (0.240, 0.672) 228
- Example 5 1-37 4.34 54.1 (0.242, 0.673)
- Example 6 1-38 4.31 55.2 (0.231, 0.681) 238
- Example 7 1-49 4.41 53.7 (0.241, 0.683) 233
- Example 8 1-50 4.39 55.0 (0.231, 0.674) 241
- Example 9 1-61 4.15 50.4 (0.231, 0.684)
- Example 10 1-81 4.12 50.8 (0.246, 0.677) 190
- Example 11 1-102 4.42 55.7 (0.239, 0.682)
- Example 12 1-106 4.27 54.1 (0.243, 0.671) 220
- Example 13 4-1 4.20 55.8 (0.247, 0.685) 259
- the glass substrate coated with a thin film of ITO to a thickness of 1,500 ⁇ was washed with distilled water and ultrasonic waves. After washing with distilled water, ultrasonic cleaning was performed with a solvent such as acetone, methanol, and isopropyl alcohol, dried, and UVO treated for 5 minutes using UV in a UV scrubber. Thereafter, the substrate was transferred to a plasma cleaner (PT), followed by plasma treatment to remove the ITO work function and residual film in a vacuum state, and transferred to a thermal evaporation equipment for organic deposition.
- PT plasma cleaner
- the light emitting layer was thermally vacuum deposited thereon as follows.
- the emitting layer was pre-mixed with one compound of Formula 1 and one compound of Formula 2 as a host as shown in Table 7 below, and then pre-mixed and deposited at 400 ⁇ in one park, and the green phosphorescent dopant used Ir(ppy) 3 as the emitting layer. It was deposited by doping 7% of the deposition thickness. Thereafter, 60 ⁇ of BCP was deposited as a hole blocking layer, and 200 ⁇ of Alq 3 was deposited as an electron transport layer thereon.
- lithium fluoride (LiF) was deposited on the electron transport layer to a thickness of 10 ⁇ to form an electron injection layer, and then an aluminum (Al) cathode was deposited on the electron injection layer to a thickness of 1,200 ⁇ to form a cathode.
- An electroluminescent device was manufactured.
- electroluminescence (EL) characteristics were measured with the M7000 of McScience, and the reference luminance was 6,000 through the life equipment measuring equipment (M6000) manufactured by McScience with the measurement result.
- M6000 life equipment measuring equipment
- the organic electroluminescent device using the organic electroluminescent device light-emitting layer material of the present invention has a lower driving voltage, improved luminous efficiency, and significantly improved lifespan compared to Comparative Examples 7 to 14. I could confirm.
- the exciplex phenomenon is a phenomenon in which energy of the size of the HOMO level of the donor (p-host) and the level of the acceptor (n-host) LUMO is released through electron exchange between two molecules.
- RISC Reverse Intersystem Crossing
- a donor (p-host) with good hole transport capability and an acceptor (n-host) with good electron transport capability are used as the host of the emission layer, holes are injected into the p-host and electrons are injected into the n-host. Can be lowered, thereby helping to improve the lifespan.
- the donor role is the compound of Formula 2, and the acceptor role shows excellent device characteristics when the compound of Formula 1 is used as a light emitting layer host.
- the compounds of Comparative Examples 7, 8 and 9 are different from the compound of the present invention in the substitution position, and the compounds of Comparative Examples 10 and 11 do not have one of the two substituents of the dibenzofuran structure of the present formula (1).
- the balance between holes and electrons in the light emitting layer was broken and the lifespan was reduced.
