WO2021069762A1 - System for the generation of electrical energy from an aerostatic thrust force - Google Patents

System for the generation of electrical energy from an aerostatic thrust force Download PDF

Info

Publication number
WO2021069762A1
WO2021069762A1 PCT/ES2019/070678 ES2019070678W WO2021069762A1 WO 2021069762 A1 WO2021069762 A1 WO 2021069762A1 ES 2019070678 W ES2019070678 W ES 2019070678W WO 2021069762 A1 WO2021069762 A1 WO 2021069762A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
aerostat
electrical energy
compartment
volume
Prior art date
Application number
PCT/ES2019/070678
Other languages
Spanish (es)
French (fr)
Inventor
Sergio Rafael VEGA CAMA
Original Assignee
Vega Cama Sergio Rafael
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vega Cama Sergio Rafael filed Critical Vega Cama Sergio Rafael
Priority to PCT/ES2019/070678 priority Critical patent/WO2021069762A1/en
Publication of WO2021069762A1 publication Critical patent/WO2021069762A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/02Other machines or engines using hydrostatic thrust
    • F03B17/025Other machines or engines using hydrostatic thrust and reciprocating motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention relates to a system for generating electrical energy from an aerostatic thrust force. Background of the invention
  • Patent application WO2015027113 A1 refers to a system and a method for storing potential energy, capable of generating electrical energy from the force of gravity, which comprises a sliding piston inside a hollow cylinder, whose walls define a volume internal containing a liquid, a sealing gasket arranged between the piston and the cylinder walls, and a liquid conduit in communication with the cylinder.
  • the piston divides the interior volume into a first upper chamber and a second lower chamber, both chambers being interconnected through the conduit.
  • the system further comprises a reversible pump / turbine operatively coupled in the liquid conduit to drive a reversible motor / generator, and control valves.
  • the piston is capable of moving within the cylinder between a raised position to a lower position.
  • the turbine stops working so that the generated energy is used to drive the pump motor which in turn drives the liquid through the conduit from the upper chamber to the lower chamber, thus increasing the pressure in the lower chamber under the piston.
  • the pressure difference causes the piston to rise to the raised position, storing potential energy in the system.
  • the pump then stops working so that the potential energy stored allows the piston to descend, the weight of which drives the liquid into the conduit from the lower chamber to the upper chamber so that the liquid flows through the turbine thus driving the generator to produce electrical energy, which can be used in a power plant.
  • This system can be used, for example, to store potential energy that has been generated during the hours of less demand for electricity consumption.
  • a system for generating electrical energy from an aerostatic pushing force characterized in that it comprises at least one electricity generating unit comprising
  • an aerostat housed inside the vertical conduit configured with the ability to move with an alternative movement between a lifting position and a lowering position of the vertical conduit, the aerostat being configured by a housing comprising
  • At least one hollow chamber that houses in its interior at least one gas compartment that confines in its interior a volume of a supporting gas with a density less than the density of air at atmospheric pressure, and - at least one air compartment for charging a volume of air, preferably at atmospheric pressure, configured with the capacity to partially compress the least one gas compartment to achieve an increase in the density of the supporting gas;
  • - Loading means configured to inject a volume of air into the air compartment of the aerostat through a loading mouth, when said aerostat is in the lifting position, which ensures a downward movement of the aerostat towards its descent position due to the force of gravity;
  • - discharge means configured to evacuate the volume of air contained in the air compartment of the aerostat through a discharge mouth, when said aerostat is in the lowering position, which provides an upward movement of the aerostat towards its position of elevation, due to the effect of an aerostatic thrust force capable of counteracting the force of gravity;
  • - energy conversion means operatively associated with the aerostat and configured to convert the potential energy resulting from the lifting movement of the aerostat into electrical energy.
  • the fact that the vertical duct is buried allows the system to operate under controlled conditions and continuously, without the weather being a determining factor and without also generating disruption to the environment.
  • system of the invention can be implemented in a simple structuring way, which makes it possible to save energy costs and reduce operating costs.
  • the support gas contained in the at least gas compartment is hydrogen, although as an alternative helium or a combination of both gases could be used. It should be noted that the use of hydrogen has the advantage that it is less dense than helium and is also more abundant on earth.
  • the energy conversion means are configured by at least one winch arranged below the lower part of the vertical duct, provided with a tie rod wound to the rotating shaft of the winch and coupled at its free end to the lower part of the aerostat housing, so that the winch is able to receive the traction force of the tie rod generated by the aerostat thrust force of the empty aerostat during its upward movement, and a driving shaft of the winch being mechanically connected to a generator of electrical energy, through a gear train that acts as a speed reducer, to generate electricity in each upward movement of the aerostat.
  • the air charging means are connected to an external intake in which there is at least one fan for injecting an atmospheric air flow into the air compartment, and the discharge means being connected in turn to said external intake so that the fan is capable of acting in the reverse direction of rotation to suck the volume of air injected into the air compartment.
  • the air charging means are configured by a supply conduit connected to the external intake for the injection of air, provided with a non-return charging valve located on the upper part of the vertical duct, and adapted to be coupled to the mouth of loading of the air compartment when the balloon is in its raised position; and the air discharge means are configured by an evacuation conduit connected to the external intake for air evacuation, provided with a non-return discharge valve located under the lower part of the vertical duct, and adapted to be coupled to the outlet mouth of the air compartment when the aerostat is in its lowering position, the evacuation conduit being arranged with a return section that runs through the interior of one of the recirculation conduits for its connection with the external intake.
  • both air compartment loading and unloading ports have respective non-return valves.
  • the housing of the aerostat is configured by a central air compartment of preferably cylindrical configuration and multiple chambers of parallelepipedic configuration, each one housing a gas compartment inside, and said chambers being fixed to the wall. exterior of the air compartment protruding like vertical wings, preferably four chambers forming a cross.
  • each peripheral chamber comprises a rigid grid-like structure and an outer envelope made of a fabric, preferably canvas, fixed to the rigid structure.
  • the central air compartment is arranged so that its lower part is spaced a predetermined distance above its discharge mouth, which defines a space in communication with a lower opening provided in each peripheral chamber, so that the air injected into the air compartment, it is capable of penetrating each chamber through its respective opening and partially compressing the respective gas compartment, which provides an increase in the density of the gas, and therefore an increase in its specific weight which, added
  • the weight of the volume of air contained within the air compartment and the volume of air displaced within the chambers makes it possible to compensate for the lift force of the aerostat.
  • the vertical duct comprises a central longitudinal cavity excavated in the earth's crust, configured to house the aerostat; and the recirculation conduit comprises multiple lateral cavities, preferably four, excavated in the earth's crust, arranged around the central cavity, and said vertical conduit and said recirculation conduit being sealed at their upper and lower ends by means of upper and lower covers. with a domed configuration so that they define two separate spaces that provide a closed recirculation circuit for the air displaced by the reciprocating movement of the aerostat.
  • the lower cover comprises a plurality of holes for the passage of the respective tie rods of the capstans.
  • the balloon comprises bearings designed to slide on complementary longitudinal rails arranged on the interior wall of the vertical conduit, in order to maintain the stability of the balloon during its reciprocating movement along the vertical conduit.
  • the system can comprise multiple generating units arranged in such a way that the respective aerostats are synchronized according to a sequential load order, in order to multiply the productive capacity and in turn generate continuity in the electrical supply.
  • FIG. 1 is a schematic view of the system according to a preferred embodiment of the invention.
  • Fig. 2 is a perspective view of the aerostat according to a preferred embodiment, provided with a central air compartment and four supporting gas compartments arranged in a cross shape, showing the rigid grid-like structure of the chambers:
  • FIG. 4 is an enlarged view of Fig. 3 showing the lower opening of the chambers, representing by arrows the air inlet inside them;
  • FIGS. 5a and 5b are perspective views of a chamber without representing its rigid structure for clarity reasons, schematically showing the gas compartment housed inside, in broken lines, and respectively showing a first position of the expanded gas compartment occupying the entire volume of the chamber, and a second position with the partially compressed gas compartment;
  • FIG. 6 is a partial perspective view of the upper part of the aerostat showing the air loading mouth and showing the outer casing fixed to the rigid structure of the chambers;
  • Fig. 7 is a partial perspective view of the lower part of the aerostat showing the air discharge mouth
  • Fig. 8 is a schematic perspective view of the balloon showing its dimensions for calculating its volume
  • FIG. 9 is a schematic top perspective view of the underground system according to a cylindrical section of the earth's crust, showing the upper cover and the supply and evacuation pipes of the air compartment:
  • Fig. 10 is a perspective view of the upper cover, showing its inner face
  • Fig. 11 is a schematic perspective view of the upper part of the system according to Fig. 9, seen without the upper cover;
  • Fig. 13 is a schematic bottom perspective view of the buried system according to a cylindrical section of the earth's crust, seen without the bottom cover;
  • Fig. 14 is a bottom plan view of the lower cover, showing a detail of one of the through holes for the tie rods of the capstans;
  • FIG. 15a and 15b are perspective views of the system, showing the balloon in its lowered position and in its raised position, respectively;
  • Fig. 16 is an enlarged perspective view of the central cavity of the vertical conduit for housing the aerostat, showing the longitudinal rails for the sliding of the bearings of the aerostat;
  • Figs. 18a and 18b are respectively schematic views of a power room of the energy conversion means made up of at least one winch, a gear train and an electric power generator, arranged in the lower part of the vertical duct, showing by arrows the sense of force on the tie rod in its operation in mode of power generation during the ascent of the aerostat and in recovery mode of the potential energy during the descent of the aerostat, respectively; Y
  • System 1 may comprise one or multiple electricity generating units. For the sake of clarity, a single electricity generating unit is shown in Figures 1 to 18.
  • the electricity generating unit comprises a watertight vertical conduit 2 arranged underground below the level of the earth's crust T (see figure 1), so that it contains within it a volume of air at atmospheric pressure; and an aerostat 3 housed inside the vertical duct 2 configured with the ability to move with a reciprocating movement between a lifting position A (see figures 1 and 15b) and a lowering position B of the vertical duct 2 (see figures 1 and 15a ).
  • the aerostat 3 is configured by a housing comprising several hollow chambers 4 that respectively house inside a gas compartment 5 that confines inside a volume of a supporting gas with a density less than the density of air at atmospheric pressure; and an air compartment 6 for charging a volume of air to atmospheric pressure, configured with the ability to partially compress the least one gas compartment 5 to achieve an increase in the density of the supporting gas, as will be explained later.
  • the air compartment 6 is provided with a loading port 6a for the air inlet arranged in its upper part and a discharge mouth 6b for evacuating the air (see figure 3). Also, both inlets for loading 6a and discharge 6b are provided with respective non-return valves (not shown).
