WO2021070377A1 - Power reception device, battery unit, electric power unit and work machine - Google Patents

Power reception device, battery unit, electric power unit and work machine Download PDF

Info

Publication number
WO2021070377A1
WO2021070377A1 PCT/JP2019/040294 JP2019040294W WO2021070377A1 WO 2021070377 A1 WO2021070377 A1 WO 2021070377A1 JP 2019040294 W JP2019040294 W JP 2019040294W WO 2021070377 A1 WO2021070377 A1 WO 2021070377A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
battery
battery unit
receiving device
power receiving
Prior art date
Application number
PCT/JP2019/040294
Other languages
French (fr)
Japanese (ja)
Inventor
智勇 金子
中田 泰弘
榎本 貴行
亨 結城
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2019/040294 priority Critical patent/WO2021070377A1/en
Priority to DE112019007804.6T priority patent/DE112019007804T5/en
Publication of WO2021070377A1 publication Critical patent/WO2021070377A1/en
Priority to US17/712,603 priority patent/US20220223925A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B45/00Hand-held or like portable drilling machines, e.g. drill guns; Equipment therefor
    • B23B45/02Hand-held or like portable drilling machines, e.g. drill guns; Equipment therefor driven by electric power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit

Definitions

  • the present invention mainly relates to a power receiving device and a battery unit.
  • Patent Document 1 describes the configuration of an electric work machine (power tool) in which a plurality of battery units (battery packs) are individually electrically connected.
  • the work machine main body is provided with a plurality of connection portions for electrically connecting a plurality of battery units.
  • any battery unit may be electrically connected to the plurality of connections described above, that is, the battery unit removed from the work machine body can be arbitrarily replaced with another battery unit having the same configuration. is there.
  • each battery unit is equipped with a processor for controlling its power supply function. This is relatively simple because it may be necessary for the processor to properly detect which of the multiple connections the battery unit is electrically connected to in order to achieve proper control of this power supply function. Technology is required to realize this with a flexible configuration.
  • the first aspect of the present invention relates to a power receiving device, and the power receiving device is a power receiving device configured to be able to receive power from a plurality of battery units each including a processor for controlling a power feeding function.
  • Each of the battery units is provided with a plurality of connections that can be electrically connected to each other, and the plurality of connections correspond to the plurality of battery units when the plurality of battery units are electrically connected to each of the plurality of connections. It is characterized in that it is configured so that the voltages supplied to the processors have different values from each other.
  • the block diagram which shows the configuration example of the electric work machine.
  • the circuit block diagram which shows the structural example of the battery unit and the power receiving device.
  • FIG. 1 is a block diagram showing a system configuration example of the work machine 1 according to the embodiment.
  • the work machine 1 includes a work mechanism 11, an electric motor 12, a battery unit 13, and a power receiving device 14, and uses the power of the battery unit 13 to perform a predetermined work by the work mechanism 11 (for example, a trowell, a sweeper, etc.). And.
  • the work mechanism 11 executes the above work based on the power (rotation) generated by the electric motor 12.
  • the battery units 13 are configured to be capable of storing electric power, and in the present embodiment, a plurality of battery units 13 are arranged side by side.
  • the power receiving device 14 has a built-in PDU (Power Drive Unit) or the like, converts the electric power received from the battery unit 13 into a predetermined mode, and supplies the electric power to the electric motor 12.
  • PDU Power Drive Unit
  • the work equipment 1 may be further provided with an electric device such as a display device and a light source device as another power supply target.
  • the configuration of the work machine 1 is not limited to the above example, and various changes may be made without departing from the purpose. Further, the electric motor 12, the battery unit 13, and the power receiving device 14 may be unitized separately from the working mechanism 11, so that the electric motor 12, the battery unit 13, and the power receiving device 14 can be used as an electric power unit PU in various applications.
  • FIG. 2 is a circuit block diagram showing a system configuration example of the battery unit 13 and the power receiving device 14.
  • two battery units 13 are arranged side by side, and for distinction, one of them is referred to as “battery unit 13a” and the other is referred to as “battery unit 13b”.
  • the battery unit 13a includes a battery (battery body) 130a, a processor 131a, a communication unit 132a, a regulator 133a, a plurality of resistance elements 136a, R1a and R2a, a plurality of switch elements 134a, 135a and 137a, and a rectifying element D1a.
  • the battery unit 13a is configured by unitizing these elements 130a and the like, and the housing thereof is provided with terminal groups T1a to T4a for electrically connecting the battery unit 13a to the power receiving device 14.
  • the battery 130a outputs a DC (Direct Current) voltage of 48 [V] in the present embodiment, and is typically configured by connecting a plurality of battery cells in series, but is composed of a single battery cell. May be good.
  • the power supply line on the positive electrode side of the battery 130a is indicated by the wire VH13a
  • the power supply line on the negative electrode side is indicated by the wire VL13a.
  • the power line VL13a is electrically connected to the terminal T1a.
  • the processor 131a is an electronic component (for example, a semiconductor package) for controlling the power supply function of the battery 130a, although the details will be described later.
  • the processor 131a may be a semiconductor device such as an ASIC (integrated circuit for a specific application) or a PLD (programmable logic device), but may be configured by a CPU (Central Processing Unit) and a memory so that the same function can be realized. .. That is, the function of the processor 131a can be realized by either hardware or software.
  • the communication unit 132a is an electronic component configured to be able to communicate with an element outside the battery unit 13a via the terminal T4a, and is externally communicated with the processor 131a by mutual communication with the processor 131a as shown by a broken line in the figure. Is feasible.
  • the regulator 133a outputs a predetermined voltage (here 3.3 [V]) to the line VH13a'based on the voltage of the power supply line VH13a (here 48 [V]).
  • the resistance elements R1a and R2a are connected in series between the wire VH13a'and the wire VH13a'electrically connected to the terminal T2a. The details will be described later, but the node between the resistance elements R1a and R2a , A partial pressure will be generated based on their resistance ratio.
  • switch element 134a a MOS (Metal Oxide Semiconductor) transistor is used in the present embodiment, and its gate terminal is electrically connected to the node between the resistance elements R1a and R2a. Further, the drain terminal is electrically connected to the line VH13a', and the source terminal is electrically connected to the processor 131a.
  • MOS Metal Oxide Semiconductor
  • the switch element 135a and the resistance element 136a are connected in series between the power supply line VH13a and the line VH13a réelle electrically connected to the terminal T3a.
  • the switch element 137a is connected in parallel to the switch element 135a and the resistance element 136a connected in series. That is, the voltage of the power supply line VH13a (here, 48 [V]) can be output from the terminal T3a via the switch element 135a and the resistance element 136a and / or via the switch element 137a.
  • a known high withstand voltage transistor may be used for the switch elements 135a and 137a.
  • the rectifying element D1a is arranged so that the anode is electrically connected to the wire VH13a (terminal T1a) and the cathode is electrically connected to the wire VH13a réelle (terminal T3a).
  • the battery unit 13b has the same configuration as the above-mentioned battery unit 13a, that is, includes elements 130b and the like corresponding to the above-mentioned elements 130a and the like.
  • the battery 130b is configured like the battery 130a
  • the processor 131b is configured like the processor 131a
  • the communication unit 132b is configured like the communication unit 132a
  • the regulator 133b is configured like the regulator 133a, respectively. Will be done.
  • the resistance elements 136b, R1b and R2b are configured in the same manner as the resistance elements 136a, R1a and R2a, respectively, and the switch elements 134b, 135b and 137b are configured in the same manner as the switch elements 134a, 135a and 137a, respectively. Will be done.
  • the lines VH13b, VH13b Cincinnati, VL13b, VH13b'and VH13b "in the figure correspond to VH13a, VH13a réelle, VL13a, VH13a'and VH13a", respectively.
  • the rectifying element D1b is configured and arranged in the same manner as the rectifying element D1a.
  • the housing of the battery unit 13b is provided with terminal groups T1b to T4b that enable the battery unit 13b to be electrically connected to the power receiving device 14, and these correspond to the terminal groups T1a to T4a.
  • the power receiving device 14 includes a capacitor 140, a control unit 141, a communication unit 142, resistance elements R3a and R3b, switch elements 143a and 143b, and a start switch 145.
  • the power receiving device 14 is configured by unitizing these elements 140 and the like, and the housing thereof is provided with terminal groups T5a to T8a and T5b to T8b for electrically connecting the battery units 13a and 13b.
  • the terminal groups T1a to T4a are electrically connected to the terminal groups T5a to T8a, and the terminal groups T1b to T4b are electrically connected to the terminal groups T5b to T8b, respectively.
  • the terminal groups T5a to T8a together with the resistance element R3a and the switch element 143a form a connection portion 144a capable of electrically connecting the battery unit 13a.
  • the terminal groups T5b to T8b together with the resistance element R3b and the switch element 143b form a connecting portion 144b capable of electrically connecting the battery unit 13b.
  • the capacitor 140 is provided between the wire VH14 electrically connected to the terminal T7b and the wire VL14 electrically connected to the terminal T5a, and can hold the voltage received from the battery unit 13a (and 13b).
  • the control unit 141 controls the entire power receiving device 14, and can communicate with each of the processors 131a and 131b, for example, although details will be described later.
  • the function of the control unit 141 can be realized by any of hardware and software as well as the processor 131a and the like. Further, the control unit 141 further has a function as a PDU, and can convert the voltage held in the capacitor 140 into a predetermined mode and supply it to the electric motor 12.
  • the communication unit 142 is an electronic component configured to be able to communicate with the communication units 132a and 132b via the terminals T8a and T8b, respectively, and is a control unit by mutual communication with the control unit 141 as shown by a broken line in the figure. It enables 141 external communications to be realized. According to such a connection mode, mutual communication between the communication units 132a and 132b is also possible. This also allows, for example, the processor 131a of the battery unit 13a to output an instruction signal (or instruction command) to the processor 131b of the battery unit 13b to directly control the power supply function of the battery unit 13b. ..
  • the resistance element R3a and the switch element 143a are connected in series between the terminals T5a and T6a.
  • a bipolar transistor is used for the switch element 143a in this embodiment, and the base terminal can be controlled by the control unit 141.
  • a connection portion 144a capable of electrically connecting the battery unit 13a is formed.
  • a predetermined voltage is generated in the wire VH13a ”.
  • the voltage between the lines VH13a'and VL13a and the resistance values of the resistance elements R1a, R2a and R3a can be determined.
  • the resistance element R3b and the switch element 143b are connected in series between the terminals T5b and T6b.
  • a bipolar transistor is used for the switch element 143b in this embodiment, and the base terminal can be controlled by the control unit 141. With such a configuration, a connecting portion 144b capable of electrically connecting the battery unit 13b is formed.
  • the start switch 145 is connected in parallel to the resistance element R3a and the switch element 143a connected in series.
  • the start switch 145 is a pressing type switch, that is, it is in a conductive state while it is being pressed, and is in a non-conducting state while it is not being pressed.
  • a voltage determined by the voltage between the wires VH13a'and VL13a and the resistance values of the resistance elements R1a and R2a is generated between the wires VH13a "and VL13a.
  • the start switch 145 is described as a part of the power receiving device 1, but it may be provided as a separate body outside the device 1.
  • the start switch 145 is the battery unit 13a and the connection portion. It may be externally attached to the electrical path between 144a (that is, between the connection between the terminals T1a and T5a and the connection between the terminals T2a and T6a).
  • the battery units 13a and 13b can be electrically connected to the power receiving device 14 (to the connection portions 144a and 144b, respectively). Details will be described later, but in this system configuration, the battery units 13a and 13b are connected in series and electrically connected to the power receiving device 14. Further, as described above, since the battery units 13a and 13b have the same configuration, they can be exchanged with each other, or one / both of them have the same configuration as another battery unit (new /). It can be replaced with a charged battery unit).
  • the power supply lines VL13a and VL14 (terminals T1a and T5a) are fixed / grounded to the ground voltage (0 [V]).
  • the voltage described below generally indicates a potential difference between two elements (terminals, nodes, etc.), but may indicate a potential difference from this ground voltage for ease of description.
  • the battery units 13a and 13b and the power feeding device 14 are all in the hibernation state. That is, the processors 131a and 131b, the communication units 132a and 132b, the control unit 141, and the communication unit 142 are all in a dormant state, and the switch elements 135a, 137a, 143a, 135b, 137b and 143b, and the start switch 145 are all in a dormant state. Are all non-conducting states.
  • the activation of the work machine 1 is realized by pressing the start switch 145 by a user (owner of the work machine 1 or the like).
  • the start switch 145 becomes conductive by pressing, so that the wire VH13a "(terminals T2a and T6a) has the same potential as the power supply wire VL13a (terminals T1a and T5a), that is, the wire VH13a" (terminals T2a and T6a) is grounded. Will be done.
  • the node between the resistance elements R1a and R2a has a voltage divider (voltage Vdiv1) based on the voltage between the lines VH13a'and VL13a (3.3 [V]) and the resistance ratio of the resistance elements R1a and R2a.
  • Vdiv1 VDD ⁇ R2a / (R1a + R2a), VDD: Voltage between lines VH13a'and VL13a (3.3 [V]), R1a: Resistance value of resistance element R1a, R2a: Resistance value of resistance element R2a, Occurs.
  • the voltage Vdiv1 is applied to the gate terminal of the MOS transistor which is the switch element 134a, the switch element 134a becomes conductive accordingly, and the voltage VDD supplied to the drain terminal is sent to the processor 131a via the source terminal. It will be supplied. In response to this, the processor 131a is activated.
  • the active processor 131a puts the switch element 135a into a conductive state.
  • the voltage (48 [V]) of the power supply line VH13a is transmitted to the line VH13a réelle via the resistance element 136a and the switch element 135a, and is output from the battery unit 13a via the terminal T3a.
  • the processor 131a activates the communication unit 132a.
  • the voltage output from the battery unit 13a passes through the terminals T7a and T5b of the power receiving device 14, via the terminals T1b, the rectifying element D1b and the terminal T3b of the battery unit 13b, and through the terminal T7b of the power receiving device 14. Is transmitted to the line VH14. As a result, the capacitor 140 is charged, and the voltage between the lines VH14 and VL14 increases with the passage of time.
  • the processor 131a After a predetermined time has elapsed from the start of charging the capacitor 140, the processor 131a further brings the switch element 137a into a conductive state. At this time, the processor 131a may keep the switch element 135a in a conductive state or may put it in a non-conducting state. Thereby, while suppressing the steep potential difference that may occur after the start of the charging, the charging speed can be increased after the charging is stabilized.
  • the control unit 141 When the voltage between the lines VH14 and VL14 becomes sufficiently high (up to the voltage of the power supply line VH13a (48 [V])) due to the charging of the capacitor 140, the control unit 141 becomes active accordingly, and at the same time, the communication unit 142 Is also active.
  • Vdiv2 VDD ⁇ R3a / (R1a + R2a + R3a), R3a: Resistance value of resistance element R3a, Occurs.
  • the voltage between the line VH13b'and the VL13b (3.3 [V]) between the node between the resistance elements R1b and R2b and the line VL13b due to the switch element 143b in the conductive state.
  • Vdiv3 VDD ⁇ (R2b + R3b) / (R1b + R2b + R3b), VDD: Voltage between lines VH13b'and VL13b (3.3 [V]), R1b: Resistance value of resistance element R1b, R2b: Resistance value of resistance element R2b, R3b: Resistance value of resistance element R23, Occurs.
  • the voltage Vdiv3 is applied to the gate terminal of the MOS transistor which is the switch element 134b, the switch element 134b becomes conductive accordingly, and the voltage VDD supplied to the drain terminal is transmitted to the processor 131b via the source terminal. It will be supplied.