- the compound of Comparative Example 14 when the N portion of carbazole is bonded to dibenzofuran, it was confirmed that the hole movement was faster and the lifespan decreased.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
La présente invention concerne un composé hétérocyclique représenté par la formule chimique 1, une diode électroluminescente organique le comprenant, une composition destinée à une couche organique d'une diode électroluminescente organique, et un procédé de fabrication d'une diode électroluminescente organique.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20875561.1A EP4043454A4 (fr) | 2019-10-08 | 2020-10-07 | Composé hétérocyclique, diode électroluminescente organique le comprenant, composition pour couche organique de diode électroluminescente organique, et procédé de fabrication de diode électroluminescente organique |
CN202080043750.0A CN113993863A (zh) | 2019-10-08 | 2020-10-07 | 杂环化合物、包括其的有机发光二极管、用于有机发光二极管有机层的组成物以及制造有机发光二极管的方法 |
US17/608,799 US20220320442A1 (en) | 2019-10-08 | 2020-10-07 | Heterocyclic compound, organic light-emitting diode comprising same, composition for organic layer of organic light-emitting diode, and method for manufacturing organic light-emitting diode |
JP2021576286A JP2022551367A (ja) | 2019-10-08 | 2020-10-07 | ヘテロ環化合物、これを含む有機発光素子、有機発光素子の有機物層用組成物および有機発光素子の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190124521A KR102298235B1 (ko) | 2019-10-08 | 2019-10-08 | 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법 |
KR10-2019-0124521 | 2019-10-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021071248A1 true WO2021071248A1 (fr) | 2021-04-15 |
Family
ID=75437970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/013665 WO2021071248A1 (fr) | 2019-10-08 | 2020-10-07 | Composé hétérocyclique, diode électroluminescente organique le comprenant, composition pour couche organique de diode électroluminescente organique, et procédé de fabrication de diode électroluminescente organique |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220320442A1 (fr) |
EP (1) | EP4043454A4 (fr) |
JP (1) | JP2022551367A (fr) |
KR (1) | KR102298235B1 (fr) |
CN (1) | CN113993863A (fr) |
WO (1) | WO2021071248A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240324269A1 (en) * | 2021-12-22 | 2024-09-26 | Lg Chem, Ltd. | Novel compound and organic light emitting device comprising the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4356429A (en) | 1980-07-17 | 1982-10-26 | Eastman Kodak Company | Organic electroluminescent cell |
JP2016149473A (ja) * | 2015-02-13 | 2016-08-18 | コニカミノルタ株式会社 | 芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置 |
KR20180068869A (ko) * | 2016-12-14 | 2018-06-22 | 주식회사 엘지화학 | 유기 발광 소자 |
KR20190030963A (ko) * | 2017-09-15 | 2019-03-25 | 엘티소재주식회사 | 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 |
KR20190079339A (ko) * | 2017-12-27 | 2019-07-05 | 삼성에스디아이 주식회사 | 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치 |
KR20190079571A (ko) * | 2017-12-27 | 2019-07-05 | 주식회사 엘지화학 | 유기 발광 소자 |
KR20190079340A (ko) * | 2017-12-27 | 2019-07-05 | 삼성에스디아이 주식회사 | 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치 |
KR20190124521A (ko) | 2018-04-26 | 2019-11-05 | 한국기계연구원 | 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지 |
-
2019
- 2019-10-08 KR KR1020190124521A patent/KR102298235B1/ko active IP Right Grant
-
2020
- 2020-10-07 WO PCT/KR2020/013665 patent/WO2021071248A1/fr unknown
- 2020-10-07 EP EP20875561.1A patent/EP4043454A4/fr active Pending
- 2020-10-07 CN CN202080043750.0A patent/CN113993863A/zh active Pending
- 2020-10-07 US US17/608,799 patent/US20220320442A1/en active Pending
- 2020-10-07 JP JP2021576286A patent/JP2022551367A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4356429A (en) | 1980-07-17 | 1982-10-26 | Eastman Kodak Company | Organic electroluminescent cell |
JP2016149473A (ja) * | 2015-02-13 | 2016-08-18 | コニカミノルタ株式会社 | 芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置 |
KR20180068869A (ko) * | 2016-12-14 | 2018-06-22 | 주식회사 엘지화학 | 유기 발광 소자 |
KR20190030963A (ko) * | 2017-09-15 | 2019-03-25 | 엘티소재주식회사 | 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 |
KR20190079339A (ko) * | 2017-12-27 | 2019-07-05 | 삼성에스디아이 주식회사 | 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치 |
KR20190079571A (ko) * | 2017-12-27 | 2019-07-05 | 주식회사 엘지화학 | 유기 발광 소자 |
KR20190079340A (ko) * | 2017-12-27 | 2019-07-05 | 삼성에스디아이 주식회사 | 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치 |
KR20190124521A (ko) | 2018-04-26 | 2019-11-05 | 한국기계연구원 | 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4043454A4 |
Also Published As