  • the supporting gas contained in the gas compartments is hydrogen, although helium or a combination of both gases could alternatively be used.
  • the housing of the aerostat 3 is configured by a central air compartment 6 of cylindrical configuration and four chambers 4 of parallelepipedic configuration, each one housing inside a gas compartment 5. Said chambers 4 are fixed to the wall. Exterior of the air compartment 6 protruding like vertical wings, forming a cross seen in plan. Furthermore, each peripheral chamber 4 comprises a rigid structure 4a (see figure 2) in the form of a grid and an outer envelope 4b (see figure 6) made of a fabric, preferably canvas, fixed to the rigid structure 4a.
  • Figure 8 shows the dimensions of the aerostat 3 for calculating its volume, as will be explained later in an example of a practical case. These dimensions are:
  • the central air compartment 6 is arranged so that its lower part is spaced a predetermined distance above its discharge mouth 6b, which defines a space in communication with an opening 21 provided in each peripheral chamber 4, so that the air injected into the air compartment 6 is able to penetrate into each chamber 4 through its respective opening 21 and partially compress the respective gas compartment 5, which provides an increase in the density of the gas, and therefore an increase in its specific weight which, added to the weight of the volume of air contained within the air compartment 6 and the volume of air displaced (40% of the original volume of gas) inside the chambers 4, makes it possible to compensate for the lift force of the aerostat.
  • Figure 4 shows the lower opening 21 of the chambers 4 that allows the passage of air represented by arrows to compress the gas compartments 5.
  • Figures 5a and 5b show a chamber 4 (without representing its rigid structure for reasons of clarity) schematically showing the gas compartment 5 housed inside, illustrated in broken lines, and respectively showing a first position of the expanded gas compartment 5 occupying the entire volume of the chamber 4, and a second position with the gas compartment 5 partially compressed due to the entry of air through the lower opening 21 of the chamber as the air compartment 6 is filled.
  • the system 1 comprises charging means 7 connected to an external outlet 19 in which there is at least one fan 20 for injecting a flow of atmospheric air into of the air compartment 6, and discharge means 8 connected in turn to said external intake 19 so that the fan 20 is capable of acting in the reverse direction of rotation to suck the volume of air injected into the air compartment 6.
  • the charging means 7 are configured by a supply conduit 15 connected to the external intake 19 for air injection, provided with a non-return charging valve 16 located on the upper part of the vertical duct 2, and adapted to be coupled to the loading port 6a of the air compartment 6 (see figure 6) when the balloon 3 is in its lifting position A, which ensures a downward movement of the balloon 3 towards its lowering position B due to the force serious.
  • the air discharge means 8 are configured by an evacuation conduit 17 connected to the external intake 19 for evacuating the air, and provided with a non-return discharge valve 18 located under the part bottom of the vertical duct 2, and adapted to be coupled to an outlet 6b (see figure 7) of the air compartment 6 when the balloon 3 is in its lowering position B, which provides an upward movement of the balloon 3 towards its lifting position A, due to the effect of an aerostatic thrust force capable of counteracting the force of gravity.
  • the system also comprises at least one recirculation duct 9 in communication with the vertical duct 2, to ensure the recirculation of the volume of air displaced by the aerostat 3 during its reciprocating raising and lowering movement, as will be detailed below.
  • the vertical duct 2 comprises a central longitudinal cavity 22 excavated in the earth's crust T, configured to house the aerostat 3; and the recirculation duct 9 comprises four lateral cavities 23 excavated in the earth's crust T, arranged around the central cavity 22. Furthermore, said vertical duct 2 and said recirculation duct 9 are sealed at their upper and lower ends by means of upper covers. 24 and lower 25 with a vaulted configuration like a plenum, so that they define two internal spaces that provide a closed recirculation circuit for the air displaced by the reciprocating movement of the aerostat 3.
  • the upper cover 24 includes an orifice 26 for the passage of the supply conduit 15 and the evacuation conduit 17 of the air compartment, and baffles 27 strategically positioned in its lower part to direct the passage of the recirculation air (see figures 9 and 10).
  • the evacuation conduit 17 is arranged with a return section that runs through the interior of one of the lateral cavities 23 of the recirculation conduit 9 (see Figures 11 and 13) for its connection. with the outer intake 19, so that the fan 20 is capable of acting in the reverse direction of rotation to suck the volume of air injected into the air compartment 6.
  • the evacuation of the air can be carried out through the loading mouth 6a itself, so that both air loading and unloading functions are performed by the upper part of the aerostat 3, with the incorporation of an auxiliary fan fixed to the aerostat that allows air to be extracted through the upper loading and unloading mouth.
  • the return section of the evacuation duct 17 is dispensed with, thus using a single duct that performs both the supply and evacuation functions of the air, connected in communication with the fan 20 of the external intake 19. This option, it would generate less loss because it is a shorter and more direct way to evacuate the air.
  • the system 1 further comprises energy conversion means 10 configured to convert the potential energy resulting from the lifting movement of the aerostat 3 into electrical energy.
  • the energy conversion means 10 are configured by at least one winch 11 arranged below the lower part of the vertical duct 2, provided with a tie rod 12 wound to the rotating shaft of the winch 11 and coupled by its free end to the lower part of the housing of the aerostat 3 (see figures 15a, 15b).
  • the winch 11 is able to receive the traction force of the tie rod 12 generated by the aerostatic thrust force of the empty aerostat 3 during its upward movement.
  • a driving shaft of the winch 11 is mechanically connected to an electric power generator 13, through a gear train 14 that acts as a speed reducer, to generate electricity in each upward movement of the aerostat 3.
  • Figures 15a and 15b show by means of arrows the direction of the force on the tie rod 12 in its operation in power generation mode during the ascent of the aerostat 3 and in recovery mode of the potential energy during the descent of the aerostat 3, respectively.
  • each chamber 4 is fixed on its lower side to three tie rods 12 wound to respective capstans 11 of the energy conversion means 10.
  • the lower cover 25 comprises a plurality of holes 28 for the passage of the respective tie rods 12 of the capstans 11.
  • the balloon 3 comprises bearings 29 designed to slide on complementary longitudinal rails 30 arranged on the inner wall of the vertical duct 2, in order to maintain the stability of the balloon 3 during its reciprocating movement along the vertical duct 2.
  • system 1 can operate with multiple generating units arranged in such a way that the respective aerostats 3 are synchronized according to a sequential load order, in order to multiply the productive capacity and in turn generate continuity in the power supply.
  • the respective aerostats 3 within their vertical duct 2 have been schematically represented and the ascending or descending direction of each aerostat 3 has been illustrated with arrows.
  • six generating units have been used, of which five operate ascending in sequential mode and one descending to regain its initial state.
  • the configuration of the aerostat housing 3 described configured by a central air compartment 6 with a cylindrical configuration and four chambers 4 with a parallelepipedic configuration, which protrude like vertical wings, forming a cross, has been chosen as the preferred embodiment. since it allows optimizing the volume of the gas compartments without increasing the diameter of the vertical duct 2.
  • the densities of the gas (hydrogen) and of the air are, respectively, 0.089 kg / m 3 and 1.23 kg / m 3, the volume of the air compartment 6 required to cancel the lift will be equivalent to 92.8% of the volume of the gas (1-0.089 / 1.23).
  • a space is included in the lower part of the air compartment 6 (see figure 4) in communication with the respective openings 21 of the chambers 4 that contain the gas compartments 5, allowing the air that enters through the upper part of the gas compartment 6, as it fills, moves laterally to compress the gas compartments 5, and with this the hydrogen density increases, with the understanding that as it changes the density of the gas compartment 5 (increasing as the air occupies its volume) the amount of air required to compensate for the lift decreases proportionally.
  • the rigidity of the aerostat 3 is justified precisely in keeping the pressure of the gas low (at atmospheric pressure), which results in a lower resistance or pressure required to increase its density (which necessarily entails increasing its pressure).
  • the mass of the gas is fixed, since the hydrogen is confined in its pockets or compartments 5.
  • the change in density of the air when entering is residual (its density being much greater than that of hydrogen) with respect to the change in density of hydrogen;
  • the fixed air density is then considered and it is solved iteratively to find the relationship between gas volume and air volume so that the relationship that equalizes both thrust forces is satisfied. It should be mentioned that the weight of the central air column on the vertical duct 2 is also included.
  • a percentage of the volume of air is selected, from which the new gas density that corresponds to that volume. From the previous equation, it is solved to obtain the mass of air, obtaining its volume by dividing said mass by the density of the air (fixed). The resulting volume (calculated) is compared with the subtraction from the total volume (2,500,000) minus the volume of the gas selected at the beginning, following an iterative process until the calculated volume and the subtraction volume coincide.
  • the total volume of air is then the remaining 2,500,000 plus that of the central air column over vertical duct 2 (which has been set in this example to a diameter of 25 meters to make the excavation more contained and maintain geometric integrity) : 1,160,000 m 3 , occupying 41.5% of the gas compartment (and not 92.3% as would be the case if the air were confined in a rigid compartment).
  • Figures 5a and 5b show a chamber 4 that houses in its interior a gas compartment 5 (illustrated schematically by broken lines) representing the gas compartment expanded (figure 5a) and in a compressed state (figure 5b) having reduced by 40 % approximately its original volume.
  • a gas compartment 5 illustrated schematically by broken lines representing the gas compartment expanded (figure 5a) and in a compressed state (figure 5b) having reduced by 40 % approximately its original volume.
  • the gear train coupled to the winch drive shaft is sized for a tie rod speed of 20 meters per minute, so the entire 1000 meter race will be covered in 50 minutes.
  • the outer shell of the gas compartment is mounted on a rigid structure, otherwise it would be necessary to provide the air and the gas with internal pressure to maintain the shape (and volume) of the aerostat, as is the case of semi-rigid airship or even more with the so-called 'blimps' (elastic), which would consume energy considerably with each filling of air, taking into account the enormous volume of the outer envelope.
  • the weight of such a structure as the figures reveal in the previous calculation, it is almost as marginal in the rise as it is convenient in the decrease.
  • the hydrogen filling in its compartments is carried out at atmospheric pressure (without added pressure), so that the filling air is injected at a minimum pressure (for example, 15 millimeters of water column).
  • the primary source of energy comes from the lift force of a confined gas (hydrogen or helium), through the air.
  • the system is intrinsically efficient.
  • the energy conversion is direct to the generator shaft (without any other means of energy conversion), the only losses are transmission through the gear train. Since the aerostat is confined in a duct, it is therefore not exposed to other elements, the reinforcement of which would add weight and reduce performance, and because of operating under controlled conditions it would allow a utilization factor of 100%.
  • the aerostat regenerable indefinitely.
  • the aerostat concentrates its own energy input, it must therefore not take it from an external source (air, waves, solar radiation, coal, natural gas, uranium ”) and therefore be at the expense of its availability, periodicity or intermittence, since availability is always absolute (the medium with which it interacts is atmospheric pressure, which is permanently present and practically unchanged).
  • availability is always absolute (the medium with which it interacts is atmospheric pressure, which is permanently present and practically unchanged).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