  • the processor 131b becomes active, and at about the same time, the communication unit 132b also becomes active.
  • Vdiv4 VDD ⁇ R3b / (R1b + R2b + R3b), Occurs.
  • the processor 131a can detect the voltage of the line VH13a ”, and thereby it is possible to determine that the battery unit 13a is electrically connected to the connection portion 144a.
  • the 131b can detect the voltage of the line VH13b ”, and thereby it is possible to determine that the battery unit 13b is electrically connected to the connection portion 144b.
  • the processor 131b controls the switch elements 135b and 137b in the same procedure as the processor 131a, and outputs the voltage of the power supply line VH13b connected to the battery 130b via the line VH13b réelle.
  • the voltage between the power supply lines VH13b and VL13b is 48 [V].
  • the battery units 13a and 13b are connected in series and electrically connected to the power receiving device 14. Therefore, the power receiving device 14 is supplied with a voltage (total 96 [V]) obtained by adding the output voltage (48 [V]) of the battery 130b to the output voltage (48 [V]) of the battery 130a. As described above, the working machine 1 can be put into an operating state.
  • the start switch 145 may be pressed again.
  • the processor 131a puts the battery unit 13a into hibernation by detecting that the wire VH13a "has been grounded. Prior to this, the processor 131a is used as a communication unit. It is also possible to output an instruction signal instructing the battery unit 13b and the power receiving device 14 to be in the stopped state by external communication via 132a.
  • the processors 131a and 131b and the control unit 141 can all detect that the removal has been performed based on the communication result by the communication unit 132a and the like and the voltage supplied to the processor 131a and the like. There is. As a result, for example, when the battery unit 13a (13b) is removed, the processor 131b (131a) can put the battery unit 13b (13a) into hibernation by itself, and the control unit 141 itself can put the power receiving device 14 into hibernation. Can be hibernated.
  • the processors 131a and 131b and the control unit 141 have an unexpected communication failure between the communication units 132a, 132b and 142. Can be detected.
  • this can be detected when the above-mentioned mutual communication is not interrupted even though the battery units 13a and / or 13b are removed.
  • the voltage supplied to the processors 131a and / or 131b becomes 3.3 [V], and in the power receiving device 14, the terminals T6a and / or T6b The voltage of is floating. Nevertheless, when the mutual communication is continued, it can be said that an unexpected operation has occurred in the power receiving device 14, and the processors 131a and 131b and the control unit 141 can detect this.
  • the processors 131a and 131b and the control unit 141 can detect whether or not the battery units 13a and / or 13b are properly electrically connected, and the above-mentioned removal is intended by the user, for example, due to poor contact or the like. It shall also include removal that does not.
  • the processors 131a and 131b and the control unit 141 can communicate with each other by the communication units 132a and 132b and the communication unit 142, respectively. Thereby, for example, based on the load condition applied to the battery units 13a and / or 13b, it / their power supply function can be controlled by itself / themselves.
  • the power supply lines VL13a and VL14 (terminals T1a and T5a) are fixed to the ground voltage.
  • the power supply line VL13b associated as the ground line in the battery unit 13b has a voltage higher than the ground voltage (in the operating state of the work machine 1) when the work machine 1 is used. (48 [V] in this embodiment).
  • the system configuration is planned based on the ground voltage or the closest one in order to ensure the operational stability on the system. This also applies to this system configuration. For example, even if the battery unit 13b is activated while the battery unit 13a is in a hibernation state, the circuits constituting the battery unit 13b do not operate properly. Therefore, for example, a master / slave (parent / child) or other master-slave relationship may be provided between the processors 131a and 131b and the control unit 141, and priority may be set incidentally to those instruction signals.
  • control unit 141 is used as a master and the processors 131a and 131b are used as slaves.
  • the processor 131a can output a hibernation instruction to the battery unit 13b (processor 131b) and the power receiving device 14 (control unit 141) prior to putting the battery unit 13a into the hibernation state.
  • this hibernation instruction By setting this hibernation instruction to have a higher priority than the mutual communication between the battery unit 13b and the power receiving device 14, the processors 131a and 131b and the control unit 141 are all put into hibernation appropriately (for example, in a predetermined order). It becomes possible.
  • processor 131a As another example, it is possible to use the processor 131a as a master and the processor 131b and the control unit 141 as slaves, and in this case as well, the same thing can be realized.
  • the battery units 13a and 13b are provided with processors 131a and 131b that can control the power feeding function by themselves, and also communicate with the power receiving device 14 (control unit 141). Do.
  • the processors 131a and 131b may be required to establish a master-slave relationship between the processors 131a and 131b and the control unit 141, and to give priority to their instruction system.
  • the battery units 13a and 13b have the same configuration, and may be electrically connected to any of the connection portions 144a and 144b, respectively. Therefore, in order to be able to set the above-mentioned master-slave relationship and the priority of the instruction system, it is determined by itself whether the battery unit 13a (13b) is electrically connected to the connection portion 144a or 144b to the processor 131a (131b). It is required to be possible. Further, it is preferable that this is realized with a relatively simple configuration without unnecessarily increasing the number of terminals or complicating the structures of the connecting portions 144a and 144b.
  • Vdiv2 VDD ⁇ R3a / (R1a + R2a + R3a)
  • Vdiv4 VDD ⁇ R3b / (R1b + R2b + R3b)
  • the battery unit 13a (13b) is electrically connected to either the connection portion 144a or 144b by detecting either the voltage Vdiv2 or the voltage Vdiv4 by the line VH13a "(VH13b"), respectively. It becomes possible to judge whether or not it is.
  • the processor 131a can determine that the battery unit 13a is electrically connected to the connection portion 144a by detecting the voltage Vdiv2 of the line VH13a. Further, the processor 131b can determine that the line VH13b is electrically connected. By detecting the voltage Vdiv4 of ", it is possible to determine that the battery unit 13b is electrically connected to the connection portion 144b.
  • the control of the individual power supply functions of the battery units 13a and 13b can be appropriately realized while ensuring the operational stability on the system. Further, this is realized by the configuration of the connecting portions 144a and 144b while having the battery units 13a and 13b having the same configuration.
  • the connection portions 144a and 144b include resistance elements R3a and R3b that are configured to be able to receive DC voltage from the battery units 13a and 13b, respectively, and flow a current corresponding to the DC voltage. Since these resistance elements R3a and R3b have different resistance values, as a result, the voltages supplied to the processors 131a and 131b can be different from each other.
  • the switch elements 143a and 143b may be configured to have different on-resistances as an alternative / incidentally, and the same can be realized by this.
  • the start switch 145 may be provided at the ground voltage or the power supply system closest to the ground voltage.
  • the start switch 145 is provided for the connection portion 144a located on the ground voltage side of the connection portions 144a and 144b.
  • the quantity of the battery unit 13 is set to 2, but the content of the embodiment can be applied even when the quantity of the battery unit 13 is 3 or more. Further, in the present embodiment, a mode in which a plurality of battery units 13 are electrically connected to the power receiving device 14 in series connection is illustrated, but the content of the embodiment can be applied even when the connection mode is parallel connection.
  • the plurality of (two in the embodiment) battery units 13a and 13b are provided with processors 131a and 131b for controlling their power feeding functions, respectively.
  • the power receiving device 14 includes a plurality of (two in the embodiment) connecting portions 144a and 144b capable of electrically connecting the battery units 13a and 13b, respectively.
  • These connection portions 144a and 144b are configured so that when the battery units 13a and 13b are electrically connected to them, the voltages supplied to the corresponding processors 131a and 131b have different values. This can be appropriately realized by, for example, configuring the resistance elements R3a and R3b with different resistance values.
  • the processor 131a (131b) can detect whether the battery unit 13a (13b) is electrically connected to the connection portion 144a or 144b. As a result, the processor 131a (131b) can appropriately control the power feeding function according to the electrically connected connection portion 144a or 144b.
  • each element is shown by a name related to its functional aspect, but each element is not limited to the one having the contents described in the embodiment as the main function. However, it may be provided as an auxiliary.
  • the first aspect relates to a power receiving device (for example, 14), and the power receiving device receives power from a plurality of battery units (for example, 13a, 13b) each including a processor (for example, 131a, 131b) for controlling a power feeding function.
  • a power receiving device configured to be receivable, and includes a plurality of connection portions (for example, 144a, 144b) capable of electrically connecting the plurality of battery units, and the plurality of connection portions are connected to the plurality of connection portions.
  • the processor can detect which of the plurality of connections the battery unit is electrically connected to, and appropriately control the power supply function according to the connection. It becomes feasible.
  • each of the plurality of connection portions is configured to be able to receive a DC voltage (for example, 48 [V]) from a corresponding battery unit, and a resistance element (for example, a resistance element) for passing a current corresponding to the DC voltage.
  • a DC voltage for example, 48 [V]
  • a resistance element for example, a resistance element
  • R3a, R3b) are included, and the resistance values of the resistance elements are different from each other among the plurality of connecting portions. According to such a configuration, the first aspect can be realized relatively easily.
  • a communication unit for example, 142 for communicating with the plurality of processors and a control unit (for example, 141) for individually controlling the plurality of processors via the communication unit are further provided. It is characterized by being prepared. According to such a configuration, the power supply function of each battery unit can be individually controlled.
  • the communication unit further enables the plurality of processors to communicate with each other, so that at least one of the plurality of processors (for example, 131a) controls another processor (for example, 131b). It is characterized by allowing it to be done. According to such a configuration, it is possible to control the power supply function of another battery unit from one battery unit.
  • the communication unit allows the at least one processor to control the other processor based on the voltage supplied by the corresponding connection unit.
  • control unit supplies the communication result by the communication unit and the plurality of processors whether or not the plurality of battery units are appropriately electrically connected at the plurality of connection units. It is characterized in that the judgment is made based on the voltage and the voltage. According to such a configuration, it is possible to individually determine whether or not the electrical connection of the battery unit is properly performed.
  • the plurality of connection portions are configured so that when the plurality of battery units are electrically connected to the plurality of connection portions, the plurality of battery units are connected in series. It is characterized by. According to such a configuration, a relatively large voltage can be supplied to the power receiving device.
  • the one closest to the ground voltage among the plurality of battery units is referred to as the first battery unit (for example, 13a), and the one corresponding to the first battery unit among the plurality of connection portions is the first.
  • the connection portion for example, 144a
  • the power receiving device is provided with respect to the first connection portion and has a start switch (for example, 145) for activating the processor of the first battery unit. It is characterized by further preparation. According to such a configuration, when the processor is started, an unexpected voltage is not applied to the processor.
  • a ninth aspect relates to an electric power unit (for example, PU), in which the electric power unit generates power based on the above-mentioned power receiving device (for example, 14) and the electric power received from the plurality of battery units by the power receiving device. It is characterized by including a motor (for example, 12). That is, the above-mentioned power receiving device can be applied to a known electric power unit.
  • the electric power unit for example, PU
  • the electric power unit generates power based on the above-mentioned power receiving device (for example, 14) and the electric power received from the plurality of battery units by the power receiving device. It is characterized by including a motor (for example, 12). That is, the above-mentioned power receiving device can be applied to a known electric power unit.
  • a tenth aspect relates to a work machine (for example, 1), wherein the work machine includes the above-mentioned electric power unit (for example, PU) and a work mechanism (for example, 11) capable of performing work based on the power of the electric motor. It is characterized by having. That is, the above-mentioned electric power unit can be applied to a known working machine.
  • the above-mentioned electric power unit can be applied to a known working machine.
  • the eleventh aspect relates to a battery unit (for example, 13a), and the battery unit is configured to be electrically connectable to any of a plurality of connection portions (for example, 144a and 144b) included in a power receiving device (for example, 14).
  • the plurality of connection portions are configured such that the voltages supplied to the plurality of battery units are different from each other when the plurality of battery units are electrically connected to each of the plurality of connection portions.
  • the battery unit comprises a processor (eg, 131a) capable of controlling the feeding function based on the voltage supplied by the electrically connected connection. According to such a configuration, in each battery unit, the processor can detect which of the plurality of connections the battery unit is electrically connected to, and appropriately control the power supply function according to the connection. It becomes feasible.
  • each of the plurality of connection portions is configured to be able to receive a DC voltage (for example, 48 [V]) from a corresponding battery unit, and a resistance element (for example, a resistance element) for flowing a current corresponding to the DC voltage.
  • a DC voltage for example, 48 [V]
  • a resistance element for example, a resistance element
  • R3a, R3b) are included, and the resistance values of the resistance elements are different from each other among the plurality of connection portions, and the battery unit is configured to be capable of outputting the DC voltage. .
  • the first aspect can be realized relatively easily.
  • a thirteenth aspect is further provided with a communication unit (for example, 132a) for communicating with the power receiving device via the connection unit.
  • a communication unit for example, 132a
  • the power supply function of each battery unit can be individually controlled.
  • the communication unit is configured to be able to communicate with another battery unit (for example, 13b), whereby the processor controls another processor (for example, 131b) included in the other battery unit. It is characterized by allowing it to be done. According to such a configuration, it is possible to control the power supply function of another battery unit from one battery unit.
  • the communication unit allows the processor to control the other processor based on the voltage supplied by the connection unit.
  • the battery unit and the other battery units are connected in series when each of them is electrically connected to the corresponding connection. According to such a configuration, a relatively large voltage can be supplied to the power receiving device.
  • a seventeenth aspect relates to an electric power unit (for example, PU), in which the electric power unit generates power based on the above-mentioned battery unit (for example, 13a), the power receiving device, and electric power received from the battery unit. (For example, 12) and. That is, the above-mentioned battery unit can be applied to a known electric power unit.
  • the electric power unit for example, PU
  • the electric power unit generates power based on the above-mentioned battery unit (for example, 13a), the power receiving device, and electric power received from the battery unit. (For example, 12) and. That is, the above-mentioned battery unit can be applied to a known electric power unit.
  • An eighteenth aspect relates to a work machine, which comprises the above-mentioned electric power unit (for example, PU) and a work mechanism (for example, 11) capable of performing work based on the power of the electric motor. It is characterized by. That is, the above-mentioned electric power unit can be applied to a known working machine.
  • the electric power unit for example, PU
  • a work mechanism for example, 11

