WO2021069844A1 - Device for measuring density and variation in level of a liquid - Google Patents

Device for measuring density and variation in level of a liquid Download PDF

Info

Publication number
WO2021069844A1
WO2021069844A1 PCT/FR2020/051780 FR2020051780W WO2021069844A1 WO 2021069844 A1 WO2021069844 A1 WO 2021069844A1 FR 2020051780 W FR2020051780 W FR 2020051780W WO 2021069844 A1 WO2021069844 A1 WO 2021069844A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
liquid
density
level
measuring device
Prior art date
Application number
PCT/FR2020/051780
Other languages
French (fr)
Inventor
Philippe DE MALEPRADE
Original Assignee
Aquamon
Costemale Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquamon, Costemale Sas filed Critical Aquamon
Publication of WO2021069844A1 publication Critical patent/WO2021069844A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/0038Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm using buoyant probes

Definitions

  • the field of the invention is that of metrology.
  • the invention relates to a device for measuring a density and a variation in a level of a liquid.
  • the invention finds applications in particular in the measurement of a liquid at rest of a reservoir, a water table, a dam, a lagoon, a lake or any other liquid expanse. .
  • Such techniques are for example based on measuring the weight of a known mass probe by a sensor in order to deduce either the density of the liquid or the variation in a level of the liquid.
  • the present invention aims to remedy all or part of the drawbacks of the state of the art mentioned above.
  • the invention relates to a device for measuring a density and a variation in the level of a liquid, comprising a probe suspended from a force sensor.
  • the liquid being measured can be, for example, fresh water, drinking water, salt water, lake water or brackish water.
  • the measuring device can also be used to measure the characteristics of other types of liquid, such as juice, hydrocarbon or alcohol.
  • the liquid being measured is generally included in a reservoir which is by definition a natural or artificial basin, closed or open.
  • the term “reservoir” will thus be understood to mean any type of basin capable of containing the liquid, such as a water table, a lagoon, a lake, a maritime expanse, a watercourse, a dam, a container, etc.
  • the measurement performed is that of a mass per unit volume, commonly referred to as density. From the measurement of the density, it is then possible to determine the value of the corresponding density which is equal to the ratio of the density measured to the density of pure water under the measurement conditions.
  • the measuring device makes it possible to determine a variation in the level of the liquid, or even the level of the liquid compared to an absolute reference level, such as the zero sea level, if the altitude of the sensor is known.
  • the force sensor is unique, the probe comprising two parts each having a density greater than the density of the liquid, the first part having an elongated shape intended to measure a variation in the level of the liquid, the second part having any shape of a volume greater than the volume of the first part, the second part fully immersed in the liquid in order to measure the density of the liquid.
  • the measuring device having only a single sensor to measure the density and the variations in the level of the liquid, is easy to implement, and energy efficient.
  • the measurements obtained by the measuring device are precise and reproducible. This precision and reproducibility are due for measuring a variation in the elongated shape of the first part and for measuring the density at a volume of the second part greater than that of the first part.
  • volume ratio between the second and the first part of the probe is advantageously arbitrary.
  • the probe is suspended from the force sensor by inextensible suspension means.
  • the inextensible suspension means may comprise a thread, a chain, a hook, a ring or any other means known to those skilled in the art.
  • the inextensible suspension means can also be a means of securing between two elements, such as an adhesive or a weld.
  • the volume ratio between the second and the first part of the probe is greater than 1:10.
  • the volume ratio between the second and the first part of the probe is greater than 1: 100.
  • the probe is more stable vertically, thereby increasing the accuracy of measuring a change in liquid level.
  • the density of the first part of the probe is equal to the density of the second part of the probe.
  • the density of the first part of the probe is different from the density of the second part of the probe.
  • the second part of the probe is suspended from the first part of the probe by an inextensible suspension means.
  • the two parts of the probe form a single piece.
  • both parts of the probe are solid.
  • the first part of the probe comprises a length greater by an order of magnitude than a dimension characteristic of the section of the first part, the length being vertical when the device of measurement is in operation.
  • the measuring device also comprises means for adjusting the height of the probe relative to the level of the liquid.
  • the height adjustment means may include a scale, a pulley or any other element making it possible to adjust the height or the elevation of all or part of the measuring device relative to the ground.
  • the measuring device also includes means for data acquisition and wireless transmission.
  • the measuring device can be installed remotely from a tank control center.
  • Figure 1 is a schematic view of an embodiment of a measuring device according to the invention.
  • FIG. 2 is a schematic view of a system for monitoring and measuring a density and a variation in the level of a liquid comprising the measuring device of FIG. 1;
  • Figure 3 is a schematic view of another embodiment of a measuring device according to the invention.
  • FIG. 1 is a schematic view of a device 100 according to the invention for measuring the density and the level of a liquid 110 which is here salt water in a tank 115.
  • the device 100 comprises for this purpose a single force sensor 120 from which a probe 140 is suspended by an inextensible suspension means 130.
  • the force sensor 120 which is here a strain gauge sensor, designed on the principle of the Wheastone bridge, makes it possible to measure the weight of the probe 140 by converting it into an electrical signal processed by an electronic circuit 150.
  • the probe 140 comprises two separate elements 160, forming a first and a second part of the probe 140.
  • the two elements 160 are, in the present nonlimiting example of the invention, suspended from one another by a second inextensible suspension means 170.
  • the two inextensible suspension means 130 and 170 comprise for example an inextensible thread, a chain, a hook and / or a ring.
  • the two inextensible suspension means 130 and 170 may be of the same type or of a different type. They are in the present non-limiting example of the invention formed by an inextensible wire connecting the force sensor 1 20 to the first element 160i of the probe 140, or the two elements 160 together.
  • the first element 160i of the probe 140 corresponding to the first part of the probe, is intended to measure the level of the liquid, while the second element I6O2 of the probe 140 is intended to measure the density of the liquid.
  • the first element I6O1 of the probe 140 comprises a lower part 161 which is immersible and another upper part 162 which generally remains above the level of the liquid 1 1 0.
  • the two elements 160 of the probe 140 are here full and formed from the same material which has a density greater than that of the liquid so that the probe 140 has negative buoyancy.
  • the two elements 160 can be formed from a material of distinct or varying density, provided the resulting buoyancy is negative.
  • inextensible suspension means 130 and 170 being under tension, their respective densities can be any.
  • the two elements 160 of the probe 140 are aligned by gravity, vertically with the force sensor 1 20, the second element I6O2 being located below the first element I6O1.
  • the second element I6O2 is fully immersed in the liquid while the first element I6O1 is partially immersed in the liquid 110.
  • the two elements 160 have distinct shapes.
  • the second element I6O2 is generally of any shape, the volume of which is greater than or equal to the volume of the submersible part 161 of the first element I6O1.
  • the first element I6O1 is for its elongated shape. In the measurement position, the axis of the first element I6O1 is vertical, parallel to the inextensible suspension means 130 and 170.
  • the section of the first element 160i can be arbitrary. However, in order to obtain an accurate measurement of the variation in the level of the liquid 1 1 0, the characteristic dimension of the section is advantageously at least an order of magnitude less than the length of the first element 16O1. In the present case, the section of the first element 16O1 is round in order to minimize the disturbances linked to the flow of liquid 110 around the first element 16O1.
  • the force sensor 120 measures the weight resulting from the probe 140, of which only one of the elements 160 is generally completely immersed in the liquid 110.
  • the resulting weight measured by the force sensor 120 is equal to the resultant of the whole. hydrostatic forces which is the opposite of the weight of the volume of liquid displaced by the probe 140 according to the following principle:
  • Pi — ⁇ — '
  • pi represents the density of liquid 1 1 0, the density of which is deduced by dividing this value by the density of pure water at the same measurement conditions, rri2 the mass of the element I6O2, m r the resulting mass measured by the force sensor 120 and V the volume of the second element I6O2.