A system for the generation of electrical energy from an aerostatic thrust force, comprising: a vertical duct (2); an aerostat (3) movable inside the vertical duct with a reciprocating movement, equipped with a chamber (4) housing a gas compartment (5) holding therein a lifting gas with a density lower than that of air, and an air compartment (6) for loading with air, in such a way that the filling of the load causes the downward movement of the aerostat (3) due to the force of gravity, and the emptying of the load causes the upward movement of the aerostat (3) due to the effect of the aerostatic thrust force; a recirculation duct (9) for the air displaced during the movement of the aerostat (3); and energy conversion means (7) configured to convert the potential energy resulting from the upward movement of the aerostat (3) into electrical energy.

Description

Figure imgf000002_0001
Figure imgf000002_0001
“Sistema de generación de energía eléctrica a partir de una fuerza de empuje aerostático” "System for the generation of electrical energy from an aerostatic push force"
Sector técnico de la invención Technical area of the invention
La invención se refiere a un sistema de generación de energía eléctrica a partir de una fuerza de empuje aerostático. Antecedentes de la invención The invention relates to a system for generating electrical energy from an aerostatic thrust force. Background of the invention
Es previsible que los compromisos internacionales en materia de reducción de gases de efecto invernadero establezcan, y hagan efectivos, imperativos cada vez más restrictivos respecto al alcance de la producción eléctrica a partir de combustibles fósiles, lo que redundará en una mayor inversión en energías renovables, aquellas que no producen efectos adversos sobre la atmósfera ni el medio ambiente. It is foreseeable that international commitments on the reduction of greenhouse gases will establish, and make effective, increasingly restrictive imperatives regarding the scope of electricity production from fossil fuels, which will result in greater investment in renewable energies, those that do not produce adverse effects on the atmosphere or the environment.
La demanda intensiva de electricidad producto de la actividad industrial, entre otros criterios particulares, impone medios masivos de producción eléctrica, como la que ofrecen las centrales térmicas, que puedan garantizar el suministro de potencia de manera continua y sostenida. Esta circunstancia, aunada a la disponibilidad intermitente de energía extraíble de los medios naturales, limita las posibilidades de cobertura de la demanda mediante fuentes renovables. La incapacidad de almacenar la electricidad producida a la escala requerida de un modo viable económicamente presenta asimismo un desafío importante, que tiene una incidencia económica que se explica por el desajuste de la oferta con la demanda. Ciertas tecnologías son capaces de atajar esa limitante, como es el caso de un número de plantas hidroeléctricas con capacidad de operar de manera reversible, turbinando (y por tanto generando electricidad) en horas de demanda eléctrica, y consumiendo electricidad para bombear el agua previamente turbinada durante el horario nocturno, cuando la baja o nula demanda supone costos de electricidad proporcionalmente bajos, o acaso inexistentes. El bombeo de agua equivale a dotarse de energía potencial con un mayor gasto neto de energía, que sin embargo es a un costo marginal, mientras que se reserva el agua para producir electricidad en los horarios en que la demanda, y por lo tanto el precio del kWh, es más alta. The intensive demand for electricity as a result of industrial activity, among other particular criteria, imposes massive means of electricity production, such as that offered by thermal power plants, which can guarantee the supply of power in a continuous and sustained manner. This circumstance, together with the intermittent availability of extractable energy from natural environments, limits the possibilities of covering the demand through renewable sources. The inability to store the electricity produced at the required scale in an economically viable way also presents a significant challenge, which has an economic impact that is explained by the mismatch of supply with demand. Certain technologies are capable of tackling this limitation, as is the case of a number of hydroelectric plants with the capacity to operate reversibly, turbine (and therefore generating electricity) in hours of electricity demand, and consuming electricity to pump the previously turbine water. during night hours, when low or no demand implies proportionally low or non-existent electricity costs. Pumping water is equivalent to providing potential energy with a higher net cost of energy, which however is at a marginal cost, while water is reserved to produce electricity at times when demand, and therefore the price of kWh, is highest.
La solicitud de patente WO2015027113 A1 se refiere a un sistema y un método para almacenar energía potencial, capaz de generar energía eléctrica a partir de la fuerza de gravedad, que comprende un pistón deslizable en el interior de un cilindro hueco, cuyas paredes definen un volumen interno que contiene un líquido, una junta de sellado dispuesta entre el pistón y las paredes del cilindro, y un conducto de líquido en comunicación con el cilindro. El pistón divide el volumen interior en una primera cámara superior y una segunda cámara inferior, estando ambas cámaras intercomunicadas a través del conducto. El sistema comprende además una bomba/turbina reversible acoplada operativamente en el conducto de líquido para accionar un motor/generador reversible, y válvulas de control. El pistón es susceptible de moverse dentro del cilindro entre una posición elevada a una posición inferior. Cuando el pistón se encuentra en la posición inferior, la turbina deja de funcionar de modo que la energía generada es usada para accionar el motor de la bomba que a su vez impulsa el líquido a través del conducto desde la cámara superior hacia la cámara inferior, aumentando así la presión en la cámara inferior bajo el pistón. La diferencia de presión provoca la elevación del pistón hasta alcanzar la posición elevada, almacenándose energía potencial en el sistema. A continuación, la bomba deja de funcionar de manera que la energía potencial almacenada permite el descenso del pistón, cuyo peso impulsa el líquido hacia el conducto desde la cámara inferior hacia la cámara superior de modo que el líquido fluye a través de la turbina accionando así el generador para producir energía eléctrica, que puede ser utilizada en una central eléctrica. Este sistema puede ser usado, por ejemplo, para almacenar energía potencial que haya sido generada durante las horas de menor demanda de consumo eléctrico. Patent application WO2015027113 A1 refers to a system and a method for storing potential energy, capable of generating electrical energy from the force of gravity, which comprises a sliding piston inside a hollow cylinder, whose walls define a volume internal containing a liquid, a sealing gasket arranged between the piston and the cylinder walls, and a liquid conduit in communication with the cylinder. The piston divides the interior volume into a first upper chamber and a second lower chamber, both chambers being interconnected through the conduit. The system further comprises a reversible pump / turbine operatively coupled in the liquid conduit to drive a reversible motor / generator, and control valves. The piston is capable of moving within the cylinder between a raised position to a lower position. When the piston is in the lower position, the turbine stops working so that the generated energy is used to drive the pump motor which in turn drives the liquid through the conduit from the upper chamber to the lower chamber, thus increasing the pressure in the lower chamber under the piston. The pressure difference causes the piston to rise to the raised position, storing potential energy in the system. The pump then stops working so that the potential energy stored allows the piston to descend, the weight of which drives the liquid into the conduit from the lower chamber to the upper chamber so that the liquid flows through the turbine thus driving the generator to produce electrical energy, which can be used in a power plant. This system can be used, for example, to store potential energy that has been generated during the hours of less demand for electricity consumption.
Sin embargo, se trata de un sistema provisto de una bomba/turbina reversible, análogo al de una planta hidroeléctrica reversible, que requiere electricidad para accionar la bomba para elevar el pistón en modo de recuperar energía potencial, siendo la bomba la misma turbina con rotación inversa. Por tanto, la eficiencia global del ciclo es negativa ya que se extrae menos energía de la que se suministra, aunque por otra parte se obtiene rentabilidad económica al alimentarse con el excedente de energía y producir en horario de alta demanda, cuando el precio del kWh es mayor. However, it is a system equipped with a reversible pump / turbine, analogous to that of a reversible hydroelectric plant, which requires electricity to drive the pump to raise the piston in order to recover potential energy, the pump being the same turbine with rotation reverse. Therefore, the overall efficiency of the cycle is negative since less energy is extracted from the one that is supplied, although on the other hand, economic profitability is obtained by feeding itself with the surplus of energy and producing during high demand times, when the price per kWh is higher.
En la actualidad, la necesidad de encontrar soluciones que compatibilicen los intereses económicos y ecológicos afecta a la cadena entera del sistema eléctrico, desde la tecnología de generación eléctrica hasta el consumo eficiente. Currently, the need to find solutions that make economic and ecological interests compatible affects the entire chain of the electricity system, from electricity generation technology to efficient consumption.
Por tanto, sería deseable disponer de un sistema de generación de energía eléctrica a partir de energía potencial, que permita generar electricidad en modo inmediato y continuo, y que garantice en todo momento una eficiencia global del ciclo positiva, esto es con un nulo o insignificante aporte de energía eléctrica para restaurar la energía potencial cedida. Therefore, it would be desirable to have a system for generating electrical energy from potential energy, which allows generating electricity in an immediate and continuous mode, and which guarantees at all times a global efficiency of the positive cycle, that is, with zero or negligible contribution of electrical energy to restore the potential energy transferred.
Asimismo, es de interés que la solución pueda implementarse de una forma estructuralmente sencilla, economizando el coste energético y reduciendo los costes de explotación. Likewise, it is of interest that the solution can be implemented in a structurally simple way, saving energy costs and reducing operating costs.
Explicación de la invención Explanation of the invention
Con objeto de aportar una solución a los problemas planteados, se da a conocer un sistema de generación de energía eléctrica a partir de una fuerza de empuje aerostático, caracterizado porque comprende al menos una unidad generadora de electricidad que comprende In order to provide a solution to the problems raised, a system for generating electrical energy from an aerostatic pushing force is disclosed, characterized in that it comprises at least one electricity generating unit comprising
- un conducto vertical estanco dispuesto soterrado bajo el nivel de la corteza terrestre, de modo que contiene en su interior un volumen de aire a presión atmosférica; - a vertical watertight duct arranged underground under the level of the earth's crust, so that it contains a volume of air at atmospheric pressure;
- un aeróstato alojado en el interior del conducto vertical configurado con capacidad para desplazarse con un movimiento alternativo entre una posición de elevación y una posición de descenso del conducto vertical, estando el aeróstato configurado por una carcasa que comprende - an aerostat housed inside the vertical conduit configured with the ability to move with an alternative movement between a lifting position and a lowering position of the vertical conduit, the aerostat being configured by a housing comprising
- al menos una cámara hueca que alberga en su interior al menos un compartimento de gas que confina en su interior un volumen de un gas de sustentación con una densidad menor a la densidad del aire a presión atmosférica, y - al menos un compartimento de aire para la carga de un volumen de aire, preferentemente a la presión atmosférica, configurado con capacidad de comprimir parcialmente el menos un compartimento de gas para procurar un aumento de la densidad del gas de sustentación; - at least one hollow chamber that houses in its interior at least one gas compartment that confines in its interior a volume of a supporting gas with a density less than the density of air at atmospheric pressure, and - at least one air compartment for charging a volume of air, preferably at atmospheric pressure, configured with the capacity to partially compress the least one gas compartment to achieve an increase in the density of the supporting gas;
- unos medios de carga configurados para inyectar un volumen de aire en el interior del compartimento de aire del aeróstato a través de una boca de carga, cuando dicho aeróstato se encuentra en la posición de elevación, lo que procura un movimiento descendente del aeróstato hacia su posición de descenso por efecto de la fuerza de gravedad; - Loading means configured to inject a volume of air into the air compartment of the aerostat through a loading mouth, when said aerostat is in the lifting position, which ensures a downward movement of the aerostat towards its descent position due to the force of gravity;
- unos medios de descarga configurados para evacuar el volumen de aire contenido en el compartimento de aire del aeróstato a través de una boca de descarga, cuando dicho aeróstato se encuentra en la posición de descenso, lo que procura un movimiento ascendente del aeróstato hacia su posición de elevación, por efecto de una fuerza de empuje aerostático capaz de contrarrestar la fuerza de la gravedad; - discharge means configured to evacuate the volume of air contained in the air compartment of the aerostat through a discharge mouth, when said aerostat is in the lowering position, which provides an upward movement of the aerostat towards its position of elevation, due to the effect of an aerostatic thrust force capable of counteracting the force of gravity;
- al menos un conducto de recirculación en comunicación con el conducto vertical, para procurar la recirculación del volumen de aire desplazado por el aeróstato durante su movimiento alternativo de elevación y descenso; y- at least one recirculation duct in communication with the vertical duct, to ensure the recirculation of the volume of air displaced by the aerostat during its reciprocating raising and lowering movement; Y
- unos medios de conversión energética asociados operativamente con el aeróstato y configurados para convertir la energía potencial resultante del movimiento de elevación del aeróstato en energía eléctrica. - energy conversion means operatively associated with the aerostat and configured to convert the potential energy resulting from the lifting movement of the aerostat into electrical energy.
De este modo, se obtiene un sistema que permite generar electricidad en modo inmediato y continuo, garantizando en todo momento una eficiencia global del ciclo positiva, esto es con un nulo o insignificante aporte de energía eléctrica para restaurar la energía potencial cedida, a diferencia de los sistemas de generación de energía eléctrica conocidos en el estado de la técnica que requerían almacenar la energía potencial para su uso en horas de mayores picos de demanda de electricidad. In this way, a system is obtained that allows to generate electricity in an immediate and continuous mode, guaranteeing at all times an overall efficiency of the positive cycle, that is, with a null or insignificant contribution of electrical energy to restore the potential energy transferred, unlike the electrical power generation systems known in the state of the art that required to store potential energy for use in hours of higher electricity demand peaks.
