WO2021069636A1 - Procédé de géolocalisation d'une station de base d'un système de communication sans fil - Google Patents

Procédé de géolocalisation d'une station de base d'un système de communication sans fil Download PDF

Info

Publication number
WO2021069636A1
WO2021069636A1 PCT/EP2020/078363 EP2020078363W WO2021069636A1 WO 2021069636 A1 WO2021069636 A1 WO 2021069636A1 EP 2020078363 W EP2020078363 W EP 2020078363W WO 2021069636 A1 WO2021069636 A1 WO 2021069636A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
ref
bsx
sought
geographical position
Prior art date
Application number
PCT/EP2020/078363
Other languages
English (en)
Inventor
Olivier Isson
Renaud MARTY
Christophe JELOYAN
Original Assignee
Sigfox
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigfox filed Critical Sigfox
Priority to EP20788791.0A priority Critical patent/EP4042768A1/fr
Priority to US17/767,854 priority patent/US20240089902A1/en
Publication of WO2021069636A1 publication Critical patent/WO2021069636A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0295Proximity-based methods, e.g. position inferred from reception of particular signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention belongs to the field of geolocation.
  • the invention relates to a method and a device for geolocation of a base station of an access network of a wireless communication system.
  • a base station is not necessarily permanently installed at a known geographical position which does not vary over time.
  • a local base station can be installed in a user's home or in a company building without the access network operator being informed.
  • the pricing of data exchanges carried out by a base station may vary depending on the country in which the base station is located. Also, the beneficiary of the costs of the data exchanges carried out by a base station generally depends on the country in which the base station is operating. It is therefore important to be able to determine the position of a base station over time when the base station can be moved.
  • the objective of the present invention is to remedy all or part of the drawbacks of the prior art, in particular those set out above.
  • a method of geolocation of a base station called a “searched base station”, of an access network of a wireless communication system. thread.
  • the wireless communication system also comprises at least one terminal suitable for sending messages to said access network.
  • a message sent by a terminal can be received simultaneously by several base stations of the access network.
  • the geographical position of the desired base station is determined based on the geographical position of at least one other base station of the access network, called a "reference base station".
  • a reference base station is a base station whose geographical position is known and which has received a message sent by said terminal which has also been received by the base station sought.
  • the position of the terminal does not need to be known by the access network. Also, the position of the desired base station can be determined without the latter needing to transmit information relating to its geographical position. No software or hardware modification of the base stations of the communication system is necessary to implement the geolocation method according to the invention.
  • the geolocation method according to the invention can therefore be implemented in a simple and inexpensive manner.
  • the invention may further include one or more of the following characteristics, taken in isolation or in any technically possible combination.
  • the geographical position of the base station sought is further determined as a function of a measurement carried out for each reference base station by a value representative of a level of radio link quality. between the terminal and said reference base station.
  • the radio link in question corresponds to the radio link established between the terminal and the reference base station for the transmission of this message.
  • the geographical position of the base station sought is a weighted average of the geographical positions of the reference base stations.
  • Each geographical position of a reference base station is weighted by a coefficient whose value is representative of the level of radio link quality between the terminal and said reference base station.
  • the geographical position of the base station sought is further determined as a function of a measurement carried out for the base station sought by a value representative of a level of radio link quality between the terminal and the base station sought.
  • the geographical position of the base station sought is a weighted average of the geographical positions of the reference base stations.
  • Each geographical position of a reference base station is weighted by a coefficient whose value is representative of the difference between the radio link quality level between the terminal and the reference base station and the radio link quality level between the terminal and the desired base station.
  • the geographic position of the desired base station is determined using a machine learning algorithm as a function of the measurements made and as a function of the geographic positions of the reference base stations.
  • a group of several messages are considered to determine the geographical position of the base station sought, each message of the group having been sent by a terminal of the communication system and received by at least one communication station. reference base and the desired base station. For each message, for the base station sought and for each of the reference base stations having received said message, a measurement of a value representative of a level of radio link quality between said base station and the terminal having transmitted said message is carried out.
  • the geographical position of the base station sought is determined as a function of a geographical position of the estimated base station searched for each message in the group.
  • a virtual measurement is calculated for each reference base station from the measurements made for said reference base station for the various messages received by said reference base station.
  • the geographical position of the sought base station is then determined as a function of the virtual measurements obtained and the geographical positions of the reference base stations.
  • the virtual measurement calculated for a reference base station is a weighted average of the measurements taken for said reference base station for the various messages received by said reference base station.
  • Each measurement is weighted by a coefficient, the value of which is representative of the measurement of the level of radio link quality carried out for the base station sought for the corresponding message.
  • the geographical position of the base station sought is a weighted average of the geographical positions of the reference base stations.
  • Each geographical position of a reference base station is weighted by a coefficient whose value is representative of the virtual measurement calculated for said reference base station.
  • the geographic position of the desired base station is determined by an automatic regression learning algorithm as a function of the measurements made and as a function of the geographic positions of the reference base stations.
  • the present invention relates to a computer program product comprising a set of program code instructions which, when they are executed by one or more processors, configure the processor or processors to implement a method of geolocation of a base station according to any one of the preceding embodiments.
  • the present invention relates to a server of a wireless communication system.
  • the wireless communication system comprises a plurality of base stations and at least one terminal suitable for transmitting messages to said base stations.
  • a message sent by the terminal can be received simultaneously by several base stations.
  • the server is connected by a communication link to each base station of the plurality of base stations.
  • the server is configured to implement a method of geolocation of a base station according to any of the preceding embodiments.
  • the present invention relates to an access network a wireless communication system.
  • the access network comprises a plurality of base stations and a server as described above.
  • FIG. 1 a schematic representation of a wireless communication system comprising at least one terminal and an access network comprising a plurality of base stations,
  • FIG. 2 a schematic representation of the main steps of a method of geolocation of a base station according to the invention
  • FIG. 3 a schematic representation of the main steps of a first particular embodiment of a geolocation method according to the invention
  • FIG. 4 a schematic representation of the main steps of a second particular embodiment of a geolocation method according to the invention
  • FIG. 5 a schematic representation of the main steps of a third particular embodiment of a geolocation method according to the invention.
  • FIG. 6 a schematic representation of the main steps of a fourth particular embodiment of a geolocation method according to the invention.
  • FIG. 7 a schematic representation of the main steps of a particular fifth mode of implementing a geolocation method according to the invention
  • FIG. 8 a schematic representation of a model used by a machine learning algorithm implementing a geolocation method according to the invention.
  • the present invention finds a particularly advantageous application, although in no way limiting, in wireless communication systems of the Internet of Things type (loT, for “Internet Of Things” in the English literature) or of the M2M type (English acronym). Saxon for "Machine to Machine”).
  • FIG. 1 schematically represents a wireless communication system 10, comprising one or more terminals 20 and an access network 30.
  • the network access 30 comprises several base stations 31 and a server 32 connected to said base stations 31.
  • the data exchanges are essentially one-way, in this case on an uplink from the terminals 20 to the access network 30 of said wireless communication system 10.
  • the planning of the access network 30 is often carried out such that a given geographical area is simultaneously covered by several base stations 31, such that a message sent by a terminal 20 can be received by several base stations 31.
  • a message sent by a terminal 20 can be received by several base stations 31.
  • the same message sent by the terminal 20 can be received, decoded, and processed by several base stations 31 (and not only by a single base station with which the terminal is associated).
  • Each base station 31 is adapted to receive messages from terminals 20 which are within its range.
  • a message sent by a terminal 20 includes in particular an identifier of the terminal making it possible to identify said terminal 20.
  • Each message thus received is for example transmitted to the server 32 of the access network 10, possibly accompanied by other information such as an identifier of the base station 31 which received it, a value representative of the quality of the radio signal carrying the message, the central frequency on which the message was received, a date on which the message was received, etc.
  • the server 32 processes, for example, all the messages received from the different base stations 31.
  • the wireless communication system 10 is, for example, a low power consumption wireless wide area network known by the term LPWAN (acronym for “Low Power Wide Area Network”).
  • LPWAN Low Power Wide Area Network
  • Such a wireless communication system is a long-range access network (greater than one kilometer, or even greater than a few tens of kilometers), with low energy consumption (for example energy consumption during transmission or reception. of a message less than 100 mW, or even less than 50 mW, or even less than 25 mW), and whose rates are generally less than 1 Mbits / s.