  • the volume of the second element 16O2 of the probe 140 is advantageously greater by at least an order of magnitude than volume of the submerged part 161 of the first element 160i of the probe 140 in order to be able to consider that the volume of the submerged part of the first element 160i is negligible compared to the volume of the second element 16O2, whatever the height of the submerged part of the first element 16O1.
  • the immersed volume V can be known and the accuracy of the measurement improved.
  • this large volume of the second element I6O2 induces a large mass which makes it possible to vertically stabilize the probe 140.
  • the ratio between the volume of the first element 16O1 and the volume of the second element I6O2 is thus preferably greater than 1:10, more preferably than 1: 100.
  • the ratio between the volume of the first element I6O1 and the volume of the second element I6O2 can be between 1: 1 and 1: 10, without significant loss in the level of precision, in particular if the first element I6O1 is weakly immersed in the liquid 110, or if the density measurement is carried out before the immersion of the first element I6O1 in the liquid 110.
  • volume of the second element I6O2 can be chosen according to the accuracy of the sensor and the accuracy sought in the measurement of the density of the liquid.
  • the resulting mass corresponds to the sum of the masses of the probe 140, of the inextensible suspension means 130 and 170, from which is subtracted the mass of the volume of liquid displaced by the probe 140.
  • the mass of the inextensible suspension means 130 and 170 and the volume of the inextensible suspension means 170 are not considered in the calculation of the resulting mass. However, as far as they are known, these can be added to improve the accuracy of the results.
  • h (i) be an initial level of the liquid
  • h (j) a level after change of level.
  • the resulting variation in volume, related to the variation in pitch, is: [69] [Math 3] where: Ah (i, j) represents the variation in height of the liquid 110, pi the density of the liquid, S the section of the first element 160i and AM r (i, j) the resulting variation in mass measured by the force sensor 120.
  • the initial level h (i) can also be determined by this method, provided that the reference level on the ground is known, all the construction elements of the probe being perfectly known.
  • the measuring device 100 can also include a thermometer 170 and a barometer 180 in order to know the ambient temperature and the atmospheric pressure, respectively. These values make it possible to obtain more precise values of density and change in level of liquid 110, by taking into account changes in the state of liquid 110 under the effect of temperature and pressure.
  • the measuring device 100 can also include a means 195 for adjusting the height of the probe 140 making it possible in particular to adapt the measuring device 100 to different reservoir configurations 115.
  • the adjusting means 195 which is here a strip vertical comprising notches in order to maintain the force sensor 120 at predetermined heights also makes it possible to limit the submerged part of the first element 160i, in order to increase the precision of the measurements.
  • the inextensible suspension means 130 comprises a height adjustment means preferably comprising several predetermined levels.
  • the means 195 for adjusting the height of the probe 140 may be dynamic in order to allow only the first step to be immersed.
  • second element I6O2 of the probe 140 to precisely measure the density of the liquid 110.
  • part of the first element 16O1 is immersed, which makes it possible to determine variations in the level of the liquid over time 110 considering that the density of the liquid is constant over this time interval.
  • the measuring device 100 also comprises, in this non-limiting example of the invention, an electric battery storing electrical energy in order to give the measuring device 100 an autonomy of more than 5 years.
  • This battery can be rechargeable and advantageously supplemented by autonomous electricity production equipment in order to extend the autonomy of the device.
  • the measurements can be carried out at regular, configurable intervals.
  • the measuring device 100 also comprises a means 190 of wireless data transmission in order to communicate the measurements carried out to a remote server in order to be able to control the characteristics of the liquid 110 present in the reservoir 115 without having to be move.
  • the transmission means 190 thus comprises a modem and an antenna connected to the electronic circuit 150.
  • the remote server can deliver data continuously to users through any appropriate interface to facilitate their access.
  • FIG. 2 illustrates a system 300 for monitoring and measuring a density and a variation in the level of a liquid comprising in the present non-limiting example of the invention three measuring devices 100.
  • the three measuring devices 100 each comprising an immersed part 305 suspended by an inextensible suspension means 130 from a force sensor 120 (“Se” for the English term “sensor” in FIG. 3), make it possible to measure the characteristics of a liquid present in a single reservoir in order in particular to see the variations of this liquid in the reservoir, or to measure the characteristics of three liquids each contained in a separate reservoir.
  • the data measured by the three measuring devices 100 are recorded by a data logger 310 ("Da" for the English term "Data Loger" in FIG.
  • the wireless link used is preferably of the low energy consumption type, such as LPWAN (acronym for the English term “Low-Power Wide-Area Network”). ).
  • Data loggers 310 act as a buffer in wireless data transmission with remote server 320.
  • the data recorded by the measuring devices 100 are then processed and then displayed on a screen of an electronic device 330 making it possible to control or monitor the state of the liquid (s).
  • the electronic device 330 (“Mo” for the English term “monitor” in FIG. 2) can be for example a fixed or portable computer, a tablet or an intelligent portable telephone (commonly called by the English term “smartphone”).
  • Tables 1 and 2 illustrate the experimental results obtained with the measuring device 100 in the tank 115 open at the top, with an internal diameter of 380 mm and a height of 1000 mm.
  • the force sensor 120 is connected to a suitable electronic acquisition system making it possible to convert the voltage variations at the output of the sensor 120 into a variation in weight.
  • the liquid 110 of the tank 115 is here demineralized water to which sodium chloride (NaCl) is added in varying proportions in order to change the density of the water in a known manner.
  • NaCl sodium chloride
  • the first element 160i of the probe 140 is here formed by a solid cylindrical tube with a diameter of 40 mm, a total length of 800 mm, with a density greater than the density of the salt water.
  • the second element I6O2 of the probe 140 is a parallelepiped full of sides 178.3 mm suspended by one of its vertices.
  • the volume of the second element I 6O2 is of the order of 5.67 liters (L), or a density of 998 g / L.
  • the second element I 6O2 is a cube.
  • the density of the second element I 6O2 is different from the density of the first element I 6O1 while being greater than the density of the liquid under all conditions of the experiment.
  • the suspension means 130 and 170 are each here a fine metal chain whose resistance to elongation is much greater than the weight of the probe 140.
  • Salinity can be calculated from conductivity (eg from Landolt-Bornstein formula).
  • a water level meter is used to control the level of the liquid in the tank.
  • the probeel 40 is installed and submerged, taking care to immerse only the second element I 6O2 of the probe 140 in the liquid 110.
  • Table 1 corresponds to the results obtained under these conditions by varying the salinity of the liquid 110. A comparison between the theoretical value of the density with the measurements carried out shows a very good adequacy of the experimental results with an average measurement error of the order of 0.1%.
  • a new series of measurements is carried out after having emptied and rinsed the tank, installed the probe 140, and filled the tank with demineralised water, this time with part of the first element 160i in order to also measure the height of the liquid 110.
  • the liquid 110 is also at the start of the experiment with demineralized water in which salt is dissolved at regular intervals.
  • Table 2 shows the results obtained with a comparison with the theoretical level of liquid 110 in tank 115, monitored by a water level meter.
  • [Table 2] conductivity and temperature under the experimental conditions, and the relative error on salinity due to partial immersion of the first element 160i of probe 140.
  • FIG. 3 is a schematic view of a device 200 for measuring a density and a variation in the level of the liquid 110 according to the invention which comprises a probe 210 suspended from an inextensible suspension means 220 to a force sensor 230.
  • the probe 210 comprises in the present non-limiting example of the invention a single part comprising two parts of distinct shape, one 250i corresponding to the first element 160i of the probe 140 of the previous example and the other 2502 to the second element I6O2 of probe 140.
  • the two elements 250 are welded to each other in this non-limiting example of the invention, the weld between the two elements 250 acting as an inextensible suspension means between the two elements. 250.
  • the operation of the measuring device 200 is identical to the measuring device 100 of the previous exemplary embodiment.
  • the variants of the measuring device 100 are also adaptable to the measuring device 200.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Level Indicators Using A Float (AREA)