Abstract

One aspect of the present invention relates to a power reception device configured so as to be able to receive power from a plurality of battery units, each comprising a processor for controlling power supply functionality, said power reception device comprising a plurality of connection units capable of electrically connecting the respective battery units, wherein the plurality of connection units are configured such that when the plurality of battery units are respectively electrically connected thereto, the voltages supplied to the plurality of processors of the plurality of battery units have mutually different values.

Description

受電装置、バッテリユニット、電動パワーユニット及び作業機Power receiving device, battery unit, electric power unit and working machine
 本発明は、主に受電装置およびバッテリユニットに関する。 The present invention mainly relates to a power receiving device and a battery unit.
 特許文献1には、複数のバッテリユニット(バッテリパック)が個別に電気接続された電動作業機(電動工具)の構成が記載されている。作業機本体には、複数のバッテリユニットを電気接続するための複数の接続部が設けられる。 Patent Document 1 describes the configuration of an electric work machine (power tool) in which a plurality of battery units (battery packs) are individually electrically connected. The work machine main body is provided with a plurality of connection portions for electrically connecting a plurality of battery units.
特開2011-161603号公報Japanese Unexamined Patent Publication No. 2011-161603
 一般に、上述の複数の接続部には何れのバッテリユニットが電気接続されてもよく、即ち、作業機本体から取り外されたバッテリユニットは、同様の構成を有する他のバッテリユニットに任意に交換可能である。このような構成において、個々のバッテリユニットには、その給電機能を制御するためのプロセッサが搭載されることが考えられる。この給電機能の適切な制御の実現のため、バッテリユニットが複数の接続部の何れに電気接続されたかをプロセッサが適切に検出することが必要となる場合も考えられるため、このことを比較的簡素な構成で実現するための技術が求められる。 In general, any battery unit may be electrically connected to the plurality of connections described above, that is, the battery unit removed from the work machine body can be arbitrarily replaced with another battery unit having the same configuration. is there. In such a configuration, it is conceivable that each battery unit is equipped with a processor for controlling its power supply function. This is relatively simple because it may be necessary for the processor to properly detect which of the multiple connections the battery unit is electrically connected to in order to achieve proper control of this power supply function. Technology is required to realize this with a flexible configuration.
 本発明の目的は、受電装置および該受電装置に電気接続可能な複数のバッテリユニットについて、個々のバッテリユニットの給電機能の適切な制御を比較的簡素な構成で実現することを例示的目的とする。 It is an exemplary object of the present invention to realize appropriate control of the power supply function of each battery unit in a relatively simple configuration for the power receiving device and a plurality of battery units that can be electrically connected to the power receiving device. ..
 本発明の第1側面は受電装置に係り、前記受電装置は、給電機能を制御するためのプロセッサをそれぞれが備える複数のバッテリユニットから電力を受取り可能に構成された受電装置であって、前記複数のバッテリユニットをそれぞれ電気接続可能な複数の接続部を備えており、前記複数の接続部は、それらに前記複数のバッテリユニットがそれぞれ電気接続された場合に該複数のバッテリユニットに対応する複数のプロセッサに供給される電圧が互いに異なる値となるように、構成されていることを特徴とする。 The first aspect of the present invention relates to a power receiving device, and the power receiving device is a power receiving device configured to be able to receive power from a plurality of battery units each including a processor for controlling a power feeding function. Each of the battery units is provided with a plurality of connections that can be electrically connected to each other, and the plurality of connections correspond to the plurality of battery units when the plurality of battery units are electrically connected to each of the plurality of connections. It is characterized in that it is configured so that the voltages supplied to the processors have different values from each other.
 本発明によれば、個々のバッテリユニットの給電機能の適切な制御を実現可能となる。 According to the present invention, it is possible to realize appropriate control of the power supply function of each battery unit.
電動作業機の構成例を示すブロック図。The block diagram which shows the configuration example of the electric work machine. バッテリユニットおよび受電装置の構成例を示す回路ブロック図。The circuit block diagram which shows the structural example of the battery unit and the power receiving device.
 以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は請求の範囲に係る発明を限定するものでなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴が任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the attached drawings. The following embodiments do not limit the invention according to the claims, and not all combinations of features described in the embodiments are essential to the invention. Two or more of the plurality of features described in the embodiments may be arbitrarily combined. Further, the same or similar configuration will be given the same reference number, and duplicate description will be omitted.
 (作業機の構成例)
 図1は、実施形態に係る作業機1のシステム構成例を示すブロック図である。作業機1は、作業機構11、電動モータ12、バッテリユニット13および受電装置14を備え、バッテリユニット13の電力を用いて作業機構11により所定の作業を行う電動作業機(例えばトロウェル、スイーパー等)とする。
(Work machine configuration example)
FIG. 1 is a block diagram showing a system configuration example of the work machine 1 according to the embodiment. The work machine 1 includes a work mechanism 11, an electric motor 12, a battery unit 13, and a power receiving device 14, and uses the power of the battery unit 13 to perform a predetermined work by the work mechanism 11 (for example, a trowell, a sweeper, etc.). And.
 作業機構11は、電動モータ12が発生した動力(回転)に基づいて上記作業を実行する。バッテリユニット13は、電力を貯留可能に構成され、本実施形態では複数並設される。受電装置14は、PDU(Power Drive Unit)等を内蔵し、バッテリユニット13から受け取った電力を所定の態様に変換して電動モータ12に供給する。 The work mechanism 11 executes the above work based on the power (rotation) generated by the electric motor 12. The battery units 13 are configured to be capable of storing electric power, and in the present embodiment, a plurality of battery units 13 are arranged side by side. The power receiving device 14 has a built-in PDU (Power Drive Unit) or the like, converts the electric power received from the battery unit 13 into a predetermined mode, and supplies the electric power to the electric motor 12.
 ここでは電力供給対象として電動モータ12を示したが、作業機1には、表示装置、光源装置等の電気装置が他の電力供給対象として更に設けられてもよい。 Although the electric motor 12 is shown here as a power supply target, the work equipment 1 may be further provided with an electric device such as a display device and a light source device as another power supply target.
 作業機1の構成は、上述の例に限られるものではなく、その趣旨を逸脱しない範囲で多様な変更が加えられてもよい。また、電動モータ12、バッテリユニット13および受電装置14は、作業機構11とは別体でユニット化されてもよく、これにより、電動パワーユニットPUとして多様な用途で活用可能である。 The configuration of the work machine 1 is not limited to the above example, and various changes may be made without departing from the purpose. Further, the electric motor 12, the battery unit 13, and the power receiving device 14 may be unitized separately from the working mechanism 11, so that the electric motor 12, the battery unit 13, and the power receiving device 14 can be used as an electric power unit PU in various applications.
 図2は、バッテリユニット13および受電装置14のシステム構成例を示す回路ブロック図である。ここでは、説明の容易化のため、バッテリユニット13は2つ並設されるものとし、区別のため、それらのうちの一方を「バッテリユニット13a」とし、他方を「バッテリユニット13b」とする。 FIG. 2 is a circuit block diagram showing a system configuration example of the battery unit 13 and the power receiving device 14. Here, for ease of explanation, two battery units 13 are arranged side by side, and for distinction, one of them is referred to as "battery unit 13a" and the other is referred to as "battery unit 13b".
 (バッテリユニットの構成例)
 バッテリユニット13aは、バッテリ(バッテリ本体)130a、プロセッサ131a、通信部132a、レギュレータ133a、複数の抵抗素子136a、R1a及びR2a、複数のスイッチ素子134a、135a及び137a、並びに、整流素子D1aを備える。バッテリユニット13aは、これらの要素130a等がユニット化して構成され、その筐体にはバッテリユニット13aを受電装置14に電気接続するための端子群T1a~T4aが設けられる。
(Battery unit configuration example)
The battery unit 13a includes a battery (battery body) 130a, a processor 131a, a communication unit 132a, a regulator 133a, a plurality of resistance elements 136a, R1a and R2a, a plurality of switch elements 134a, 135a and 137a, and a rectifying element D1a. The battery unit 13a is configured by unitizing these elements 130a and the like, and the housing thereof is provided with terminal groups T1a to T4a for electrically connecting the battery unit 13a to the power receiving device 14.
 バッテリ130aは、本実施形態では48[V]のDC(Direct Current)電圧を出力し、典型的には複数のバッテリセルが直列接続されて構成されうるが、単一のバッテリセルにより構成されてもよい。図中において、バッテリ130aの正極側の電源線は線VH13aと示され、負極側の電源線は線VL13aと示される。電源線VL13aは、端子T1aに電気接続される。 The battery 130a outputs a DC (Direct Current) voltage of 48 [V] in the present embodiment, and is typically configured by connecting a plurality of battery cells in series, but is composed of a single battery cell. May be good. In the figure, the power supply line on the positive electrode side of the battery 130a is indicated by the wire VH13a, and the power supply line on the negative electrode side is indicated by the wire VL13a. The power line VL13a is electrically connected to the terminal T1a.
 プロセッサ131aは、詳細については後述とするが、バッテリ130aの給電機能を制御するための電子部品(例えば半導体パッケージ)とする。プロセッサ131aは、ASIC(特定用途向け集積回路)、PLD(プログラマブルロジックデバイス)等の半導体装置であってもよいが、同機能を実現可能にCPU(Central Processing Unit)及びメモリにより構成されてもよい。即ち、プロセッサ131aの機能はハードウェア及びソフトウェアの何れによっても実現可能である。 The processor 131a is an electronic component (for example, a semiconductor package) for controlling the power supply function of the battery 130a, although the details will be described later. The processor 131a may be a semiconductor device such as an ASIC (integrated circuit for a specific application) or a PLD (programmable logic device), but may be configured by a CPU (Central Processing Unit) and a memory so that the same function can be realized. .. That is, the function of the processor 131a can be realized by either hardware or software.
 通信部132aは、端子T4aを介してバッテリユニット13a外の要素と通信可能に構成された電子部品であり、図中において破線で示されるようにプロセッサ131aとの相互通信により、プロセッサ131aの外部通信を実現可能とする。 The communication unit 132a is an electronic component configured to be able to communicate with an element outside the battery unit 13a via the terminal T4a, and is externally communicated with the processor 131a by mutual communication with the processor 131a as shown by a broken line in the figure. Is feasible.
 レギュレータ133aは、電源線VH13aの電圧(ここでは48[V])に基づいて所定電圧(ここでは3.3[V])を線VH13a’に出力する。抵抗素子R1a及びR2aは、線VH13a’と、端子T2aに電気接続された線VH13a”との間に直列接続されており、詳細については後述とするが、抵抗素子R1a及びR2a間のノードには、それらの抵抗比に基づく分圧が発生することとなる。 The regulator 133a outputs a predetermined voltage (here 3.3 [V]) to the line VH13a'based on the voltage of the power supply line VH13a (here 48 [V]). The resistance elements R1a and R2a are connected in series between the wire VH13a'and the wire VH13a'electrically connected to the terminal T2a. The details will be described later, but the node between the resistance elements R1a and R2a , A partial pressure will be generated based on their resistance ratio.
 スイッチ素子134aは、本実施形態ではMOS(Metal Oxide Semiconductor)トランジスタが用いられ、そのゲート端子は、上記抵抗素子R1a及びR2a間のノードに電気接続される。また、ドレイン端子は線VH13a’に電気接続され、ソース端子はプロセッサ131aに電気接続される。 As the switch element 134a, a MOS (Metal Oxide Semiconductor) transistor is used in the present embodiment, and its gate terminal is electrically connected to the node between the resistance elements R1a and R2a. Further, the drain terminal is electrically connected to the line VH13a', and the source terminal is electrically connected to the processor 131a.
 スイッチ素子135aおよび抵抗素子136aは、電源線VH13aと、端子T3aに電気接続された線VH13aоとの間に直列接続される。スイッチ素子137aは、該直列接続されたスイッチ素子135aおよび抵抗素子136aに対して並列接続される。即ち、電源線VH13aの電圧(ここでは48[V])は、スイッチ素子135aおよび抵抗素子136aを介して、及び/又は、スイッチ素子137aを介して、端子T3aから出力可能である。尚、スイッチ素子135a及び137aには、公知の高耐圧トランジスタが用いられればよい。 The switch element 135a and the resistance element 136a are connected in series between the power supply line VH13a and the line VH13aо electrically connected to the terminal T3a. The switch element 137a is connected in parallel to the switch element 135a and the resistance element 136a connected in series. That is, the voltage of the power supply line VH13a (here, 48 [V]) can be output from the terminal T3a via the switch element 135a and the resistance element 136a and / or via the switch element 137a. A known high withstand voltage transistor may be used for the switch elements 135a and 137a.
 整流素子D1aは、アノードが線VH13a(端子T1a)に電気接続され且つカソードが線VH13aо(端子T3a)に電気接続されるように配置される。 The rectifying element D1a is arranged so that the anode is electrically connected to the wire VH13a (terminal T1a) and the cathode is electrically connected to the wire VH13aо (terminal T3a).
 バッテリユニット13bは、図2に示されるように上述のバッテリユニット13a同様の構成を有しており、即ち、上述の要素130a等にそれぞれ対応する要素130b等を備える。詳細には、バッテリ130bはバッテリ130a同様に構成され、プロセッサ131bはプロセッサ131a同様に構成され、通信部132bは通信部132a同様に構成され、また、レギュレータ133bはレギュレータ133a同様に構成され、それぞれ配置される。抵抗素子136b、R1b及びR2bは、それぞれ、抵抗素子136a、R1a及びR2a同様に構成され、また、スイッチ素子134b、135b及び137bは、それぞれ、スイッチ素子134a、135a及び137a同様に構成され、それぞれ配置される。図中の線VH13b、VH13bо、VL13b、VH13b’及びVH13b”は、それぞれ、VH13a、VH13aо、VL13a、VH13a’及びVH13a”に対応する。整流素子D1bは整流素子D1a同様に構成され配置される。また、バッテリユニット13bの筐体にはバッテリユニット13bを受電装置14に電気接続可能とする端子群T1b~T4bが設けられ、これらは端子群T1a~T4aに対応する。 As shown in FIG. 2, the battery unit 13b has the same configuration as the above-mentioned battery unit 13a, that is, includes elements 130b and the like corresponding to the above-mentioned elements 130a and the like. Specifically, the battery 130b is configured like the battery 130a, the processor 131b is configured like the processor 131a, the communication unit 132b is configured like the communication unit 132a, and the regulator 133b is configured like the regulator 133a, respectively. Will be done. The resistance elements 136b, R1b and R2b are configured in the same manner as the resistance elements 136a, R1a and R2a, respectively, and the switch elements 134b, 135b and 137b are configured in the same manner as the switch elements 134a, 135a and 137a, respectively. Will be done. The lines VH13b, VH13bо, VL13b, VH13b'and VH13b "in the figure correspond to VH13a, VH13aо, VL13a, VH13a'and VH13a", respectively. The rectifying element D1b is configured and arranged in the same manner as the rectifying element D1a. Further, the housing of the battery unit 13b is provided with terminal groups T1b to T4b that enable the battery unit 13b to be electrically connected to the power receiving device 14, and these correspond to the terminal groups T1a to T4a.
 (受電装置の構成例)
 受電装置14は、キャパシタ140、制御部141、通信部142、抵抗素子R3a及びR3b、スイッチ素子143a及び143b、並びに、起動スイッチ145を備える。受電装置14は、これらの要素140等がユニット化して構成され、その筐体には、バッテリユニット13a及び13bを電気接続するための端子群T5a~T8a及びT5b~T8bが設けられる。端子群T5a~T8aには、端子群T1a~T4aがそれぞれ電気接続され、また、端子群T5b~T8bには、端子群T1b~T4bがそれぞれ電気接続される。
(Configuration example of power receiving device)
The power receiving device 14 includes a capacitor 140, a control unit 141, a communication unit 142, resistance elements R3a and R3b, switch elements 143a and 143b, and a start switch 145. The power receiving device 14 is configured by unitizing these elements 140 and the like, and the housing thereof is provided with terminal groups T5a to T8a and T5b to T8b for electrically connecting the battery units 13a and 13b. The terminal groups T1a to T4a are electrically connected to the terminal groups T5a to T8a, and the terminal groups T1b to T4b are electrically connected to the terminal groups T5b to T8b, respectively.