  • Such wireless communication systems are particularly suitable for applications involving connected objects.
  • the wireless communication system 10 may be an ultra-narrowband communication system.
  • ultra narrow band (“Ultra Narrow Band” or UNB in English literature) is meant that the instantaneous frequency spectrum of the radio signals emitted by the terminals has a frequency width of less than two kilohertz, or even less than one kilohertz.
  • Ultra Narrow Band or UNB in English literature
  • Such a system makes it possible to significantly limit the electrical consumption of the terminals when they communicate with the access network.
  • the geographical position of a particular base station 31 of the access network 30 is sought.
  • the base station sought bears the reference BSx.
  • One or more base stations 31 distinct from the sought base station BSx correspond to reference base stations BS Ref .
  • a reference base station BS Ref is a base station 31 of the access network 30 whose geographical position is known and which has received a message sent by a terminal 20 which has also been received by the sought base station BSx.
  • the server 32 can in particular be used to implement all or part of a method of geolocation of the desired base station BSx.
  • the server 32 comprises a processing circuit comprising one or more processors and storage means (magnetic hard disk, electronic memory, optical disc, etc.) in which a computer program product is stored, in the form a set of program code instructions to be executed to implement at least part of the steps of a method for geolocation of a base station 31 of the access network 30 of the wireless communication system 10.
  • the processing circuit of the server 32 comprises one or more programmable logic circuits (FPGA, PLD, etc.), and / or one or more specialized integrated circuits (ASIC), and / or a set of discrete electronic components , etc., adapted to implement steps of the geolocation method.
  • the server 32 includes software and / or hardware means for implementing a geolocation method according to the invention.
  • FIG. 2 schematically represents the main steps of a method 100 for geolocation of the desired base station BSx.
  • the geolocation method 100 comprises in particular a step 101 of determining at least one reference base station BS Ref whose geographical position is known and which has received a message sent by a terminal 20 which has also been received by the base station. wanted BSx.
  • the server 32 can in fact determine, for a given message, which are the base stations 31 which have received this message.
  • the message received comprises for example an identifier of the terminal 20 which sent the message as well as a sequence number allowing this message to be identified, and a base station which receives the message transmits the message to the server accompanied by 'an identifier of the base station.
  • the method 100 then comprises a step 102 of determining the geographical position of the sought base station BSx as a function of the geographical position of each reference base station BS Ref determined in step 101.
  • the server has access to a database comprising the geographical positions a whole set of base stations 31 which can then play the role of reference base stations BS Ref .
  • the geographical position of the searched base station BSx can be determined in step 102 as being the geographical position of said base station of reference BS Ref .
  • the geolocation precision of the sought-after base station BSx is relatively low because it presents a geolocation error which can be up to twice the transmission range of the terminal 20 having sent the message.
  • the geographical position of the searched base station BSx can be defined in step 102 as being an average of the geographical positions of the different stations.
  • geographical position is understood to mean, for example, a system of two coordinates corresponding to the latitude and the longitude. An average geographic position calculated between several geographic positions will then have for latitude the average value of the latitudes of the various geographic positions and for longitude the average value of the longitudes of the various geographic positions. None prevents, however, also considering a third coordinate corresponding to an altitude above sea level.
  • the value representative of the quality of the radio link used is a received power level (“Received Signal Strength Indicator” or RSSI in English literature) measured for a base station 31 for a signal carrying a message transmitted by a terminal 20.
  • RSSI Received Signal Strength Indicator
  • other values representative of the quality of the radio link could be used, such as for example signal attenuation, a signal to noise ratio of the signal (“Signal on Noise Ratio” or SNR in English literature) or a quality indicator of the communication channel (“Channel Quality Indicator” or CQI in English).
  • the choice of a particular value representative of the quality of the radio link constitutes only one variant of the invention.
  • the measurement can be carried out either directly by the base station which received the message, or indirectly by the server 32 on the basis of information supplied by the base station which received the message.
  • FIG. 3 schematically represents the main steps of a first particular embodiment of the geolocation method 100 according to the invention.
  • a single message is considered received both by the sought base station BSx and by at least one reference base station BS Ref .
  • An RSSI measurement of the power level with which the message is received is then performed for each BS Ref reference base station used.
  • Step 201 is identical to step 101 described above with reference to Figure 2.
  • step 202 an RSSI value is measured for each reference base station BS Ref determined in step 201 for the message considered.
  • the geographical position of the sought base station BSx is determined not only as a function of the geographical position of each reference base station BS Ref determined in step 201, but also as a function of the RSSI values measured at step 202 for these reference base stations BS Ref .
  • the geographical position of the searched base station BSx is determined as being a weighted average of the geographical positions of the reference base stations BS Ref , each geographical position of a reference base station BS Ref being weighted by a coefficient the value of which is representative of the quality level of the radio link (that is to say the value of RSSI in the example considered) established between the terminal 20 and said reference base station BS Ref during the exchange of the message considered.
  • - K is the number of reference base stations BS Ref used to determine the geographical position of the sought base station BSx,
  • Z k is the known geographical position of a reference base station BS Ref of index k, - a k is the weighting coefficient associated with the reference base station BSR ef of index k,
  • - Z x is the determined geographical position of the searched base station BSx (in other words, X is the index of the searched base station).
  • Each weighting coefficient a k is for example calculated according to the expression below:
  • - rssi k is the measurement of the received power level (RSSI measurement) performed for the reference base station BS Ref of index k,
  • - Y is a normalization factor whose value is constant. Note that the same symbol g is used hereafter in different mathematical expressions to represent a normalization factor. However, the value of the normalization factor may vary from one expression to another.
  • the RSSI measurement is expressed in dBm (power ratio in decibels between the measured power and one milliwatt).
  • the RSSI metric is a negative value. The greater the absolute value of the RSSI measurement, the lower the measured received power level. Conversely, the smaller the absolute value of the RSSI measurement, the stronger the measured received power level.
  • Such arrangements make it possible to determine the geographical position of the desired base station BSx as a function of the geographical positions of the reference base stations BS Ref while favoring the reference base stations BS Ref for which the message in question was received with a high RSSI level. In other words, to determine the geographical position of the sought base station BSx, greater confidence is given to the reference base stations BS Ref which received the message considered with a high RSSI level.
  • FIG. 4 schematically represents the main steps of a second particular embodiment of the geolocation method 100 according to the invention.
  • This second particular embodiment comprises in particular a step 301 of determining at least one reference base station BS Ref and a step 302 of determining an RSSI measurement for each identified reference base station BS Ref.
  • Steps 301 and 302 are identical respectively to steps 201 and 202 of the first particular embodiment previously described with reference to FIG. 3.
  • this second particular embodiment includes a step 303 for determining an RSSI measurement of the power level with which the considered message is received by the sought base station BSx.
  • a step 304 the geographical position of the sought base station BSx is then determined as a function of the RSSI measurements performed not only for the reference base stations BS Ref but also for the sought base station BSx.
  • the geographical position of the searched base station BSx is a weighted average of the geographical positions of the reference base stations BS Ref , in which each geographical position of a reference base station is weighted by a coefficient whose value is representative of the difference between the RSSI level measured for said reference base station BS Ref and the RSSI level measured for the sought base station BSx.
  • the geographical position Z x of the sought base station BSx can be determined according to the expression [Math. 1] using weighting coefficients a k defined by the expression below:
  • - rssi k is the measurement of the received power level (RSSI measurement) performed for the reference base station BS Ref of index k,
  • - rssix is the measurement of the received power level (RSSI measurement) performed for the sought base station BSx.
  • Such arrangements make it possible to determine the geographical position of the desired base station BSx as a function of the geographical positions of the reference base stations BS Ref while favoring the reference base stations for which the message in question was received with an RSSI level. close to the RSSI level with which said message was received by the sought base station BSx.
  • greater confidence is given to the reference base stations BS Ref which received the message with an RSSI level close to the RSSI level with which the message was received by the desired base station BSx.
  • the taking into account of the RSSI level with which the message was received by the sought base station BSx makes it possible to improve the precision of the geolocation of the base station sought.
  • the geographical position of the desired base station BSx using a machine learning algorithm based on a pre-established model from RSSI level measurements or of RSSI level differences.
  • the model is for example built during a learning phase by associating known geographical positions with values of weighting coefficients such as those described by the expressions [Math. 2] and [Math. 3].
  • the machine learning algorithm is configured to determine, during a search phase, a geographical position of a base station sought from the model thus constructed and from values of weighting coefficients calculated for base stations of reference having received a particular message which was also received by the sought base station.