Abstract

The invention relates to a device (100) for measuring density and variation in the level of a liquid (110), comprising a probe (140) suspended from a single force sensor (120), the probe comprising two portions (160) each having a density greater than the density of the liquid, the first portion (1601) having an elongated shape intended to measure a variation in the level of the liquid, the second portion (1602) having any shape with a greater volume than the volume of the first portion, the second portion being capable of being immersed fully in the liquid in order to measure the density of the liquid.

Description

Dispositif de mesure d’une masse volumique et d’une variation d’un niveau d’un liquide Device for measuring a density and a variation in the level of a liquid
DOMAINE TECHNIQUE DE L’INVENTION TECHNICAL FIELD OF THE INVENTION
[1] Le domaine de l’invention est celui de la métrologie. [1] The field of the invention is that of metrology.
[2] Plus précisément, l’invention concerne un dispositif de mesure d’une masse volumique et d’une variation d’un niveau d’un liquide. [2] More specifically, the invention relates to a device for measuring a density and a variation in a level of a liquid.
[3] L’invention trouve notamment des applications dans la mesure d’un liquide au repos d’un réservoir, d’une nappe phréatique, d’un barrage, d’une lagune, d’un lac ou de tout autre étendue liquide. [3] The invention finds applications in particular in the measurement of a liquid at rest of a reservoir, a water table, a dam, a lagoon, a lake or any other liquid expanse. .
ÉTAT DE LA TECHNIQUE STATE OF THE ART
[4] Il est connu de l’art antérieur des techniques permettant de mesurer la masse volumique ou le niveau d’un liquide. [4] Techniques for measuring the density or level of a liquid are known from the prior art.
[5] De telles techniques sont par exemple basées sur la mesure du poids d’une sonde de masse connue par un capteur afin d’en déduire soit la masse volumique du liquide, soit la variation d’un niveau du liquide. [5] Such techniques are for example based on measuring the weight of a known mass probe by a sensor in order to deduce either the density of the liquid or the variation in a level of the liquid.
[6] L’inconvénient de ces techniques est qu’elles ne permettent pas de mesurer simultanément la masse volumique et la variation d’un niveau du liquide. [6] The disadvantage of these techniques is that they do not allow the density and the variation of a liquid level to be measured simultaneously.
[7] Afin de remédier à ce problème, il est connu de mettre un deuxième capteur en parallèle. [7] In order to remedy this problem, it is known practice to put a second sensor in parallel.
[8] Toutefois, outre le fait que la consommation électrique du dispositif de mesure est augmentée, réduisant ainsi son autonomie, les techniques à deux capteurs nécessitent un calibrage minutieux des deux capteurs afin de pouvoir obtenir des mesures de la masse volumique et de la variation du niveau du liquide, qui soient précises et fiables. [8] However, in addition to the fact that the power consumption of the measuring device is increased, thus reducing its autonomy, two-sensor techniques require careful calibration of the two sensors in order to be able to obtain density and variation measurements. level, which are accurate and reliable.
[9] Aucun des systèmes actuels ne permet de répondre simultanément à tous les besoins requis, à savoir de proposer une technique qui permette d’obtenir un dispositif de mesure de la masse volumique et d’une variation du niveau du liquide qui soit compact, économe en énergie et fiable, et dont les mesures soient très précises et reproductibles. EXPOSÉ DE L’INVENTION [9] None of the current systems makes it possible to simultaneously meet all the required needs, namely to propose a technique which makes it possible to obtain a device for measuring the density and a variation in the level of the liquid which is compact, energy efficient and reliable, with very precise and repeatable measurements. DISCLOSURE OF THE INVENTION
[10] La présente invention vise à remédier à tout ou partie des inconvénients de l’état de la technique cités ci-dessus. [10] The present invention aims to remedy all or part of the drawbacks of the state of the art mentioned above.
[11] À cet effet, l’invention vise un dispositif de mesure d’une masse volumique et d’une variation du niveau d’un liquide, comprenant une sonde suspendue à un capteur de force. [11] To this end, the invention relates to a device for measuring a density and a variation in the level of a liquid, comprising a probe suspended from a force sensor.
[12] Le liquide objet de la mesure peut être par exemple de l’eau douce, de l’eau potable, de l’eau salée, de l’eau lacustre ou de l’eau saumâtre. Le dispositif de mesure peut également être utilisé pour mesurer les caractéristiques d’autres types de liquide, comme par exemple un jus, un hydrocarbure ou un alcool. [12] The liquid being measured can be, for example, fresh water, drinking water, salt water, lake water or brackish water. The measuring device can also be used to measure the characteristics of other types of liquid, such as juice, hydrocarbon or alcohol.
[13] Le liquide objet de la mesure est généralement inclus dans un réservoir qui est par définition un bassin naturel ou artificiel, fermé ou ouvert. On entendra ainsi par réservoir tout type de bassin apte à contenir le liquide, tel qu’une nappe phréatique, une lagune, un lac, une étendue maritime, un cours d’eau, un barrage, un récipient, etc. [13] The liquid being measured is generally included in a reservoir which is by definition a natural or artificial basin, closed or open. The term “reservoir” will thus be understood to mean any type of basin capable of containing the liquid, such as a water table, a lagoon, a lake, a maritime expanse, a watercourse, a dam, a container, etc.
[14] Il convient de souligner que la mesure réalisée est celle d’une masse par unité de volume, couramment appelée masse volumique. A partir de la mesure de la masse volumique, il est alors possible de déterminer la valeur de la densité correspondante qui est égale au rapport de la masse volumique mesurée à la masse volumique de l’eau pure dans les conditions de mesure. [14] It should be noted that the measurement performed is that of a mass per unit volume, commonly referred to as density. From the measurement of the density, it is then possible to determine the value of the corresponding density which is equal to the ratio of the density measured to the density of pure water under the measurement conditions.
[15] Dans le cas particulier de mesures de densité d’eaux, et connaissant la masse volumique de l’eau pure dans les conditions de mesure, il est possible d’obtenir la salinité du liquide, c’est-à-dire la proportion en sels ou en impuretés dissous dans le liquide, par une équation d’état du liquide. [15] In the particular case of water density measurements, and knowing the density of pure water under the measurement conditions, it is possible to obtain the salinity of the liquid, that is to say the proportion of salts or impurities dissolved in the liquid, by an equation of state of the liquid.
[16] Il convient de souligner que le dispositif de mesure permet de déterminer une variation du niveau du liquide, voire le niveau du liquide par rapport à un niveau absolu de référence, tel que le niveau zéro de la mer, si l’altitude du capteur est connue. [16] It should be noted that the measuring device makes it possible to determine a variation in the level of the liquid, or even the level of the liquid compared to an absolute reference level, such as the zero sea level, if the altitude of the sensor is known.
[17] Selon l’invention, le capteur de force est unique, la sonde comprenant deux parties ayant chacune une masse volumique supérieure à la masse volumique du liquide, la première partie ayant une forme longiligne destinée à mesurer une variation du niveau du liquide, la deuxième partie ayant une forme quelconque d’un volume supérieur au volume de la première partie, la deuxième partie plongeant intégralement dans le liquide afin de mesurer la masse volumique du liquide. [17] According to the invention, the force sensor is unique, the probe comprising two parts each having a density greater than the density of the liquid, the first part having an elongated shape intended to measure a variation in the level of the liquid, the second part having any shape of a volume greater than the volume of the first part, the second part fully immersed in the liquid in order to measure the density of the liquid.
[18] Ainsi, le dispositif de mesure ne disposant que d’un unique capteur pour mesurer la masse volumique et les variations du niveau du liquide, est facile à mettre en œuvre, et économe en énergie. [18] Thus, the measuring device having only a single sensor to measure the density and the variations in the level of the liquid, is easy to implement, and energy efficient.
[19] En outre, les mesures obtenues par le dispositif de mesure sont précises et reproductibles. Cette précision et cette reproductibilité sont dues pour la mesure d’une variation à la forme longiligne de la première partie et pour la mesure de la masse volumique à un volume de la deuxième partie plus important que celui de la première partie. [19] In addition, the measurements obtained by the measuring device are precise and reproducible. This precision and reproducibility are due for measuring a variation in the elongated shape of the first part and for measuring the density at a volume of the second part greater than that of the first part.
[20] Il convient de souligner que le rapport de volume entre la deuxième et la première partie de la sonde est avantageusement quelconque. [20] It should be emphasized that the volume ratio between the second and the first part of the probe is advantageously arbitrary.
[21] Dans des modes de réalisation particuliers de l’invention, la sonde est suspendue au capteur de force par un moyen de suspension inextensible. [21] In particular embodiments of the invention, the probe is suspended from the force sensor by inextensible suspension means.
[22] Le moyen de suspension inextensible peut comprendre un fil, une chaîne, un crochet, un anneau ou tout autre moyen connu de l’homme du métier. [22] The inextensible suspension means may comprise a thread, a chain, a hook, a ring or any other means known to those skilled in the art.
[23] Le moyen de suspension inextensible peut également être un moyen de solidarisation entre deux éléments, tel qu’un adhésif ou une soudure. [23] The inextensible suspension means can also be a means of securing between two elements, such as an adhesive or a weld.
[24] Dans des modes de réalisation particuliers de l’invention, le rapport de volume entre la deuxième et la première partie de la sonde est supérieur à 1 :10. [24] In particular embodiments of the invention, the volume ratio between the second and the first part of the probe is greater than 1:10.
[25] Avantageusement, le rapport de volume entre la deuxième et la première partie de la sonde est supérieur à 1 :100. [25] Advantageously, the volume ratio between the second and the first part of the probe is greater than 1: 100.