 詳細については後述とするが、端子群T5a~T8aは、抵抗素子R3a及びスイッチ素子143aと共に、バッテリユニット13aを電気接続可能な接続部144aを形成する。また、端子群T5b~T8bは、抵抗素子R3b及びスイッチ素子143bと共に、バッテリユニット13bを電気接続可能な接続部144bを形成する。 Although the details will be described later, the terminal groups T5a to T8a together with the resistance element R3a and the switch element 143a form a connection portion 144a capable of electrically connecting the battery unit 13a. Further, the terminal groups T5b to T8b together with the resistance element R3b and the switch element 143b form a connecting portion 144b capable of electrically connecting the battery unit 13b.
 キャパシタ140は、端子T7bに電気接続された線VH14と、端子T5aに電気接続された線VL14との間に設けられ、バッテリユニット13a(及び13b)から受け取った電圧を保持可能とする。 The capacitor 140 is provided between the wire VH14 electrically connected to the terminal T7b and the wire VL14 electrically connected to the terminal T5a, and can hold the voltage received from the battery unit 13a (and 13b).
 制御部141は、受電装置14全体の制御を行い、例えば、詳細については後述とするが、プロセッサ131a及び131bのそれぞれと通信を行うことが可能である。制御部141の機能は、プロセッサ131a等同様、ハードウェア及びソフトウェアの何れによっても実現可能とする。また、制御部141は、PDUとしての機能を更に備え、キャパシタ140に保持された電圧を所定の態様に変換して電動モータ12に供給することも可能とする。 The control unit 141 controls the entire power receiving device 14, and can communicate with each of the processors 131a and 131b, for example, although details will be described later. The function of the control unit 141 can be realized by any of hardware and software as well as the processor 131a and the like. Further, the control unit 141 further has a function as a PDU, and can convert the voltage held in the capacitor 140 into a predetermined mode and supply it to the electric motor 12.
 通信部142は、端子T8a及びT8bを介してそれぞれ通信部132a及び132bと通信可能に構成された電子部品であり、図中において破線で示されるように制御部141との相互通信により、制御部141の外部通信を実現可能とする。このような接続態様によれば、通信部132a及び132b間の相互通信も可能となる。そして、このことは、例えば、バッテリユニット13aのプロセッサ131aがバッテリユニット13bのプロセッサ131bに指示信号(ないし指示コマンド)を出力してバッテリユニット13bの給電機能を直接的に制御することをも許容する。 The communication unit 142 is an electronic component configured to be able to communicate with the communication units 132a and 132b via the terminals T8a and T8b, respectively, and is a control unit by mutual communication with the control unit 141 as shown by a broken line in the figure. It enables 141 external communications to be realized. According to such a connection mode, mutual communication between the communication units 132a and 132b is also possible. This also allows, for example, the processor 131a of the battery unit 13a to output an instruction signal (or instruction command) to the processor 131b of the battery unit 13b to directly control the power supply function of the battery unit 13b. ..
 抵抗素子R3a及びスイッチ素子143aは、端子T5a及びT6a間に直列接続される。スイッチ素子143aには、本実施形態ではバイポーラトランジスタが用いられ、ベース端子は制御部141により制御されうる。このような構成によりバッテリユニット13aを電気接続可能な接続部144aが形成され、例えば、スイッチ素子143aが導通状態になると、線VH13a”には所定の電圧が発生する。この電圧は、実質的に、線VH13a’及びVL13a間の電圧と、抵抗素子R1a、R2a及びR3aの抵抗値とで決まりうる。 The resistance element R3a and the switch element 143a are connected in series between the terminals T5a and T6a. A bipolar transistor is used for the switch element 143a in this embodiment, and the base terminal can be controlled by the control unit 141. With such a configuration, a connection portion 144a capable of electrically connecting the battery unit 13a is formed. For example, when the switch element 143a is in a conductive state, a predetermined voltage is generated in the wire VH13a ”. , The voltage between the lines VH13a'and VL13a and the resistance values of the resistance elements R1a, R2a and R3a can be determined.
 同様に、抵抗素子R3b及びスイッチ素子143bは、端子T5b及びT6b間に直列接続される。スイッチ素子143bには、本実施形態ではバイポーラトランジスタが用いられ、ベース端子は制御部141により制御されうる。このような構成によりバッテリユニット13bを電気接続可能な接続部144bが形成される。 Similarly, the resistance element R3b and the switch element 143b are connected in series between the terminals T5b and T6b. A bipolar transistor is used for the switch element 143b in this embodiment, and the base terminal can be controlled by the control unit 141. With such a configuration, a connecting portion 144b capable of electrically connecting the battery unit 13b is formed.
 起動スイッチ145は、本実施形態では、上記直列接続された抵抗素子R3a及びスイッチ素子143aに対して並列接続される。起動スイッチ145は、本実施形態においては押圧式スイッチとし、即ち、押圧されている間に亘って導通状態となり、押圧されていない間においては非導通状態となる。起動スイッチ145が押圧されると(導通状態となると)、線VH13a”及びVL13a間には、線VH13a’及びVL13a間の電圧と、抵抗素子R1a及びR2aの抵抗値とで決まる電圧が発生する。 In the present embodiment, the start switch 145 is connected in parallel to the resistance element R3a and the switch element 143a connected in series. In the present embodiment, the start switch 145 is a pressing type switch, that is, it is in a conductive state while it is being pressed, and is in a non-conducting state while it is not being pressed. When the start switch 145 is pressed (when it becomes conductive), a voltage determined by the voltage between the wires VH13a'and VL13a and the resistance values of the resistance elements R1a and R2a is generated between the wires VH13a "and VL13a.
 尚、本実施形態においては、起動スイッチ145は、受電装置1の一部として記載したが、装置1外に別体として設けられてもよく、例えば、起動スイッチ145は、バッテリユニット13a及び接続部144a間の電気経路(即ち、端子T1a及びT5a間の接続部と、端子T2a及びT6a間の接続部との間)に外部から取り付けられてもよい。 In the present embodiment, the start switch 145 is described as a part of the power receiving device 1, but it may be provided as a separate body outside the device 1. For example, the start switch 145 is the battery unit 13a and the connection portion. It may be externally attached to the electrical path between 144a (that is, between the connection between the terminals T1a and T5a and the connection between the terminals T2a and T6a).
 このような構成により、バッテリユニット13a及び13bは、受電装置14に(それぞれ接続部144a及び144bに)電気接続可能となっている。詳細については後述とするが、本システム構成においては、バッテリユニット13a及び13bは直列接続されて受電装置14に電気接続されることとなる。また、前述のとおり、バッテリユニット13a及び13bは、同様の構成を有するため、それらを相互に交換可能であり、或いは、それらの一方/双方を同様の構成を有する他のバッテリユニット(新たな/充電済のバッテリユニット)に交換可能である。 With such a configuration, the battery units 13a and 13b can be electrically connected to the power receiving device 14 (to the connection portions 144a and 144b, respectively). Details will be described later, but in this system configuration, the battery units 13a and 13b are connected in series and electrically connected to the power receiving device 14. Further, as described above, since the battery units 13a and 13b have the same configuration, they can be exchanged with each other, or one / both of them have the same configuration as another battery unit (new /). It can be replaced with a charged battery unit).
 (起動メカニズム)
 本システム構成においては、電源線VL13a及びVL14(端子T1a及びT5a)は接地電圧(0[V])に固定される/接地されるものとする。以下において説明される電圧は、一般に、2つの要素(端子、ノード等)間に発生する電位差を示すが、説明の容易化のため、この接地電圧からの電位差を示す場合がある。
(Startup mechanism)
In this system configuration, the power supply lines VL13a and VL14 (terminals T1a and T5a) are fixed / grounded to the ground voltage (0 [V]). The voltage described below generally indicates a potential difference between two elements (terminals, nodes, etc.), but may indicate a potential difference from this ground voltage for ease of description.
 作業機1の起動前(停止状態)においては、バッテリユニット13a及び13b並びに給電装置14は何れも休止状態である。即ち、プロセッサ131a及び131b、通信部132a及び132b、制御部141並びに通信部142は、何れも休止状態であり、また、スイッチ素子135a、137a、143a、135b、137b及び143b、並びに、起動スイッチ145は、何れも非導通状態である。 Before the work machine 1 is started (stopped state), the battery units 13a and 13b and the power feeding device 14 are all in the hibernation state. That is, the processors 131a and 131b, the communication units 132a and 132b, the control unit 141, and the communication unit 142 are all in a dormant state, and the switch elements 135a, 137a, 143a, 135b, 137b and 143b, and the start switch 145 are all in a dormant state. Are all non-conducting states.
 作業機1の起動は、起動スイッチ145がユーザ(作業機1のオーナー等)により押圧されることにより実現される。起動スイッチ145は押圧により導通状態となり、それにより、線VH13a”(端子T2a及びT6a)は電源線VL13a(端子T1a及びT5a)と同電位となり、即ち、線VH13a”(端子T2a及びT6a)は接地される。結果として、抵抗素子R1a及びR2a間のノードには、線VH13a’及びVL13a間の電圧(3.3[V])と、抵抗素子R1a及びR2aの抵抗比とに基づく分圧(電圧Vdiv1とする。)、即ち、
 [式1]
  Vdiv1=VDD×R2a/(R1a+R2a)、
   VDD:線VH13a’及びVL13a間の電圧(3.3[V])、
   R1a:抵抗素子R1aの抵抗値、
   R2a:抵抗素子R2aの抵抗値、
 が発生する。
The activation of the work machine 1 is realized by pressing the start switch 145 by a user (owner of the work machine 1 or the like). The start switch 145 becomes conductive by pressing, so that the wire VH13a "(terminals T2a and T6a) has the same potential as the power supply wire VL13a (terminals T1a and T5a), that is, the wire VH13a" (terminals T2a and T6a) is grounded. Will be done. As a result, the node between the resistance elements R1a and R2a has a voltage divider (voltage Vdiv1) based on the voltage between the lines VH13a'and VL13a (3.3 [V]) and the resistance ratio of the resistance elements R1a and R2a. .), That is,
[Equation 1]
Vdiv1 = VDD × R2a / (R1a + R2a),
VDD: Voltage between lines VH13a'and VL13a (3.3 [V]),
R1a: Resistance value of resistance element R1a,
R2a: Resistance value of resistance element R2a,
Occurs.
 これにより、スイッチ素子134aであるMOSトランジスタのゲート端子には電圧Vdiv1が印加され、それに伴いスイッチ素子134aが導通状態となり、ドレイン端子に供給されている電圧VDDが、ソース端子を介してプロセッサ131aに供給されることとなる。これに応答して、プロセッサ131aは活性状態になる。 As a result, the voltage Vdiv1 is applied to the gate terminal of the MOS transistor which is the switch element 134a, the switch element 134a becomes conductive accordingly, and the voltage VDD supplied to the drain terminal is sent to the processor 131a via the source terminal. It will be supplied. In response to this, the processor 131a is activated.
 その後、活性状態となったプロセッサ131aは、スイッチ素子135aを導通状態にする。これにより、電源線VH13aの電圧(48[V])は、抵抗素子136a及びスイッチ素子135aを介して線VH13aоに伝達され、端子T3aを介してバッテリユニット13aから出力される。尚、これと略同時に(或いは、その前/後のタイミングにおいて)、プロセッサ131aは通信部132aを活性状態にする。 After that, the active processor 131a puts the switch element 135a into a conductive state. As a result, the voltage (48 [V]) of the power supply line VH13a is transmitted to the line VH13aо via the resistance element 136a and the switch element 135a, and is output from the battery unit 13a via the terminal T3a. At about the same time (or at the timing before / after that), the processor 131a activates the communication unit 132a.
 バッテリユニット13aから出力された上記電圧は、受電装置14の端子T7a及びT5bを介して、バッテリユニット13bの端子T1b、整流素子D1b及び端子T3bを介して、並びに、受電装置14の端子T7bを介して、線VH14に伝達される。これによりキャパシタ140が充電され、時間経過と共に線VH14及びVL14間の電圧が高くなる。 The voltage output from the battery unit 13a passes through the terminals T7a and T5b of the power receiving device 14, via the terminals T1b, the rectifying element D1b and the terminal T3b of the battery unit 13b, and through the terminal T7b of the power receiving device 14. Is transmitted to the line VH14. As a result, the capacitor 140 is charged, and the voltage between the lines VH14 and VL14 increases with the passage of time.
 上記キャパシタ140の充電の開始から所定時間の経過後、プロセッサ131aは、更にスイッチ素子137aを導通状態にする。このとき、プロセッサ131aは、スイッチ素子135aを導通状態に維持してもよいし非導通状態にしてもよい。これにより、該充電の開始後に生じうる急峻な電位差を抑制しつつ、該充電が安定化してから該充電の速度を高めることができる。 After a predetermined time has elapsed from the start of charging the capacitor 140, the processor 131a further brings the switch element 137a into a conductive state. At this time, the processor 131a may keep the switch element 135a in a conductive state or may put it in a non-conducting state. Thereby, while suppressing the steep potential difference that may occur after the start of the charging, the charging speed can be increased after the charging is stabilized.
 キャパシタ140の充電により線VH14及びVL14間の電圧が充分に(電源線VH13aの電圧(48[V])まで)高くなったとき、それに伴い制御部141は活性状態となり、それと略同時に通信部142も活性状態となる。 When the voltage between the lines VH14 and VL14 becomes sufficiently high (up to the voltage of the power supply line VH13a (48 [V])) due to the charging of the capacitor 140, the control unit 141 becomes active accordingly, and at the same time, the communication unit 142 Is also active.
 その後、活性状態となった制御部141は、スイッチ素子143a及び143bを導通状態にする。起動スイッチ145の押圧が解除された後、バッテリユニット13aにおいては、導通状態となったスイッチ素子143aにより、線VH13a”及びVL13a間には、線VH13a’及びVL13a間の電圧と、抵抗素子R1a、R2a及びR3aの抵抗比とに基づく分圧(電圧Vdiv2とする。)、即ち、
 [式2]
  Vdiv2=VDD×R3a/(R1a+R2a+R3a)、
   R3a:抵抗素子R3aの抵抗値、
 が発生する。
After that, the control unit 141 in the active state brings the switch elements 143a and 143b into the conductive state. After the press of the start switch 145 is released, in the battery unit 13a, the voltage between the wires VH13a'and VL13a and the resistance element R1a between the wires VH13a'and VL13a are caused by the switch element 143a which has become conductive. A voltage divider based on the resistance ratio of R2a and R3a (referred to as voltage Vdiv2), that is,
[Equation 2]
Vdiv2 = VDD × R3a / (R1a + R2a + R3a),
R3a: Resistance value of resistance element R3a,
Occurs.
 一方、バッテリユニット13bにおいては、導通状態となったスイッチ素子143bにより、抵抗素子R1b及びR2b間のノードと、線VL13bとの間には、線VH13b’及びVL13b間の電圧(3.3[V])と、抵抗素子R1b、R2b及びR3bの抵抗比とに基づく分圧(電圧Vdiv3とする。)、即ち、
 [式3]
  Vdiv3=VDD×(R2b+R3b)/(R1b+R2b+R3b)、
   VDD:線VH13b’及びVL13b間の電圧(3.3[V])、
   R1b:抵抗素子R1bの抵抗値、
   R2b:抵抗素子R2bの抵抗値、
   R3b:抵抗素子R23の抵抗値、
 が発生する。
On the other hand, in the battery unit 13b, the voltage between the line VH13b'and the VL13b (3.3 [V]) between the node between the resistance elements R1b and R2b and the line VL13b due to the switch element 143b in the conductive state. ]) And the voltage division (referred to as voltage Vdiv3) based on the resistance ratios of the resistance elements R1b, R2b and R3b, that is,
[Equation 3]
Vdiv3 = VDD × (R2b + R3b) / (R1b + R2b + R3b),
VDD: Voltage between lines VH13b'and VL13b (3.3 [V]),
R1b: Resistance value of resistance element R1b,
R2b: Resistance value of resistance element R2b,
R3b: Resistance value of resistance element R23,
Occurs.
 これにより、スイッチ素子134bであるMOSトランジスタのゲート端子には電圧Vdiv3が印加され、それに伴いスイッチ素子134bが導通状態となり、ドレイン端子に供給されている電圧VDDが、ソース端子を介してプロセッサ131bに供給されることとなる。これに応答して、プロセッサ131bは活性状態になり、それと略同時に通信部132bも活性状態となる。 As a result, the voltage Vdiv3 is applied to the gate terminal of the MOS transistor which is the switch element 134b, the switch element 134b becomes conductive accordingly, and the voltage VDD supplied to the drain terminal is transmitted to the processor 131b via the source terminal. It will be supplied. In response to this, the processor 131b becomes active, and at about the same time, the communication unit 132b also becomes active.
 同様に、線VH13b”及びVL13b間には、線VH13b’及びVL13b間の電圧と、抵抗素子R1b、R2b及びR3bの抵抗比とに基づく分圧(電圧Vdiv4とする。)、即ち、
 [式4]
  Vdiv4=VDD×R3b/(R1b+R2b+R3b)、
 が発生する。
Similarly, between the lines VH13b "and VL13b, a voltage divider (referred to as voltage Vdiv4) based on the voltage between the lines VH13b'and VL13b and the resistance ratios of the resistance elements R1b, R2b and R3b, that is,
[Equation 4]
Vdiv4 = VDD × R3b / (R1b + R2b + R3b),
Occurs.
 詳細については後述とするが、プロセッサ131aは、線VH13a”の電圧を検出可能であり、これにより、バッテリユニット13aが接続部144aに電気接続されていることを判定可能である。同様に、プロセッサ131bは、線VH13b”の電圧を検出可能であり、これにより、バッテリユニット13bが接続部144bに電気接続されていることを判定可能である。 Although the details will be described later, the processor 131a can detect the voltage of the line VH13a ”, and thereby it is possible to determine that the battery unit 13a is electrically connected to the connection portion 144a. Similarly, the processor. The 131b can detect the voltage of the line VH13b ”, and thereby it is possible to determine that the battery unit 13b is electrically connected to the connection portion 144b.
 その後、プロセッサ131bは、プロセッサ131a同様の手順でスイッチ素子135b及び137bを制御し、バッテリ130bに接続された電源線VH13bの電圧を、線VH13bоを介して出力する。尚、電源線VH13b及びVL13b間の電圧は48[V]である。 After that, the processor 131b controls the switch elements 135b and 137b in the same procedure as the processor 131a, and outputs the voltage of the power supply line VH13b connected to the battery 130b via the line VH13bо. The voltage between the power supply lines VH13b and VL13b is 48 [V].