En efecto, para procurar la elevación del aeróstato se aprovecha la fuerza de sustentación aerostática con el propósito de generar electricidad, mientras que para procurar el descenso del aeróstato, sin tener que aplicar una fuerza de tracción, se aplica aire (que es más denso que el gas de sustentación) dentro del compartimento de aire, de modo que permite contraer las cámaras aerostáticas (en aproximadamente un 40% con respecto al volumen de gas original). Por tanto, el peso debido al aumento de la densidad del gas más el peso del aire contenido dentro del compartimento de aire, así como el peso del aire desplazado hacia los compartimentos que comprimen las cámaras aerostáticas, permite compensar la fuerza de sustentación, de modo que la fuerza gravitacional neta del aeróstato resulta del peso del material que lo conforma, haciendo así descender el aeróstato. In effect, to procure the lifting of the aerostat, the aerostatic lift force is used for the purpose of generating electricity, while to procure the descent of the aerostat, without having to apply a force of traction, air (which is denser than the supporting gas) is applied inside the air compartment, so that it allows the aerostatic chambers to contract (by approximately 40% of the original gas volume). Therefore, the weight due to the increase in the density of the gas plus the weight of the air contained within the air compartment, as well as the weight of the air displaced towards the compartments that compress the aerostatic chambers, makes it possible to compensate the lift force, so that the net gravitational force of the aerostat results from the weight of the material that makes it up, thus lowering the aerostat.
Además, el hecho de que el conducto vertical está soterrado permite al sistema operar en condiciones controladas y continuamente, sin que la meteorología suponga un condicionante y sin generar asimismo disrupción sobre el entorno. Furthermore, the fact that the vertical duct is buried allows the system to operate under controlled conditions and continuously, without the weather being a determining factor and without also generating disruption to the environment.
Asimismo, el sistema de la invención se puede implementar de una forma estructurante sencilla, lo cual permite economizar el coste energético y reducir los costes de explotación. Likewise, the system of the invention can be implemented in a simple structuring way, which makes it possible to save energy costs and reduce operating costs.
Preferentemente, el gas de sustentación contenido en el al menos compartimento de gas es hidrógeno, aunque como alternativa podría utilizarse helio o una combinación de ambos gases. Cabe destacar que el empleo de hidrógeno tiene la ventaja de que es menos denso que el helio y además es más abundante en la tierra. Preferably, the support gas contained in the at least gas compartment is hydrogen, although as an alternative helium or a combination of both gases could be used. It should be noted that the use of hydrogen has the advantage that it is less dense than helium and is also more abundant on earth.
De acuerdo con otra característica de la invención, los medios de conversión energética están configurados por al menos un cabrestante dispuesto por debajo de la parte inferior del conducto vertical, provisto de un tirante enrollado al eje giratorio del cabrestante y acoplado por su extremo libre a la parte inferior de la carcasa del aeróstato, de modo que el cabrestante es capaz de recibir la fuerza de tracción del tirante generada por la fuerza de empuje aerostático del aeróstato vacío durante su movimiento ascendente, y estando un eje motriz del cabrestante conectado mecánicamente a un generador de energía eléctrica, a través de un tren de engranajes que actúa como un reductor de velocidad, para generar electricidad en cada movimiento de ascenso del aeróstato. According to another characteristic of the invention, the energy conversion means are configured by at least one winch arranged below the lower part of the vertical duct, provided with a tie rod wound to the rotating shaft of the winch and coupled at its free end to the lower part of the aerostat housing, so that the winch is able to receive the traction force of the tie rod generated by the aerostat thrust force of the empty aerostat during its upward movement, and a driving shaft of the winch being mechanically connected to a generator of electrical energy, through a gear train that acts as a speed reducer, to generate electricity in each upward movement of the aerostat.
Conforme a otra característica de la invención, los medios de carga del aire están conectados a una toma exterior en la que se encuentra al menos un ventilador para la inyección de un flujo de aire atmosférico dentro del compartimento de aire, y estando los medios de descarga conectados a su vez a dicha toma exterior de modo que el ventilador es susceptible de actuar en sentido inverso de giro para aspirar el volumen de aire inyectado en el compartimento de aire. According to another characteristic of the invention, the air charging means are connected to an external intake in which there is at least one fan for injecting an atmospheric air flow into the air compartment, and the discharge means being connected in turn to said external intake so that the fan is capable of acting in the reverse direction of rotation to suck the volume of air injected into the air compartment.
Ventajosamente, los medios de carga del aire están configurados por una conducción de alimentación conectada a la toma exterior para la inyección de aire, provista de una válvula de carga antirretorno situada sobre la parte superior del conducto vertical, y adaptada para acoplarse a la boca de carga del compartimento de aire cuando el aeróstato se encuentra en su posición de elevación; y los medios de descarga del aire están configurados por una conducción de evacuación conectada a la toma exterior para la evacuación de aire, provista de una válvula de descarga antirretorno situada bajo la parte inferior del conducto vertical, y adaptada para acoplarse a la boca de salida del compartimento de aire cuando el aeróstato se encuentra en su posición de descenso, estando la conducción de evacuación dispuesta con un tramo de retorno que discurre a través del interior de uno de los conductos de recirculación para su conexión con la toma exterior. Asimismo, ambas bocas de carga y descarga del compartimento de aire disponen de respectivas válvulas antirretorno. Advantageously, the air charging means are configured by a supply conduit connected to the external intake for the injection of air, provided with a non-return charging valve located on the upper part of the vertical duct, and adapted to be coupled to the mouth of loading of the air compartment when the balloon is in its raised position; and the air discharge means are configured by an evacuation conduit connected to the external intake for air evacuation, provided with a non-return discharge valve located under the lower part of the vertical duct, and adapted to be coupled to the outlet mouth of the air compartment when the aerostat is in its lowering position, the evacuation conduit being arranged with a return section that runs through the interior of one of the recirculation conduits for its connection with the external intake. Likewise, both air compartment loading and unloading ports have respective non-return valves.
Según una realización preferida de la invención, la carcasa del aeróstato está configurada por un compartimento de aire central de configuración preferentemente cilindrica y múltiples cámaras de configuración paralelepipédica, cada una alojando en su interior un compartimento de gas, y estando dichas cámaras fijadas a la pared exterior del compartimento de aire sobresaliendo a modo de alas verticales, preferentemente cuatro cámaras formando una cruz. According to a preferred embodiment of the invention, the housing of the aerostat is configured by a central air compartment of preferably cylindrical configuration and multiple chambers of parallelepipedic configuration, each one housing a gas compartment inside, and said chambers being fixed to the wall. exterior of the air compartment protruding like vertical wings, preferably four chambers forming a cross.
Según otra característica de la invención, cada cámara periférica comprende una estructura rígida a modo de rejilla y una envolvente exterior fabricada de un tejido, preferentemente de lona, fijada a la estructura rígida. According to another characteristic of the invention, each peripheral chamber comprises a rigid grid-like structure and an outer envelope made of a fabric, preferably canvas, fixed to the rigid structure.
Ventajosamente, el compartimento de aire central está dispuesto de modo que su parte inferior está separada una distancia predeterminada por encima de su boca de descarga, lo que define un espacio en comunicación con una abertura inferior prevista en cada cámara periférica, de modo que el aire inyectado dentro del compartimento de aire es capaz de penetrar en cada cámara a través su respectiva abertura y comprimir parcialmente el respectivo compartimento de gas, lo que procura un aumento de la densidad del gas, y por ende un aumento de su peso específico que, sumado al peso del volumen de aire contenido dentro del compartimento de aire y del volumen de aire desplazado dentro de las cámaras, permite compensar la fuerza de sustentación del aeróstato. Advantageously, the central air compartment is arranged so that its lower part is spaced a predetermined distance above its discharge mouth, which defines a space in communication with a lower opening provided in each peripheral chamber, so that the air injected into the air compartment, it is capable of penetrating each chamber through its respective opening and partially compressing the respective gas compartment, which provides an increase in the density of the gas, and therefore an increase in its specific weight which, added The weight of the volume of air contained within the air compartment and the volume of air displaced within the chambers, makes it possible to compensate for the lift force of the aerostat.
Preferentemente, cada cámara está fijada por su lado inferior a varios tirantes enrollados a sendos cabrestantes de los medios de conversión energética. Preferably, each chamber is fixed on its underside to several tie rods wound to respective capstans of the energy conversion means.
Conforme a otra característica de la invención, el conducto vertical comprende una cavidad central longitudinal excavada en la corteza terrestre, configurada para el alojamiento del aeróstato; y el conducto de recirculación comprende múltiples cavidades laterales, preferentemente cuatro, excavadas en la corteza terrestre, dispuestas en torno a la cavidad central, y estando dicho conducto vertical y dicho conducto de recirculación sellados por sus extremos superior e inferior mediante sendas tapas superior e inferior de configuración abovedada de modo que definen sendos espacios que procuran un circuito cerrado de recirculación del aire desplazado por el movimiento alternativo del aeróstato. According to another characteristic of the invention, the vertical duct comprises a central longitudinal cavity excavated in the earth's crust, configured to house the aerostat; and the recirculation conduit comprises multiple lateral cavities, preferably four, excavated in the earth's crust, arranged around the central cavity, and said vertical conduit and said recirculation conduit being sealed at their upper and lower ends by means of upper and lower covers. with a domed configuration so that they define two separate spaces that provide a closed recirculation circuit for the air displaced by the reciprocating movement of the aerostat.
Ventajosamente, la tapa superior comprende un orificio para el paso de la conducción de alimentación y de la conducción de evacuación del compartimento de aire, y unos deflectores estratégicamente posicionados en su parte inferior para direccionar el paso del aire de recirculación. Advantageously, the upper cover comprises an orifice for the passage of the supply conduit and the evacuation conduit of the air compartment, and some baffles strategically positioned in its lower part to direct the passage of the recirculation air.
Adicionalmente, la tapa inferior comprende una pluralidad de orificios para el paso de los respectivos tirantes de los cabrestantes. Según otra característica de la invención, el aeróstato comprende unos rodamientos previstos para deslizar sobre unos railes longitudinales complementarios dispuestos en la pared interior del conducto vertical, con el propósito de mantener la estabilidad del aeróstato durante su movimiento alternativo a lo largo del conducto vertical. Additionally, the lower cover comprises a plurality of holes for the passage of the respective tie rods of the capstans. According to another characteristic of the invention, the balloon comprises bearings designed to slide on complementary longitudinal rails arranged on the interior wall of the vertical conduit, in order to maintain the stability of the balloon during its reciprocating movement along the vertical conduit.
Ventajosamente, el sistema puede comprender múltiples unidades generadoras dispuestas de modo que los respectivos aeróstatos están sincronizados según un orden secuencial de carga, con el propósito de multiplicar la capacidad productiva y a su vez generar continuidad en el suministro eléctrico. Advantageously, the system can comprise multiple generating units arranged in such a way that the respective aerostats are synchronized according to a sequential load order, in order to multiply the productive capacity and in turn generate continuity in the electrical supply.
Breve descripción de los dibujos Brief description of the drawings
En los dibujos adjuntos se ilustra, a título de ejemplo no limitativo, un modo de realización preferido del sistema de generación de energía eléctrica a partir de una fuerza de empuje aerostático de la invención. En dichos dibujos: The attached drawings illustrate, by way of non-limiting example, a preferred embodiment of the system for generating electrical energy from an aerostatic force of the invention. In these drawings:
- la Fig. 1 es una vista esquemática del sistema según una realización preferida de la invención; - Fig. 1 is a schematic view of the system according to a preferred embodiment of the invention;
- la Fig. 2 es una vista en perspectiva del aeróstato según una realización preferida, provisto de un compartimento de aire central y cuatro compartimentos del gas de sustentación dispuestos en forma de cruz, mostrando la estructura rígida a modo de rejilla de las cámaras: Fig. 2 is a perspective view of the aerostat according to a preferred embodiment, provided with a central air compartment and four supporting gas compartments arranged in a cross shape, showing the rigid grid-like structure of the chambers:
- la Fig. 3 es una vista en perspectiva del aeróstato de la Fig. 2, desprovisto de la estructura rígida de las cámaras, para mostrar con mayor claridad los compartimentos de gas y el compartimento del aire; Fig. 3 is a perspective view of the aerostat of Fig. 2, devoid of the rigid structure of the chambers, to show more clearly the gas compartments and the air compartment;
- la Fig. 4 es una vista ampliada de la Fig. 3 mostrando la abertura inferior de las cámaras representando mediante flechas la entrada de aire en su interior;- Fig. 4 is an enlarged view of Fig. 3 showing the lower opening of the chambers, representing by arrows the air inlet inside them;
- las Figs. 5a y 5b son vistas en perspectiva de una cámara sin representar su estructura rígida por motivos de claridad, mostrando esquemáticamente el compartimento de gas alojado en su interior, en líneas discontinuas, y mostrando respectivamente una primera posición del compartimento de gas expandido ocupando todo el volumen de la cámara, y una segunda posición con el compartimento de gas parcialmente comprimido; - Figs. 5a and 5b are perspective views of a chamber without representing its rigid structure for clarity reasons, schematically showing the gas compartment housed inside, in broken lines, and respectively showing a first position of the expanded gas compartment occupying the entire volume of the chamber, and a second position with the partially compressed gas compartment;
- la Fig. 6 es una vista parcial en perspectiva de la parte superior del aeróstato que muestra la boca de carga de aire y mostrando la envolvente exterior fijada a la estructura rígida de las cámaras; - Fig. 6 is a partial perspective view of the upper part of the aerostat showing the air loading mouth and showing the outer casing fixed to the rigid structure of the chambers;