  • FIG. 5 schematically represents the main steps of a third particular embodiment of the geolocation method 100 according to the invention.
  • a group of several messages (Msg # 1, Msg # 2, ... Msg #N) are considered to determine the geographical position of the sought base station BSx.
  • Each message considered was sent by a terminal 20 of the communication system 10 and received both by at least one reference base station BS Ref and by the sought base station BSx.
  • the various messages considered may have been sent by the same terminal 20 or by several different terminals 20.
  • the different messages considered may have been sent at substantially the same time or else at different times during a predetermined period of time.
  • a determination of at least one reference base station BS Ref which received said message considered is identical to the steps 201 and 301 described previously respectively for the first and for the second particular mode of implementation. with reference to FIGS. 3 and 4.
  • an RSSI measurement of the power level with which said message was received is carried out for each of the reference base stations BS Ref having received said message (step 402).
  • This determination of an RSSI measurement for each reference base station BS Ref for a particular message is identical to the steps 202 and 302 described previously respectively for the first and for the second particular mode of implementation with reference to FIGS. 3 and 4. .
  • FIG. 6 schematically represents the main steps of a fourth particular embodiment of the geolocation method 100 according to the invention.
  • This fourth particular mode of implementation is based on the third particular mode of implementation previously described with reference to FIG. 5.
  • the step 501 of determining, for each message considered, at least one communication station. reference base, and the step 502 of determining, for each message considered, an RSSI measurement for each reference base station having received said message are respectively identical to steps 401 and 402 of the third particular mode of implementation described with reference to Figure 5.
  • This fourth particular embodiment further comprises a step 503 in which, for each message considered, an estimated geographical position of the base station sought is determined, as well as a step 504 in which the geographical position of the station. base sought is determined as a function of the various positions estimated at step 503.
  • the estimated geographical position of the sought base station can be determined as being the average of the geographical positions of the reference base stations BS Ref having received said message.
  • this average can be weighted according to weighting coefficients whose values are representative of the RSSI measurements measured for the reference base stations having received said message.
  • the estimated geographical position Z m, x of the sought base station BSx can be defined by the expression below:
  • K m is the number of reference base stations BS Ref having received the message of index m
  • k is the weighting coefficient associated with the reference base station of index k
  • weighting coefficient a m, k can be defined according to the expression below:
  • rssi m k is the received power level measurement (RSSI measurement) for the reference base station BS Ref of index k for the message of index m
  • y is a constant normalization value
  • the geographical position Z x of the desired base station BSx can for example be defined as a simple average of the geographical positions thus estimated:
  • M corresponds to the total number of messages considered.
  • weighting this average with weighting coefficients whose values are representative of the RSSI levels with which the sought base station BSx has received the message of index m: [Math. 7]
  • the estimation made for a particular message at step 503 of the geographical position of the sought-after base station BSx and / or the final determination at step 504 of the geographical position of the desired base station BSx could also be produced using a machine learning algorithm, for example an algorithm of the data partitioning type (“data clustering” in the English literature) . Also, other weighting factors than the RSSI measurement could be taken into consideration to determine weighting coefficients for the different BS Ref reference base stations.
  • FIG. 7 schematically represents the main steps of a fifth particular embodiment of the geolocation method 100 according to the invention.
  • This fifth particular mode of implementation is based on the third particular mode of implementation previously described with reference to FIG. 5.
  • BS Ref reference base and step 602 of determining, for each message considered, an RSSI measurement for each BS Ref reference base station having received said message, are respectively identical to steps 401 and 402 of the third particular mode implementation described with reference to Figure 5.
  • This fifth particular embodiment further comprises a step 603 in which a virtual measurement is calculated for each reference base station BS Ref from the RSSI measurements carried out for said reference base station for the various messages received by said reference base station. reference base station.
  • the virtual measurement calculated for a reference base station BS Ref can correspond to a simple average of the RSSI measurements taken for said reference base station for the various messages received by said reference base station.
  • reference base station which can be translated into the expression below: [Math. 8]
  • Vrssi k is the virtual measurement calculated for a reference base station BSR ef of index k
  • - rssi mk is the RSSI measurement performed for the reference base station of index k for a message of index m chosen from among the M k messages received.
  • the virtual measurement calculated for a reference base station BS Ref can correspond to a weighted average of the RSSI measurements taken for said reference base station for the various messages received by said reference base station.
  • Each RSSI measurement is for example weighted by a coefficient, the value of which is representative of the RSSI measurement performed for the sought base station BSx for the corresponding message. This can be translated into the expression below:
  • rssi m, x is the RSSI measurement performed for the sought base station BSx for a message of index m chosen from among the M k messages which were received at the same time by the reference base station BS Ref of index k and by the desired base station BSx.
  • step 604 the geographical position of the sought base station BSx is determined as a function of the virtual measurements thus obtained and as a function of the geographical positions of the reference base stations BS Ref .
  • the geographical position Z x of the sought base station BSx can for example be defined as a weighted average of the geographical positions Z k of the K reference base stations BS Ref .
  • each geographical position of a reference base station is weighted by a weighting coefficient representative of the virtual measurement calculated for said reference base station: [Math. 10]
  • each geographical position of a reference base station BS Ref is weighted by a weighting coefficient representative of the difference between the virtual measurement calculated for said reference base station and a virtual measurement calculated for the reference station.
  • base sought BSx a weighting coefficient representative of the difference between the virtual measurement calculated for said reference base station and a virtual measurement calculated for the reference station.
  • Vrssix corresponds to the virtual measurement calculated for the sought base station BSx, which may for example correspond to the average of the RSSI levels measured for the sought base station BSx for the M different messages considered:
  • the geographic position of the desired base station BSx is determined by an automatic regression learning algorithm as a function of the measurements made and as a function of the geographic positions of the reference base stations BS Ref .
  • Figure 8 shows an example of a model used by the machine learning algorithm.
  • the model corresponds to a matrix of characteristics stored in a database accessible by the server 32.
  • the machine learning algorithm is configured to generate a regression function to determine the geographic position (longitude, latitude) of a base station from this feature matrix. Each row of the matrix corresponds to a sought-after base station BSx of the access network 30. To determine the geographical position of the sought-after base station BSx, we consider: a group of P messages received by the sought-after base station BSx,
  • the first 3N columns of the characteristic matrix correspond respectively to the RSSI measurement, the longitude and the latitude of N BS Ref reference base stations having the largest RSSI measurement values for a first message received at the same time by the searched base station BSx and by each of the reference base stations.
  • the column (3N + 1) corresponds to the RSSI measurement for the searched base station BSx for this first message.
  • Columns (3N + 2) through (6N + 2) correspond to similar values for a particular second message.
  • the columns ((P-1) (3N + 1) +1) to P (3N + 1) correspond to similar values for a particular P th message. It should be noted that if some values of the characteristic matrix are not available (eg if there are less than N reference base stations identified for a given message) default values can be used. Also, other characteristics specific to each base station can be added in the matrix of characteristics, for example the altitude of the reference base station, or the environment in which it is located (urban, mountainous, maritime environment , etc.).
  • the base stations to be geolocated correspond to base stations whose geographical position is known.
  • the P messages of the same line correspond to messages received consecutively (possibly from different terminals) during a certain period of time, and different lines associated with the same base station correspond to different periods of time (and therefore to different sequences of messages received during said periods of time).
  • the P messages of the same line correspond to messages sent consecutively by one and the same terminal for a certain period of time, and different lines associated with the same base station correspond to different terminals (and possibly to different time periods too).
  • the regression function can be used to predict the geographic position of a desired base station BSx from the model stored in the database on the one hand and from the measurements on the other hand.
  • RSSIs performed for a group of messages.
  • regression machine learning algorithms can be used, for example algorithms of the “Forest of trees” type. decision-making ”(“ Random forest ”in Anglo-Saxon literature) or of the“ Gradient improvement ”type (“ Gradient boosting ”in Anglo-Saxon literature”).
  • a selection of N reference base stations BS Ref having the largest measured RSSI values is carried out for each message considered. It should however be noted that it is possible to make a selection of N reference base stations or of P messages according to different criteria. For example, the P messages and the N base stations could be selected to maximize the number of common base stations having received the P messages. According to another, the P messages and the N base stations could be selected to maximize the spatial diversity of the base stations.
  • the present invention achieves the objectives set.
  • the invention makes it possible to geolocate a base station of an access network of a wireless communication system in a simple and inexpensive manner, without it being necessary to modify the software and / or hardware. the base stations of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

L'invention concerne notamment un procédé (100) de géolocalisation d'une station de base (31), dite « station de base recherchée » (BSX), d'un réseau d'accès (30) d'un système (10) de communication sans fil. Le système de communication sans fil comporte également au moins un terminal (20) adapté pour émettre des messages à destination du réseau d'accès. Un message émis par un terminal (20) peut être reçu simultanément par plusieurs stations de base (31) du réseau d'accès. La position géographique de la station de base recherchée (BSX) est déterminée en fonction de la position géographique d'au moins une autre station de base du réseau d'accès, dite « station de base de référence » (BSRef), dont la position géographique est connue et qui a reçu un message émis par ledit terminal (20) ayant également été reçu par la station de base recherchée (BSX).

Description

Procédé de géolocalisation d’une station de base d’un système de communication sans fil
Domaine de l’invention La présente invention appartient au domaine de la géolocalisation.
Notamment, l’invention concerne un procédé et un dispositif de géolocalisation d’une station de base d’un réseau d’accès d’un système de communication sans fil.
Etat de la technique Pour opérer un réseau d’accès d’un système de communication sans fil, il est important de connaître la position géographique des différentes stations de base que comporte le réseau d’accès.
Une station de base n’est en effet pas nécessairement installée à demeure à une position géographique connue qui ne varie pas dans le temps. En particulier, une station de base locale peut être installée au domicile d’un utilisateur ou dans un bâtiment d’une entreprise sans que l’opérateur du réseau d’accès n’en ait été informé.
Il peut arriver que certaines fonctionnalités d’une station de base doivent respecter des régulations qui peuvent varier d’un pays à l’autre. Il convient dans un tel cas de savoir où est positionnée une station de base pour pouvoir configurer à distance de telles fonctionnalités de la station de base.
D’autre part, la tarification des échanges de données effectués par une station de base peut varier en fonction du pays dans lequel se trouve la station de base. Aussi, le bénéficiaire des coûts des échanges de données effectués par une station de base dépend généralement du pays dans lequel la station de base fonctionne. Il est donc important de pouvoir déterminer la position d’une station de base au cours du temps lorsque la station de base peut être déplacée.
Il est bien sûr envisageable d’intégrer à une station de base un récepteur d’un système de positionnement par satellites, tel que le GPS (« Global Positioning System »), afin de pouvoir déterminer en temps réel la position de la station de base. Toutefois, une telle solution augmente le coût de la station de base et n’est pas toujours fonctionnelle, notamment si la station de base est positionnée dans un endroit où les signaux émis par les satellites ne sont pas reçus.
S’il existe actuellement de nombreuses solutions pour déterminer la position géographique d’un terminal d’un système de communication sans fil, la problématique consistant à déterminer la position géographique d’une station de base est rarement abordée. Aussi, il existe actuellement toujours un besoin d’une solution permettant de déterminer en temps réel et avec suffisamment de précision la position d’une station de base d’un réseau d’accès d’un système de communication sans fil.
Exposé de l’invention
La présente invention a pour objectif de remédier à tout ou partie des inconvénients de l’art antérieur, notamment ceux exposés ci-avant.
A cet effet, et selon un premier aspect, il est proposé par la présente invention un procédé de géolocalisation d’une station de base, dite « station de base recherchée », d'un réseau d’accès d'un système de communication sans fil. Le système de communication sans fil comporte par ailleurs au moins un terminal adapté pour émettre des messages à destination dudit réseau d’accès. Un message émis par un terminal peut être reçu simultanément par plusieurs stations de base du réseau d’accès. La position géographique de la station de base recherchée est déterminée en fonction de la position géographique d'au moins une autre station de base du réseau d’accès, dite « station de base de référence ». Une station de base de référence est une station de base dont la position géographique est connue et qui a reçu un message émis par ledit terminal ayant également été reçu par la station de base recherchée.
Il convient de noter que la position du terminal n’a pas besoin d’être connue par le réseau d’accès. Aussi, la position de la station de base recherchée peut être déterminée sans que cette dernière n’ait besoin de transmettre des informations relatives à sa position géographique. Aucune modification logicielle ou matérielle des stations de base du système de communication n’est nécessaire pour mettre en oeuvre le procédé de géolocalisation selon l’invention. Le procédé de géolocalisation selon l’invention peut donc être mis en oeuvre de façon simple et peu coûteuse.
Dans des modes particuliers de mise en oeuvre, l’invention peut comporter en outre l’une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toutes les combinaisons techniquement possibles.
Dans des modes particuliers de mise en oeuvre, la position géographique de la station de base recherchée est déterminée en outre en fonction d'une mesure effectuée pour chaque station de base de référence d'une valeur représentative d’un niveau de qualité de lien radio entre le terminal et ladite station de base de référence.
Pour un message particulier émis par un terminal et reçu à la fois par une station de base de référence et par la station de base recherchée, le lien radio en question correspond au lien radio établi entre le terminal et la station de base de référence pour la transmission de ce message. Dans des modes particuliers de mise en œuvre, la position géographique de la station de base recherchée est une moyenne pondérée des positions géographiques des stations de base de référence. Chaque position géographique d'une station de base de référence est pondérée par un coefficient dont la valeur est représentative du niveau de qualité de lien radio entre le terminal et ladite station de base de référence.
Dans des modes particuliers de mise en œuvre, la position géographique de la station de base recherchée est déterminée en outre en fonction d'une mesure effectuée pour la station de base recherchée d'une valeur représentative d’un niveau de qualité de lien radio entre le terminal et la station de base recherchée.
Dans des modes particuliers de mise en œuvre, la position géographique de la station de base recherchée est une moyenne pondérée des positions géographiques des stations de base de référence. Chaque position géographique d'une station de base de référence est pondérée par un coefficient dont la valeur est représentative de la différence entre le niveau de qualité de lien radio entre le terminal et la station de base de référence et le niveau de qualité de lien radio entre le terminal et la station de base recherchée.
Dans des modes particuliers de mise en œuvre, la position géographique de la station de base recherchée est déterminée à l’aide d’un algorithme d'apprentissage automatique en fonction des mesures effectuées et en fonction des positions géographiques des stations de base de référence.
Dans des modes particuliers de mise en œuvre, un groupe de plusieurs messages sont considérés pour déterminer la position géographique de la station de base recherchée, chaque message du groupe ayant été émis par un terminal du système de communication et reçu par au moins une station de base de référence et la station de base recherchée. Pour chaque message, pour la station de base recherchée et pour chacune des stations de base de référence ayant reçu ledit message, une mesure d'une valeur représentative d’un niveau de qualité de lien radio entre ladite station de base et le terminal ayant émis ledit message est effectuée.
Il est avantageux de considérer plusieurs messages pour déterminer la position géographique de la station de base recherchée car cela permet de diminuer le biais et la variance d’estimation. Plus le nombre de messages considérés est grand, et meilleure est la précision de géolocalisation de la station de base recherchée. Les différents messages considérés peuvent être émis par un seul terminal à différents instants, ou bien par plusieurs terminaux différents.
Dans des modes particuliers de mise en œuvre, la position géographique de la station de base recherchée est déterminée en fonction d'une position géographique de la station de base recherchée estimée pour chaque message du groupe.
Dans des modes particuliers de mise en oeuvre, une mesure virtuelle est calculée pour chaque station de base de référence à partir des mesures effectuées pour ladite station de base de référence pour les différents messages reçus par ladite station de base de référence. La position géographique de la station de base recherchée est alors déterminée en fonction des mesures virtuelles obtenues et des positions géographiques des stations de base de référence.
Dans des modes particuliers de mise en oeuvre, la mesure virtuelle calculée pour une station de base de référence est une moyenne pondérée des mesures effectuées pour ladite station de base de référence pour les différents messages reçus par ladite station de base de référence. Chaque mesure est pondérée par un coefficient dont la valeur est représentative de la mesure du niveau de qualité de lien radio effectuée pour la station de base recherchée pour le message correspondant.
Dans des modes particuliers de mise en oeuvre, la position géographique de la station de base recherchée est une moyenne pondérée des positions géographiques des stations de base de référence. Chaque position géographique d'une station de base de référence est pondérée par un coefficient dont la valeur est représentative de la mesure virtuelle calculée pour ladite station de base de référence.
Dans des modes particuliers de mise en oeuvre, la position géographique de la station de base recherchée est déterminée par un algorithme d'apprentissage automatique de régression en fonction des mesures effectuées et en fonction des positions géographiques des stations de base de référence.
Selon un deuxième aspect, la présente invention concerne un produit programme d’ordinateur comportant un ensemble d’instructions de code de programme qui, lorsqu’elles sont exécutées par un ou plusieurs processeurs, configurent le ou les processeurs pour mettre en oeuvre un procédé de géolocalisation d’une station de base selon l’un quelconque des modes de mise en oeuvre précédents.
Selon un troisième aspect, la présente invention concerne un serveur d'un système de communication sans fil. Le système de communication sans fil comporte une pluralité de stations de base et au moins un terminal adapté pour émettre des messages à destination desdites stations de base. Un message émis par le terminal peut être reçu simultanément par plusieurs stations de base. Le serveur est relié par un lien de communication à chaque station de base de la pluralité de stations de base. Le serveur est configuré pour mettre en oeuvre un procédé de géolocalisation d’une station de base selon l’un quelconque des modes de mise en oeuvre précédents.
Selon un quatrième aspect, la présente invention concerne un réseau d’accès d’un système de communication sans fil. Le réseau d’accès comporte une pluralité de stations de base et un serveur tel que précédemment décrit.
Présentation des figures
L’invention sera mieux comprise à la lecture de la description suivante, donnée à titre d’exemple nullement limitatif, et faite en se référant aux figures 1 à 8 qui représentent :
[Fig. 1] une représentation schématique d’un système de communication sans fil comportant au moins un terminal et un réseau d’accès comprenant une pluralité de stations de base,
[Fig. 2] une représentation schématique des principales étapes d’un procédé de géolocalisation d’une station de base selon l’invention,
[Fig. 3] une représentation schématique des principales étapes d’un premier mode particulier de mise en oeuvre d’un procédé de géolocalisation selon l’invention,
[Fig. 4] une représentation schématique des principales étapes d’un deuxième mode particulier de mise en oeuvre d’un procédé de géolocalisation selon l’invention,
[Fig. 5] une représentation schématique des principales étapes d’un troisième mode particulier de mise en oeuvre d’un procédé de géolocalisation selon l’invention,
[Fig. 6] une représentation schématique des principales étapes d’un quatrième mode particulier de mise en oeuvre d’un procédé de géolocalisation selon l’invention,
[Fig. 7] une représentation schématique des principales étapes d’un mode cinquième particulier de mise en oeuvre d’un procédé de géolocalisation selon l’invention,
[Fig. 8] une représentation schématique d’un modèle utilisé par un algorithme d’apprentissage automatique mettant en oeuvre un procédé de géolocalisation selon l’invention.
Dans ces figures, des références identiques d’une figure à une autre désignent des éléments identiques ou analogues. Pour des raisons de clarté, les éléments représentés ne sont pas nécessairement à une même échelle, sauf mention contraire.
Description détaillée d’un mode de réalisation de l’invention
La présente invention trouve une application particulièrement avantageuse, bien que nullement limitative, dans les systèmes de communication sans fil de type internet des objets (loT, pour « Internet Of Things » dans la littérature anglo-saxonne) ou de type M2M (acronyme anglo-saxon pour « Machine to Machine »).
La figure 1 représente schématiquement un système 10 de communication sans fil, comportant un ou plusieurs terminaux 20 et un réseau d’accès 30. Le réseau d’accès 30 comporte plusieurs stations de base 31 et un serveur 32 reliées auxdites stations de base 31 .
Dans un tel système 10 de communication sans fil, les échanges de données sont essentiellement monodirectionnels, en l’occurrence sur un lien montant des terminaux 20 vers le réseau d’accès 30 dudit système 10 de communication sans fil. Afin de minimiser les risques de perdre un message émis par un terminal 20, la planification du réseau d’accès 30 est souvent réalisée de telle sorte qu’une zone géographique donnée est couverte simultanément par plusieurs stations de base 31 , de telle manière qu’un message émis par un terminal 20 peut être reçu par plusieurs stations de base 31 . On entend par là qu’un même message émis par le terminal 20 peut être reçu, décodé, et traité par plusieurs stations de base 31 (et non pas seulement par une unique station de base à laquelle le terminal serait associé).
Chaque station de base 31 est adaptée à recevoir des messages des terminaux 20 qui se trouvent à sa portée. Un message émis par un terminal 20 comporte notamment un identifiant du terminal permettant d’identifier ledit terminal 20. Chaque message ainsi reçu est par exemple transmis au serveur 32 du réseau d’accès 10, éventuellement accompagné d’autres informations comme un identifiant de la station de base 31 qui l’a reçu, une valeur représentative de la qualité du signal radio transportant le message, la fréquence centrale sur laquelle le message a été reçu, une date à laquelle le message a été reçu, etc. Le serveur 32 traite par exemple l’ensemble des messages reçus des différentes stations de base 31 .
Le système 10 de communication sans fil est par exemple un réseau étendu sans fil à basse consommation électrique connu sous le terme LPWAN (acronyme anglais de « Low Power Wide Area Network »). Un tel système de communication sans fil est un réseau d’accès à longue portée (supérieure à un kilomètre, voire même supérieure à quelques dizaines de kilomètres), à faible consommation énergétique (par exemple une consommation énergétique lors de la transmission ou de la réception d’un message inférieure à 100 mW, voire inférieure à 50 mW, voire même inférieure à 25 mW), et dont les débits sont généralement inférieurs à 1 Mbits/s. De tels systèmes de communication sans fil sont particulièrement adaptés pour des applications impliquant des objets connectés.
Dans des modes particuliers de mise en oeuvre, le système 10 de communication sans fil peut être un système de communication à bande ultra étroite. Par « bande ultra étroite » (« Ultra Narrow Band » ou UNB dans la littérature anglo- saxonne), on entend que le spectre fréquentiel instantané des signaux radio émis par les terminaux est de largeur fréquentielle inférieure à deux kilohertz, voire inférieure à un kilohertz. Un tel système permet de limiter significativement la consommation électrique des terminaux lorsqu’ils communiquent avec le réseau d’accès.
Dans l’exemple considéré et illustré à la figure 1 , la position géographique d’une station de base 31 particulière du réseau d’accès 30 est recherchée. La station de base recherchée porte la référence BSx. Une ou plusieurs stations de base 31 distinctes de la station de base recherchée BSx correspondent à des stations de base de référence BSRef. Une station de base de référence BSRef est une station de base 31 du réseau d’accès 30 dont la position géographique est connue et qui a reçu un message émis par un terminal 20 ayant également été reçu par la station de base recherchée BSx.
Le serveur 32 peut notamment être utilisé pour mettre en oeuvre tout ou partie d’un procédé de géolocalisation de la station de base recherchée BSx. A cette fin, le serveur 32 comporte un circuit de traitement comportant un ou plusieurs processeurs et des moyens de mémorisation (disque dur magnétique, mémoire électronique, disque optique, etc.) dans lesquels est mémorisé un produit programme d’ordinateur, sous la forme d’un ensemble d’instructions de code de programme à exécuter pour mettre en oeuvre une partie au moins des étapes d’un procédé de géolocalisation d’une station de base 31 du réseau d’accès 30 du système 10 de communication sans fil. Alternativement ou en complément, le circuit de traitement du serveur 32 comporte un ou plusieurs circuits logiques programmables (FPGA, PLD, etc.), et/ou un ou plusieurs circuits intégrés spécialisés (ASIC), et/ou un ensemble de composants électroniques discrets, etc., adaptés à mettre en oeuvre des étapes du procédé de géolocalisation. En d’autres termes, le serveur 32 comporte des moyens logiciels et/ou matériels pour mettre en oeuvre un procédé de géolocalisation selon l’invention.
La figure 2 représente schématiquement les principales étapes d’un procédé 100 de géolocalisation de la station de base recherchée BSx.
Le procédé 100 de géolocalisation comporte notamment une étape 101 de détermination d’au moins une station de base de référence BSRef dont la position géographique est connue et qui a reçu un message émis par un terminal 20 ayant également été reçu par la station de base recherchée BSx. Le serveur 32 peut en effet déterminer, pour un message donné, quelles sont les stations de base 31 qui ont reçu ce message. A cette fin, le message reçu comporte par exemple un identifiant du terminal 20 qui a émis le message ainsi qu’un numéro de séquence permettant d’identifier ce message, et une station de base qui reçoit le message transmet le message au serveur accompagné d’un identifiant de la station de base.
Le procédé 100 comporte ensuite une étape 102 de détermination de la position géographique de la station de base recherchée BSx en fonction de la position géographique de chaque station base de référence BSRef déterminée à l’étape 101. Dans ce but, on suppose que le serveur a accès à une base de données comportant les positions géographiques de tout un ensemble de stations de base 31 qui peuvent alors jouer le rôle de stations de base de référence BSRef.
Par exemple, si une seule station de base de référence BSRef est déterminée à l’étape 101 , la position géographique de la station de base recherchée BSx peut être déterminée à l’étape 102 comme étant la position géographique de ladite station de base de référence BSRef. Dans un tel cas, la précision de géolocalisation de la station de base recherchée BSx est relativement faible car elle présente une erreur de géolocalisation pouvant aller jusqu’à deux fois la portée d’émission du terminal 20 ayant émis le message.
Selon un autre exemple, si plusieurs stations de base de référence BSRef sont déterminées à l’étape 101 , la position géographique de la station de base recherchée BSx peut être définie à l’étape 102 comme étant une moyenne des positions géographiques des différentes stations de base de référence BSRef utilisées.
Il convient de noter que par « position géographique », on entend par exemple un système de deux coordonnées correspondant à la latitude et la longitude. Une position géographique moyenne calculée entre plusieurs positions géographiques aura alors pour latitude la valeur moyenne des latitudes des différentes positions géographiques et pour longitude la valeur moyenne des longitudes des différentes positions géographiques. Rien n’empêche, cependant, de considérer également une troisième coordonnée correspondant à une altitude par rapport au niveau de la mer.
Pour améliorer la précision de la géolocalisation de la station de base recherchée BSx, il est également envisageable de prendre en compte une mesure d’une valeur représentative d’un niveau de qualité d’un lien radio établi entre un terminal 20 et une station de base 31 du réseau d’accès 30.
Dans un mode préféré de mise en oeuvre, et pour la suite de la description, à titre d’exemple nullement limitatif, la valeur représentative de la qualité de lien radio utilisée est un niveau de puissance reçue (« Received Signal Strength Indicator » ou RSSI dans la littérature anglo-saxonne) mesurée pour une station de base 31 pour un signal transportant un message émis par un terminal 20. Il convient toutefois de noter que d’autres valeurs représentatives de la qualité du lien radio pourraient être utilisées, comme par exemple l’atténuation du signal, un rapport signal sur bruit du signal (« Signal on Noise Ratio » ou SNR dans la littérature anglo-saxonne) ou bien un indicateur de qualité du canal de communication (« Channel Quality Indicator » ou CQI en anglais). Le choix d’une valeur particulière représentative de la qualité de lien radio ne constitue qu’une variante de l’invention. Il est aussi à noter que la mesure peut être réalisée soit directement par la station de base qui a reçu le message, soit indirectement par le serveur 32 à partir d’informations fournies par la station de base qui a reçu le message.
La figure 3 représente schématiquement les principales étapes d’un premier mode particulier de mise en oeuvre du procédé 100 de géolocalisation selon l’invention. Dans ce premier mode particulier de mise en oeuvre, on considère un seul message reçu à la fois par la station de base recherchée BSx et par au moins une station de base de référence BSRef. Une mesure RSSI du niveau de puissance avec lequel le message est reçu est alors effectuée pour chaque station de base de référence BSRef utilisée.
L’étape 201 est identique à l’étape 101 décrite précédemment en référence à la figure 2.
A l’étape 202, une valeur RSSI est mesurée pour chaque station de base de référence BSRef déterminée à l’étape 201 pour le message considéré.
A l’étape 203, la position géographique de la station de base recherchée BSx est déterminée non seulement en fonction de la position géographique de chaque station base de référence BSRef déterminée à l’étape 201 , mais aussi en fonction des valeurs RSSI mesurées à l’étape 202 pour ces stations de base de référence BSRef.
Par exemple, la position géographique de la station de base recherchée BSx est déterminée comme étant une moyenne pondérée des positions géographiques des stations de base de référence BSRef, chaque position géographique d'une station de base de référence BSRef étant pondérée par un coefficient dont la valeur est représentative du niveau de qualité du lien radio (c'est-à-dire la valeur de RSSI dans l’exemple considéré) établi entre le terminal 20 et ladite station de base de référence BSRef lors de l’échange du message considéré.
Ceci peut se traduire par l’expression ci-dessous :
[Math. 1]
Figure imgf000011_0001
dans laquelle:
- K est le nombre de stations de base de référence BSRef utilisées pour déterminer la position géographique de la station de base recherchée BSx,
Zk est la position géographique connue d’une station de base de référence BSRef d’indice k, - ak est le coefficient de pondération associé à la station de base de référence BSRef d’indice k,
- Zx est la position géographique déterminée de la station de base recherchée BSx (autrement dit, X est l’indice de la station de base recherchée).
Chaque coefficient de pondération ak est par exemple calculé selon l’expression ci- dessous :
[Math. 2]
Figure imgf000012_0001
dans laquelle:
- rssik est la mesure du niveau de puissance reçue (mesure RSSI) effectuée pour la station de base de référence BSRef d’indice k,
- Y est un facteur de normalisation dont la valeur est constante. Il convient de noter que le même symbole g est utilisé ci-après dans différentes expressions mathématiques pour représenter un facteur de normalisation. La valeur du facteur de normalisation peut cependant varier d’une expression à l’autre.
Dans les exemples considérés dans la présente demande, la mesure RSSI est exprimée en dBm (rapport de puissance en décibels entre la puissance mesurée et un milliwatt). La mesure RSSI est une valeur négative. Plus la valeur absolue de la mesure RSSI est grande, et plus le niveau de puissance reçue mesuré est faible. Inversement, plus la valeur absolue de la mesure RSSI est petite, et plus le niveau de puissance reçue mesuré est fort.
De telles dispositions permettent de déterminer la position géographique de la station de base recherchée BSx en fonction des positions géographiques des stations de base de référence BSRef tout en favorisant les stations de base de référence BSRef pour lesquels le message considéré a été reçu avec un niveau RSSI élevé. Autrement dit, pour déterminer la position géographique de la station de base recherchée BSx, une confiance plus grande est accordée aux stations de base de référence BSRef qui ont reçu le message considéré avec un niveau RSSI élevé.
Il est à noter que d’autres facteurs pourraient être pris en considération pour déterminer des coefficients de pondération respectivement pour les différentes stations de base de référence BSRef. Par exemple, il est envisageable de considérer l’environnement dans lequel se trouve la station de base de référence (milieu urbain, montagneux, maritime), ou l’altitude à laquelle est située la station de base de référence. La figure 4 représente schématiquement les principales étapes d’un deuxième mode particulier de mise en oeuvre du procédé 100 de géolocalisation selon l’invention. Ce deuxième mode particulier de mise en oeuvre comprend notamment une étape 301 de détermination d’au moins une station de base de référence BSRef et une étape 302 de détermination d’une mesure RSSI pour chaque station de base de référence BSRef identifiée. Les étapes 301 et 302 sont identiques respectivement aux étapes 201 et 202 du premier mode particulier de mise en oeuvre précédemment décrit en référence à la figure 3. En outre, ce deuxième mode particulier de mise en oeuvre, comporte une étape 303 de détermination d’une mesure RSSI du niveau de puissance avec lequel le message considéré est reçu par la station de base recherchée BSx. Dans une étape 304, la position géographique de la station de base recherchée BSx est alors déterminée en fonction des mesures RSSI effectuées non seulement pour les stations de base de référence BSRef mais aussi pour la station de base recherchée BSx.
Par exemple, la position géographique de la station de base recherchée BSx est une moyenne pondérée des positions géographiques des stations de base de référence BSRef, dans laquelle chaque position géographique d'une station de base de référence est pondérée par un coefficient dont la valeur est représentative de la différence entre le niveau RSSI mesuré pour ladite station de base de référence BSRef et le niveau RSSI mesuré pour la station de base recherchée BSx.
Autrement dit, la position géographique Zx de la station de base recherchée BSx peut être déterminée selon l’expression [Math. 1] en utilisant des coefficients de pondération ak définis par l’expression ci-dessous :
[Math. 3]
Figure imgf000013_0001
dans laquelle:
- rssik est la mesure du niveau de puissance reçue (mesure RSSI) effectuée pour la station de base de référence BSRef d’indice k,
- rssix est la mesure du niveau de puissance reçue (mesure RSSI) effectuée pour la station de base recherchée BSx.
De telles dispositions permettent de déterminer la position géographique de la station de base recherchée BSx en fonction des positions géographiques des stations de base de référence BSRef tout en favorisant les stations de base de référence pour lesquels le message considéré a été reçu avec un niveau RSSI proche du niveau RSSI avec lequel ledit message a été reçu par la station de base recherchée BSx. Autrement dit, pour déterminer la position géographique de la station de base recherchée BSx, une confiance plus grande est accordée aux stations de base de référence BSRef qui ont reçu le message avec un niveau RSSI proche du niveau RSSI avec lequel le message a été reçu par la station de base recherchée BSx. Comparativement avec le premier mode particulier de mise en oeuvre décrit en référence à la figure 3, la prise en compte du niveau RSSI avec lequel le message a été reçu par la station de base recherchée BSx permet d’améliorer la précision de la géolocalisation de la station de base recherchée.
Dans des modes particuliers de mise en oeuvre, il est également envisageable de déterminer la position géographique de la station de base recherchée BSx à l’aide d’un algorithme d'apprentissage automatique basé sur un modèle préétabli à partir de mesures de niveau RSSI ou de différences de niveau RSSI. Le modèle est par exemple construit pendant une phase d’apprentissage en associant des positions géographiques connues avec des valeurs de coefficients de pondération tels que ceux décrits par les expressions [Math. 2] et [Math. 3]. L’algorithme d’apprentissage automatique est configuré pour déterminer, pendant une phase de recherche, une position géographique d’une station de base recherchée à partir du modèle ainsi construit et à partir de valeurs de coefficients de pondération calculés pour des stations de base de référence ayant reçu un message particulier qui a également été reçu par la station de base recherchée.
La figure 5 représente schématiquement les principales étapes d’un troisième mode particulier de mise en oeuvre du procédé 100 de géolocalisation selon l’invention. Dans ce troisième mode particulier de mise en oeuvre, un groupe de plusieurs messages (Msg #1 , Msg #2, ... Msg #N) sont considérés pour déterminer la position géographique de la station de base recherchée BSx. Chaque message considéré a été émis par un terminal 20 du système 10 de communication et reçu à la fois par au moins une station de base de référence BSRef et par la station de base recherchée BSx. Il convient de noter que les différents messages considérés peuvent avoir été émis par un même terminal 20 ou par plusieurs terminaux 20 différents. Aussi, les différents messages considérés peuvent avoir été émis sensiblement au même moment ou bien à des instants différents pendant une période de temps prédéterminée.
Tel qu’illustré sur la figure 5, on retrouve ainsi dans ce troisième mode particulier de mise en oeuvre, pour chaque message considéré, une détermination d’au moins une station de base de référence BSRef qui a reçu ledit message considéré (étape 401). Cette détermination d’au moins une station de base de référence BSRef pour un message particulier est identique aux étapes 201 et 301 décrites précédemment respectivement pour le premier et pour le deuxième mode particulier de mise en oeuvre en référence aux figures 3 et 4. Aussi, pour chaque message considéré, une mesure RSSI du niveau de puissance avec lequel ledit message a été reçu est effectuée pour chacune des stations de base de référence BSRef ayant reçu ledit message (étape 402). Cette détermination d’une mesure RSSI pour chaque station de base de référence BSRef pour un message particulier est identique aux étapes 202 et 302 décrites précédemment respectivement pour le premier et pour le deuxième mode particulier de mise en oeuvre en référence aux figures 3 et 4.
Comme cela sera décrit en référence aux figures 6 et 7, différentes méthodes peuvent alors être envisagées pour déterminer, dans une étape 403, la position géographique de la station de base recherchée BSx en fonction des mesures RSSI effectuées et en fonction des positions géographiques connues des stations de base de référence BSRef.
Comparativement au premier et au deuxième mode particulier de mise en oeuvre, il est avantageux de considérer plusieurs messages pour déterminer la position géographique de la station de base recherchée BSx car cela permet de diminuer le biais et la variance d’estimation. Plus le nombre de messages considérés est grand, et meilleure est la précision de géolocalisation de la station de base recherchée BSx.
La figure 6 représente schématiquement les principales étapes d’un quatrième mode particulier de mise en oeuvre du procédé 100 de géolocalisation selon l’invention. Ce quatrième mode particulier de mise en oeuvre est basé sur le troisième mode particulier de mise en oeuvre précédemment décrit en référence à la figure 5. En particulier, l’étape 501 de détermination, pour chaque message considéré, d’au moins une station de base de référence, et l’étape 502 de détermination, pour chaque message considéré, d’une mesure RSSI pour chaque station de base de référence ayant reçu ledit message, sont identiques respectivement aux étapes 401 et 402 du troisième mode particulier de mise en oeuvre décrit en référence à la figure 5.
Ce quatrième mode particulier de mise en oeuvre comporte en outre une étape 503 dans laquelle, pour chaque message considéré, une position géographique estimée de la station de base recherchée est déterminée, ainsi qu’une étape 504 dans laquelle la position géographique de la station de base recherchée est déterminée en fonction des différentes positions estimées à l’étape 503.
A l’étape 503, pour un message considéré, la position géographique estimée de la station de base recherchée peut être déterminée comme étant la moyenne des positions géographiques des stations de base de référence BSRef ayant reçu ledit message. Pour améliorer la précision de géolocalisation, cette moyenne peut être pondérée en fonction de coefficients de pondération dont les valeurs sont représentatives des mesures RSSI mesurées pour les stations de base de référence ayant reçu ledit message.
Autrement dit, pour un message d’indice m parmi l’ensemble des messages considérés, la position géographique estimée Zm,x de la station de base recherchée BSx peut être définie par l’expression ci-dessous :
[Math. 4]
Figure imgf000016_0001
dans laquelle :
Km est le nombre de stations de base de référence BSRef ayant reçu le message d’indice m,
- Zk est la position géographique connue d’une station de base de référence d’indice k,
- am,k est le coefficient de pondération associé à la station de base de référence d’indice k,
Par exemple, le coefficient de pondération am,kpeut être défini selon l’expression ci-dessous :
[Math. 5]
Figure imgf000016_0002
dans laquelle rssim,k est la mesure du niveau de puissance reçue (mesure RSSI) pour la station de base de référence BSRef d’indice k pour le message d’indice m, et y est une valeur constante de normalisation.
De telles dispositions permettent, lors du calcul de la position géographique estimée de la station de base recherchée BSx à partir du message d’indice m, de donner plus d’importance aux stations de base de référence BSRef ayant reçu ce message d’indice m avec un niveau élevé de RSSI.
A l’étape 504, la position géographique Zx de la station de base recherchée BSx peut par exemple être définie comme une simple moyenne des positions géographiques ainsi estimées :
[Math. 6]
Figure imgf000016_0003
Dans l’expression ci-dessus, M correspond au nombre total de messages considérés. Avantageusement, il est également envisageable de pondérer cette moyenne avec des coefficients de pondération dont les valeurs sont représentatives des niveaux RSSI avec lesquels la station de base recherchée BSx a reçu le message d’indice m : [Math. 7]
Figure imgf000017_0001
De telles dispositions permettent, lors du calcul de la position géographique de la station de base recherchée BSx, de donner plus d’importance aux messages qui ont été reçus par la station de base recherchée avec un niveau RSSI élevé. Là encore, cela permet d’améliorer la précision de géolocalisation.
Comme cela a déjà été mentionné pour les modes de mise en oeuvre décrits précédemment, l’estimation faite pour un message particulier à l’étape 503 de la position géographique de la station de base recherchée BSx et/ou la détermination finale à l’étape 504 de la position géographique de la station de base recherchée BSx pourraient également être réalisées à l’aide d’un algorithme d'apprentissage automatique, par exemple un algorithme du type partitionnement de données (« data clustering » dans la littérature anglo-saxonne). Aussi, d’autres facteurs de pondération que la mesure RSSI pourraient être pris en considération pour déterminer des coefficients de pondération pour les différentes stations de base de référence BSRef.
La figure 7 représente schématiquement les principales étapes d’un cinquième mode particulier de mise en oeuvre du procédé 100 de géolocalisation selon l’invention. Ce cinquième mode particulier de mise en oeuvre est basé sur le troisième mode particulier de mise en oeuvre précédemment décrit en référence à la figure 5. En particulier, l’étape 601 de détermination, pour chaque message considéré, d’au moins une station de base de référence BSRef, et l’étape 602 de détermination, pour chaque message considéré, d’une mesure RSSI pour chaque station de base de référence BSRef ayant reçu ledit message, sont identiques respectivement aux étapes 401 et 402 du troisième mode particulier de mise en oeuvre décrit en référence à la figure 5.
Ce cinquième mode particulier de mise en oeuvre comporte en outre une étape 603 dans laquelle une mesure virtuelle est calculée pour chaque station de base de référence BSRef à partir des mesures RSSI effectuées pour ladite station de base de référence pour les différents messages reçus par ladite station de base de référence.
Par exemple, la mesure virtuelle calculée pour une station de base de référence BSRef peut correspondre à une simple moyenne des mesures RSSI effectuées pour ladite station de base de référence pour les différents messages reçus par ladite station de base de référence, ce qui peut se traduire par l’expression ci-dessous : [Math. 8]
Mk
Vrssik = =- .«» ÿ rssi m,k m A= 1 dans laquelle :
- Vrssik est la mesure virtuelle calculée pour une station de base de référence BSRef d’indice k,
- Mk est le nombre de messages reçus par cette station de base de référence d’indice k parmi l’ensemble des messages considérés,
- rssim.k est la mesure RSSI effectuée pour la station de base de référence d’indice k pour un message d’indice m choisi parmi les Mk messages reçus.
Pour améliorer la précision de géolocalisation, la mesure virtuelle calculée pour une station de base de référence BSRef peut correspondre à une moyenne pondérée des mesures RSSI effectuées pour ladite station de base de référence pour les différents messages reçus par ladite station de base de référence. Chaque mesure RSSI est par exemple pondérée par un coefficient dont la valeur est représentative de la mesure RSSI effectuée pour la station de base recherchée BSx pour le message correspondant. Cela peut se traduire par l’expression ci-dessous :
[Math. 9]
Figure imgf000018_0001
dans laquelle rssim,x est la mesure RSSI effectuée pour la station de base recherchée BSx pour un message d’indice m choisi parmi les Mk messages qui ont été reçus à la fois par la station de base de référence BSRef d’indice k et par la station de base recherchée BSx.
A l’étape 604, la position géographique de la station de base recherchée BSx est déterminée en fonction des mesures virtuelles ainsi obtenues et en fonction des positions géographiques des stations de base de référence BSRef.
La position géographique Zx de la station de base recherchée BSx peut par exemple être définie comme une moyenne pondérée des positions géographiques Zk des K stations de base de référence BSRef.
Par exemple, chaque position géographique d’une station de base de référence est pondérée par un coefficient de pondération représentatif de la mesure virtuelle calculée pour ladite station de base de référence : [Math. 10]
Figure imgf000019_0001
Selon un autre exemple, chaque position géographique d’une station de base de référence BSRef est pondérée par un coefficient de pondération représentatif de la différence entre la mesure virtuelle calculée pour ladite station de base de référence et une mesure virtuelle calculée pour la station de base recherchée BSx :
[Math. 11]
Figure imgf000019_0002
Dans l’expression ci-dessus, Vrssix correspond à la mesure virtuelle calculée pour la station de base recherchée BSx, qui peut par exemple correspondre à la moyenne des niveaux RSSI mesurés pour la station de base recherchée BSx pour les M différents messages considérés :
[Math. 12]
Figure imgf000019_0003
Dans des modes particuliers de mise en oeuvre, la position géographique de la station de base recherchée BSx est déterminée par un algorithme d'apprentissage automatique de régression en fonction des mesures effectuées et en fonction des positions géographiques des stations de base de référence BSRef.
La figure 8 représente un exemple de modèle utilisé par l’algorithme d’apprentissage automatique. Le modèle correspond à une matrice de caractéristiques mémorisées dans une base de données accessible par le serveur 32.
L’algorithme d’apprentissage automatique est configuré pour générer une fonction de régression permettant de déterminer la position géographique (longitude, latitude) d’une station de base à partir de cette matrice de caractéristiques. Chaque ligne de la matrice correspond à une station de base recherchée BSx du réseau d’accès 30. Pour déterminer la position géographique de la station de base recherchée BSx, on considère : un groupe de P messages reçus par la station de base recherchée BSx,
- pour chaque message, une sélection de N stations de base de référence BSRef présentant les plus grandes valeurs de RSSI mesurées pour ledit message,
- les P mesures RSSI effectuées pour la station de base recherchée BSx pour les P messages considérés.
Ainsi, les 3N premières colonnes de la matrice de caractéristiques correspondent respectivement à la mesure RSSI, la longitude et la latitude de N stations de base de référence BSRef présentant les plus grandes valeurs de mesure RSSI pour un premier message reçu à la fois par la station de base recherchée BSx et par chacune des stations de base de référence. La colonne (3N+1 ) correspond à la mesure RSSI pour la station de base recherchée BSx pour ce premier message. Les colonnes (3N+2) à (6N+2) correspondent à des valeurs similaires pour un deuxième message particulier. Les colonnes ((P-1)(3N+1 )+1 ) à P(3N+1) correspondent à des valeurs similaires pour un Pième message particulier. Il convient de noter que si certaines valeurs de la matrice de caractéristiques ne sont pas disponibles (par exemple s’il y a moins de N stations de base de référence identifiées pour un message donné) des valeurs par défaut peuvent être utilisées. Aussi, d’autres caractéristiques propres à chaque station de base peuvent être ajoutées dans la matrice de caractéristiques, par exemple l’altitude de la station de base de référence, ou l’environnement dans lequel elle est située (milieu urbain, montagneux, maritime, etc.).
Pour entraîner le modèle et apprendre la fonction de régression, on considère que des stations de base à géolocaliser correspondent à des stations de base dont on connaît la position géographique.
Il est envisageable de créer plusieurs lignes de la matrice de caractéristiques pour une même station de base. Par exemple, les P messages d’une même ligne correspondent à des messages reçus consécutivement (éventuellement en provenance de différents terminaux) pendant une certaine période de temps, et différentes lignes associées à une même station de base correspondent à différentes périodes de temps (et donc à différentes séquences de messages reçus pendant lesdites périodes de temps). Selon un autre exemple, les P messages d’une même ligne correspondent à des messages émis consécutivement par un seul et même terminal pendant une certaine période de temps, et différentes lignes associées à une même station de base correspondent à différents terminaux (et éventuellement à différentes périodes de temps aussi).
Une fois que la fonction de régression est apprise, elle peut être utilisée pour prédire la position géographique d’une station de base recherchée BSx à partir d’une part du modèle mémorisé dans la base de données et d’autres part à partir des mesures RSSI effectuées pour un groupe de messages.
Différents types d’algorithmes d’apprentissage automatique de régression peuvent être utilisés, comme par exemple des algorithmes de type « Forêt d’arbres décisionnels » (« Random forest » dans la littérature anglo-saxonne) ou de type « Amélioration du gradient » (« Gradient boosting » dans la littérature anglo-saxonne »).
Dans l’exemple illustré à la figure 8, une sélection de N stations de base de référence BSRef présentant les plus grandes valeurs de RSSI mesurées est effectuée pour chaque message considéré. Il convient toutefois de noter qu’il est envisageable de faire une sélection de N stations de base de référence ou de P messages selon différents critères. Par exemple, les P messages et les N stations de base pourraient être sélectionnés pour maximiser le nombre de stations de base communes ayant reçu les P messages. Selon un autre, les P messages et les N stations de base pourraient être sélectionnés pour maximiser la diversité spatiale des stations de base.
La description ci-avant illustre clairement que, par ses différentes caractéristiques et leurs avantages, la présente invention atteint les objectifs fixés. En particulier, l’invention permet de géolocaliser une station de base d’un réseau d’accès d’un système de communication sans fil de manière simple et peu onéreuse, sans qu’il soit nécessaire de modifier de façon logicielle et/ou matérielle les stations de base du système.

Claims

Revendications
1 . Procédé (100) de géolocalisation d’une station de base (31), dite « station de base recherchée » (BSx), d'un réseau d’accès (30) d'un système (10) de communication sans fil, ledit système (10) de communication sans fil comportant au moins un terminal (20) adapté pour émettre des messages à destination dudit réseau d’accès (30), un message émis par le terminal (20) pouvant être reçu simultanément par plusieurs stations de base (31) du réseau d’accès (30), la position géographique de la station de base recherchée (BSx) étant déterminée en fonction de la position géographique d'au moins une autre station de base (31) du réseau d’accès (30), dite « station de base de référence » (BSRef), dont la position géographique est connue et qui a reçu un message émis par ledit terminal (20) ayant également été reçu par la station de base recherchée (BSx).
2. Procédé (100) de géolocalisation selon la revendication 1 dans lequel la position géographique de la station de base recherchée (BSx) est déterminée en outre en fonction d'une mesure effectuée pour chaque station de base de référence (BSRef) d'une valeur représentative d’un niveau de qualité de lien radio entre le terminal (20) et ladite station de base de référence (BSRef).
3. Procédé (100) de géolocalisation selon la revendication 2 dans lequel la position géographique de la station de base recherchée (BSx) est une moyenne pondérée des positions géographiques des stations de base de référence (BSRef), chaque position géographique d'une station de base de référence (BSRef) étant pondérée par un coefficient dont la valeur est représentative du niveau de qualité du lien radio entre le terminal (20) et ladite station de base de référence (BSRef).
4. Procédé (100) de géolocalisation selon la revendication 2 dans lequel la position géographique de la station de base recherchée (BSx) est déterminée en outre en fonction d'une mesure effectuée pour la station de base recherchée (BSx) d'une valeur représentative d’un niveau de qualité de lien radio entre le terminal (20) et ladite station de base recherchée (BSx).
5. Procédé (100) de géolocalisation selon la revendication 4 dans lequel la position géographique de la station de base recherchée (BSx) est une moyenne pondérée des positions géographiques des stations de base de référence (BSRef), chaque position géographique d'une station de base de référence (BSRef) étant pondérée par un coefficient dont la valeur est représentative de la différence entre le niveau de qualité du lien radio entre le terminal (20) et la station de base de référence (BSRef) et le niveau de qualité du lien radio entre le terminal (20) et la station de base recherchée (BSx).
6. Procédé (100) de géolocalisation selon l’une des revendications 2 ou 3 dans lequel la position géographique de la station de base recherchée (BSx) est déterminée à l’aide d’un algorithme d'apprentissage automatique en fonction des mesures effectuées et en fonction des positions géographiques des stations de base de référence (BSRef).
7. Procédé (100) de géolocalisation selon la revendication 1 dans lequel :
- un groupe de plusieurs messages sont considérés pour déterminer la position géographique de la station de base recherchée (BSx), chaque message ayant été émis par un terminal (20) du système (10) de communication et reçu par au moins une station de base de référence (BSRef) et la station de base recherchée (BSx),
- pour chaque message, pour la station de base recherchée (BSx) et pour chacune des stations de base de référence (BSRef) ayant reçu ledit message, une mesure d'une valeur représentative d’un niveau de qualité de lien radio entre ladite station de base et le terminal (20) ayant émis ledit message est effectuée.
8. Procédé (100) de géolocalisation selon la revendication 7 dans lequel la position géographique de la station de base recherchée (BSx) est déterminée en fonction d'une position géographique de la station de base recherchée (BSx) estimée pour chaque message du groupe.
9. Procédé (100) de géolocalisation selon la revendication 7 dans lequel une mesure virtuelle est calculée pour chaque station de base de référence (BSRef) à partir des mesures effectuées pour ladite station de base de référence (BSRef) pour les différents messages reçus par ladite station de base de référence (BSRef), et la position géographique de la station de base recherchée (BSx) est déterminée en fonction des mesures virtuelles obtenues et des positions géographiques des stations de base de référence (BSRef).
10. Procédé (100) de géolocalisation selon la revendication 9 dans lequel la mesure virtuelle calculée pour une station de base de référence (BSRef) est une moyenne pondérée des mesures effectuées pour ladite station de base de référence (BSRef) pour les différents messages reçus par ladite station de base de référence (BSRef), chaque mesure étant pondérée par un coefficient dont la valeur est représentative de la mesure du niveau de qualité du lien radio effectuée pour la station de base recherchée (BSx) pour le message correspondant.
11 . Procédé (100) de géolocalisation selon l’une des revendications 9 ou 10 dans lequel la position géographique de la station de base recherchée (BSx) est une moyenne pondérée des positions géographiques des stations de base de référence (BSRef), chaque position géographique d'une station de base de référence (BSRef) étant pondérée par un coefficient dont la valeur est représentative de la mesure virtuelle calculée pour ladite station de base de référence (BSRef).
12. Procédé (100) de géolocalisation selon la revendication 7 dans lequel la position géographique de la station de base recherchée (BSx) est déterminée par un algorithme d'apprentissage automatique de régression en fonction des mesures effectuées et en fonction des positions géographiques des stations de base de référence (BSRef).
13. Produit programme d’ordinateur comportant un ensemble d’instructions de code de programme qui, lorsqu’elles sont exécutées par un ou plusieurs processeurs, configurent le ou les processeurs pour mettre en oeuvre un procédé (100) de géolocalisation d’une station de base (31 ) selon l’une des revendications 1 à 12.
14. Serveur (32) d'un système (10) de communication sans fil, ledit système (10) de communication sans fil comportant une pluralité de stations de base (31 ) et au moins un terminal (20) adapté pour émettre des messages à destination desdites stations de base (31 ), un message émis par le terminal (20) pouvant être reçu simultanément par plusieurs stations de base (31 ), ledit serveur (32) étant relié par un lien de communication à chaque station de base (31 ) de ladite pluralité de stations de base, ledit serveur (32) étant configuré pour mettre en oeuvre un procédé (100) de géolocalisation d’une station de base selon l’une des revendications 1 à 12.
15. Réseau d’accès (30) d’un système (10) de communication sans fil, ledit réseau d’accès (30) comportant une pluralité de stations de base (31) et un serveur (32) selon la revendication 14.
PCT/EP2020/078363 2019-10-10 2020-10-09 Procédé de géolocalisation d'une station de base d'un système de communication sans fil WO2021069636A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20788791.0A EP4042768A1 (fr) 2019-10-10 2020-10-09 Procédé de géolocalisation d'une station de base d'un système de communication sans fil
US17/767,854 US20240089902A1 (en) 2019-10-10 2020-10-09 Method for the geolocalization of a base station of a wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1911222A FR3102029B1 (fr) 2019-10-10 2019-10-10 Procédé de géolocalisation d’une station de base d’un système de communication sans fil
FRFR1911222 2019-10-10

Publications (1)

Publication Number Publication Date
WO2021069636A1 true WO2021069636A1 (fr) 2021-04-15

Family

ID=69572083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/078363 WO2021069636A1 (fr) 2019-10-10 2020-10-09 Procédé de géolocalisation d'une station de base d'un système de communication sans fil

Country Status (4)

Country Link
US (1) US20240089902A1 (fr)
EP (1) EP4042768A1 (fr)
FR (1) FR3102029B1 (fr)
WO (1) WO2021069636A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105946A1 (fr) * 2010-02-25 2011-09-01 Telefonaktiebolaget L M Ericsson (Publ) Procédés et nœuds dans un réseau de communication sans fil
CN104125537A (zh) * 2014-08-12 2014-10-29 湖北工业大学 一种基于cc2530的多方式协同定位系统和定位方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105946A1 (fr) * 2010-02-25 2011-09-01 Telefonaktiebolaget L M Ericsson (Publ) Procédés et nœuds dans un réseau de communication sans fil
CN104125537A (zh) * 2014-08-12 2014-10-29 湖北工业大学 一种基于cc2530的多方式协同定位系统和定位方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D'SOUZA MATTHEW ET AL: "Indoor position tracking using received signal strength-based fingerprint context aware partitioning", IET RADAR SONAR NAVIGATION, THE INSTITUTION OF ENGINEERING AND TECHNOLOGY, UK, vol. 10, no. 8, 1 October 2016 (2016-10-01), pages 1347 - 1355, XP006060857, ISSN: 1751-8784, DOI: 10.1049/IET-RSN.2015.0396 *
TIN-YU WU ET AL: "A GA-based mobile RFID localization scheme for internet of things", PERSONAL AND UBIQUITOUS COMPUTING, SPRINGER VERLAG, LO, vol. 16, no. 3, 3 June 2011 (2011-06-03), pages 245 - 258, XP035019377, ISSN: 1617-4917, DOI: 10.1007/S00779-011-0398-9 *
YEONG-SHENG CHEN ET AL: "An Efficient Localization Scheme with Ring Overlapping by Utilizing Mobile Anchors in Wireless Sensor Networks", MULTIMEDIA AND UBIQUITOUS ENGINEERING (MUE), 2010 4TH INTERNATIONAL CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 11 August 2010 (2010-08-11), pages 1 - 6, XP031755067, ISBN: 978-1-4244-7563-6 *

Also Published As

Publication number Publication date
FR3102029A1 (fr) 2021-04-16
EP4042768A1 (fr) 2022-08-17
FR3102029B1 (fr) 2023-04-28
US20240089902A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
EP1836507B1 (fr) Procede et dispositif de positionnement
FR3064074A1 (fr) Procede et systeme de geolocalisation d’un terminal d’un systeme de communication sans fil
EP3822653A1 (fr) Procede et systeme de localisation et communication satellitaire d'un terminal radioelectrique fixe au sol utilisant au moins un satellite defilant
FR3025610A1 (fr) Procede de determination collaborative d'erreurs de positionnement d'un systeme de navigation par satellites
WO2017108585A1 (fr) Procede pour determiner une reference temporelle et/ou au moins une reference spatiale dans un systeme de communication
FR2982033A1 (fr) Procede de traitement coordonne de signaux emis par des balises
EP4008135A1 (fr) Procédé et système de génération d'au moins une zone pour la rétrodiffusion d'un signal ambiant et/ou pour la réception d'un signal ambiant rétrodiffusé
EP4042768A1 (fr) Procédé de géolocalisation d'une station de base d'un système de communication sans fil
WO2021069638A1 (fr) Procédé de géolocalisation d'une balise de diffusion d'un système de communication sans fil
EP1664833A1 (fr) Procede pour detecter la presence ou l'absence d'un terminal mobile sur un chemin
WO2019180063A1 (fr) Procédé et système de géolocalisation de terminaux évoluant en groupe
FR3068140B1 (fr) Procede de mise a jour d'un jeu de parametres orbitaux stocke dans une balise de geolocalisation, produit programme d'ordinateur, dispositif de mise a jour et balise correspondants.
FR3098305A1 (fr) Procédé de détermination d’au moins un emplacement pour la réception d’un signal ambiant rétrodiffusé
EP3827624B1 (fr) Procédé et système de géolocalisation d'un terminal à portée d'un dispositif émetteur d'intérêt
FR3082692A1 (fr) Procede et systeme de geolocalisation d'un terminal d'un systeme de communication sans fil
WO2023046852A1 (fr) Coopération entre deux méthodes de géolocalisation d'un terminal d'un système de communication sans fil
EP3610283B1 (fr) Procede, dispositif et produit programme d'ordinateur pour la geolocalisation d'un emetteur radio
EP2259643B1 (fr) Procédé de transmission d'informations de position par un dispositif mobile
EP4342207A1 (fr) Optimisation de la géolocalisation d'un terminal à partir d'un ou plusieurs identifiants de dispositifs émetteurs voisins
WO2022223388A1 (fr) Procédé de mise à jour d'une base de données d'un serveur de géolocalisation
WO2021240119A1 (fr) Méthode de positionnement gnss déportée dans le cloud
WO2022008812A1 (fr) Procédé et dispositif d'obtention d'une position géographique d'un véhicule situé dans une zone non couverte par un système de positionnement par satellite
FR3105442A1 (fr) Procede de geolocalisation d’objets connectes et dispositif associe.
FR3124680A1 (fr) Fiabilisation de la géolocalisation d’un terminal à partir d’un ou plusieurs identifiants de dispositifs émetteurs voisins
WO2019106128A1 (fr) Procédé et système de géolocalisation d'un terminal occupant des positions géographiques particulières

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788791

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17767854

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020788791

Country of ref document: EP

Effective date: 20220510