 図2から分かるようにバッテリユニット13a及び13bは直列接続されて受電装置14に電気接続される。そのため、受電装置14には、バッテリ130aの出力電圧(48[V])にバッテリ130bの出力電圧(48[V])を加えた電圧(計96[V])が供給されることとなる。以上のようにして作業機1を稼働状態にすることができる。 As can be seen from FIG. 2, the battery units 13a and 13b are connected in series and electrically connected to the power receiving device 14. Therefore, the power receiving device 14 is supplied with a voltage (total 96 [V]) obtained by adding the output voltage (48 [V]) of the battery 130b to the output voltage (48 [V]) of the battery 130a. As described above, the working machine 1 can be put into an operating state.
 稼働状態となった作業機1を再び休止状態とするためには、起動スイッチ145が再び押圧されればよい。起動スイッチ145が再び押圧された場合、プロセッサ131aは、線VH13a”が接地されたことを検出することにより、バッテリユニット13aを休止状態にする。また、これに先立って、プロセッサ131aは、通信部132aを介した外部通信により、バッテリユニット13b及び受電装置14に停止状態となることを指示する指示信号を出力することもできる。 In order to put the working machine 1 in the operating state into the hibernation state again, the start switch 145 may be pressed again. When the start switch 145 is pressed again, the processor 131a puts the battery unit 13a into hibernation by detecting that the wire VH13a "has been grounded. Prior to this, the processor 131a is used as a communication unit. It is also possible to output an instruction signal instructing the battery unit 13b and the power receiving device 14 to be in the stopped state by external communication via 132a.
 また、作業機1が稼働状態の間にバッテリユニット13a及び/又は13bが取り外された場合には、対応の通信部132a及び/又は132bを介した相互通信が途絶えることとなる。これと略同時に、プロセッサ131a及び/又は131bに供給される電圧(線VH13a”及びVL13a間の電圧、及び/又は、線VH13b”及びVL13b間の電圧)が3.3[V]となるため、プロセッサ131a及び/又は131bは、バッテリユニット13a及び/又は13bが取り外されたことを検出可能である。また、受電装置14においては端子T6a及び/又はT6bの電圧がフローティングとなるため、制御部141は、上記取外しが行われたことを検出可能である。 Further, if the battery unit 13a and / or 13b is removed while the work machine 1 is in the operating state, mutual communication via the corresponding communication unit 132a and / or 132b will be interrupted. At about the same time, the voltage supplied to the processors 131a and / or 131b (the voltage between the lines VH13a "and VL13a and / or the voltage between the lines VH13b" and VL13b becomes 3.3 [V]. Processors 131a and / or 131b can detect that the battery units 13a and / or 13b have been removed. Further, in the power receiving device 14, since the voltages of the terminals T6a and / or T6b are floating, the control unit 141 can detect that the above removal has been performed.
 即ち、プロセッサ131a及び131b並びに制御部141は、何れも、通信部132a等による通信結果と、プロセッサ131a等に供給される電圧とに基づいて、該取外しが行われたことを検出可能となっている。これにより、例えばバッテリユニット13a(13b)が取り外された場合には、プロセッサ131b(131a)は自らバッテリユニット13b(13a)を休止状態にすることができ、また、制御部141は自ら受電装置14を休止状態にすることができる。 That is, the processors 131a and 131b and the control unit 141 can all detect that the removal has been performed based on the communication result by the communication unit 132a and the like and the voltage supplied to the processor 131a and the like. There is. As a result, for example, when the battery unit 13a (13b) is removed, the processor 131b (131a) can put the battery unit 13b (13a) into hibernation by itself, and the control unit 141 itself can put the power receiving device 14 into hibernation. Can be hibernated.
 また、通信部132a、132b及び142間の通信結果を参照することにより、バッテリユニット13a及び/又は13bが取り外されていないにも関わらず上記相互通信が途絶えた場合には、このことを検出可能である。例えば、バッテリユニット13a及び13bが取り外されていない場合、プロセッサ131a及び131bに供給される電圧、並びに、受電装置14が受け取る電圧(端子T6a及びT6bの電圧)が変動しない(作業機1が稼働状態の時の値のままである。)。これにも関わらず、所望の通信結果が得られない場合には上記相互通信が途絶えたと云え、よって、プロセッサ131a及び131b並びに制御部141は、通信部132a、132b及び142間に不測の通信障害が発生したことを検出可能である。 Further, by referring to the communication result between the communication units 132a, 132b and 142, when the mutual communication is interrupted even though the battery units 13a and / or 13b are not removed, this can be detected. Is. For example, when the battery units 13a and 13b are not removed, the voltage supplied to the processors 131a and 131b and the voltage received by the power receiving device 14 (voltages of terminals T6a and T6b) do not fluctuate (working machine 1 is in an operating state). It remains the value at the time of.). In spite of this, if the desired communication result cannot be obtained, it can be said that the above-mentioned mutual communication is interrupted. Therefore, the processors 131a and 131b and the control unit 141 have an unexpected communication failure between the communication units 132a, 132b and 142. Can be detected.
 或いは、バッテリユニット13a及び/又は13bが取り外されたにも関わらず上記相互通信が途絶えていない場合には、このことを検出可能である。前述のとおり、バッテリユニット13a及び/又は13bが取り外された場合、プロセッサ131a及び/又は131bに供給される電圧は3.3[V]となり、また、受電装置14においては端子T6a及び/又はT6bの電圧はフローティングとなる。これにも関わらず、上記相互通信が継続されている場合には、受電装置14において不測の動作が発生したと云え、プロセッサ131a及び131b並びに制御部141は、このことを検出可能である。 Alternatively, this can be detected when the above-mentioned mutual communication is not interrupted even though the battery units 13a and / or 13b are removed. As described above, when the battery units 13a and / or 13b are removed, the voltage supplied to the processors 131a and / or 131b becomes 3.3 [V], and in the power receiving device 14, the terminals T6a and / or T6b The voltage of is floating. Nevertheless, when the mutual communication is continued, it can be said that an unexpected operation has occurred in the power receiving device 14, and the processors 131a and 131b and the control unit 141 can detect this.
 尚、バッテリユニット13a及び/又は13bが適切に電気接続されているか否かがプロセッサ131a及び131b並びに制御部141側で検出可能であればよく、上述の取外しは、例えば接触不良等、ユーザが意図しない取外しをも含むものとする。 It suffices if the processors 131a and 131b and the control unit 141 can detect whether or not the battery units 13a and / or 13b are properly electrically connected, and the above-mentioned removal is intended by the user, for example, due to poor contact or the like. It shall also include removal that does not.
 (プロセッサによる給電機能の制御)
 前述のとおり、プロセッサ131a及び131b並びに制御部141間では、それぞれ通信部132a及び132b並びに通信部142により相互通信が可能となっている。これにより、例えば、バッテリユニット13a及び/又は13bに加わる負荷状況等に基づいて、それ/それらの給電機能をそれ/それら自身で制御可能となっている。
(Control of power supply function by processor)
As described above, the processors 131a and 131b and the control unit 141 can communicate with each other by the communication units 132a and 132b and the communication unit 142, respectively. Thereby, for example, based on the load condition applied to the battery units 13a and / or 13b, it / their power supply function can be controlled by itself / themselves.
 一方、本システム構成においては、電源線VL13a及びVL14(端子T1a及びT5a)は接地電圧に固定されている。これに対して、バッテリユニット13bにおいて接地線として対応付けられる電源線VL13bは、本システム構成においては、作業機1を使用する際には(作業機1の稼働状態では)接地電圧よりも高い電圧(本実施形態では48[V])となる。 On the other hand, in this system configuration, the power supply lines VL13a and VL14 (terminals T1a and T5a) are fixed to the ground voltage. On the other hand, in the system configuration, the power supply line VL13b associated as the ground line in the battery unit 13b has a voltage higher than the ground voltage (in the operating state of the work machine 1) when the work machine 1 is used. (48 [V] in this embodiment).
 一般に、複数の電源系統が存在するシステムにおいては、システム上の動作安定性の確保のため、接地電圧またはそれに最も近いものを基準としてシステム構成が図られる。このことは、本システム構成においても同様であり、例えば、バッテリユニット13aが休止状態の間にバッテリユニット13bが活性状態となったとしてもバッテリユニット13bを構成する回路は適切に動作しない。よって、例えば、プロセッサ131a及び131b並びに制御部141間にマスタ/スレーブ(親/子)等の主従関係が設けられ、付随的にそれらの指示信号に優先度が設定される場合がある。 Generally, in a system having a plurality of power supply systems, the system configuration is planned based on the ground voltage or the closest one in order to ensure the operational stability on the system. This also applies to this system configuration. For example, even if the battery unit 13b is activated while the battery unit 13a is in a hibernation state, the circuits constituting the battery unit 13b do not operate properly. Therefore, for example, a master / slave (parent / child) or other master-slave relationship may be provided between the processors 131a and 131b and the control unit 141, and priority may be set incidentally to those instruction signals.
 一例として、制御部141をマスタとし且つプロセッサ131a及び131bをスレーブとする場合について考える。例えば、作業機1が稼働状態の間にバッテリユニット13aを休止状態にすることが必要となる場合が考えられる。この場合、プロセッサ131aは、バッテリユニット13aを休止状態にするのに先立って、バッテリユニット13b(プロセッサ131b)及び受電装置14(制御部141)に休止指示を出力することができる。この休止指示を、バッテリユニット13b及び受電装置14間の相互通信よりも優先度が高く設定することにより、プロセッサ131a及び131b並びに制御部141を何れも適切に(例えば所定順序で)休止状態にすることが可能となる。 As an example, consider a case where the control unit 141 is used as a master and the processors 131a and 131b are used as slaves. For example, it may be necessary to put the battery unit 13a into a hibernation state while the working machine 1 is in an operating state. In this case, the processor 131a can output a hibernation instruction to the battery unit 13b (processor 131b) and the power receiving device 14 (control unit 141) prior to putting the battery unit 13a into the hibernation state. By setting this hibernation instruction to have a higher priority than the mutual communication between the battery unit 13b and the power receiving device 14, the processors 131a and 131b and the control unit 141 are all put into hibernation appropriately (for example, in a predetermined order). It becomes possible.
 他の例として、プロセッサ131aをマスタとし且つプロセッサ131b及び制御部141をスレーブとすることも可能であり、この場合においても、同様のことが実現可能となる。 As another example, it is possible to use the processor 131a as a master and the processor 131b and the control unit 141 as slaves, and in this case as well, the same thing can be realized.
 小括すると、本システム構成においては、バッテリユニット13a及び13bは給電機能の制御を自身で実現可能とするプロセッサ131a及び131bをそれぞれ備え、また、受電装置14(制御部141)との相互通信を行う。一方、システム上の動作安定性の確保のため、プロセッサ131a及び131b並びに制御部141間に主従関係を設け、それらの指示系統に優先度を設けることが求められうる。 In summary, in this system configuration, the battery units 13a and 13b are provided with processors 131a and 131b that can control the power feeding function by themselves, and also communicate with the power receiving device 14 (control unit 141). Do. On the other hand, in order to ensure operational stability on the system, it may be required to establish a master-slave relationship between the processors 131a and 131b and the control unit 141, and to give priority to their instruction system.
 ここで、前述のとおり、バッテリユニット13a及び13bは同様の構成を有しており、それぞれ接続部144a及び144bの何れに電気接続されてもよい。よって、上述の主従関係および指示系統の優先度を設定可能とするため、プロセッサ131a(131b)には、バッテリユニット13a(13b)が接続部144a及び144bの何れに電気接続されたかを自身で判定可能であることが求められる。また、このことは、端子数を無用に増やすことなく、或いは、接続部144a及び144bの構造を複雑化させることなく、比較的簡素な構成で実現されることが好ましい。 Here, as described above, the battery units 13a and 13b have the same configuration, and may be electrically connected to any of the connection portions 144a and 144b, respectively. Therefore, in order to be able to set the above-mentioned master-slave relationship and the priority of the instruction system, it is determined by itself whether the battery unit 13a (13b) is electrically connected to the connection portion 144a or 144b to the processor 131a (131b). It is required to be possible. Further, it is preferable that this is realized with a relatively simple configuration without unnecessarily increasing the number of terminals or complicating the structures of the connecting portions 144a and 144b.
 そこで、本実施形態においては、抵抗素子R3a及びR3bは、それらの抵抗値が互いに異なる値となるように設けられる。尚、バッテリユニット13a及び13bは同様の構成を有するため、抵抗素子R1a及びR1bは互いに同じ抵抗値であり、また、抵抗素子R2a及びR2bは互いに同じ抵抗値である。即ち、
 [式5]
  R1a=R1b、
  R2a=R2b、
  R3a≠R3b、
 である。
Therefore, in the present embodiment, the resistance elements R3a and R3b are provided so that their resistance values are different from each other. Since the battery units 13a and 13b have the same configuration, the resistance elements R1a and R1b have the same resistance value, and the resistance elements R2a and R2b have the same resistance value. That is,
[Equation 5]
R1a = R1b,
R2a = R2b,
R3a ≠ R3b,
Is.
 前述のとおり([式2]及び[式4]参照)、線VH13a”及びVL13a間に加わる電圧Vdiv2は、
  Vdiv2=VDD×R3a/(R1a+R2a+R3a)、
 であり、また、線VH13b”及びVL13b間に加わる電圧Vdiv4は、
  Vdiv4=VDD×R3b/(R1b+R2b+R3b)、
 である。また、上記[式5]により、
  Vdiv2≠Vdiv4、
 である。
As described above (see [Equation 2] and [Equation 4]), the voltage Vdiv2 applied between the lines VH13a ”and VL13a is
Vdiv2 = VDD × R3a / (R1a + R2a + R3a),
And the voltage Vdiv4 applied between the lines VH13b ”and VL13b is
Vdiv4 = VDD × R3b / (R1b + R2b + R3b),
Is. Further, according to the above [Equation 5],
Vdiv2 ≠ Vdiv4,
Is.
 よって、プロセッサ131a(131b)は、それぞれ、線VH13a”(VH13b”)が電圧Vdiv2及びVdiv4の何れかを検出することで、バッテリユニット13a(13b)が接続部144a及び144bの何れに電気接続されたかを判定可能となる。本システム構成においては、プロセッサ131aは、線VH13a”の電圧Vdiv2を検出することにより、バッテリユニット13aが接続部144aに電気接続されていることを判定可能となる。また、プロセッサ131bは、線VH13b”の電圧Vdiv4を検出することにより、バッテリユニット13bが接続部144bに電気接続されていることを判定可能となる。 Therefore, in the processor 131a (131b), the battery unit 13a (13b) is electrically connected to either the connection portion 144a or 144b by detecting either the voltage Vdiv2 or the voltage Vdiv4 by the line VH13a "(VH13b"), respectively. It becomes possible to judge whether or not it is. In this system configuration, the processor 131a can determine that the battery unit 13a is electrically connected to the connection portion 144a by detecting the voltage Vdiv2 of the line VH13a. Further, the processor 131b can determine that the line VH13b is electrically connected. By detecting the voltage Vdiv4 of ", it is possible to determine that the battery unit 13b is electrically connected to the connection portion 144b.
 よって、本実施形態によれば、バッテリユニット13a及び13bの個々の給電機能の制御は、システム上の動作安定性を確保しながら適切に実現可能となる。また、このことは、バッテリユニット13a及び13bを同様の構成としつつ、接続部144a及び144bの構成により実現される。本実施形態では、接続部144a及び144bは、それぞれ、バッテリユニット13a及び13bからDC電圧を受取り可能に構成され、該DC電圧に応じた電流を流す抵抗素子R3a及びR3bを含む。これら抵抗素子R3a及びR3bは互いに異なる抵抗値を有するため、結果として、プロセッサ131a及び131bに供給される電圧を互いに異なるものとすることが可能となる。そのため、以上のことは比較的簡素な構成で実現可能と云える。尚、他の実施形態として、代替的/付随的に、スイッチ素子143a及び143bが互いに異なるオン抵抗となるように構成されてもよく、これによっても同様のことが実現可能である。 Therefore, according to the present embodiment, the control of the individual power supply functions of the battery units 13a and 13b can be appropriately realized while ensuring the operational stability on the system. Further, this is realized by the configuration of the connecting portions 144a and 144b while having the battery units 13a and 13b having the same configuration. In the present embodiment, the connection portions 144a and 144b include resistance elements R3a and R3b that are configured to be able to receive DC voltage from the battery units 13a and 13b, respectively, and flow a current corresponding to the DC voltage. Since these resistance elements R3a and R3b have different resistance values, as a result, the voltages supplied to the processors 131a and 131b can be different from each other. Therefore, it can be said that the above can be realized with a relatively simple configuration. In addition, as another embodiment, the switch elements 143a and 143b may be configured to have different on-resistances as an alternative / incidentally, and the same can be realized by this.
 また、システム上の動作安定性の確保のため、起動スイッチ145は、接地電圧またはそれに最も近い電源系統に設けられるとよい。本実施形態では、起動スイッチ145は、接続部144a及び144bのうち、接地電圧側に位置する接続部144aに対して設けられる。これにより、起動時にはプロセッサ131aに不測の電圧が加わることもない。よって、本実施形態によれば、バッテリユニット13a及び13bの個々の給電機能の制御は更に適切に実現可能と云える。 Further, in order to ensure the operational stability on the system, the start switch 145 may be provided at the ground voltage or the power supply system closest to the ground voltage. In the present embodiment, the start switch 145 is provided for the connection portion 144a located on the ground voltage side of the connection portions 144a and 144b. As a result, an unexpected voltage is not applied to the processor 131a at startup. Therefore, according to the present embodiment, it can be said that the control of the individual power feeding functions of the battery units 13a and 13b can be more appropriately realized.