- la Fig. 7 es una vista parcial en perspectiva de la parte inferior del aeróstato que muestra la boca de descarga de aire; Fig. 7 is a partial perspective view of the lower part of the aerostat showing the air discharge mouth;
- la Fig. 8 es una vista esquemática en perspectiva del aeróstato que muestra sus dimensiones para el cálculo de su volumen; Fig. 8 is a schematic perspective view of the balloon showing its dimensions for calculating its volume;
- la Fig. 9 es una vista esquemática en perspectiva superior del sistema soterrado según un corte cilindrico de la corteza terrestre, mostrando la tapa superior y las conducciones de alimentación y evacuación del compartimento de aire: - Fig. 9 is a schematic top perspective view of the underground system according to a cylindrical section of the earth's crust, showing the upper cover and the supply and evacuation pipes of the air compartment:
- la Fig. 10 es una vista en perspectiva de la tapa superior, mostrando su cara interior; Fig. 10 is a perspective view of the upper cover, showing its inner face;
- la Fig. 11 es una vista esquemática en perspectiva de la parte superior del sistema según la Fig. 9, visto sin la tapa superior; Fig. 11 is a schematic perspective view of the upper part of the system according to Fig. 9, seen without the upper cover;
- la Fig. 12 es una vista en planta superior del conducto vertical y los conductos de recirculación de aire excavados en la corteza terrestre; Fig. 12 is a top plan view of the vertical duct and the air recirculation ducts excavated in the earth's crust;
- la Fig. 13 es una vista esquemática en perspectiva inferior del sistema soterrado según un corte cilindrico de la corteza terrestre, visto sin la tapa inferior; Fig. 13 is a schematic bottom perspective view of the buried system according to a cylindrical section of the earth's crust, seen without the bottom cover;
- la Fig. 14 es una vista en planta inferior de la tapa inferior, mostrando un detalle de uno de los orificios de paso para los tirantes de los cabrestantes; Fig. 14 is a bottom plan view of the lower cover, showing a detail of one of the through holes for the tie rods of the capstans;
- las Figs. 15a y 15b son vistas en perspectiva del sistema, mostrando el aeróstato en su posición de descenso y en su posición de elevación, respectivamente; - Figs. 15a and 15b are perspective views of the system, showing the balloon in its lowered position and in its raised position, respectively;
- la Fig. 16 es una vista ampliada en perspectiva de la cavidad central del conducto vertical para el alojamiento del aeróstato, mostrando los raíles longitudinales para el deslizamiento de los rodamientos del aeróstato; Fig. 16 is an enlarged perspective view of the central cavity of the vertical conduit for housing the aerostat, showing the longitudinal rails for the sliding of the bearings of the aerostat;
- la Fig. 17 es una vista ampliada en planta de una de las cámaras del aeróstato, mostrando un detalle de los rodamientos; Fig. 17 is an enlarged plan view of one of the chambers of the aerostat, showing a detail of the bearings;
- las Figs. 18a y 18b son respectivamente vistas esquemáticas de un cuarto de potencia de los medios de conversión energética conformado por al menos un cabrestante, un tren de engranajes y un generador de energía eléctrica, dispuestos en la parte inferior del conducto vertical, que muestran mediante flechas el sentido de la fuerza sobre el tirante en su funcionamiento en modo de generación de energía durante el ascenso del aeróstato y en modo recuperación de la energía potencial durante el descenso del aeróstato, respectivamente; y - Figs. 18a and 18b are respectively schematic views of a power room of the energy conversion means made up of at least one winch, a gear train and an electric power generator, arranged in the lower part of the vertical duct, showing by arrows the sense of force on the tie rod in its operation in mode of power generation during the ascent of the aerostat and in recovery mode of the potential energy during the descent of the aerostat, respectively; Y
- la Fig. 19 es una vista esquemática de una secuencia operativa de un conjunto de seis unidades generadoras para procurar continuidad de suministro de potencia. - Fig. 19 is a schematic view of an operating sequence of a set of six generating units to ensure continuity of power supply.
Descripción detallada de la invención Detailed description of the invention
A continuación, se describe un sistema de generación de energía eléctrica a partir de una fuerza de empuje aerostático según una realización preferida de la invención. Next, a system for generating electrical energy from an aerostatic thrust force according to a preferred embodiment of the invention is described.
El sistema 1 puede comprender una o múltiples unidades generadoras de electricidad. Por motivos de claridad, en las figuras 1 a 18 se ha representado una sola unidad generadora de electricidad. System 1 may comprise one or multiple electricity generating units. For the sake of clarity, a single electricity generating unit is shown in Figures 1 to 18.
Según esta realización, la unidad generadora de electricidad comprende un conducto vertical 2 estanco dispuesto soterrado bajo el nivel de la corteza terrestre T (ver figura 1), de modo que contiene en su interior un volumen de aire a presión atmosférica; y un aeróstato 3 alojado en el interior del conducto vertical 2 configurado con capacidad para desplazarse con un movimiento alternativo entre una posición de elevación A (ver figuras 1 y 15b) y una posición de descenso B del conducto vertical 2 (ver figuras 1 y 15a). According to this embodiment, the electricity generating unit comprises a watertight vertical conduit 2 arranged underground below the level of the earth's crust T (see figure 1), so that it contains within it a volume of air at atmospheric pressure; and an aerostat 3 housed inside the vertical duct 2 configured with the ability to move with a reciprocating movement between a lifting position A (see figures 1 and 15b) and a lowering position B of the vertical duct 2 (see figures 1 and 15a ).
Tal como se puede apreciar en las figuras 2 a 8, el aeróstato 3 está configurado por una carcasa que comprende varias cámaras 4 huecas que albergan respectivamente en su interior un compartimento de gas 5 que confina en su interior un volumen de un gas de sustentación con una densidad menor a la densidad del aire a presión atmosférica; y un compartimento de aire 6 para la carga de un volumen de aire a la presión atmosférica, configurado con capacidad de comprimir parcialmente el menos un compartimento de gas 5 para procurar un aumento de la densidad del gas de sustentación, como se explicará más adelante. As can be seen in Figures 2 to 8, the aerostat 3 is configured by a housing comprising several hollow chambers 4 that respectively house inside a gas compartment 5 that confines inside a volume of a supporting gas with a density less than the density of air at atmospheric pressure; and an air compartment 6 for charging a volume of air to atmospheric pressure, configured with the ability to partially compress the least one gas compartment 5 to achieve an increase in the density of the supporting gas, as will be explained later.
El compartimento de aire 6 está provisto de una boca de carga 6a para la entrada de aire dispuesta en su parte superior y una boca de descarga 6b para la evacuación del aire (ver figura 3). Asimismo, ambas bocas de carga 6a y descarga 6b están provistas de respectivas válvulas antirretorno (no mostradas). The air compartment 6 is provided with a loading port 6a for the air inlet arranged in its upper part and a discharge mouth 6b for evacuating the air (see figure 3). Also, both inlets for loading 6a and discharge 6b are provided with respective non-return valves (not shown).
En esta realización, el gas de sustentación contenido en los compartimentos de gas es hidrógeno, aunque como alternativa podría utilizarse helio o una combinación de ambos gases. In this embodiment, the supporting gas contained in the gas compartments is hydrogen, although helium or a combination of both gases could alternatively be used.
En la realización mostrada, la carcasa del aeróstato 3 está configurada por un compartimento de aire 6 central de configuración cilindrica y cuatro cámaras 4 de configuración paralelepipédica, cada una alojando en su interior un compartimento de gas 5. Dichas cámaras 4 están fijadas a la pared exterior del compartimento de aire 6 sobresaliendo a modo de alas verticales, formando una cruz visto en planta. Además, cada cámara 4 periférica comprende una estructura rígida 4a (ver figura 2) a modo de rejilla y una envolvente exterior 4b (ver figura 6) fabricada de un tejido, preferentemente de lona, fijada a la estructura rígida 4a. In the embodiment shown, the housing of the aerostat 3 is configured by a central air compartment 6 of cylindrical configuration and four chambers 4 of parallelepipedic configuration, each one housing inside a gas compartment 5. Said chambers 4 are fixed to the wall. exterior of the air compartment 6 protruding like vertical wings, forming a cross seen in plan. Furthermore, each peripheral chamber 4 comprises a rigid structure 4a (see figure 2) in the form of a grid and an outer envelope 4b (see figure 6) made of a fabric, preferably canvas, fixed to the rigid structure 4a.
En la figura 8 se ha representado las dimensiones del aeróstato 3 para el cálculo de su volumen, como se explicará más adelante en un ejemplo de caso práctico. Dichas dimensiones son: Figure 8 shows the dimensions of the aerostat 3 for calculating its volume, as will be explained later in an example of a practical case. These dimensions are:
- a: alcance, esto es la medida entre los extremos de dos cámaras 4 opuestas que conforman la forma de cruz; - a: scope, this is the measurement between the ends of two opposite chambers 4 that make up the cross shape;
- b: profundidad o atura; y - b: depth or height; Y
- c: anchura o grosor de cada cámara 4. - c: width or thickness of each chamber 4.
Como se puede observar en las figuras 3 y 4, el compartimento de aire 6 central está dispuesto de modo que su parte inferior está separada una distancia predeterminada por encima de su boca de descarga 6b, lo que define un espacio en comunicación con una abertura 21 inferior prevista en cada cámara 4 periférica, de modo que el aire inyectado dentro del compartimento de aire 6 es capaz de penetrar en cada cámara 4 a través su respectiva abertura 21 y comprimir parcialmente el respectivo compartimento de gas 5, lo que procura un aumento de la densidad del gas, y por ende un aumento de su peso específico que, sumado al peso del volumen de aire contenido dentro del compartimento de aire 6 y del volumen de aire desplazado (en un 40% el volumen original de gas) dentro de las cámaras 4, permite compensar la fuerza de sustentación del aeróstato. As can be seen in Figures 3 and 4, the central air compartment 6 is arranged so that its lower part is spaced a predetermined distance above its discharge mouth 6b, which defines a space in communication with an opening 21 provided in each peripheral chamber 4, so that the air injected into the air compartment 6 is able to penetrate into each chamber 4 through its respective opening 21 and partially compress the respective gas compartment 5, which provides an increase in the density of the gas, and therefore an increase in its specific weight which, added to the weight of the volume of air contained within the air compartment 6 and the volume of air displaced (40% of the original volume of gas) inside the chambers 4, makes it possible to compensate for the lift force of the aerostat.
En la figura 4 se puede apreciar la abertura 21 inferior de las cámaras 4 que permite el paso del aire representado mediante flechas para comprimir los compartimentos de gas 5. Figure 4 shows the lower opening 21 of the chambers 4 that allows the passage of air represented by arrows to compress the gas compartments 5.
Las figuras 5a y 5b muestran una cámara 4 (sin representar su estructura rígida por motivos de claridad) mostrando esquemáticamente el compartimento de gas 5 alojado en su interior, ilustrado en líneas discontinuas, y mostrando respectivamente una primera posición del compartimento de gas 5 expandido ocupando todo el volumen de la cámara 4, y una segunda posición con el compartimento de gas 5 parcialmente comprimido debido a la entrada de aire a través de la abertura 21 inferior de la cámara a medida que se va llenando el compartimento de aire 6. Figures 5a and 5b show a chamber 4 (without representing its rigid structure for reasons of clarity) schematically showing the gas compartment 5 housed inside, illustrated in broken lines, and respectively showing a first position of the expanded gas compartment 5 occupying the entire volume of the chamber 4, and a second position with the gas compartment 5 partially compressed due to the entry of air through the lower opening 21 of the chamber as the air compartment 6 is filled.
Por otra parte, haciendo referencia a las figuras 1 y 9 a 13, el sistema 1 comprende unos medios de carga 7 conectados a una toma exterior 19 en la que se encuentra al menos un ventilador 20 para la inyección de un flujo de aire atmosférico dentro del compartimento de aire 6, y unos medios de descarga 8 conectados a su vez a dicha toma exterior 19 de modo que el ventilador 20 es susceptible de actuar en sentido inverso de giro para aspirar el volumen de aire inyectado en el compartimento de aire 6. On the other hand, referring to Figures 1 and 9 to 13, the system 1 comprises charging means 7 connected to an external outlet 19 in which there is at least one fan 20 for injecting a flow of atmospheric air into of the air compartment 6, and discharge means 8 connected in turn to said external intake 19 so that the fan 20 is capable of acting in the reverse direction of rotation to suck the volume of air injected into the air compartment 6.
En la realización mostrada, los medios de carga 7 están configurados por una conducción de alimentación 15 conectada a la toma exterior 19 para inyección de aire, provista de una válvula de carga 16 antirretorno situada sobre la parte superior del conducto vertical 2, y adaptada para acoplarse a la boca de carga 6a del compartimento de aire 6 (ver figura 6) cuando el aeróstato 3 se encuentra en su posición de elevación A, lo que procura un movimiento descendente del aeróstato 3 hacia su posición de descenso B por efecto de la fuerza de gravedad. Asimismo, los medios de descarga 8 del aire están configurados por una conducción de evacuación 17 conectada a la toma exterior 19 para la evacuación del aire, y provista de una válvula de descarga 18 antirretorno situada bajo la parte inferior del conducto vertical 2, y adaptada para acoplarse a una boca de salida 6b (ver figura 7) del compartimento de aire 6 cuando el aeróstato 3 se encuentra en su posición de descenso B, lo que procura un movimiento ascendente del aeróstato 3 hacia su posición de elevación A, por efecto de una fuerza de empuje aerostático capaz de contrarrestar la fuerza de la gravedad. In the embodiment shown, the charging means 7 are configured by a supply conduit 15 connected to the external intake 19 for air injection, provided with a non-return charging valve 16 located on the upper part of the vertical duct 2, and adapted to be coupled to the loading port 6a of the air compartment 6 (see figure 6) when the balloon 3 is in its lifting position A, which ensures a downward movement of the balloon 3 towards its lowering position B due to the force serious. Likewise, the air discharge means 8 are configured by an evacuation conduit 17 connected to the external intake 19 for evacuating the air, and provided with a non-return discharge valve 18 located under the part bottom of the vertical duct 2, and adapted to be coupled to an outlet 6b (see figure 7) of the air compartment 6 when the balloon 3 is in its lowering position B, which provides an upward movement of the balloon 3 towards its lifting position A, due to the effect of an aerostatic thrust force capable of counteracting the force of gravity.
El sistema además comprende al menos un conducto de recirculación 9 en comunicación con el conducto vertical 2, para procurar la recirculación del volumen de aire desplazado por el aeróstato 3 durante su movimiento alternativo de elevación y descenso, como se detallará a continuación. The system also comprises at least one recirculation duct 9 in communication with the vertical duct 2, to ensure the recirculation of the volume of air displaced by the aerostat 3 during its reciprocating raising and lowering movement, as will be detailed below.