[26] Ainsi, la précision de la mesure de la masse volumique est accrue lorsqu’au moins la deuxième partie de la sonde est immergée. [26] Thus, the accuracy of the density measurement is increased when at least the second part of the probe is submerged.
[27] Il convient de souligner que l’augmentation du rapport de volume entre les deux parties entraîne une meilleure précision de la mesure de la masse volumique. [27] It should be noted that increasing the volume ratio between the two parts results in better accuracy of the density measurement.
[28] En outre, la sonde est plus stable verticalement, augmentant en conséquence la précision de la mesure d’une variation du niveau du liquide. [28] In addition, the probe is more stable vertically, thereby increasing the accuracy of measuring a change in liquid level.
[29] Dans des modes de réalisation particuliers de l’invention, la masse volumique de la première partie de la sonde est égale à la masse volumique de la deuxième partie de la sonde. [30] Dans des modes de réalisation particuliers de l’invention, la masse volumique de la première partie de la sonde est différente de la masse volumique de la deuxième partie de la sonde. [29] In particular embodiments of the invention, the density of the first part of the probe is equal to the density of the second part of the probe. [30] In particular embodiments of the invention, the density of the first part of the probe is different from the density of the second part of the probe.
[31 ] Il convient de souligner que les valeurs de masse volumique de chaque partie de la sonde sont avantageusement connues. [31] It should be emphasized that the density values of each part of the probe are advantageously known.
[32] Dans des modes de réalisation particuliers de l’invention, la deuxième partie de la sonde est suspendue à la première partie de la sonde par un moyen de suspension inextensible. [32] In particular embodiments of the invention, the second part of the probe is suspended from the first part of the probe by an inextensible suspension means.
[33] Le moyen de suspension inextensible entre les deux parties de la sonde est équivalent au moyen de suspension inextensible entre la sonde et le capteur de force. [33] The inextensible suspension means between the two parts of the probe is equivalent to the inextensible suspension means between the probe and the force transducer.
[34] Dans d’autres modes de réalisation particuliers de l’invention, les deux parties de la sonde forment une pièce unique. [34] In other particular embodiments of the invention, the two parts of the probe form a single piece.
[35] Dans des modes de réalisation particuliers de l’invention, les deux parties de la sonde sont pleines. [35] In particular embodiments of the invention, both parts of the probe are solid.
[36] Dans des modes de réalisation particuliers de l’invention, la première partie de la sonde comprend une longueur supérieure d’un ordre de grandeur à une dimension caractéristique de la section de la première partie, la longueur étant verticale lorsque le dispositif de mesure est en fonctionnement. [36] In particular embodiments of the invention, the first part of the probe comprises a length greater by an order of magnitude than a dimension characteristic of the section of the first part, the length being vertical when the device of measurement is in operation.
[37] Dans des modes de réalisation particuliers de l’invention, le dispositif de mesure comprend également un moyen de réglage de la hauteur de la sonde par rapport au niveau du liquide. [37] In particular embodiments of the invention, the measuring device also comprises means for adjusting the height of the probe relative to the level of the liquid.
[38] Ainsi, la précision des mesures de la masse volumique et d’une variation du niveau du liquide est accrue. Le moyen de réglage de la hauteur peut comprendre une échelle, une poulie ou tout autre élément permettant de régler la hauteur ou l’élévation de tout ou partie du dispositif de mesure par rapport au sol. [38] Thus, the accuracy of density measurements and a change in liquid level is increased. The height adjustment means may include a scale, a pulley or any other element making it possible to adjust the height or the elevation of all or part of the measuring device relative to the ground.
[39] Dans des modes de réalisation particuliers de l’invention, le dispositif de mesure comprend également un moyen d’acquisition de données et de transmission sans fil. [39] In particular embodiments of the invention, the measuring device also includes means for data acquisition and wireless transmission.
[40] Ainsi, le dispositif de mesure peut être installé à distance d’un centre de contrôle du réservoir. BRÈVE DESCRIPTION DES FIGURES [40] Thus, the measuring device can be installed remotely from a tank control center. BRIEF DESCRIPTION OF THE FIGURES
[41] D’autres avantages, buts et caractéristiques particulières de la présente invention ressortiront de la description non limitative qui suit d’au moins un mode de réalisation particulier des dispositifs et procédés objets de la présente invention, en regard des dessins annexés, dans lesquels : [41] Other advantages, aims and particular characteristics of the present invention will emerge from the non-limiting description which follows of at least one particular embodiment of the devices and methods which are the subject of the present invention, with reference to the accompanying drawings, in which :
[42] la figure 1 est une vue schématique d’un mode de réalisation d’un dispositif de mesure selon l’invention ; [42] Figure 1 is a schematic view of an embodiment of a measuring device according to the invention;
[43] la figure 2 est une vue schématique d’un système de surveillance et de mesure d’une masse volumique et d’une variation du niveau d’un liquide comprenant le dispositif de mesure de la figure 1 ; [43] FIG. 2 is a schematic view of a system for monitoring and measuring a density and a variation in the level of a liquid comprising the measuring device of FIG. 1;
[44] la figure 3 est une vue schématique d’un autre mode de réalisation d’un dispositif de mesure selon l’invention. [44] Figure 3 is a schematic view of another embodiment of a measuring device according to the invention.
DESCRIPTION DÉTAILLÉE DE L’INVENTION DETAILED DESCRIPTION OF THE INVENTION
[45] La présente description est donnée à titre non limitatif, chaque caractéristique d’un mode de réalisation pouvant être combinée à toute autre caractéristique de tout autre mode de réalisation de manière avantageuse. [45] This description is given without limitation, each characteristic of an embodiment can be combined with any other characteristic of any other embodiment in an advantageous manner.
[46] On note, dès à présent, que les figures ne sont pas à l’échelle. [46] We note, from now on, that the figures are not to scale.
Exemple d’un mode de mise de réalisation particulier Example of a particular embodiment
[47] La figure 1 est une vue schématique d’un dispositif 100 selon l’invention permettant de mesurer la masse volumique et le niveau d’un liquide 110 qui est ici de l’eau salée dans un réservoir 115. Le dispositif 100 comprend à cet effet un unique capteur de force 120 auquel est suspendue une sonde 140 par un moyen de suspension inextensible 130. Le capteur de force 120 qui est ici un capteur à jauge de contrainte, conçu sur le principe du pont de Wheastone, permet de mesurer le poids de la sonde 140 en le convertissant en un signal électrique traité par un circuit électronique 150. [47] Figure 1 is a schematic view of a device 100 according to the invention for measuring the density and the level of a liquid 110 which is here salt water in a tank 115. The device 100 comprises for this purpose a single force sensor 120 from which a probe 140 is suspended by an inextensible suspension means 130. The force sensor 120, which is here a strain gauge sensor, designed on the principle of the Wheastone bridge, makes it possible to measure the weight of the probe 140 by converting it into an electrical signal processed by an electronic circuit 150.
[48] Afin de mesurer conjointement la masse volumique et le niveau du liquide 110 avec l’unique capteur de force 120, la sonde 140 comprend deux éléments 160 disjoints, formant une première et une deuxième partie de la sonde 140. Les deux éléments 160 sont, dans le présent exemple non limitatif de l’invention, suspendus l’un à l’autre par un deuxième moyen de suspension inextensible 170. [48] In order to jointly measure the density and the level of the liquid 110 with the single force sensor 120, the probe 140 comprises two separate elements 160, forming a first and a second part of the probe 140. The two elements 160 are, in the present nonlimiting example of the invention, suspended from one another by a second inextensible suspension means 170.
[49] Les deux moyens de suspension inextensible 130 et 170 comprennent par exemple un fil inextensible, une chaîne, un crochet et/ou un anneau. Les deux moyens de suspension inextensible 130 et 170 peuvent être du même type ou d’un type différent. Ils sont dans le présent exemple non limitatif de l’invention formés par un fil inextensible reliant le capteur de force 1 20 au premier élément 160i de la sonde 140, ou les deux éléments 160 ensembles. [49] The two inextensible suspension means 130 and 170 comprise for example an inextensible thread, a chain, a hook and / or a ring. The two inextensible suspension means 130 and 170 may be of the same type or of a different type. They are in the present non-limiting example of the invention formed by an inextensible wire connecting the force sensor 1 20 to the first element 160i of the probe 140, or the two elements 160 together.
[50] Le premier élément 160i de la sonde 140, correspondant à la première partie de la sonde, est destiné à mesurer le niveau du liquide, tandis que le deuxième élément I6O2 de la sonde 140 est destiné à mesurer la masse volumique du liquide. [50] The first element 160i of the probe 140, corresponding to the first part of the probe, is intended to measure the level of the liquid, while the second element I6O2 of the probe 140 is intended to measure the density of the liquid.
[51] Il convient de souligner que le premier élément I6O1 de la sonde 140 comprend une partie inférieure 161 qui est immergeable et une autre partie supérieure 162 qui reste généralement au-dessus du niveau du liquide 1 1 0. [51] It should be noted that the first element I6O1 of the probe 140 comprises a lower part 161 which is immersible and another upper part 162 which generally remains above the level of the liquid 1 1 0.
[52] Les deux éléments 160 de la sonde 140 sont ici pleins et formés dans le même matériau qui présente une masse volumique supérieure à celle du liquide afin que la sonde 140 ait une flottabilité négative. Toutefois, les deux éléments 160 peuvent être formés dans un matériau de masse volumique distincte ou variable, à condition que la flottabilité résultante soit négative. [52] The two elements 160 of the probe 140 are here full and formed from the same material which has a density greater than that of the liquid so that the probe 140 has negative buoyancy. However, the two elements 160 can be formed from a material of distinct or varying density, provided the resulting buoyancy is negative.
[53] Il convient de souligner que les moyens de suspension inextensibles 130 et 170 étant sous tension, leurs masses volumiques respectives peuvent être quelconques. [53] It should be noted that the inextensible suspension means 130 and 170 being under tension, their respective densities can be any.
[54] Lorsque la sonde 140 est en position de mesure, les deux éléments 160 de la sonde 140 sont alignés par gravité, verticalement avec le capteur de force 1 20, le deuxième élément I6O2 étant située en-dessous du premier élément I6O1. Le deuxième élément I6O2 est intégralement plongé dans le liquide tandis que le premier élément I6O1 est en partie immergé dans le liquide 1 10. [54] When the probe 140 is in the measurement position, the two elements 160 of the probe 140 are aligned by gravity, vertically with the force sensor 1 20, the second element I6O2 being located below the first element I6O1. The second element I6O2 is fully immersed in the liquid while the first element I6O1 is partially immersed in the liquid 110.
[55] Les deux éléments 160 présentent des formes distinctes. Le deuxième élément I6O2 est généralement d’une forme quelconque dont le volume est supérieur ou égal au volume de la partie immergeable 161 du premier élément I6O1. Le premier élément I6O1 est quant à lui de forme longiligne. Dans la position de mesure l’axe du premier élément I6O1 est vertical, parallèle aux moyens de suspension inextensibles 130 et 170. [56] Il convient de souligner que la section du premier élément 160i peut être quelconque. Toutefois, afin d’obtenir une mesure précise de la variation du niveau du liquide 1 1 0, la dimension caractéristique de la section est avantageusement au moins d’un ordre de grandeur inférieur à la longueur du premier élément 16O1. Dans le cas présent, la section du premier élément 16O1 est ronde afin de minimiser les perturbations liées à l’écoulement du liquide 110 autour du premier élément 16O1. [55] The two elements 160 have distinct shapes. The second element I6O2 is generally of any shape, the volume of which is greater than or equal to the volume of the submersible part 161 of the first element I6O1. The first element I6O1 is for its elongated shape. In the measurement position, the axis of the first element I6O1 is vertical, parallel to the inextensible suspension means 130 and 170. [56] It should be noted that the section of the first element 160i can be arbitrary. However, in order to obtain an accurate measurement of the variation in the level of the liquid 1 1 0, the characteristic dimension of the section is advantageously at least an order of magnitude less than the length of the first element 16O1. In the present case, the section of the first element 16O1 is round in order to minimize the disturbances linked to the flow of liquid 110 around the first element 16O1.
[57] Le capteur de force 120 mesure le poids résultant de la sonde 140 dont un seul des éléments 160 est généralement entièrement plongé dans le liquide 110. Le poids résultant mesuré par le capteur de force 120 est égal à la résultante de l’ensemble des forces hydrostatiques qui est l’opposé du poids du volume de liquide déplacé par la sonde 140 selon le principe suivant : [57] The force sensor 120 measures the weight resulting from the probe 140, of which only one of the elements 160 is generally completely immersed in the liquid 110. The resulting weight measured by the force sensor 120 is equal to the resultant of the whole. hydrostatic forces which is the opposite of the weight of the volume of liquid displaced by the probe 140 according to the following principle:
[58] Supposons un corps quelconque, immergé dans un liquide de masse volumique pi, dont la partie immergée a un volume V quelconque délimité par une surface fermée S, et soumis à un champ de pesanteur g, la force résultante est égale à : [58] Suppose any body, immersed in a liquid of density pi, whose submerged part has any volume V delimited by a closed surface S, and subjected to a field of gravity g, the resulting force is equal to:
[Math 1]
Figure imgf000009_0001
[Math 1]
Figure imgf000009_0001
[59] En considérant que le volume de la partie immergée du premier élément 16O1 est négligeable par rapport au volume du deuxième élément I6O2, ce qui sera d’autant plus vrai que le rapport I6O2 : I6O1 sera grand, la masse volumique du liquide 1 1 0 est égale à : [59] Considering that the volume of the submerged part of the first element 16O1 is negligible compared to the volume of the second element I6O2, which will be all the more true as the ratio I6O2: I6O1 will be large, the density of liquid 1 1 0 is equal to:
[60] [Math 2] m?-mr [60] [Math 2] m ? -m r
Pi = —Ç—’ où pi représente la masse volumique du liquide 1 1 0, dont la masse volumique est déduite en divisant cette valeur par la masse volumique de l’eau pure aux mêmes conditions de mesure, rri2 la masse de l’élément I6O2, mr la masse résultante mesurée par le capteur de force 120 et V le volume du deuxième élément I6O2. Pi = —Ç— 'where pi represents the density of liquid 1 1 0, the density of which is deduced by dividing this value by the density of pure water at the same measurement conditions, rri2 the mass of the element I6O2, m r the resulting mass measured by the force sensor 120 and V the volume of the second element I6O2.
[61 ] Il convient de souligner que le volume du deuxième élément 16O2 de la sonde 140 est avantageusement supérieur d’au moins un ordre de grandeur au volume de la partie immergeable 161 du premier élément 160i de la sonde 140 afin de pouvoir considérer que le volume de la partie immergée du premier élément 160i est négligeable par rapport au volume du deuxième élément 16O2, quel que soit la hauteur de la partie immergée du premier élément 16O1. En prenant soin de déterminer parfaitement le niveau d’immersion de la sonde 160, le volume V immergé peut être connu et la précision de la mesure améliorée. En outre, ce volume important du deuxième élément I6O2 induit une masse importante qui permet de stabiliser verticalement la sonde 140. [61] It should be noted that the volume of the second element 16O2 of the probe 140 is advantageously greater by at least an order of magnitude than volume of the submerged part 161 of the first element 160i of the probe 140 in order to be able to consider that the volume of the submerged part of the first element 160i is negligible compared to the volume of the second element 16O2, whatever the height of the submerged part of the first element 16O1. By taking care to perfectly determine the immersion level of the probe 160, the immersed volume V can be known and the accuracy of the measurement improved. In addition, this large volume of the second element I6O2 induces a large mass which makes it possible to vertically stabilize the probe 140.
[62] Le rapport entre le volume du premier élément 16O1 et le volume du deuxième élément I6O2 est ainsi préférentiellement supérieur à 1 :10, plus préférentiellement à 1 :100. [62] The ratio between the volume of the first element 16O1 and the volume of the second element I6O2 is thus preferably greater than 1:10, more preferably than 1: 100.
[63] Toutefois, le rapport entre le volume du premier élément I6O1 et le volume du deuxième élément I6O2 peut être compris entre 1 :1 et 1 :10, sans perte importante au niveau de la précision, notamment si le premier élément I6O1 est faiblement immergé dans le liquide 110, ou si la mesure de la masse volumique est effectuée avant l’immersion du premier élément I6O1 dans le liquide 110. [63] However, the ratio between the volume of the first element I6O1 and the volume of the second element I6O2 can be between 1: 1 and 1: 10, without significant loss in the level of precision, in particular if the first element I6O1 is weakly immersed in the liquid 110, or if the density measurement is carried out before the immersion of the first element I6O1 in the liquid 110.
[64] Il convient de souligner que le volume du deuxième élément I6O2 peut être choisi en fonction de la précision du capteur et de la précision recherchée dans la mesure de la masse volumique du liquide. [64] It should be noted that the volume of the second element I6O2 can be chosen according to the accuracy of the sensor and the accuracy sought in the measurement of the density of the liquid.
[65] Par ailleurs, la masse résultante correspond à la somme des masses de la sonde 140, des moyens de suspension inextensible 130 et 170, auquel est retranché la masse du volume de liquide déplacé par la sonde 140. [65] Furthermore, the resulting mass corresponds to the sum of the masses of the probe 140, of the inextensible suspension means 130 and 170, from which is subtracted the mass of the volume of liquid displaced by the probe 140.
[66] En première approximation, la masse des moyens de suspension inextensible 130 et 170 et le volume du moyen de suspension inextensible 170 n’est pas considérée dans le calcul de la masse résultante. Toutefois, dans la mesure où ils sont connus, ceux-ci peuvent être rajoutés afin d’améliorer la précision des résultats. [66] As a first approximation, the mass of the inextensible suspension means 130 and 170 and the volume of the inextensible suspension means 170 are not considered in the calculation of the resulting mass. However, as far as they are known, these can be added to improve the accuracy of the results.
[67] Après avoir déterminé la masse volumique du liquide 110, il est possible d’obtenir la variation du niveau du liquide 110 en fonction du volume de la sonde 140 qui est immergée. En effet, lorsque le niveau du liquide change, le volume de sonde immergée varie en proportion. [67] After having determined the density of the liquid 110, it is possible to obtain the variation of the level of the liquid 110 according to the volume of the probe 140 which is submerged. In fact, when the level of the liquid changes, the volume of the submerged probe varies in proportion.
[68] Soit h(i) un niveau initial du liquide, et h(j) un niveau après changement de niveau. La variation de volume résultante, reliée à la variation de hauteur, est : [69] [Math 3]
Figure imgf000011_0001
où :Ah(i,j) représente la variation de hauteur du liquide 110, pi la masse volumique du liquide, S la section du premier élément 160i et AMr(i,j) la variation de masse résultante mesurée par le capteur de force 120.
[68] Let h (i) be an initial level of the liquid, and h (j) a level after change of level. The resulting variation in volume, related to the variation in pitch, is: [69] [Math 3]
Figure imgf000011_0001
where: Ah (i, j) represents the variation in height of the liquid 110, pi the density of the liquid, S the section of the first element 160i and AM r (i, j) the resulting variation in mass measured by the force sensor 120.
[70] Il convient de souligner que cette variation du niveau du liquide 110 suppose que la masse volumique du liquide 110 est constante le temps des mesures. [70] It should be noted that this variation in the level of the liquid 110 assumes that the density of the liquid 110 is constant the time of the measurements.
[71] Par ailleurs, le niveau h(i) initial peut être également déterminé par cette méthode, pourvu que l’on connaisse le niveau de référence au sol, l’ensemble des éléments de construction de la sonde étant parfaitement connus. [71] Furthermore, the initial level h (i) can also be determined by this method, provided that the reference level on the ground is known, all the construction elements of the probe being perfectly known.
[72] Dans le cas particulier de mesures de masse volumique d’eaux, à partir de la masse volumique du liquide 110, il est possible d’en déduire directement la salinité du liquide 110 en connaissant l’équation d’état correspondante au liquide 110. Les caractéristiques de la sonde étant parfaitement connues, aucune calibration préalable n’est nécessaire. [72] In the particular case of measurements of the density of water, from the density of the liquid 110, it is possible to directly deduce the salinity of the liquid 110 by knowing the equation of state corresponding to the liquid. 110. As the characteristics of the probe are well known, no prior calibration is necessary.
[73] Afin d’améliorer les mesures, le dispositif de mesure 100 peut également comprendre un thermomètre 170 et un baromètre 180 afin de connaître respectivement la température ambiante et la pression atmosphérique. Ces valeurs permettent d’obtenir des valeurs plus précises de masse volumique et de variation de niveau du liquide 110, en prenant en compte des variations d’état du liquide 110 sous l’effet de la température et de la pression. [73] In order to improve the measurements, the measuring device 100 can also include a thermometer 170 and a barometer 180 in order to know the ambient temperature and the atmospheric pressure, respectively. These values make it possible to obtain more precise values of density and change in level of liquid 110, by taking into account changes in the state of liquid 110 under the effect of temperature and pressure.
[74] Le dispositif de mesure 100 peut également comprendre un moyen 195 de réglage de la hauteur de la sonde 140 permettant notamment d’adapter le dispositif de mesure 100 à différentes configurations de réservoir 115. Le moyen de réglage 195 qui est ici une réglette verticale comprenant des encoches afin de maintenir le capteur de force 120 à des hauteurs prédéterminées permet également de limiter la partie immergée du premier élément 160i, afin d’augmenter la précision des mesures. [74] The measuring device 100 can also include a means 195 for adjusting the height of the probe 140 making it possible in particular to adapt the measuring device 100 to different reservoir configurations 115. The adjusting means 195 which is here a strip vertical comprising notches in order to maintain the force sensor 120 at predetermined heights also makes it possible to limit the submerged part of the first element 160i, in order to increase the precision of the measurements.
[75] Dans des variantes de ce mode de réalisation particulier de l’invention, le moyen 130 de suspension inextensible comprend un moyen de réglage de la hauteur comprenant préférentiellement plusieurs niveaux prédéterminés. [75] In variants of this particular embodiment of the invention, the inextensible suspension means 130 comprises a height adjustment means preferably comprising several predetermined levels.
[76] Par ailleurs, le moyen 195 de réglage de la hauteur de la sonde 140 peut être dynamique afin de permettre de n’immerger dans un premier temps que le deuxième élément I6O2 de la sonde 140, pour mesurer précisément la masse volumique du liquide 110. Lorsque cette mesure de masse volumique est effectuée, une partie du premier élément 16O1 est immergée, ce qui permet de déterminer dans le temps des variations du niveau du liquide 110 en considérant que la masse volumique du liquide est constante sur cet intervalle de temps. [76] Furthermore, the means 195 for adjusting the height of the probe 140 may be dynamic in order to allow only the first step to be immersed. second element I6O2 of the probe 140, to precisely measure the density of the liquid 110. When this density measurement is carried out, part of the first element 16O1 is immersed, which makes it possible to determine variations in the level of the liquid over time 110 considering that the density of the liquid is constant over this time interval.
[77] Le dispositif de mesure 100 comprend également dans le présent exemple non limitatif de l’invention une batterie électrique stockant de l’énergie électrique afin de conférer au dispositif de mesure 100 une autonomie supérieure à 5 ans. [77] The measuring device 100 also comprises, in this non-limiting example of the invention, an electric battery storing electrical energy in order to give the measuring device 100 an autonomy of more than 5 years.
[78] Cette batterie peut être rechargeable et avantageusement complétée par un équipement de production autonome d’électricité afin de prolonger l’autonomie du dispositif. [78] This battery can be rechargeable and advantageously supplemented by autonomous electricity production equipment in order to extend the autonomy of the device.
[79] Afin de réduire la consommation électrique du dispositif de mesure 100, les mesures peuvent être effectuées à intervalles réguliers, paramétrables. [79] In order to reduce the power consumption of the measuring device 100, the measurements can be carried out at regular, configurable intervals.
[80] En outre, le dispositif de mesure 100 comprend également un moyen 190 de transmission de données sans fil afin de communiquer les mesures effectuées à un serveur distant afin de pouvoir contrôler les caractéristiques du liquide 110 présent dans le réservoir 115 sans avoir à se déplacer. Le moyen de transmission 190 comprend ainsi un modem et une antenne reliée au circuit électronique 150. [80] In addition, the measuring device 100 also comprises a means 190 of wireless data transmission in order to communicate the measurements carried out to a remote server in order to be able to control the characteristics of the liquid 110 present in the reservoir 115 without having to be move. The transmission means 190 thus comprises a modem and an antenna connected to the electronic circuit 150.
[81 ] Le serveur distant peut délivrer les données de façon continue aux utilisateurs par toute interface appropriée afin de leur en faciliter l’accès. [81] The remote server can deliver data continuously to users through any appropriate interface to facilitate their access.
[82] La figure 2 illustre un système 300 de surveillance et de mesure d’une masse volumique et d’une variation du niveau d’un liquide comprenant dans le présent exemple non limitatif de l’invention trois dispositifs 100 de mesure. Les trois dispositifs 100 de mesure comprenant chacun un une partie immergée 305 suspendue par un moyen de suspension inextensible 130 à un capteur de force 120 (« Se » pour le terme anglais « sensor» sur la figure 3), permettent de mesurer les caractéristiques d’un liquide présent dans un réservoir unique afin notamment de voir les variations de ce liquide dans le réservoir, ou de mesurer les caractéristiques de trois liquides contenus chacun dans un réservoir distinct. [83] Les données mesurées par les trois dispositifs 100 de mesure sont enregistrées par un enregistreur de données 310 (« Da » pour le terme anglais « Data Loger» sur la figure 2) compris par chaque dispositif 100 de mesure, puis transmises à intervalles réguliers au serveur distant 320 (« Su » pour le terme anglais « supervisor » sur la figure 2) par l’intermédiaire de moyens d’émission et de réception d’ondes, comprenant notamment un transmetteur 315 (« Tr » pour le terme anglais « transmitter » sur la figure 2) et des antennes relais 316. Il convient de souligner que la liaison sans fil utilisée est préférentiellement de type à faible consommation énergétique, tel que LPWAN (acronyme du terme anglais « Low-Power Wide-Area Network »). Les enregistreurs de données 310 font office de mémoire tampon dans la transmission des données sans fil avec le serveur distant 320. [82] FIG. 2 illustrates a system 300 for monitoring and measuring a density and a variation in the level of a liquid comprising in the present non-limiting example of the invention three measuring devices 100. The three measuring devices 100 each comprising an immersed part 305 suspended by an inextensible suspension means 130 from a force sensor 120 (“Se” for the English term “sensor” in FIG. 3), make it possible to measure the characteristics of a liquid present in a single reservoir in order in particular to see the variations of this liquid in the reservoir, or to measure the characteristics of three liquids each contained in a separate reservoir. [83] The data measured by the three measuring devices 100 are recorded by a data logger 310 ("Da" for the English term "Data Loger" in FIG. 2) understood by each measuring device 100, then transmitted at intervals regular to the remote server 320 (“Su” for the English term “supervisor” in FIG. 2) via means of transmission and reception of waves, comprising in particular a transmitter 315 (“Tr” for the English term “Transmitter” in FIG. 2) and relay antennas 316. It should be noted that the wireless link used is preferably of the low energy consumption type, such as LPWAN (acronym for the English term “Low-Power Wide-Area Network”). ). Data loggers 310 act as a buffer in wireless data transmission with remote server 320.
[84] Les données enregistrées par les dispositifs 100 de mesure sont ensuite traitées puis affichées sur un écran d’un dispositif électronique 330 permettant de contrôler ou de suivre l’état du ou des liquide(s). Le dispositif électronique 330 (« Mo » pour le terme anglais « monitor » sur la figure 2) peut être par exemple un ordinateur fixe ou portable, une tablette ou un téléphone portable intelligent (couramment appelé par le terme anglais « smartphone »). [84] The data recorded by the measuring devices 100 are then processed and then displayed on a screen of an electronic device 330 making it possible to control or monitor the state of the liquid (s). The electronic device 330 (“Mo” for the English term “monitor” in FIG. 2) can be for example a fixed or portable computer, a tablet or an intelligent portable telephone (commonly called by the English term “smartphone”).
Résultats expérimentaux Experimental results
[85] Les tableaux 1 et 2 illustrent les résultats expérimentaux obtenus avec le dispositif de 100 de mesure dans le réservoir 115 ouvert en partie supérieure, de diamètre intérieur 380 mm et de hauteur 1000 mm. Le capteur de force 120 est relié à un système d’acquisition électronique adapté permettant de convertir les variations de tension à la sortie du capteur 120 en variation de poids. [85] Tables 1 and 2 illustrate the experimental results obtained with the measuring device 100 in the tank 115 open at the top, with an internal diameter of 380 mm and a height of 1000 mm. The force sensor 120 is connected to a suitable electronic acquisition system making it possible to convert the voltage variations at the output of the sensor 120 into a variation in weight.
[86] Le liquide 110 du réservoir 115 est ici de l’eau déminéralisée à laquelle est ajouté du chlorure de sodium (NaCI) en proportion variable afin de faire évoluer de façon connue la masse volumique de l’eau. [86] The liquid 110 of the tank 115 is here demineralized water to which sodium chloride (NaCl) is added in varying proportions in order to change the density of the water in a known manner.
[87] Le premier élément 160i de la sonde 140 est ici formé par un tube cylindrique plein de diamètre 40 mm, de longueur total 800 mm, de masse volumique supérieure à la masse volumique de l’eau salée. [87] The first element 160i of the probe 140 is here formed by a solid cylindrical tube with a diameter of 40 mm, a total length of 800 mm, with a density greater than the density of the salt water.
[88] Le deuxième élément I6O2 de la sonde 140 est un parallélépipède plein de cotés 178,3 mm suspendu par un de ses sommets. Le volume du deuxième élément I 6O2 est de l’ordre de 5,67 litres (L), soit une masse volumique de 998 g/L. Préférentiellement, le deuxième élément I 6O2 est un cube. [88] The second element I6O2 of the probe 140 is a parallelepiped full of sides 178.3 mm suspended by one of its vertices. The volume of the second element I 6O2 is of the order of 5.67 liters (L), or a density of 998 g / L. Preferably, the second element I 6O2 is a cube.
[89] La masse volumique du deuxième élément I 6O2 est différente de la masse volumique du premier élément I 6O1 tout en étant supérieure à la masse volumique du liquide dans toutes les conditions de l’expérience. [89] The density of the second element I 6O2 is different from the density of the first element I 6O1 while being greater than the density of the liquid under all conditions of the experiment.
[90] Les moyens de suspension 130 et 170 sont ici chacun une chaînette métallique fine dont la résistance à l’élongation est largement supérieure au poids de la sonde 140. [90] The suspension means 130 and 170 are each here a fine metal chain whose resistance to elongation is much greater than the weight of the probe 140.
[91] Afin de contrôler les mesures de masse volumique, il a été procédé à des mesures complémentaires, notamment dans la mesure du possible avec un conductivimètre et avec un hydromètre. [91] In order to check the density measurements, additional measurements were taken, in particular as far as possible with a conductivity meter and with a hydrometer.
[92] En outre, les expériences étant réalisées à une altitude de 46 mètres, la pression relative à la pression atmosphérique a été considérée comme constante et égale à 0 bar. [92] In addition, the experiments being carried out at an altitude of 46 meters, the pressure relative to atmospheric pressure was considered to be constant and equal to 0 bar.
[93] La température a été relevée régulièrement à l’aide du thermomètre intégré au conductivimètre. [93] The temperature was read regularly using the thermometer built into the conductivity meter.
[94] La salinité est connue à tout moment par le calcul de la teneur en sel ajouté à l’eau déminéralisée. [94] The salinity is known at all times by calculating the content of salt added to deionized water.
[95] La salinité peut être calculée à partir de la conductivité (par exemple à partir de la formule de Landolt-Bornstein). [95] Salinity can be calculated from conductivity (eg from Landolt-Bornstein formula).
[96] La salinité et la masse volumique mesurée par la sonde 140 sont reliées à l’aide de l’équation d’état de l’eau de mer (par exemple Millero et Poisson). [96] The salinity and density measured by probe 140 are related using the seawater equation of state (eg Millero and Poisson).
[97] La précision des mesures dépend également de la connaissance de la température et du facteur TDS (acronyme du terme anglais « Total dissolved solids » ou « Solide Dissous Totaux ») qui est notamment utilisé pour déduire directement la salinité de la conductivité. [97] The precision of the measurements also depends on knowledge of the temperature and of the TDS factor (acronym for the English term "Total dissolved solids" or "Total dissolved solids") which is used in particular to directly deduce the salinity from the conductivity.
[98] Afin de contrôler les mesures de variation de hauteur, un limnimètre est utilisé pour contrôler le niveau du liquide dans le réservoir. [98] In order to control the height variation measurements, a water level meter is used to control the level of the liquid in the tank.
[99] Dans un premier temps, la sondel 40 est installée et immergée en prenant soin d’immerger uniquement le deuxième élément I 6O2 de la sonde 140 dans le liquide 110. [99] First, the probeel 40 is installed and submerged, taking care to immerse only the second element I 6O2 of the probe 140 in the liquid 110.
[100] Le tableau 1 correspond aux résultats obtenus dans ces conditions en faisant varier la salinité du liquide 110. Une comparaison entre la valeur théorique de la masse volumique avec les mesures effectuées montre une très bonne adéquation des résultats expérimentaux avec une erreur de mesure moyenne de l’ordre de 0,1 %. [100] Table 1 corresponds to the results obtained under these conditions by varying the salinity of the liquid 110. A comparison between the theoretical value of the density with the measurements carried out shows a very good adequacy of the experimental results with an average measurement error of the order of 0.1%.
[101] [Table 1]
Figure imgf000015_0001
[101] [Table 1]
Figure imgf000015_0001
102] Dans un deuxième temps, une nouvelle série de mesure est effectuée après avoir vidé et rincé la cuve, installé la sonde 140, et rempli le réservoir d’eau déminéralisé, avec cette fois une partie du premier élément 160i afin de mesurer également la hauteur du liquide 110. Le liquide 110 est également au début de l’expérience de l’eau déminéralisé dans laquelle est dissous à intervalle régulier du sel. 102] In a second step, a new series of measurements is carried out after having emptied and rinsed the tank, installed the probe 140, and filled the tank with demineralised water, this time with part of the first element 160i in order to also measure the height of the liquid 110. The liquid 110 is also at the start of the experiment with demineralized water in which salt is dissolved at regular intervals.
[103] Le tableau 2 présente les résultats obtenus avec une comparaison avec le niveau théorique du liquide 110 dans le réservoir 115, contrôlé par un limnimètre. [104] [Table 2]
Figure imgf000016_0001
conductivité et de température dans les conditions d’expérience, et l’erreur relative sur la salinité due à l’immersion partielle du premier élément 160i de la sonde 140.
[103] Table 2 shows the results obtained with a comparison with the theoretical level of liquid 110 in tank 115, monitored by a water level meter. [104] [Table 2]
Figure imgf000016_0001
conductivity and temperature under the experimental conditions, and the relative error on salinity due to partial immersion of the first element 160i of probe 140.
[106] [Table 3]
Figure imgf000017_0002
Figure imgf000017_0001
[106] [Table 3]
Figure imgf000017_0002
Figure imgf000017_0001
[107] [Table 4]
Figure imgf000017_0003
[107] [Table 4]
Figure imgf000017_0003
[108] En conclusion, il est intéressant, dans le cas de l’eau, de connaître la eneur en matières dissoutes (TDS) ou la salinité afin d’une part d’avoir un indicateur de potabilité de l’eau, et d’autre part un indicateur de son évolution. Les mesures traditionnelles par hydrométrie sont trop peu précises pour délivrer cette information. Les mesures par conductivimètre sont tout à fait adaptées à cette mesure, mais les instruments nécessitent une alimentation électrique s’ils sont immergés, et, de fait, ne permettent pas une surveillance continue sauf avec un coût important. La sonde 140 permet quant à elle de donner une indication de la potabilité et une indication des matières dissoutes et de leur évolution par la salinité de l’eau, sans électronique immergée et avec une consommation électrique très réduite, pourvu que la température de l’eau soit connue ou constante. [108] In conclusion, it is interesting, in the case of water, to know the dissolved solids content (TDS) or the salinity in order, on the one hand, to have an indicator of the potability of the water, and on the other hand an indicator of its evolution. Traditional hydrometric measurements are too imprecise to deliver this information. Conductivity meter measurements are very suitable for this measurement, but the instruments require a power supply if they are submerged, and therefore do not allow continuous monitoring except at a significant cost. The 140 probe makes it possible to give an indication of the potability and an indication of the dissolved materials and their evolution by the salinity of the water, without submerged electronics and with a very low electrical consumption, provided that the temperature of the water is known or constant.
[109] En outre, la mesure de la variation de hauteur d’eau obtenue par le dispositif de mesure 100 permet d’obtenir des mesures avec une grande précision. Autre exemple de mode de réalisation [109] In addition, the measurement of the variation in water height obtained by the measuring device 100 makes it possible to obtain measurements with great precision. Another exemplary embodiment
[110] La figure 3 est une vue schématique d’un dispositif 200 de mesure d’une masse volumique et d’une variation du niveau du liquide 110 selon l’invention qui comprend une sonde 210 suspendue à un moyen de suspension inextensible 220 à un capteur de force 230. [110] FIG. 3 is a schematic view of a device 200 for measuring a density and a variation in the level of the liquid 110 according to the invention which comprises a probe 210 suspended from an inextensible suspension means 220 to a force sensor 230.
[111] La sonde 210 comprend dans le présent exemple non limitatif de l’invention une pièce unique comportant deux parties de forme distincte, l’une 250i correspondant au premier élément 160i de la sonde 140 du précédent exemple et l’autre 2502 au deuxième élément I6O2 de la sonde 140. [111] The probe 210 comprises in the present non-limiting example of the invention a single part comprising two parts of distinct shape, one 250i corresponding to the first element 160i of the probe 140 of the previous example and the other 2502 to the second element I6O2 of probe 140.
[112] Il convient de souligner que les deux éléments 250 sont soudés l’un à l’autre dans le présent exemple non limitatif de l’invention, la soudure entre les deux éléments 250 faisant office de moyen de suspension inextensible entre les deux éléments 250. [112] It should be noted that the two elements 250 are welded to each other in this non-limiting example of the invention, the weld between the two elements 250 acting as an inextensible suspension means between the two elements. 250.
[113] Le fonctionnement du dispositif de mesure 200 est identique au dispositif de mesure 100 du précédent exemple de réalisation. [113] The operation of the measuring device 200 is identical to the measuring device 100 of the previous exemplary embodiment.
[114] Les variantes du dispositif de mesure 100 sont également adaptables au dispositif de mesure 200. [114] The variants of the measuring device 100 are also adaptable to the measuring device 200.

Claims

Revendications Claims
1. Dispositif (100 ; 200) de mesure d’une masse volumique et d’une variation du niveau d’un liquide (110), comprenant une sonde (140 ; 210) suspendue à un capteur de force (120 ; 230), caractérisé en ce que le capteur de force est unique, la sonde comprenant deux parties (160 ; 250) ayant chacune une masse volumique supérieure à la masse volumique du liquide, la première partie (160i ; 250i) ayant une forme longiligne destinée à mesurer une variation du niveau du liquide, la deuxième partie (I6O2 ; 2502) ayant une forme quelconque d’un volume supérieur au volume de la première partie, la deuxième partie étant apte à plonger intégralement dans le liquide afin de mesurer la masse volumique dudit liquide. 1. Device (100; 200) for measuring a density and a variation in the level of a liquid (110), comprising a probe (140; 210) suspended from a force sensor (120; 230), characterized in that the force sensor is single, the probe comprising two parts (160; 250) each having a density greater than the density of the liquid, the first part (160i; 250i) having an elongated shape for measuring a variation of the level of the liquid, the second part (I6O2; 2502) having any shape of a volume greater than the volume of the first part, the second part being able to be fully immersed in the liquid in order to measure the density of said liquid.
2. Dispositif de mesure selon la revendication 1 , dans lequel la sonde est suspendue au capteur de force par un moyen de suspension inextensible, tel qu’un fil inextensible. 2. A measuring device according to claim 1, wherein the probe is suspended from the force sensor by an inextensible suspension means, such as an inextensible wire.
3. Dispositif de mesure selon la revendication 1 , dans lequel le rapport de volume entre la deuxième et la première partie de la sonde est quelconque. 3. Measuring device according to claim 1, wherein the volume ratio between the second and the first part of the probe is arbitrary.
4. Dispositif de mesure selon la revendication 1 , dans lequel le rapport de volume entre la deuxième et la première partie de la sonde est supérieur à 1 :10. 4. Measuring device according to claim 1, wherein the volume ratio between the second and the first part of the probe is greater than 1: 10.
5. Dispositif de mesure selon l’une quelconque des revendications 1 à 4, dans lequel la masse volumique de la première partie de la sonde est égale à la masse volumique de la deuxième partie de la sonde. 5. A measuring device according to any one of claims 1 to 4, wherein the density of the first part of the probe is equal to the density of the second part of the probe.
6. Dispositif de mesure selon l’une quelconque des revendications 1 à 4, dans lequel la masse volumique de la première partie de la sonde est différente de la masse volumique de la deuxième partie de la sonde. 6. A measuring device according to any one of claims 1 to 4, wherein the density of the first part of the probe is different from the density of the second part of the probe.
7. Dispositif de mesure selon l’une quelconque des revendications 1 à 6, dans lequel la deuxième partie de la sonde est suspendue à la première partie de la sonde par un moyen de suspension inextensible (170). 7. A measuring device according to any one of claims 1 to 6, wherein the second part of the probe is suspended from the first part of the probe by an inextensible suspension means (170).
8. Dispositif de mesure selon l’une quelconque des revendications 1 à 6, dans lequel les deux parties de la sonde forment une pièce unique (240). 8. A measuring device according to any one of claims 1 to 6, wherein the two parts of the probe form a single piece (240).
9. Dispositif de mesure selon l’une quelconque des revendications 1 à 8, dans lequel les deux parties de la sonde sont pleines. 9. A measuring device according to any one of claims 1 to 8, wherein the two parts of the probe are solid.
10. Dispositif de mesure selon l’une quelconque des revendications 1 à 9, comprenant également un moyen (195) de réglage de la hauteur de la sonde par rapport au niveau du liquide. 10. A measuring device according to any one of claims 1 to 9, also comprising means (195) for adjusting the height of the probe relative to the level of the liquid.
11. Dispositif de mesure selon l’une quelconque des revendications 1 à 10, comprenant également un moyen (190) d’acquisition de données et de transmission sans fil. 11. A measuring device according to any one of claims 1 to 10, also comprising means (190) for data acquisition and wireless transmission.
PCT/FR2020/051780 2019-10-08 2020-10-08 Device for measuring density and variation in level of a liquid WO2021069844A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1911158A FR3101706B1 (en) 2019-10-08 2019-10-08 Device for measuring a density and a variation in the level of a liquid
FRFR1911158 2019-10-08

Publications (1)

Publication Number Publication Date
WO2021069844A1 true WO2021069844A1 (en) 2021-04-15

Family

ID=69158070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/051780 WO2021069844A1 (en) 2019-10-08 2020-10-08 Device for measuring density and variation in level of a liquid

Country Status (2)

Country Link
FR (1) FR3101706B1 (en)
WO (1) WO2021069844A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1081846A (en) * 1953-05-06 1954-12-23 Improvements to fluid volume indicators
JPS5746123A (en) * 1980-09-04 1982-03-16 Asano Seiki Kk Measuring device for liquid level
JPH0216417A (en) * 1988-07-04 1990-01-19 Asahi Eteitsuku Kk Liquid amount measuring instrument
US5157968A (en) * 1990-02-27 1992-10-27 Uri Zfira Apparatus for measuring the specific gravity, weight, level, and/or volume of a liquid in a container
US5744716A (en) * 1995-06-08 1998-04-28 Scp Global Technologies, A Division Of Preco, Inc. Fluid displacement level, density and concentration measurement system
US6367325B1 (en) * 2000-01-13 2002-04-09 Visteon Global Technologies, Inc. Motor vehicle fuel level sensor
WO2018162541A1 (en) * 2017-03-07 2018-09-13 Krones Ag Device for determining the filling level of a filling product in a filling product reservoir

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1081846A (en) * 1953-05-06 1954-12-23 Improvements to fluid volume indicators
JPS5746123A (en) * 1980-09-04 1982-03-16 Asano Seiki Kk Measuring device for liquid level
JPH0216417A (en) * 1988-07-04 1990-01-19 Asahi Eteitsuku Kk Liquid amount measuring instrument
US5157968A (en) * 1990-02-27 1992-10-27 Uri Zfira Apparatus for measuring the specific gravity, weight, level, and/or volume of a liquid in a container
US5744716A (en) * 1995-06-08 1998-04-28 Scp Global Technologies, A Division Of Preco, Inc. Fluid displacement level, density and concentration measurement system
US6367325B1 (en) * 2000-01-13 2002-04-09 Visteon Global Technologies, Inc. Motor vehicle fuel level sensor
WO2018162541A1 (en) * 2017-03-07 2018-09-13 Krones Ag Device for determining the filling level of a filling product in a filling product reservoir

Also Published As

Publication number Publication date
FR3101706A1 (en) 2021-04-09
FR3101706B1 (en) 2021-11-19

Similar Documents

Publication Publication Date Title
EP0106777B1 (en) Sea swell characteristics measuring apparatus
FR2979151A1 (en) ELECTROSTATICALLY COUPLED PRESSURE SENSOR
FR2868532A1 (en) DEVICE FOR MEASURING THE QUANTITY OF A LIQUID
FR2515819A1 (en) METHOD AND DEVICE FOR MEASURING A PRESSURE, IN PARTICULAR THE PRESSURE OF A FLUID
EP1971882B1 (en) Geophysical measurement device for the exploration of natural resources of the floor in an aquatic domain
WO2021069844A1 (en) Device for measuring density and variation in level of a liquid
CN114455004A (en) Wave buoy combined with pressure acceleration sensor and precision improvement method
EP3283878B1 (en) Method of determining the interstitial pressure in the marine sediment and corresponding device
FR2522140A1 (en) METHOD AND DEVICE FOR MEASURING LIQUID LEVEL IN CONTAINERS
EP0066520B1 (en) Device for measuring a pressure difference in a pulse column and its use in measuring the interface level and the density of the liquid medium
EP1798560A1 (en) Speed flow measurement device
EP3982106A1 (en) Device for automatically measuring the density of a liquid
FR2494443A1 (en) DEVICE FOR DETECTING THE SPECIFIC WEIGHT OF A LIQUID
FR3025027A1 (en) METHOD AND SYSTEM FOR CONTROLLING A DEVICE COMPRISING A CONTAINER PROVIDED FOR CONTAINING A GAS AND A LIQUID
EP3914882B1 (en) System and method for measuring the filling level of a fluid container by means of acoustic waves
FR2564969A1 (en) System for hydrostatic measurement of the level of liquid, such as recording tides, capable of being periodically calibrated by comparison with columns of liquid of the same nature acting as a reference assuring millimetre accuracy and reliability
FR2638521A1 (en) Electronic liquid level recorder
FR2668824A1 (en) Device for the measurement of the inclination of an object with respect to a horizontal plane
WO1994018528A1 (en) Method for measuring at least one feature of a liquid solution and device therefor
JP2007155506A (en) Device and method for measuring tension in liquid
WO2024017612A1 (en) Device for determining the elongation of a connection
FR3081826A1 (en) UNDERWATER / EMERGING DEVICE FOR OBSERVATION IN THE MARINE ENVIRONMENT OR INLAND WATERS
FR2586291A1 (en) System for measuring the levels of fluids contained in a tank
WO1997018439A1 (en) Hydrostatic height measurement system and method
EP0200619B1 (en) Apparatus for measuring the level of electrically conductive material within a container, and applications thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20797815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: CONSTATATION DE LA PERTE D'UN DROIT CONFORMEMENT A LA REGLE 112(1) CBE (OEB FORM 1205A EN DATE DU 21/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20797815

Country of ref document: EP

Kind code of ref document: A1