 本実施形態ではバッテリユニット13の数量を2としたが、バッテリユニット13の数量が3以上の場合においても実施形態の内容を適用可能である。また、本実施形態では複数のバッテリユニット13が直列接続で受電装置14に電気接続される態様を例示したが、それらの接続態様が並列接続の場合においても実施形態の内容を適用可能である。 In the present embodiment, the quantity of the battery unit 13 is set to 2, but the content of the embodiment can be applied even when the quantity of the battery unit 13 is 3 or more. Further, in the present embodiment, a mode in which a plurality of battery units 13 are electrically connected to the power receiving device 14 in series connection is illustrated, but the content of the embodiment can be applied even when the connection mode is parallel connection.
 以上、本実施形態によれば、複数(実施形態では2つ)のバッテリユニット13a及び13bは、それぞれ、その給電機能を制御するためのプロセッサ131a及び131bを備える。また、受電装置14は、これらバッテリユニット13a及び13bをそれぞれ電気接続可能な複数(実施形態では2つ)の接続部144a及び144bを備える。これらの接続部144a及び144bは、それらにバッテリユニット13a及び13bがそれぞれ電気接続された場合に、対応のプロセッサ131a及び131bに供給される電圧が互いに異なる値となるように、構成される。このことは、例えば、抵抗素子R3a及びR3bを互いに異なる抵抗値で構成することにより適切に実現可能である。本実施形態によれば、プロセッサ131a(131b)は、バッテリユニット13a(13b)が接続部144a及び144bの何れに電気接続されたかを検出可能となる。これにより、プロセッサ131a(131b)は、該電気接続された接続部144a又は144bに応じた給電機能の制御を適切に実行可能となる。 As described above, according to the present embodiment, the plurality of (two in the embodiment) battery units 13a and 13b are provided with processors 131a and 131b for controlling their power feeding functions, respectively. Further, the power receiving device 14 includes a plurality of (two in the embodiment) connecting portions 144a and 144b capable of electrically connecting the battery units 13a and 13b, respectively. These connection portions 144a and 144b are configured so that when the battery units 13a and 13b are electrically connected to them, the voltages supplied to the corresponding processors 131a and 131b have different values. This can be appropriately realized by, for example, configuring the resistance elements R3a and R3b with different resistance values. According to the present embodiment, the processor 131a (131b) can detect whether the battery unit 13a (13b) is electrically connected to the connection portion 144a or 144b. As a result, the processor 131a (131b) can appropriately control the power feeding function according to the electrically connected connection portion 144a or 144b.
 以上の説明においては、理解の容易化のため、各要素をその機能面に関連する名称で示したが、各要素は、実施形態で説明された内容を主機能として備えるものに限られるものではなく、それを補助的に備えるものであってもよい。 In the above description, for ease of understanding, each element is shown by a name related to its functional aspect, but each element is not limited to the one having the contents described in the embodiment as the main function. However, it may be provided as an auxiliary.
 (実施形態のまとめ)
 実施形態の各特徴は以下のとおり纏められる:
 第1の態様は受電装置(例えば14)に係り、前記受電装置は、給電機能を制御するためのプロセッサ(例えば131a、131b)をそれぞれが備える複数のバッテリユニット(例えば13a、13b)から電力を受取り可能に構成された受電装置であって、前記複数のバッテリユニットをそれぞれ電気接続可能な複数の接続部(例えば144a、144b)を備えており、前記複数の接続部は、それらに前記複数のバッテリユニットがそれぞれ電気接続された場合に該複数のバッテリユニットの複数のプロセッサに供給される電圧が互いに異なる値となるように、構成されている
 ことを特徴とする。このような構成によれば、個々のバッテリユニットにおいて、プロセッサは、そのバッテリユニットが複数の接続部の何れに電気接続されたかを検出可能となり、該接続部に応じた給電機能の制御を適切に実行可能となる。
(Summary of Embodiment)
Each feature of the embodiment is summarized as follows:
The first aspect relates to a power receiving device (for example, 14), and the power receiving device receives power from a plurality of battery units (for example, 13a, 13b) each including a processor (for example, 131a, 131b) for controlling a power feeding function. It is a power receiving device configured to be receivable, and includes a plurality of connection portions (for example, 144a, 144b) capable of electrically connecting the plurality of battery units, and the plurality of connection portions are connected to the plurality of connection portions. It is characterized in that when the battery units are electrically connected to each other, the voltages supplied to the plurality of processors of the plurality of battery units are configured to have different values from each other. According to such a configuration, in each battery unit, the processor can detect which of the plurality of connections the battery unit is electrically connected to, and appropriately control the power supply function according to the connection. It becomes feasible.
 第2の態様では、前記複数の接続部のそれぞれは、対応のバッテリユニットからDC電圧(例えば48[V])を受取り可能に構成されると共に該DC電圧に応じた電流を流す抵抗素子(例えばR3a、R3b)を含んでおり、前記複数の接続部の間において前記抵抗素子の抵抗値は互いに異なっている
 ことを特徴とする。このような構成によれば、上記第1の態様を比較的簡便に実現可能となる。
In the second aspect, each of the plurality of connection portions is configured to be able to receive a DC voltage (for example, 48 [V]) from a corresponding battery unit, and a resistance element (for example, a resistance element) for passing a current corresponding to the DC voltage. R3a, R3b) are included, and the resistance values of the resistance elements are different from each other among the plurality of connecting portions. According to such a configuration, the first aspect can be realized relatively easily.
 第3の態様では、前記複数のプロセッサと通信するための通信部(例えば142)と、前記通信部を介して前記複数のプロセッサを個別に制御するための制御部(例えば141)と、を更に備える
 ことを特徴とする。このような構成によれば、個々のバッテリユニットの給電機能を個別に制御可能となる。
In the third aspect, a communication unit (for example, 142) for communicating with the plurality of processors and a control unit (for example, 141) for individually controlling the plurality of processors via the communication unit are further provided. It is characterized by being prepared. According to such a configuration, the power supply function of each battery unit can be individually controlled.
 第4の態様では、前記通信部は、更に前記複数のプロセッサを相互に通信可能とすることにより、該複数のプロセッサのうちの少なくとも1つ(例えば131a)が他のプロセッサ(例えば131b)を制御することを許容する
 ことを特徴とする。このような構成によれば、或るバッテリユニットから他のバッテリユニットの給電機能を制御することも可能となる。
In the fourth aspect, the communication unit further enables the plurality of processors to communicate with each other, so that at least one of the plurality of processors (for example, 131a) controls another processor (for example, 131b). It is characterized by allowing it to be done. According to such a configuration, it is possible to control the power supply function of another battery unit from one battery unit.
 第5の態様では、前記通信部は、前記少なくとも1つのプロセッサが対応の接続部により供給された前記電圧に基づいて前記他のプロセッサを制御することを許容する
 ことを特徴とする。このような構成によれば上記第4の態様を適切に実現可能となる。
In a fifth aspect, the communication unit allows the at least one processor to control the other processor based on the voltage supplied by the corresponding connection unit. With such a configuration, the fourth aspect can be appropriately realized.
 第6の態様では、前記制御部は、前記複数のバッテリユニットが前記複数の接続部においてそれぞれ適切に電気接続されているか否かを、前記通信部による通信結果と、前記複数のプロセッサに供給される電圧と、に基づいて判定する
 ことを特徴とする。このような構成によれば、バッテリユニットの電気接続が適切に行われているか否かを個別に判定可能となる。
In the sixth aspect, the control unit supplies the communication result by the communication unit and the plurality of processors whether or not the plurality of battery units are appropriately electrically connected at the plurality of connection units. It is characterized in that the judgment is made based on the voltage and the voltage. According to such a configuration, it is possible to individually determine whether or not the electrical connection of the battery unit is properly performed.
 第7の態様では、前記複数の接続部は、前記複数のバッテリユニットが前記複数の接続部にそれぞれ電気接続された場合に該複数のバッテリユニットが直列接続となるように、構成されている
 ことを特徴とする。このような構成によれば、比較的大きい電圧を受電装置に供給可能となる。
In the seventh aspect, the plurality of connection portions are configured so that when the plurality of battery units are electrically connected to the plurality of connection portions, the plurality of battery units are connected in series. It is characterized by. According to such a configuration, a relatively large voltage can be supplied to the power receiving device.
 第8の態様では、前記複数のバッテリユニットのうち最も接地電圧に近いものを第1のバッテリユニット(例えば13a)とし、前記複数の接続部のうち前記第1のバッテリユニットに対応するものを第1の接続部(例えば144a)としたとき、前記受電装置は、前記第1の接続部に対して設けられ且つ前記第1のバッテリユニットの前記プロセッサを起動するための起動スイッチ(例えば145)を更に備える
 ことを特徴とする。このような構成によれば、プロセッサを起動する際、該プロセッサに不測の電圧が加わることもない。
In the eighth aspect, the one closest to the ground voltage among the plurality of battery units is referred to as the first battery unit (for example, 13a), and the one corresponding to the first battery unit among the plurality of connection portions is the first. When the connection portion (for example, 144a) is set to 1, the power receiving device is provided with respect to the first connection portion and has a start switch (for example, 145) for activating the processor of the first battery unit. It is characterized by further preparation. According to such a configuration, when the processor is started, an unexpected voltage is not applied to the processor.
 第9の態様は電動パワーユニット(例えばPU)に係り、前記電動パワーユニットは、上述の受電装置(例えば14)と、前記受電装置により前記複数のバッテリユニットから受け取った電力に基づいて動力を発生する電動モータ(例えば12)と、を備える
 ことを特徴とする。即ち、上述の受電装置は公知の電動パワーユニットに適用可能である。
A ninth aspect relates to an electric power unit (for example, PU), in which the electric power unit generates power based on the above-mentioned power receiving device (for example, 14) and the electric power received from the plurality of battery units by the power receiving device. It is characterized by including a motor (for example, 12). That is, the above-mentioned power receiving device can be applied to a known electric power unit.
 第10の態様は作業機(例えば1)に係り、前記作業機は、上述の電動パワーユニット(例えばPU)と、前記電動モータの前記動力に基づいて作業を実行可能な作業機構(例えば11)と、を備える
 ことを特徴とする。即ち、上述の電動パワーユニットは公知の作業機に適用可能である。
A tenth aspect relates to a work machine (for example, 1), wherein the work machine includes the above-mentioned electric power unit (for example, PU) and a work mechanism (for example, 11) capable of performing work based on the power of the electric motor. It is characterized by having. That is, the above-mentioned electric power unit can be applied to a known working machine.
 第11の態様はバッテリユニット(例えば13a)に係り、前記バッテリユニットは、受電装置(例えば14)が備える複数の接続部(例えば144a、144b)の何れかに電気接続可能に構成されたバッテリユニットであって、前記複数の接続部は、それらに複数のバッテリユニットがそれぞれ電気接続された場合に該複数のバッテリユニットに供給される電圧が互いに異なる値となるように、構成されており、前記バッテリユニットは、それが電気接続された接続部により供給された電圧に基づいて給電機能を制御可能なプロセッサ(例えば131a)を備える
 ことを特徴とする。このような構成によれば、個々のバッテリユニットにおいて、プロセッサは、そのバッテリユニットが複数の接続部の何れに電気接続されたかを検出可能となり、該接続部に応じた給電機能の制御を適切に実行可能となる。
The eleventh aspect relates to a battery unit (for example, 13a), and the battery unit is configured to be electrically connectable to any of a plurality of connection portions (for example, 144a and 144b) included in a power receiving device (for example, 14). The plurality of connection portions are configured such that the voltages supplied to the plurality of battery units are different from each other when the plurality of battery units are electrically connected to each of the plurality of connection portions. The battery unit comprises a processor (eg, 131a) capable of controlling the feeding function based on the voltage supplied by the electrically connected connection. According to such a configuration, in each battery unit, the processor can detect which of the plurality of connections the battery unit is electrically connected to, and appropriately control the power supply function according to the connection. It becomes feasible.
 第12の態様では、前記複数の接続部のそれぞれは、対応のバッテリユニットからDC電圧(例えば48[V])を受取り可能に構成されると共に該DC電圧に応じた電流を流す抵抗素子(例えばR3a、R3b)を含み、かつ、該抵抗素子の抵抗値は前記複数の接続部の間で互いに異なっており、前記バッテリユニットは、前記DC電圧を出力可能に構成されている
 ことを特徴とする。このような構成によれば、上記第1の態様を比較的簡便に実現可能となる。
In the twelfth aspect, each of the plurality of connection portions is configured to be able to receive a DC voltage (for example, 48 [V]) from a corresponding battery unit, and a resistance element (for example, a resistance element) for flowing a current corresponding to the DC voltage. R3a, R3b) are included, and the resistance values of the resistance elements are different from each other among the plurality of connection portions, and the battery unit is configured to be capable of outputting the DC voltage. .. According to such a configuration, the first aspect can be realized relatively easily.
 第13の態様では、前記接続部を介して前記受電装置と通信するための通信部(例えば132a)を更に備える
 ことを特徴とする。このような構成によれば、個々のバッテリユニットの給電機能を個別に制御可能となる。
A thirteenth aspect is further provided with a communication unit (for example, 132a) for communicating with the power receiving device via the connection unit. According to such a configuration, the power supply function of each battery unit can be individually controlled.
 第14の態様では、前記通信部は、更に他のバッテリユニット(例えば13b)と通信可能に構成され、それにより、前記プロセッサが、前記他のバッテリユニットが備える他のプロセッサ(例えば131b)を制御することを許容する
 ことを特徴とする。このような構成によれば、或るバッテリユニットから他のバッテリユニットの給電機能を制御することも可能となる。
In the fourteenth aspect, the communication unit is configured to be able to communicate with another battery unit (for example, 13b), whereby the processor controls another processor (for example, 131b) included in the other battery unit. It is characterized by allowing it to be done. According to such a configuration, it is possible to control the power supply function of another battery unit from one battery unit.
 第15の態様では、前記通信部は、前記プロセッサが、前記接続部により供給された前記電圧に基づいて前記他のプロセッサを制御することを許容する
 ことを特徴とする。このような構成によれば上記第14の態様を適切に実現可能となる。
In a fifteenth aspect, the communication unit allows the processor to control the other processor based on the voltage supplied by the connection unit. With such a configuration, the above-mentioned fourteenth aspect can be appropriately realized.
 第16の態様では、前記バッテリユニットおよび前記他のバッテリユニットは、それらのそれぞれが対応の前記接続部に電気接続された場合、直列接続となる
 ことを特徴とする。このような構成によれば、比較的大きい電圧を受電装置に供給可能となる。
In a sixteenth aspect, the battery unit and the other battery units are connected in series when each of them is electrically connected to the corresponding connection. According to such a configuration, a relatively large voltage can be supplied to the power receiving device.
 第17の態様は電動パワーユニット(例えばPU)に係り、前記電動パワーユニットは、上述のバッテリユニット(例えば13a)と、前記受電装置と、前記バッテリユニットから受け取った電力に基づいて動力を発生する電動モータ(例えば12)と、を備える
 ことを特徴とする。即ち、上述のバッテリユニットは公知の電動パワーユニットに適用可能である。
A seventeenth aspect relates to an electric power unit (for example, PU), in which the electric power unit generates power based on the above-mentioned battery unit (for example, 13a), the power receiving device, and electric power received from the battery unit. (For example, 12) and. That is, the above-mentioned battery unit can be applied to a known electric power unit.
 第18の態様は作業機に係り、前記作業機は、上述の電動パワーユニット(例えばPU)と、前記電動モータの前記動力に基づいて作業を実行可能な作業機構(例えば11)と、を備える
 ことを特徴とする。即ち、上述の電動パワーユニットは公知の作業機に適用可能である。
An eighteenth aspect relates to a work machine, which comprises the above-mentioned electric power unit (for example, PU) and a work mechanism (for example, 11) capable of performing work based on the power of the electric motor. It is characterized by. That is, the above-mentioned electric power unit can be applied to a known working machine.
 発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。 The invention is not limited to the above embodiment, and various modifications and changes can be made within the scope of the gist of the invention.