Publication number | Publication date |
---|---|
KR20210041833A (ko) | 2021-04-16 |
KR102298235B1 (ko) | 2021-09-07 |
CN113993863A (zh) | 2022-01-28 |
JP2022551367A (ja) | 2022-12-09 |
US20220320442A1 (en) | 2022-10-06 |
TW202122390A (zh) | 2021-06-16 |
EP4043454A4 (fr) | 2023-10-18 |
EP4043454A1 (fr) | 2022-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020071778A1 (fr) | Composé hétérocyclique, diode électroluminescente organique le comprenant, composition pour couche organique de diode électroluminescente organique, et procédé de fabrication de diode électroluminescente organique | |
WO2021054714A1 (fr) | Composé hétérocyclique et dispositif électroluminescent organique le comprenant | |
WO2021060865A1 (fr) | Composé hétérocyclique et dispositif électroluminescent organique le comprenant | |
WO2021101220A1 (fr) | Composé hétérocyclique, dispositif électroluminescent organique le comprenant, composition pour couche organique de dispositif électroluminescent organique, et procédé de fabrication de dispositif électroluminescent organique | |
WO2021091259A1 (fr) | Composé hétérocyclique, diode électroluminescente organique le comprenant, composition pour couche de matière organique de diode électroluminescente organique, et procédé de fabrication de diode électroluminescente organique | |
WO2020122576A1 (fr) | Composé hétérocyclique, dispositif électroluminescent organique le comprenant, son procédé de fabrication et composition pour couche de matériau organique | |
WO2022035224A1 (fr) | Composé hétérocyclique, dispositif électroluminescent organique le comprenant, et composition pour couche de matière organique de dispositif électroluminescent organique | |
WO2021133016A2 (fr) | Composé hétérocyclique, élément électroluminescent organique le comprenant, composition pour couche organique d'élément électroluminescent organique et procédé de fabrication d'élément électroluminescent organique | |
WO2022075601A1 (fr) | Composé hétérocyclique et dispositif électroluminescent organique le comprenant | |
WO2021132984A1 (fr) | Composé hétérocyclique, diode électroluminescente organique comprenant celui-ci et composition pour couche organique de diode électroluminescente organique | |
WO2020116995A1 (fr) | Composé hétérocyclique et élément électroluminescent organique comprenant ledit composé | |
WO2022050592A1 (fr) | Composé hétérocyclique et élément électroluminescent organique le comprenant | |
WO2021132982A1 (fr) | Composé hétérocyclique, diode électroluminescente organique le comprenant, et composition pour couche organique de diode électroluminescente organique | |
WO2021241923A1 (fr) | Dispositif électroluminescent organique, son procédé de fabrication et composition pour couche de matériau organique de dispositif électroluminescent organique | |
WO2020096421A1 (fr) | Composé hétérocyclique et diode électroluminescente organique le comprenant | |
WO2022211211A1 (fr) | Composé hétérocyclique, dispositif électroluminescent organique le comprenant, et composition pour couche organique | |
WO2022108141A1 (fr) | Composé et dispositif électroluminescent organique le comprenant | |
WO2019245264A1 (fr) | Composé hétérocyclique, diode électroluminescente organique le comprenant, son procédé de fabrication et composition pour couche organique | |
WO2021215742A1 (fr) | Composé hétérocyclique, dispositif électroluminescent organique le comprenant, son procédé de fabrication et composition pour couche organique | |
WO2022244983A1 (fr) | Composé hétérocyclique et élément électroluminescent organique le comprenant | |
WO2021071248A1 (fr) | Composé hétérocyclique, diode électroluminescente organique le comprenant, composition pour couche organique de diode électroluminescente organique, et procédé de fabrication de diode électroluminescente organique | |
WO2022186645A1 (fr) | Composé hétérocyclique, dispositif électroluminescent organique le comprenant, son procédé de fabrication et composition pour couche organique | |
WO2022139213A1 (fr) | Composé hétérocyclique et dispositif électroluminescent organique le comprenant | |
WO2022124594A1 (fr) | Composé hétérocyclique, dispositif électroluminescent organique le comprenant, son procédé de fabrication et composition pour couche organique | |
WO2022250244A1 (fr) | Composé hétérocyclique et dispositif électroluminescent organique le comprenant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20875561 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021576286 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020875561 Country of ref document: EP Effective date: 20220509 |