Según la realización mostrada en las figuras 9 a 14, el conducto vertical 2 comprende una cavidad central 22 longitudinal excavada en la corteza terrestre T, configurada para el alojamiento del aeróstato 3; y el conducto de recirculación 9 comprende cuatro cavidades laterales 23 excavadas en la corteza terrestre T, dispuestas en torno la cavidad central 22. Además, dicho conducto vertical 2 y dicho conducto de recirculación 9 están sellados por sus extremos superior e inferior mediante sendas tapas superior 24 e inferior 25 de configuración abovedada a modo de plenum, de modo que definen sendos espacios internos que procuran un circuito cerrado de recirculación del aire desplazado por el movimiento alternativo del aeróstato 3. De este modo, durante el ascenso del aeróstato 3, las cavidades laterales 23 que conforman el conducto de recirculación 9 toman el aire descargado en el espacio interno de la tapa superior 24 y lo descargan en el espacio interno de la tapa inferior 25, e invirtiéndose dicha operación cuando desciende de nuevo el aeróstato 3. According to the embodiment shown in Figures 9 to 14, the vertical duct 2 comprises a central longitudinal cavity 22 excavated in the earth's crust T, configured to house the aerostat 3; and the recirculation duct 9 comprises four lateral cavities 23 excavated in the earth's crust T, arranged around the central cavity 22. Furthermore, said vertical duct 2 and said recirculation duct 9 are sealed at their upper and lower ends by means of upper covers. 24 and lower 25 with a vaulted configuration like a plenum, so that they define two internal spaces that provide a closed recirculation circuit for the air displaced by the reciprocating movement of the aerostat 3. In this way, during the ascent of the aerostat 3, the cavities The sides 23 that make up the recirculation duct 9 take the air discharged into the internal space of the upper cover 24 and discharge it into the internal space of the lower cover 25, and this operation is reversed when the aerostat 3 descends again.
La tapa superior 24 comprende un orificio 26 para el paso de la conducción de alimentación 15 y de la conducción de evacuación 17 del compartimento de aire, y unos deflectores 27 estratégicamente posicionados en su parte inferior para direccionar el paso del aire de recirculación (ver figuras 9 y 10). The upper cover 24 includes an orifice 26 for the passage of the supply conduit 15 and the evacuation conduit 17 of the air compartment, and baffles 27 strategically positioned in its lower part to direct the passage of the recirculation air (see figures 9 and 10).
En la realización mostrada, la conducción de evacuación 17 está dispuesta con un tramo de retorno que discurre a través del interior de una de las cavidades laterales 23 del conducto de recirculación 9 (ver figuras 11 y 13) para su conexión con la toma exterior 19, de modo que el ventilador 20 es susceptible de actuar en sentido inverso de giro para aspirar el volumen de aire inyectado en el compartimento de aire 6. In the embodiment shown, the evacuation conduit 17 is arranged with a return section that runs through the interior of one of the lateral cavities 23 of the recirculation conduit 9 (see Figures 11 and 13) for its connection. with the outer intake 19, so that the fan 20 is capable of acting in the reverse direction of rotation to suck the volume of air injected into the air compartment 6.
Alternativamente, según otra realización (no mostrada), el desalojo del aire puede llevarse a cabo a través de la propia boca de carga 6a, de modo que ambas funciones de carga y descarga de aire se realicen por la parte superior del aeróstato 3, con la incorporación de un ventilador auxiliar fijado al aeróstato que permita extraer el aire a través de la boca superior de carga y descarga. En este caso, se prescinde del tramo de retorno de la conducción de evacuación 17, utilizándose por tanto una sola conducción que realiza ambas funciones de alimentación y evacuación del aire, conectada en comunicación con el ventilador 20 de la toma exterior 19. Esta opción, generaría menor pérdida por tratarse de un camino más corto y más directo para la evacuación del aire. Alternatively, according to another embodiment (not shown), the evacuation of the air can be carried out through the loading mouth 6a itself, so that both air loading and unloading functions are performed by the upper part of the aerostat 3, with the incorporation of an auxiliary fan fixed to the aerostat that allows air to be extracted through the upper loading and unloading mouth. In this case, the return section of the evacuation duct 17 is dispensed with, thus using a single duct that performs both the supply and evacuation functions of the air, connected in communication with the fan 20 of the external intake 19. This option, it would generate less loss because it is a shorter and more direct way to evacuate the air.
El sistema 1 además comprende unos medios de conversión energética 10 configurados para convertir la energía potencial resultante del movimiento de elevación del aeróstato 3 en energía eléctrica. Según se puede apreciar en las figuras 18a y 18b, los medios de conversión energética 10 están configurados por al menos un cabrestante 11 dispuesto por debajo de la parte inferior del conducto vertical 2, provisto de un tirante 12 enrollado al eje giratorio del cabrestante 11 y acoplado por su extremo libre a la parte inferior de la carcasa del aeróstato 3 (ver figuras 15a, 15b). De este modo, el cabrestante 11 es capaz de recibir la fuerza de tracción del tirante 12 generada por la fuerza de empuje aerostático del aeróstato 3 vacío durante su movimiento ascendente. Además, un eje motriz del cabrestante 11 está conectado mecánicamente a un generador de energía eléctrica 13, a través de un tren de engranajes 14 que actúa como un reductor de velocidad, para generar electricidad en cada movimiento de ascenso del aeróstato 3. The system 1 further comprises energy conversion means 10 configured to convert the potential energy resulting from the lifting movement of the aerostat 3 into electrical energy. As can be seen in Figures 18a and 18b, the energy conversion means 10 are configured by at least one winch 11 arranged below the lower part of the vertical duct 2, provided with a tie rod 12 wound to the rotating shaft of the winch 11 and coupled by its free end to the lower part of the housing of the aerostat 3 (see figures 15a, 15b). In this way, the winch 11 is able to receive the traction force of the tie rod 12 generated by the aerostatic thrust force of the empty aerostat 3 during its upward movement. Furthermore, a driving shaft of the winch 11 is mechanically connected to an electric power generator 13, through a gear train 14 that acts as a speed reducer, to generate electricity in each upward movement of the aerostat 3.
En las figuras 15a y 15b se muestran mediante flechas el sentido de la fuerza sobre el tirante 12 en su funcionamiento en modo de generación de energía durante el ascenso del aeróstato 3 y en modo recuperación de la energía potencial durante el descenso del aeróstato 3, respectivamente. Tal como se puede apreciar en las figuras 15a y 15b, cada cámara 4 está fijada por su lado inferior a tres tirantes 12 enrollados a sendos cabrestantes 11 de los medios de conversión energética 10. Para ello, la tapa inferior 25 comprende una pluralidad de orificios 28 para el paso de los respectivos tirantes 12 de los cabrestantes 11. Figures 15a and 15b show by means of arrows the direction of the force on the tie rod 12 in its operation in power generation mode during the ascent of the aerostat 3 and in recovery mode of the potential energy during the descent of the aerostat 3, respectively. . As can be seen in Figures 15a and 15b, each chamber 4 is fixed on its lower side to three tie rods 12 wound to respective capstans 11 of the energy conversion means 10. For this, the lower cover 25 comprises a plurality of holes 28 for the passage of the respective tie rods 12 of the capstans 11.
Por otra parte, haciendo referencia a las figuras 16 y 17, el aeróstato 3 comprende unos rodamientos 29 previstos para deslizar sobre unos railes 30 longitudinales complementarios dispuestos en la pared interior del conducto vertical 2, con el propósito de mantener la estabilidad del aeróstato 3 durante su movimiento alternativo a lo largo del conducto vertical 2. On the other hand, referring to Figures 16 and 17, the balloon 3 comprises bearings 29 designed to slide on complementary longitudinal rails 30 arranged on the inner wall of the vertical duct 2, in order to maintain the stability of the balloon 3 during its reciprocating movement along the vertical duct 2.
Tal como se muestra en la figura 19, el sistema 1 puede operar con múltiples unidades generadoras dispuestas de modo que los respectivos aeróstatos 3 están sincronizados según un orden secuencial de carga, con el propósito de multiplicar la capacidad productiva y a su vez generar continuidad en el suministro eléctrico. Por motivos de claridad, solo se ha representado esquemáticamente los respectivos aeróstatos 3 dentro de su conducto vertical 2 y se ha ilustrado con flechas el sentido ascendente o descendente de cada aeróstato 3. En el ejemplo representado se han empleado seis unidades generadoras, de las cuales cinco operan ascendiendo en modo secuencial y una desciende para recuperar su estado inicial. Cabe destacar que la configuración de la carcasa del aeróstato 3 descrita, configurada por un compartimento de aire 6 central de configuración cilindrica y cuatro cámaras 4 de configuración paralelepipédica, que sobresalen a modo de alas verticales, formando una cruz, ha sido escogida como realización preferida ya que permite optimar el volumen de los compartimentos de gas sin incrementar el diámetro del conducto vertical 2. As shown in figure 19, system 1 can operate with multiple generating units arranged in such a way that the respective aerostats 3 are synchronized according to a sequential load order, in order to multiply the productive capacity and in turn generate continuity in the power supply. For the sake of clarity, only the respective aerostats 3 within their vertical duct 2 have been schematically represented and the ascending or descending direction of each aerostat 3 has been illustrated with arrows. In the example shown, six generating units have been used, of which five operate ascending in sequential mode and one descending to regain its initial state. It should be noted that the configuration of the aerostat housing 3 described, configured by a central air compartment 6 with a cylindrical configuration and four chambers 4 with a parallelepipedic configuration, which protrude like vertical wings, forming a cross, has been chosen as the preferred embodiment. since it allows optimizing the volume of the gas compartments without increasing the diameter of the vertical duct 2.
En efecto, gracias a esta geometría en forma de cruz (ver figura 8) permite distribuir el volumen verticalmente (dimensión en altura b) pero no horizontalmente, es decir requiriendo un escaso grosor c, de modo que cuanto menor sea el grosor, menor deberá ser el diámetro del conducto vertical 2 y por ende, se podrá minimizar el diámetro de la excavación subterránea para soterrar el conducto vertical 2, con el consiguiente disminución de los costes de producción. Por tanto, es deseable maximizar el volumen del aeróstato para permitir su elevación, pero minimizando el área de excavación para alojar el conducto vertical 2. Indeed, thanks to this cross-shaped geometry (see figure 8) it allows the volume to be distributed vertically (dimension in height b) but not horizontally, that is, requiring a low thickness c, so that how much The smaller the thickness, the smaller the diameter of the vertical conduit 2 should be and therefore, the diameter of the underground excavation to bury the vertical conduit 2 can be minimized, with the consequent reduction in production costs. Therefore, it is desirable to maximize the volume of the balloon to allow it to be lifted, but minimizing the excavation area to accommodate the vertical duct 2.
No obstante, aunque se ha descrito esta realización preferida, cabe destacar que se podrían utilizar otras configuraciones para el aeróstato, tales como por ejemplo una forma cilindrica o una forma toroidal, en modo de distribuir su volumen horizontalmente, pero con el inconveniente de que se requiere un diámetro de excavación mayor. However, although this preferred embodiment has been described, it should be noted that other configurations for the aerostat could be used, such as for example a cylindrical shape or a toroidal shape, in order to distribute its volume horizontally, but with the drawback that requires a larger excavation diameter.
Por otra parte, es importante destacar que la fuerza gravitacional debida al volumen de aire a ingresar debe compensar la fuerza de sustentación del gas. Considerando el volumen del aeróstato 3 como la suma de los compartimentos del gas 5 y del aire 6, y sin considerar, para efectos de cálculo, el peso de la carcasa, la fuerza requerida para neutralizar la sustentación durante el descenso: On the other hand, it is important to note that the gravitational force due to the volume of air to enter must compensate for the lift force of the gas. Considering the volume of the aerostat 3 as the sum of the gas 5 and air 6 compartments, and without considering, for calculation purposes, the weight of the carcass, the force required to neutralize the lift during the descent:
(paire Pgas) ' Q ' l^comp. gas Paire' Q ' l^comp. aire obteniendo el volumen del compartimento de aire: l^comp. aire l^comp. gas (1 Pgas / Paire) (paire Pgas) ' Q ' l ^ comp. gas - Paire ' Q ' l ^ comp. air obtaining the volume of the air compartment: l ^ comp. air - l ^ comp. gas (1 Pgas / Paire)
Si las densidades del gas (hidrogeno) y del aire son, respectivamente, 0,089 kg/m3 y 1,23 kg/m3 el volumen del compartimento de aire 6 requerido para anular la sustentación será equivalente a 92,8% del volumen del gas (1 - 0,089/1,23). If the densities of the gas (hydrogen) and of the air are, respectively, 0.089 kg / m 3 and 1.23 kg / m 3, the volume of the air compartment 6 required to cancel the lift will be equivalent to 92.8% of the volume of the gas (1-0.089 / 1.23).
Lo anterior ocurre en caso de que ambos compartimentos estén rígidamente separados. Sin embargo, tal como se ha mencionado, en la realización preferida se incluye un espacio en la parte inferior del compartimento de aire 6 (ver figura 4) en comunicación con las respectivas aberturas 21 de las cámaras 4 que contienen los compartimentos de gas 5, lo que permite que el aire que ingresa por la parte superior del compartimento de gas 6, a medida que se va llenando, se desplace lateralmente para comprimir los compartimentos de gas 5, y con ello vaya aumentando la densidad del hidrogeno, con el entendido de que a medida que se modifica la densidad del compartimento del gas 5 (aumentando según el aire ocupa su volumen) la cantidad de aire requerida para compensar la sustentación disminuye proporcionalmente. This occurs in the event that both compartments are rigidly separated. However, as mentioned, in the preferred embodiment a space is included in the lower part of the air compartment 6 (see figure 4) in communication with the respective openings 21 of the chambers 4 that contain the gas compartments 5, allowing the air that enters through the upper part of the gas compartment 6, as it fills, moves laterally to compress the gas compartments 5, and with this the hydrogen density increases, with the understanding that as it changes the density of the gas compartment 5 (increasing as the air occupies its volume) the amount of air required to compensate for the lift decreases proportionally.
La rigidez del aeróstato 3 se justifica precisamente en mantener baja la presión del gas (a presión atmosférica), lo que redunda en una menor resistencia o presión requerida para aumentar su densidad (lo que comporta necesariamente aumentar su presión). The rigidity of the aerostat 3 is justified precisely in keeping the pressure of the gas low (at atmospheric pressure), which results in a lower resistance or pressure required to increase its density (which necessarily entails increasing its pressure).
Sabiendo que masa es el producto de la densidad por el volumen, se convierte la expresión anterior en términos de masa y densidad, y añadiendo la masa de aire del conducto vertical 2 central por donde se desplaza el aeróstato 3: Knowing that mass is the product of density and volume, the previous expression is converted in terms of mass and density, and adding the mass of air of the central vertical duct 2 through which the aerostat 3 moves:
Hlaire Higas ' (pgas / Paire - 1 ) Ttl aire conducto central Hlaire - Higas ' (pgas / Paire - 1) - Ttl central duct air
La masa del gas es fija, dado que el hidrogeno está confinado en sus bolsas o compartimentos 5. El cambio de densidad del aire al ingresar es residual (su densidad siendo mucho mayor a la del hidrogeno) respecto al cambio de densidad del hidrogeno; se considera entonces la densidad del aire fija y se resuelve de manera iterativa para encontrar la relación de volumen de gas y volumen de aire en modo de que se cumpla la relación que iguala ambas fuerzas de empuje. Cabe mencionar que se incluye igualmente el peso de la columna central de aire sobre el conducto vertical 2. The mass of the gas is fixed, since the hydrogen is confined in its pockets or compartments 5. The change in density of the air when entering is residual (its density being much greater than that of hydrogen) with respect to the change in density of hydrogen; The fixed air density is then considered and it is solved iteratively to find the relationship between gas volume and air volume so that the relationship that equalizes both thrust forces is satisfied. It should be mentioned that the weight of the central air column on the vertical duct 2 is also included.
Para un volumen total del gas expandido = 2.500.000 m3, que con la densidad del hidrogeno a presión atmosférica resulta de una masa (fija) de 222.500 kg, se selecciona un porcentaje de volumen de aire, a partir del cual se obtiene la nueva densidad del gas que se corresponde con dicho volumen. De la ecuación anterior se resuelve para obtener la masa de aire, obteniendo su volumen dividiendo dicha masa por la densidad del aire (fija). El volumen resultante (calculado) se compara con la resta del volumen total (2.500.000) menos la del volumen del gas seleccionado al principio, siguiendo un proceso iterativo hasta que coincidan el volumen calculado y el de la sustracción. For a total volume of the expanded gas = 2,500,000 m 3 , which with the density of hydrogen at atmospheric pressure results from a (fixed) mass of 222,500 kg, a percentage of the volume of air is selected, from which the new gas density that corresponds to that volume. From the previous equation, it is solved to obtain the mass of air, obtaining its volume by dividing said mass by the density of the air (fixed). The resulting volume (calculated) is compared with the subtraction from the total volume (2,500,000) minus the volume of the gas selected at the beginning, following an iterative process until the calculated volume and the subtraction volume coincide.
Las fuerzas se igualan entonces cuando la densidad del gas (ahora 0.1589 kg/m3) es tal que su compartimento ocupa el 58,5% de su volumen original (que era 2,500,000 m3), siendo ahora 1,462,500 m3. The forces are then equalized when the density of the gas (now 0.1589 kg / m 3 ) is such that its compartment occupies 58.5% of its original volume (which was 2,500,000 m 3 ), now being 1,462,500 m 3 .
El volumen total del aire es entonces el restante de 2,500,000 más el de la columna de aire central sobre el conducto vertical 2 (que se ha establecido en este ejemplo a un diámetro de 25 metros para hacer la excavación más contenida y mantener la integridad geométrica): 1 ,160,000 m3, ocupando el 41 ,5% del compartimento del gas (y no el 92,3% como sería el caso si el aire estuviese confinado en un compartimento rígido). The total volume of air is then the remaining 2,500,000 plus that of the central air column over vertical duct 2 (which has been set in this example to a diameter of 25 meters to make the excavation more contained and maintain geometric integrity) : 1,160,000 m 3 , occupying 41.5% of the gas compartment (and not 92.3% as would be the case if the air were confined in a rigid compartment).
En las figuras 5a y 5b se muestra una cámara 4 que aloja en su interior un compartimento de gas 5 (ilustrado esquemáticamente mediante líneas discontinuas) representando el compartimento de gas expandido (figura 5a) y en estado comprimido (figura 5b) habiéndose reducido un 40% aproximadamente su volumen original. Figures 5a and 5b show a chamber 4 that houses in its interior a gas compartment 5 (illustrated schematically by broken lines) representing the gas compartment expanded (figure 5a) and in a compressed state (figure 5b) having reduced by 40 % approximately its original volume.
Ejemplo de un caso práctico: Example of a practical case:
A modo de ejemplo, a continuación, se incluye un caso práctico idealizado de esta realización del sistema de generación de energía eléctrica, con objeto de ilustrar su contribución energética potencial técnicamente. Este ejemplo se basa en un sistema de múltiples unidades de energía y el tipo de aeróstato 3 empleado es el que presenta un compartimento de aire central 6 y cuatro cámaras 4 periféricas de configuración paralelepipédica, a modo de cruz visto en planta, que alojan en su interior sendos compartimentos de gas 5. By way of example, an idealized practical case of this embodiment of the electric power generation system is included below, in order to illustrate its technical potential energy contribution. This example is based on a system of multiple energy units and the type of aerostat 3 used is the one that has a central air compartment 6 and four peripheral chambers 4 of parallelepipedic configuration, like a cross seen in plan, which house in their two gas compartments inside 5.
• Datos del sistema múltiple conformado como se indica: • Data of the multiple system conformed as follows:
- Dimensiones del aeróstato (ver figura 8): a: 125 m de alcance (x 4 compartimentos) b: 250 m de profundidad (altura) c: 20 m de anchura - Longitud del conducto vertical central: 1000 m - Dimensions of the airstat (see figure 8): a: 125 m range (x 4 compartments) b: 250 m deep (height) c: 20 m wide - Length of the central vertical duct: 1000 m
- Volumen del aeróstato: 2.500.000 m3 (equivalente a un globo esférico de 170 metros de diámetro) - Volume of the aerostat: 2,500,000 m 3 (equivalent to a spherical balloon 170 meters in diameter)
- Diámetro de cada cabrestante (múltiples): 1 ,5 m - Diameter of each winch (multiple): 1.5 m
- Diámetro del conducto vertical central de aire: 25 m - Diameter of the central vertical air duct: 25 m
- Volumen: p (12, 5)2 x 250 = 122.718 m3 - Volume: p (12, 5) 2 x 250 = 122,718 m 3
• Fuerza de sustentación: Fs = (pa¡re - H2) g V = (1 ,23 - 0,089) x 9,81 x 2.500.000 = 28 MN (meganewtons), o empuje gravitacional equivalente al de una masa algo superior a 2.850 toneladas. Siendo el peso del conjunto marginal, no se incluye por tanto en la ecuación. • Lifting force: Fs = (p a ¡re - H 2) g V = (1,23 - 0,089) x 9,81 x 2,500,000 = 28 MN (meganewtons), or gravitational push equivalent to that of a somewhat over 2,850 tons. Being the weight of the marginal set, it is therefore not included in the equation.
• Par sobre el cabrestante (para efectos de simplificación del cálculo, se considera 1 solo soportando la carga entera): t = Fs ñcabrestante = 27.983.025 c 0,75 = 21 MNm (meganewtons metro). • Torque on the winch (for purposes of simplifying the calculation, consider 1 only supporting the entire load): t = Fs ñ winch = 27,983,025 c 0.75 = 21 MNm (meganewtons meter).
El tren de engranajes acoplado al eje motriz del cabrestante se dimensiona para una velocidad del tirante de 20 metros por minuto, por lo que la carrera entera de 1000 metros se recorrerá en 50 minutos. The gear train coupled to the winch drive shaft is sized for a tie rod speed of 20 meters per minute, so the entire 1000 meter race will be covered in 50 minutes.
• La velocidad del tirante, tangencial a la polea (eje de giro) del cabrestante:• The speed of the tie rod, tangential to the pulley (axis of rotation) of the winch:
V = 20 / 60 = 0,33 m/s V = 20/60 = 0.33 m / s
• La velocidad angular de la polea del cabrestante: w = 0,33 / 0,75 = 0,44 rad/s• The angular velocity of the winch pulley: w = 0.33 / 0.75 = 0.44 rad / s
• Potencia teórica durante el ascenso (sin considerar las pérdidas de transmisión; en torno al 5%): • Theoretical power during the ascent (without considering transmission losses; around 5%):
W = t w = 20.987.269 c 0,44 = 9,2 megawatts por conducto. Más de un conducto permitiría mantener una operación sincronizada y continua, por lo que la potencia durante los instantes de operación simultanea se sumaría. W = tw = 20,987,269 c 0.44 = 9.2 megawatts per pipe. More than one conduit would allow to maintain a synchronized and continuous operation, so the power during the instants of simultaneous operation would add up.
• Energía consumida en llenado de aire • Energy consumed in filling with air
En el presente caso, es conveniente que la envolvente exterior del compartimento de gas esté montada en una estructura rígida, de otro modo se requeriría de dotar al aire y al gas de presión interna para mantener la forma (y volumen) del aeróstato, como es el caso de los aerodirigibles semirrígidos o aún más con los llamados 'blimps' (elásticos), lo que consumiría energía considerablemente con cada llenado de aire, tomando en cuenta el enorme volumen de la envolvente exterior. Por lo que respecta al peso de tal estructura, como revelan las cifras en el cálculo anterior, resulta casi tan marginal en la subida como conveniente en el descenso. In the present case, it is convenient that the outer shell of the gas compartment is mounted on a rigid structure, otherwise it would be necessary to provide the air and the gas with internal pressure to maintain the shape (and volume) of the aerostat, as is the case of semi-rigid airship or even more with the so-called 'blimps' (elastic), which would consume energy considerably with each filling of air, taking into account the enormous volume of the outer envelope. As regards the weight of such a structure, as the figures reveal in the previous calculation, it is almost as marginal in the rise as it is convenient in the decrease.
En base en lo anterior, el llenado de hidrogeno en sus compartimentos se realiza a presión atmosférica (sin presión añadida), de modo que el aire de llenado se inyecta a una presión mínima (por ejemplo, 15 milímetros de columna de agua). Based on the above, the hydrogen filling in its compartments is carried out at atmospheric pressure (without added pressure), so that the filling air is injected at a minimum pressure (for example, 15 millimeters of water column).
Para ello se requiere de un gran ventilador axial o centrifugo operando a gran caudal y mínima presión estática de descarga. El requerimiento de potencia del motor del ventilador: This requires a large axial or centrifugal fan operating at a high flow rate and minimal static discharge pressure. The power requirement of the fan motor:
W = Q * DR / (hn ?7m) donde Q es el caudal, suponiendo una entrega de 1 ,000 m3/s; AP es la diferencia de presión a través del ventilador, de 15 mm H2O o 147 pascales; hn es la eficiencia del ventilador, asumiendo del 75%, y ?7m la eficiencia del motor, asumiendo del 90%. Por tanto, la carga del motor: W = Q * DR / (h n ? 7 m ) where Q is the flow, assuming a delivery of 1, 000 m 3 / s; AP is the pressure difference across the fan, 15 mm H2O or 147 pascals; h n is the efficiency of the fan, assuming 75%, and? 7 m the efficiency of the motor, assuming 90%. Therefore, the motor load:
W = (1 ,000 x 147) / (0,75 0,9) = 217.778 Watts « 218 kilowatts W = (1,000 x 147) / (0.75 0.9) = 217,778 Watts « 218 kilowatts
El tiempo de carga de aire: t = V / (Q x 60 min/s) = 1,160,218 / (1 ,000 x 60) = 19,33 minutos. The air charging time: t = V / (Q x 60 min / s) = 1,160,218 / (1, 000 x 60) = 19.33 minutes.
Redondeando a 20 minutos. Rounding to 20 minutes.
La energía consumida por llenado: enenado = 218 c 0,33 horas = 72 kWh (kilowattshora). The energy consumed by filling: enenado = 218 c 0.33 hours = 72 kWh (kilowatt hours).
La misma operación se repite para descargar el aire, por tanto, la energía total consumida por aeróstato por ciclo: 144 kWh. The same operation is repeated to discharge the air, therefore, the total energy consumed per aerostat per cycle: 144 kWh.
Con 50 minutos de ascenso, 20 minutos de carga y 20 de descarga, contando 20 minutos de descenso y preparación/pausas, en una hora y 50 minutos se completa un ciclo. En 24 horas cabrían 13 ciclos. • Energía entregada With 50 minutes of ascent, 20 minutes of loading and 20 minutes of unloading, counting 20 minutes of descent and preparation / pauses, in one hour and 50 minutes a cycle is completed. In 24 hours, 13 cycles would fit. • Energy delivered
E = W t = 9,2 ( MW ) x 0,83 hrs = 7,67 MWhlciclo x 13 ciclos x 1 aeróstato = 99,7 MWh ³ 100 MWh por aeróstato. E = W t = 9.2 (MW) x 0.83 hrs = 7.67 MWh cycle x 13 cycles x 1 balloon = 99.7 MWh ³ 100 MWh per balloon.
• Energía neta • Net energy
99,7 - 0,144 = 99,5 MWh (la energía de llenado y descarga de aire es marginal). A continuación, se resumen las principales ventajas del sistema de generación eléctrica de la invención: 99.7 - 0.144 = 99.5 MWh (air filling and discharge energy is marginal). The main advantages of the electrical generation system of the invention are summarized below:
- Energía limpia. La fuente primaria de energía proviene de la fuerza de sustentación de un gas (hidrogeno o helio) confinado, a través del aire. - Clean energy. The primary source of energy comes from the lift force of a confined gas (hydrogen or helium), through the air.
- El sistema es eficiente de manera intrínseca. La conversión de energía es directa al eje del generador (sin mediar otro medio cualquiera de conversión de energía), las únicas pérdidas son de transmisión a través del tren de engranajes. Dado que el aeróstato está confinado en un conducto, no está por tanto expuesto a otros elementos, cuyo reforzamiento añadiría peso y reduciría las prestaciones, y en razón de operaren condiciones controladas permitiría un factor de utilización del 100%. - The system is intrinsically efficient. The energy conversion is direct to the generator shaft (without any other means of energy conversion), the only losses are transmission through the gear train. Since the aerostat is confined in a duct, it is therefore not exposed to other elements, the reinforcement of which would add weight and reduce performance, and because of operating under controlled conditions it would allow a utilization factor of 100%.
- Simplicidad conceptual y operativa. Se trata esencialmente de un globo que sucesivamente sube y baja. El balance de planta o empleo de equipo auxiliar es mínimo, y por tanto los costos asociados (inversión y sobre todo costos operativos) se prevén muy bajos por MWh generado. - Conceptual and operational simplicity. It is essentially a balloon that successively rises and falls. The balance of the plant or use of auxiliary equipment is minimal, and therefore the associated costs (investment and especially operating costs) are expected to be very low per MWh generated.
- Sistema regenerable indefinidamente. El aeróstato concentra su propio aporte de energía, no debe por tanto tomarlo de una fuente externa (aire, oleaje, radiación solar, carbón, gas natural, uranio...) y estar por tanto a expensas de su disponibilidad, periodicidad o intermitencia, dado que la disponibilidad es siempre absoluta (el medio con el que interactúa es la presión atmosférica, que está presente de manera permanente y prácticamente inalterable). Asimismo, dado que el sistema está aislado, y existe mínima interacción con el entorno, no se genera disrupción. - System regenerable indefinitely. The aerostat concentrates its own energy input, it must therefore not take it from an external source (air, waves, solar radiation, coal, natural gas, uranium ...) and therefore be at the expense of its availability, periodicity or intermittence, since availability is always absolute (the medium with which it interacts is atmospheric pressure, which is permanently present and practically unchanged). In addition, Since the system is isolated, and there is minimal interaction with the environment, no disruption is generated.
- Escalabilidad. La energía disponible aumenta proporcionalmente con el volumen de gas confinado (a presión atmosférica), con capacidad de producir energía muy intensiva (potencia) en una superficie contenida. El sistema es asimismo replicable, con posibilidad de múltiples unidades actuando simultáneamente. - Scalability. The available energy increases proportionally with the volume of gas confined (at atmospheric pressure), with the capacity to produce very intensive energy (power) in a contained surface. The system is also replicable, with the possibility of multiple units acting simultaneously.

Claims

1. Sistema (1) de generación de energía eléctrica a partir de una fuerza de empuje aerostático, caracterizado porque comprende al menos una unidad generadora de electricidad que comprende 1. System (1) for generating electrical energy from an aerostatic thrust force, characterized in that it comprises at least one electricity generating unit comprising
- un conducto vertical (2) estanco dispuesto soterrado bajo el nivel de la corteza terrestre (T), de modo que contiene en su interior un volumen de aire a presión atmosférica; - a watertight vertical duct (2) arranged underground below the level of the earth's crust (T), so that it contains a volume of air at atmospheric pressure;
- un aeróstato (3) alojado en el interior del conducto vertical (2) configurado con capacidad para desplazarse con un movimiento alternativo entre una posición de elevación (A) y una posición de descenso (B) del conducto vertical (2), estando el aeróstato (3) configurado por una carcasa que comprende - An aerostat (3) housed inside the vertical conduit (2) configured with the ability to move with an alternative movement between a lifting position (A) and a lowering position (B) of the vertical conduit (2), the aerostat (3) configured by a housing comprising
- al menos una cámara (4) hueca que alberga en su interior al menos un compartimento de gas (5) que confina en su interior un volumen de un gas de sustentación con una densidad menor a la densidad del aire a presión atmosférica, y - at least one hollow chamber (4) that houses in its interior at least one gas compartment (5) that confines in its interior a volume of a support gas with a density less than the density of air at atmospheric pressure, and
- al menos un compartimento de aire (6) para la carga de un volumen de aire, preferentemente a la presión atmosférica, configurado con capacidad de comprimir parcialmente el menos un compartimento de gas (5) para procurar un aumento de la densidad del gas de sustentación; - at least one air compartment (6) for charging a volume of air, preferably at atmospheric pressure, configured with the capacity to partially compress at least one gas compartment (5) to achieve an increase in the density of the gas from lift;
- unos medios de carga (7) configurados para inyectar un volumen de aire en el interior del compartimento de aire (6) del aeróstato (3) a través de una boca de carga (6a), cuando dicho aeróstato (3) se encuentra en la posición de elevación (A), lo que procura un movimiento descendente del aeróstato (3) hacia su posición de descenso (B) por efecto de la fuerza de gravedad;- Loading means (7) configured to inject a volume of air into the air compartment (6) of the aerostat (3) through a loading mouth (6a), when said aerostat (3) is in the elevation position (A), which ensures a downward movement of the balloon (3) towards its descent position (B) due to the force of gravity;
- unos medios de descarga (8) configurados para evacuar el volumen de aire contenido en el compartimento de aire (6) del aeróstato (3) a través de una boca de descarga (6b), cuando dicho aeróstato (3) se encuentra en la posición de descenso (B), lo que procura un movimiento ascendente del aeróstato (3) hacia su posición de elevación (A), por efecto de una fuerza de empuje aerostático capaz de contrarrestar la fuerza de la gravedad; - Discharge means (8) configured to evacuate the volume of air contained in the air compartment (6) of the balloon (3) through a discharge mouth (6b), when said balloon (3) is in the descent position (B), which provides an upward movement of the balloon (3) towards its elevation position (A), due to the effect of an aerostatic thrust force capable of counteracting the force of gravity;
- al menos un conducto de recirculación (9) en comunicación con el conducto vertical (2), para procurar la recirculación del volumen de aire desplazado por el aeróstato (3) durante su movimiento alternativo de elevación y descenso; y - at least one recirculation duct (9) in communication with the duct vertical (2), to ensure the recirculation of the volume of air displaced by the aerostat (3) during its alternate raising and lowering movement; Y
- unos medios de conversión energética (10) asociados operativamente con el aeróstato (3) y configurados para convertir la energía potencial resultante del movimiento de elevación del aeróstato (3) en energía eléctrica. - energy conversion means (10) operatively associated with the aerostat (3) and configured to convert the potential energy resulting from the lifting movement of the aerostat (3) into electrical energy.
2. Sistema (1) de generación de energía eléctrica a partir de una fuerza de empuje aerostático, según la reivindicación 1, caracterizado porque el gas de sustentación contenido en el al menos compartimento de gas (5) es hidrógeno. 2. System (1) for generating electrical energy from an aerostatic thrust force, according to claim 1, characterized in that the support gas contained in the at least gas compartment (5) is hydrogen.
3. Sistema (1) de generación de energía eléctrica a partir de una fuerza de empuje aerostático, según la reivindicación 1 o 2, caracterizado porque los medios de conversión energética (10) están configurados por al menos un cabrestante (11) dispuesto por debajo de la parte inferior del conducto vertical (2), provisto de un tirante (12) enrollado al eje giratorio del cabrestante (11) y acoplado por su extremo libre a la parte inferior de la carcasa del aeróstato (3), de modo que el cabrestante (11) es capaz de recibir la fuerza de tracción del tirante (12) generada por la fuerza de empuje aerostático del aeróstato (3) vacío durante su movimiento ascendente, y estando un eje motriz del cabrestante (11) conectado mecánicamente a un generador de energía eléctrica (13), a través de un tren de engranajes (14) que actúa como un reductor de velocidad, para generar electricidad en cada movimiento de ascenso del aeróstato (3). System (1) for generating electrical energy from an aerostatic thrust force, according to claim 1 or 2, characterized in that the energy conversion means (10) are configured by at least one winch (11) arranged below from the lower part of the vertical duct (2), provided with a tie rod (12) wound to the rotating shaft of the winch (11) and coupled by its free end to the lower part of the aerostat housing (3), so that the The winch (11) is capable of receiving the traction force of the tie rod (12) generated by the aerostatic thrust force of the empty aerostat (3) during its upward movement, and a driving shaft of the winch (11) being mechanically connected to a generator of electrical energy (13), through a gear train (14) that acts as a speed reducer, to generate electricity in each upward movement of the aerostat (3).
4. Sistema (1) de generación de energía eléctrica a partir de una fuerza de empuje aerostático, según una cualquiera de las reivindicaciones anteriores, caracterizado porque los medios de carga (7) del aire están conectados a una toma exterior (19) en la que se encuentra al menos un ventilador (20) para la inyección de un flujo de aire atmosférico dentro del compartimento de aire (6), y estando los medios de descarga (8) conectados a su vez a dicha toma exterior (19) de modo que el ventilador (20) es susceptible de actuar en sentido inverso de giro para aspirar el volumen de aire inyectado en el compartimento de aire (6). 4. System (1) for generating electrical energy from an aerostatic thrust force, according to any one of the preceding claims, characterized in that the air charging means (7) are connected to an external outlet (19) in the that there is at least one fan (20) for the injection of an atmospheric air flow inside the air compartment (6), and the discharge means (8) being connected in turn to said external intake (19) in such a way that the fan (20) is capable of acting in the reverse direction of rotation to suck the volume of air injected into the air compartment (6).
5. Sistema (1) de generación de energía eléctrica a partir de una fuerza de empuje aerostático, según la reivindicación 4, caracterizado porque los medios de carga (7) del aire están configurados por una conducción de alimentación (15) conectada a la toma exterior (19) para la inyección de aire, provista de una válvula de carga (16) antirretorno situada sobre la parte superior del conducto vertical (2), y adaptada para acoplarse a la boca de carga (6a) del compartimento de aire (6) cuando el aeróstato (3) se encuentra en su posición de elevación (A); y los medios de descarga (8) del aire están configurados por una conducción de evacuación (17) conectada a la toma exterior (19) para la evacuación de aire, provista de una válvula de descarga (18) antirretorno situada bajo la parte inferior del conducto vertical (2), y adaptada para acoplarse a la boca de salida (6b) del compartimento de aire (6) cuando el aeróstato (3) se encuentra en su posición de descenso (B), estando la conducción de evacuación (17) dispuesta con un tramo de retorno que discurre a través del interior de uno de los conductos de recirculación (9) para su conexión con la toma exterior (19). 5. System (1) for generating electrical energy from a force of Aerostatic thrust, according to claim 4, characterized in that the air charging means (7) are configured by a supply conduit (15) connected to the external intake (19) for the injection of air, provided with a charging valve ( 16) non-return check located on the upper part of the vertical duct (2), and adapted to be coupled to the loading port (6a) of the air compartment (6) when the aerostat (3) is in its lifting position (A) ; and the air discharge means (8) are configured by an evacuation conduit (17) connected to the external intake (19) for the evacuation of air, provided with a non-return discharge valve (18) located under the lower part of the vertical duct (2), and adapted to be coupled to the outlet mouth (6b) of the air compartment (6) when the aerostat (3) is in its lowering position (B), the evacuation conduit (17) being arranged with a return section that runs through the interior of one of the recirculation ducts (9) for connection with the external intake (19).
6. Sistema (1) de generación de energía eléctrica a partir de una fuerza de empuje aerostático, según una cualquiera de las reivindicaciones anteriores, caracterizado porque la carcasa del aeróstato (3) está configurada por un compartimento de aire (6) central de configuración preferentemente cilindrica y múltiples cámaras (4) de configuración paralelepipédica, cada una alojando en su interior un compartimento de gas (5), y estando dichas cámaras (4) fijadas a la pared exterior del compartimento de aire (6) sobresaliendo a modo de alas verticales, preferentemente cuatro cámaras (4) formando una cruz. 6. System (1) for generating electrical energy from an aerostatic thrust force, according to any one of the preceding claims, characterized in that the casing of the aerostat (3) is configured by a central air compartment (6) of configuration preferably cylindrical and multiple chambers (4) of parallelepipedic configuration, each one housing a gas compartment (5) inside, and said chambers (4) being fixed to the outer wall of the air compartment (6) protruding like wings vertical, preferably four chambers (4) forming a cross.
7. Sistema (1) de generación de energía eléctrica a partir de una fuerza de empuje aerostático, según la reivindicación 6, caracterizado porque cada cámara (4) periférica comprende una estructura rígida (4a) a modo de rejilla y una envolvente exterior (4b) fabricada de un tejido, preferentemente de lona, fijada a la estructura rígida (4a). 7. System (1) for generating electrical energy from an aerostatic pushing force, according to claim 6, characterized in that each peripheral chamber (4) comprises a rigid structure (4a) in the form of a grid and an outer envelope (4b ) made of a fabric, preferably canvas, fixed to the rigid structure (4a).
8. Sistema (1) de generación de energía eléctrica a partir de una fuerza de empuje aerostático, según la reivindicación 6 o 7, caracterizado porque el compartimento de aire (6) central está dispuesto de modo que su parte inferior está separada una distancia predeterminada por encima de su boca de descarga (6b), lo que define un espacio en comunicación con una abertura (21) inferior prevista en cada cámara (4) periférica, de modo que el aire inyectado dentro del compartimento de aire (6) es capaz de penetrar en cada cámara (4) a través su respectiva abertura (21) y comprimir parcialmente el respectivo compartimento de gas (5), lo que procura un aumento de la densidad del gas, y por ende un aumento de su peso específico que, sumado al peso del volumen de aire contenido dentro del compartimento de aire (6) y del volumen de aire desplazado dentro de las cámaras (4), permite compensar la fuerza de sustentación del aeróstato (3). 8. System (1) for generating electrical energy from an aerostatic thrust force, according to claim 6 or 7, characterized in that the central air compartment (6) is arranged so that its lower part is separated by a predetermined distance above its discharge spout (6b), which defines a space in communication with a lower opening (21) provided in each peripheral chamber (4), so that the air injected into the air compartment (6) is able to penetrate into each chamber (4 ) through its respective opening (21) and partially compress the respective gas compartment (5), which seeks an increase in the density of the gas, and therefore an increase in its specific weight which, added to the weight of the air volume contained within the air compartment (6) and the volume of air displaced within the chambers (4), it allows to compensate for the lift force of the aerostat (3).
9. Sistema (1) de generación de energía eléctrica a partir de una fuerza de empuje aerostático, según una cualquiera de las reivindicaciones 6 a 8, caracterizado porque cada cámara (4) está fijada por su lado inferior a varios tirantes (12) enrollados a sendos cabrestantes (11) de los medios de conversión energética (10). 9. System (1) for generating electrical energy from an aerostatic thrust force, according to any one of claims 6 to 8, characterized in that each chamber (4) is fixed on its underside to several coiled tie rods (12) to respective winches (11) of the energy conversion means (10).
10. Sistema (1) de generación de energía eléctrica a partir de una fuerza de empuje aerostático, según una cualquiera de las reivindicaciones 6 a 9, caracterizado porque el conducto vertical (2) comprende una cavidad central (22) longitudinal excavada en la corteza terrestre (T), configurada para el alojamiento del aeróstato (3); y el conducto de recirculación (9) comprende múltiples cavidades laterales (23), preferentemente cuatro, excavadas en la corteza terrestre (T), dispuestas en torno a la cavidad central (22), y estando dicho conducto vertical (2) y dicho conducto de recirculación (9) sellados por sus extremos superior e inferior mediante sendas tapas superior (24) e inferior (25) de configuración abovedada de modo que definen sendos espacios que procuran un circuito cerrado de recirculación del aire desplazado por el movimiento alternativo del aeróstato (3). 10. System (1) for generating electrical energy from an aerostatic thrust force, according to any one of claims 6 to 9, characterized in that the vertical duct (2) comprises a central longitudinal cavity (22) excavated in the crust terrestrial (T), configured to house the aerostat (3); and the recirculation conduit (9) comprises multiple lateral cavities (23), preferably four, excavated in the earth's crust (T), arranged around the central cavity (22), and said vertical conduit (2) and said conduit being of recirculation (9) sealed at their upper and lower ends by means of upper (24) and lower (25) covers of domed configuration so that they define two separate spaces that provide a closed circuit for recirculation of the air displaced by the alternative movement of the aerostat ( 3).
11. Sistema (1) de generación de energía eléctrica a partir de una fuerza de empuje aerostático, según la reivindicación 10, caracterizado porque la tapa superior (24) comprende un orificio (26) para el paso de la conducción de alimentación (15) y de la conducción de evacuación (17) del compartimento de aire (6), y unos deflectores (27) estratégicamente posicionados en su parte inferior para direccionar el paso del aire de recirculación. 11. System (1) for generating electrical energy from an aerostatic thrust force, according to claim 10, characterized in that the upper cover (24) comprises a hole (26) for the passage of the supply conduit (15) and of the evacuation conduit (17) of the air compartment (6), and some deflectors (27) strategically positioned in its lower part to direct the passage of recirculation air.
12. Sistema (1) de generación de energía eléctrica a partir de una fuerza de empuje aerostático, según la reivindicación 10 o 11, caracterizado porque la tapa inferior (24) comprende una pluralidad de orificios (28) para el paso de los respectivos tirantes (12) de los cabrestantes (11). 12. System (1) for generating electrical energy from an aerostatic thrust force, according to claim 10 or 11, characterized in that the lower cover (24) comprises a plurality of holes (28) for the passage of the respective tie rods (12) of the capstans (11).
13. Sistema (1) de generación de energía eléctrica a partir de una fuerza de empuje aerostático, según una cualquiera de las reivindicaciones anteriores, caracterizado porque el aeróstato (3) comprende unos rodamientos (29) previstos para deslizar sobre unos railes (30) longitudinales complementarios dispuestos en la pared interior del conducto vertical (2), con el propósito de mantener la estabilidad del aeróstato (3) durante su movimiento alternativo a lo largo del conducto vertical (2). 13. System (1) for generating electrical energy from an aerostatic thrust force, according to any one of the preceding claims, characterized in that the aerostat (3) comprises bearings (29) intended to slide on rails (30) complementary longitudinal lines arranged on the inner wall of the vertical conduit (2), in order to maintain the stability of the aerostat (3) during its reciprocating movement along the vertical conduit (2).
14. Sistema (1) de generación de energía eléctrica a partir de una fuerza de empuje aerostático, según una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende múltiples unidades generadoras dispuestas de modo que los respectivos aeróstatos (3) están sincronizados según un orden secuencial de carga, con el propósito de multiplicar la capacidad productiva y a su vez generar continuidad en el suministro eléctrico. 14. System (1) for generating electrical energy from an aerostatic thrust force, according to any one of the preceding claims, characterized in that it comprises multiple generating units arranged so that the respective aerostats (3) are synchronized according to a sequential order of load, with the purpose of multiplying the productive capacity and at the same time generating continuity in the electrical supply.
PCT/ES2019/070678 2019-10-08 2019-10-08 System for the generation of electrical energy from an aerostatic thrust force WO2021069762A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2019/070678 WO2021069762A1 (en) 2019-10-08 2019-10-08 System for the generation of electrical energy from an aerostatic thrust force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2019/070678 WO2021069762A1 (en) 2019-10-08 2019-10-08 System for the generation of electrical energy from an aerostatic thrust force

Publications (1)

Publication Number Publication Date
WO2021069762A1 true WO2021069762A1 (en) 2021-04-15

Family

ID=69061394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070678 WO2021069762A1 (en) 2019-10-08 2019-10-08 System for the generation of electrical energy from an aerostatic thrust force

Country Status (1)

Country Link
WO (1) WO2021069762A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008000671U1 (en) * 2008-01-17 2008-04-03 Zosgornik, Timo Power generator for multi-storey buildings with liquid buoyancy tube
US20080092535A1 (en) * 2006-09-28 2008-04-24 Passive Energy Limited Systems and methods using gravity and buoyancy for producing energy
WO2015027113A1 (en) 2013-08-22 2015-02-26 Gravity Power LLC System and method for storing energy
WO2019081788A1 (en) * 2017-10-24 2019-05-02 Jose Antonio Calvo Bellota Alternative continuous drive device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080092535A1 (en) * 2006-09-28 2008-04-24 Passive Energy Limited Systems and methods using gravity and buoyancy for producing energy
DE202008000671U1 (en) * 2008-01-17 2008-04-03 Zosgornik, Timo Power generator for multi-storey buildings with liquid buoyancy tube
WO2015027113A1 (en) 2013-08-22 2015-02-26 Gravity Power LLC System and method for storing energy
WO2019081788A1 (en) * 2017-10-24 2019-05-02 Jose Antonio Calvo Bellota Alternative continuous drive device

Similar Documents

Publication Publication Date Title
ES2660554T3 (en) Hydraulic power accumulator
ES2637007T3 (en) System and method for storing energy
US8796870B2 (en) Hydro-mechanical electric power generator and method of generating electric power
CN103429871A (en) Gravitational electric power plant technology
AU2019416221B2 (en) Advanced gravity-moment-hydro power system
US20210336478A1 (en) Modular Gravitational Energy Storage Systems
WO2021069762A1 (en) System for the generation of electrical energy from an aerostatic thrust force
CN103696901B (en) A kind of Wave power generation device
WO2021190073A1 (en) Deep-sea pressure power generation apparatus having open/close-controllable space
WO2012123707A1 (en) Convection turbine renewable energy converter
US8610300B2 (en) Energy generation device
ES2594305B1 (en) GRAVITY ELECTRIC CURRENT HYDROGENERATOR
JP4681009B2 (en) Tidal energy hydropower generation method and apparatus
WO2021069763A1 (en) System for generating electrical energy from a gravitational force obtained through a carbon dioxide pumping process
CN108603483A (en) Buoyancy generating set
ES2237283B1 (en) SYSTEM TO OBTAIN ELECTRICAL ENERGY.
WO2017187387A1 (en) Hydrodynamic thrust, gravity and suction motor
EP4206463A1 (en) Gravity energy storage system utilising a truss tower structure
ES1102183U (en) Electricity generating device from kinetic energy (Machine-translation by Google Translate, not legally binding)
CN212279450U (en) Self-balancing device for ups and downs of aquaculture net cage
JP6719752B2 (en) Unit type small hydroelectric generator.
CN102022270B (en) Floating wind energy reception apparatus
ES2234397B1 (en) RECOVERY ENERGY HYDROGEN ENGINE.
ES2962184A1 (en) GRAVITY ENERGY STORAGE AND GENERATION SYSTEM IN DIFFERENT FLUIDS (Machine-translation by Google Translate, not legally binding)
ES2942788A1 (en) GRAVITY ELECTRICAL ENERGY STORAGE SYSTEM (Machine-translation by Google Translate, not legally binding)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19829252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19829252

Country of ref document: EP

Kind code of ref document: A1