Claims (18)

  1.  給電機能を制御するためのプロセッサをそれぞれが備える複数のバッテリユニットから電力を受取り可能に構成された受電装置であって、
     前記複数のバッテリユニットをそれぞれ電気接続可能な複数の接続部を備えており、
     前記複数の接続部は、それらに前記複数のバッテリユニットがそれぞれ電気接続された場合に該複数のバッテリユニットの複数のプロセッサに供給される電圧が互いに異なる値となるように、構成されている
     ことを特徴とする受電装置。
    A power receiving device configured to be able to receive power from a plurality of battery units, each of which has a processor for controlling a power feeding function.
    It is provided with a plurality of connection portions capable of electrically connecting the plurality of battery units.
    The plurality of connections are configured so that when the plurality of battery units are electrically connected to each other, the voltages supplied to the plurality of processors of the plurality of battery units have different values from each other. A power receiving device characterized by.
  2.  前記複数の接続部のそれぞれは、対応のバッテリユニットからDC電圧を受取り可能に構成されると共に該DC電圧に応じた電流を流す抵抗素子を含んでおり、
     前記複数の接続部の間において前記抵抗素子の抵抗値は互いに異なっている
     ことを特徴とする請求項1記載の受電装置。
    Each of the plurality of connection portions includes a resistance element that is configured to be able to receive a DC voltage from a corresponding battery unit and that allows a current to flow according to the DC voltage.
    The power receiving device according to claim 1, wherein the resistance values of the resistance elements are different from each other among the plurality of connecting portions.
  3.  前記複数のプロセッサと通信するための通信部と、
     前記通信部を介して前記複数のプロセッサを個別に制御するための制御部と、
     を更に備える
     ことを特徴とする請求項1または請求項2記載の受電装置。
    A communication unit for communicating with the plurality of processors,
    A control unit for individually controlling the plurality of processors via the communication unit,
    The power receiving device according to claim 1 or 2, further comprising.
  4.  前記通信部は、更に前記複数のプロセッサを相互に通信可能とすることにより、該複数のプロセッサのうちの少なくとも1つが他のプロセッサを制御することを許容する
     ことを特徴とする請求項3記載の受電装置。
    The third aspect of claim 3, wherein the communication unit further enables at least one of the plurality of processors to control another processor by enabling the plurality of processors to communicate with each other. Power receiving device.
  5.  前記通信部は、前記少なくとも1つのプロセッサが対応の接続部により供給された前記電圧に基づいて前記他のプロセッサを制御することを許容する
     ことを特徴とする請求項4記載の受電装置。
    The power receiving device according to claim 4, wherein the communication unit allows the at least one processor to control the other processor based on the voltage supplied by the corresponding connection unit.
  6.  前記制御部は、前記複数のバッテリユニットが前記複数の接続部においてそれぞれ適切に電気接続されているか否かを、前記通信部による通信結果と、前記複数のプロセッサに供給される電圧と、に基づいて判定する
     ことを特徴とする請求項3から請求項5の何れか1項記載の受電装置。
    The control unit determines whether or not the plurality of battery units are appropriately electrically connected at the plurality of connection units, based on the communication result by the communication unit and the voltage supplied to the plurality of processors. The power receiving device according to any one of claims 3 to 5, wherein the determination is made.
  7.  前記複数の接続部は、前記複数のバッテリユニットが前記複数の接続部にそれぞれ電気接続された場合に該複数のバッテリユニットが直列接続となるように、構成されている
     ことを特徴とする請求項1から請求項6の何れか1項記載の受電装置。
    The plurality of connection portions are configured such that when the plurality of battery units are electrically connected to the plurality of connection portions, the plurality of battery units are connected in series. The power receiving device according to any one of claims 1 to 6.
  8.  前記複数のバッテリユニットのうち最も接地電圧に近いものを第1のバッテリユニットとし、前記複数の接続部のうち前記第1のバッテリユニットに対応するものを第1の接続部としたとき、
     前記受電装置は、前記第1の接続部に対して設けられ且つ前記第1のバッテリユニットの前記プロセッサを起動するための起動スイッチを更に備える
     ことを特徴とする請求項7記載の受電装置。
    When the one closest to the ground voltage among the plurality of battery units is designated as the first battery unit, and the one corresponding to the first battery unit among the plurality of connecting portions is designated as the first connecting portion.
    The power receiving device according to claim 7, wherein the power receiving device is provided for the first connection portion and further includes a start switch for starting the processor of the first battery unit.
  9.  請求項1から請求項8の何れか1項記載の受電装置と、
     前記受電装置により前記複数のバッテリユニットから受け取った電力に基づいて動力を発生する電動モータと、を備える
     ことを特徴とする電動パワーユニット。
    The power receiving device according to any one of claims 1 to 8.
    An electric power unit including an electric motor that generates power based on electric power received from the plurality of battery units by the power receiving device.
  10.  請求項9記載の電動パワーユニットと、
     前記電動モータの前記動力に基づいて作業を実行可能な作業機構と、を備える
     ことを特徴とする作業機。
    The electric power unit according to claim 9 and
    A work machine including a work mechanism capable of performing work based on the power of the electric motor.
  11.  受電装置が備える複数の接続部の何れかに電気接続可能に構成されたバッテリユニットであって、
     前記複数の接続部は、それらに複数のバッテリユニットがそれぞれ電気接続された場合に該複数のバッテリユニットに供給される電圧が互いに異なる値となるように、構成されており、
     前記バッテリユニットは、それが電気接続された接続部により供給された電圧に基づいて給電機能を制御可能なプロセッサを備える
     ことを特徴とするバッテリユニット。
    A battery unit configured to be electrically connected to any of a plurality of connections provided in a power receiving device.
    The plurality of connection portions are configured so that when a plurality of battery units are electrically connected to each other, the voltages supplied to the plurality of battery units have different values.
    The battery unit comprises a processor capable of controlling a power feeding function based on a voltage supplied by a connection portion to which the battery unit is electrically connected.
  12.  前記複数の接続部のそれぞれは、対応のバッテリユニットからDC電圧を受取り可能に構成されると共に該DC電圧に応じた電流を流す抵抗素子を含み、かつ、該抵抗素子の抵抗値は前記複数の接続部の間で互いに異なっており、
     前記バッテリユニットは、前記DC電圧を出力可能に構成されている
     ことを特徴とする請求項11記載のバッテリユニット。
    Each of the plurality of connection portions includes a resistance element that is configured to be able to receive a DC voltage from a corresponding battery unit and flows a current corresponding to the DC voltage, and the resistance value of the resistance element is the plurality of. The connections are different from each other and
    The battery unit according to claim 11, wherein the battery unit is configured to be capable of outputting the DC voltage.
  13.  前記接続部を介して前記受電装置と通信するための通信部を更に備える
     ことを特徴とする請求項11または請求項12記載のバッテリユニット。
    The battery unit according to claim 11 or 12, further comprising a communication unit for communicating with the power receiving device via the connection unit.
  14.  前記通信部は、更に他のバッテリユニットと通信可能に構成され、それにより、前記プロセッサが、前記他のバッテリユニットが備える他のプロセッサを制御することを許容する
     ことを特徴とする請求項13記載のバッテリユニット。
    13. The communication unit is configured to be communicable with another battery unit, thereby allowing the processor to control another processor included in the other battery unit. Battery unit.
  15.  前記通信部は、前記プロセッサが、前記接続部により供給された前記電圧に基づいて前記他のプロセッサを制御することを許容する
     ことを特徴とする請求項14記載のバッテリユニット。
    14. The battery unit according to claim 14, wherein the communication unit allows the processor to control the other processor based on the voltage supplied by the connection unit.
  16.  前記バッテリユニットおよび前記他のバッテリユニットは、それらのそれぞれが対応の前記接続部に電気接続された場合、直列接続となる
     ことを特徴とする請求項14または請求項15記載のバッテリユニット。
    The battery unit according to claim 14 or 15, wherein the battery unit and the other battery unit are connected in series when each of them is electrically connected to the corresponding connection portion.
  17.  請求項11から請求項16の何れか1項記載のバッテリユニットと、
     前記受電装置と、
     前記バッテリユニットから受け取った電力に基づいて動力を発生する電動モータと、を備える
     ことを特徴とする電動パワーユニット。
    The battery unit according to any one of claims 11 to 16.
    With the power receiving device
    An electric power unit including an electric motor that generates power based on the electric power received from the battery unit.
  18.  請求項17記載の電動パワーユニットと、
     前記電動モータの前記動力に基づいて作業を実行可能な作業機構と、を備える
     ことを特徴とする作業機。
    The electric power unit according to claim 17 and
    A work machine including a work mechanism capable of performing work based on the power of the electric motor.
PCT/JP2019/040294 2019-10-11 2019-10-11 Power reception device, battery unit, electric power unit and work machine WO2021070377A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/040294 WO2021070377A1 (en) 2019-10-11 2019-10-11 Power reception device, battery unit, electric power unit and work machine
DE112019007804.6T DE112019007804T5 (en) 2019-10-11 2019-10-11 Power receiving device, battery unit, electric drive unit and working machine
US17/712,603 US20220223925A1 (en) 2019-10-11 2022-04-04 Power receiving apparatus, battery unit, electric power unit, and work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/040294 WO2021070377A1 (en) 2019-10-11 2019-10-11 Power reception device, battery unit, electric power unit and work machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/712,603 Continuation US20220223925A1 (en) 2019-10-11 2022-04-04 Power receiving apparatus, battery unit, electric power unit, and work machine

Publications (1)

Publication Number Publication Date
WO2021070377A1 true WO2021070377A1 (en) 2021-04-15

Family

ID=75437810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040294 WO2021070377A1 (en) 2019-10-11 2019-10-11 Power reception device, battery unit, electric power unit and work machine

Country Status (3)

Country Link
US (1) US20220223925A1 (en)
DE (1) DE112019007804T5 (en)
WO (1) WO2021070377A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045671A (en) * 1999-07-28 2001-02-16 Ricoh Co Ltd Bus address switching device of battery pack for electronic apparatus
JP2009014566A (en) * 2007-07-05 2009-01-22 Canon Inc Electronic equipment, battery pack, and electronic equipment system
JP2009513095A (en) * 2005-10-21 2009-03-26 エルジー・ケム・リミテッド Multi battery pack system and control method, battery pack
JP2009072053A (en) * 2007-09-18 2009-04-02 Fdk Corp Electric storage system
JP2010081673A (en) * 2008-09-24 2010-04-08 Sanyo Electric Co Ltd Battery system and battery pack
JP2011161603A (en) * 2010-02-12 2011-08-25 Makita Corp Power tool using a plurality of battery packs as power source
WO2018056264A1 (en) * 2016-09-21 2018-03-29 オートモーティブエナジーサプライ株式会社 Battery system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045671A (en) * 1999-07-28 2001-02-16 Ricoh Co Ltd Bus address switching device of battery pack for electronic apparatus
JP2009513095A (en) * 2005-10-21 2009-03-26 エルジー・ケム・リミテッド Multi battery pack system and control method, battery pack
JP2009014566A (en) * 2007-07-05 2009-01-22 Canon Inc Electronic equipment, battery pack, and electronic equipment system
JP2009072053A (en) * 2007-09-18 2009-04-02 Fdk Corp Electric storage system
JP2010081673A (en) * 2008-09-24 2010-04-08 Sanyo Electric Co Ltd Battery system and battery pack
JP2011161603A (en) * 2010-02-12 2011-08-25 Makita Corp Power tool using a plurality of battery packs as power source
WO2018056264A1 (en) * 2016-09-21 2018-03-29 オートモーティブエナジーサプライ株式会社 Battery system

Also Published As

Publication number Publication date
DE112019007804T5 (en) 2022-07-07
US20220223925A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
US11368029B2 (en) Portable power supply
US9467084B2 (en) Motor-driven appliance system and method for controlling the system
JP5481146B2 (en) Battery management device, secondary battery device and vehicle
JP7039773B2 (en) Power system including battery pack
JP6107562B2 (en) Battery control unit system
JP2015196196A (en) Electric power tool
CN111699603B (en) Battery protection circuit and battery pack including the same
CN103339818B (en) Charger
WO2021070377A1 (en) Power reception device, battery unit, electric power unit and work machine
JP5931567B2 (en) Battery module
JP7424392B2 (en) Battery packs and electrical equipment systems
CN114094665B (en) Power supply circuit and electronic equipment
CN103513742A (en) Terminal device
CN109863664B (en) Power supply device
JPH11143591A (en) Power unit
JP6723458B2 (en) Battery pack communication system and battery pack including the same
JP6906326B2 (en) Battery device and control method of battery device
KR102637309B1 (en) method for switch the mode of the battery pack from outside and the battery pack from the outside
EP3595076B1 (en) Battery system
JP6972140B2 (en) Power control device and control method of power control device
JP2017093204A (en) Power supply control circuit
WO2023189011A1 (en) Power supply device and power supply control circuit
JP6098478B2 (en) Battery monitoring device
US20230411991A1 (en) System power supply structure, backup power supply device, and control method
CN210924256U (en) Battery starting circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948727

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19948727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP