WO2021069306A1 - Vorrichtung zur vermischung reaktiver komponenten - Google Patents

Vorrichtung zur vermischung reaktiver komponenten Download PDF

Info

Publication number
WO2021069306A1
WO2021069306A1 PCT/EP2020/077543 EP2020077543W WO2021069306A1 WO 2021069306 A1 WO2021069306 A1 WO 2021069306A1 EP 2020077543 W EP2020077543 W EP 2020077543W WO 2021069306 A1 WO2021069306 A1 WO 2021069306A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
rpm
mixing
screw shafts
speed
Prior art date
Application number
PCT/EP2020/077543
Other languages
English (en)
French (fr)
Inventor
Rolf Albach
Hubert Ehbing
Klaus Franken
Sebastian KOESTER
Original Assignee
Covestro Intellectual Property Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Intellectual Property Gmbh & Co. Kg filed Critical Covestro Intellectual Property Gmbh & Co. Kg
Priority to EP20780729.8A priority Critical patent/EP4041512A1/de
Publication of WO2021069306A1 publication Critical patent/WO2021069306A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/92Wood chips or wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products

Definitions

  • the present invention relates to a device for mixing reactive components for the production of polyurethane foams, a method for the production of polyurethane foams and the use of these polyurethane foams.
  • Polyurethane foams are obtained by reacting an isocyanate-reactive component with an isocyanate.
  • the isocyanate-reactive component and the isocyanate are fed separately into a mixing chamber.
  • the two components are mixed, for example, by countercurrent injection or by a mixing element, such as. B. a spiked stirrer.
  • a mixing element such as. B. a spiked stirrer.
  • the two components already react with one another and deposits form in the area of dead zones and walls. These deposits grow over time and it is necessary to remove them to prevent the mixing chamber from becoming blocked.
  • cleaning plungers are used in countercurrent injection mixheads, for example, which limits the method with regard to the filler content of solid additives in the reaction mixture (EP2886280).
  • DE 41 11 458 CI discloses a mixing chamber with a mixing screw as the mixing element, the mixing chamber and mixing screw being conical and the mixing screw rotating at a speed of 5000 to 10000 rpm.
  • the disadvantage of this design is the complex structure and a necessary additional step for cleaning the mixing screw at high speeds in the range from 15,000 to 20,000 rpm.
  • a device for mixing reactive components for the production of Polyurethane foams comprising a mixing chamber containing a mixing element, characterized in that two closely intermeshing screw shafts are used as the mixing element, which are suitable to rotate at a speed of more than 1200 rpm, the two rotating shafts intermeshing, rotating at the same speed and have the same dimensions with regard to their diameter of 10 mm to 80 mm in each case and with regard to their length from 3 to 20 times the respective diameter.
  • Another component of the invention is a process for the production of polyurethane foams by mixing Al) isocyanate-reactive components,
  • the process according to the invention is preferably a process which is carried out continuously.
  • the screw shafts used as the mixing element of the device according to the invention rotate at a speed of more than 1200 rpm, preferably more than 1200 rpm to 25000 rpm, particularly preferably from 2000 rpm to 20,000 rpm and particularly preferably from 2500 rpm to 15000 rpm. Even more preferably, the screw shafts used as the mixing element rotate at a speed of more than 4000 rpm or more than 4200 rpm, most preferably at a speed of more than 4000 rpm to 15000 rpm or more than 4200 rpm / min to 15000 rpm.
  • Two closely meshing screw shafts which are suitable for rotating at a speed of more than 4000 rpm or more than 4200 rpm are preferably used as the mixing element.
  • the diameter of the individual rotating screw shaft is 10 mm to 80 mm, preferably 20 mm to 60 mm, particularly preferably 30 mm to 60 mm and the length of the individual rotating screw shaft is 3 to 20 times, preferably 5 to 15 times , particularly preferably 8 to 12 times the diameter.
  • the mixing element preferably has a gap dimension in relation to the housing diameter of at least 1 ⁇ m / mm, particularly preferably of at least 2.5 ⁇ m / mm.
  • the mixing element preferably has a gap dimension in relation to the housing diameter of at most 20 ⁇ m / mm.
  • the speed and the dimensions of the rotating screw shafts are coordinated with one another in such a way that the mean residence time of the reactive components in the mixing chamber is less than 10 seconds, preferably from 0.01 to less than 10 seconds, more preferably less than 5 seconds, is particularly preferably less than 2 seconds.
  • the determination of the mean residence time is familiar to the person skilled in the art and can be measured, for example, by adding a tracer.
  • the reactive components can be fed into the mixing chamber in different ways.
  • the material to be mixed is introduced into the mixing chamber from the outside via suitable openings. These can be nozzles, injection lances or just openings. All reactive components can be brought together before the mixing chamber and fed into the mixing chamber as a stream. This is then mixed in the mixing chamber.
  • all reactive components can also be fed individually to the mixing chamber.
  • the number of reactive components is not limited to two; it can also be three or more. Individual constituents of a usually premixed component can also be metered in individually; the mixing element then also takes over the mixing.
  • the components to be mixed can be fed in at the same position of the mixing element viewed in the longitudinal direction (shaft direction or conveying direction). Then, of course, different positions in the circumferential direction must be selected, unless all components are fed together at one point.
  • the components can, however, also be fed in at different positions in the longitudinal direction and, if desired, also in the circumferential direction. It is important that the desired mixing is achieved.
  • the feed position can be selected, for example in the longitudinal direction, so that components that are difficult to mix are fed to the beginning of the mixing chamber and components that are easy to mix are fed to the end of the mixing chamber. For example, components that cannot tolerate too intensive mixing can also be fed to the end of the mixing chamber earlier.
  • the mixed reaction mixture is then ready for further use or processing.
  • the device according to the invention can be operated either continuously or discontinuously.
  • the profile of the worm shafts can be single-thread or multi-thread, so it can have one or more worm threads.
  • a multi-flight profile is preferred, and a double-flight profile is particularly preferred. Such profiles are preferred because they allow a larger free volume to be achieved while at the same time having good pressure build-up capacity.
  • the enveloping surface of the rotating shafts is preferably cylindrical, but can also be conical or take on other shapes.
  • At least one compound selected from the group consisting of polyether polyols, polyester polyols, polyether ester polyols, polycarbonate polyols and polyether-polycarbonate polyols is used as the isocyanate-reactive component Al.
  • Polyester polyols and / or polyether polyols are preferred.
  • the isocyanate-reactive component Al can preferably have a hydroxyl number between 25 to 800 mg KOH / g, in particular 50 to 500 mg KOH / g and particularly preferably 100 to 300 mg KOH / g.
  • the individual polyol component preferably has a number average molecular weight of 120 g / mol to 6000 g / mol, in particular 400 g / mol to 2000 g / mol and particularly preferably 500 g / mol to 1000 g / mol.
  • the number average molar mass M n (also: molecular weight) is determined in the context of this invention by gel permeation chromatography according to DIN 55672-1 (March 2007).
  • the OH number indicates its OH number.
  • Information on the OH number for mixtures relates to the number-average OH number of the mixture, calculated from the OH numbers of the individual components in their respective molar proportions.
  • the OH number indicates the amount Potassium hydroxide in milligrams, which is equivalent to the amount of acetic acid bound by acetylation of one gram of substance.
  • the OH number is determined in accordance with the DIN 53240-1 standard (June 2013).
  • “functionality” denotes the theoretical average functionality calculated from the known starting materials and their quantitative ratios (number of functions in the molecule that are reactive toward isocyanates or toward polyols).
  • the polyester polyols of component Al can be, for example, polycondensates of polyhydric alcohols, preferably diols, with 2 to 12 carbon atoms, preferably with 2 to 6 carbon atoms, and polycarboxylic acids, such as, for example, di-, tri- or even tetracarboxylic acids, or hydroxycarboxylic acids or lactones aromatic dicarboxylic acids or mixtures of aromatic and aliphatic dicarboxylic acids are used.
  • polycarboxylic acids such as, for example, di-, tri- or even tetracarboxylic acids, or hydroxycarboxylic acids or lactones aromatic dicarboxylic acids or mixtures of aromatic and aliphatic dicarboxylic acids are used.
  • the free polycarboxylic acids it is also possible to use the corresponding polycarboxylic acid anhydrides or corresponding polycarboxylic acid esters of lower alcohols for the production of the polyesters. Phthalic anhydride, terephthal
  • carboxylic acids are: succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, tetrahydrophthalic acid, hexahydrophthalic acid, cyclohexanedicarboxylic acid,
  • Tetrachlorophthalic acid itaconic acid, malonic acid, 2-methylsuccinic acid, 3,3-diethylglutaric acid, 2,2-dimethylsuccinic acid, dodecanedioic acid,
  • the carboxylic acids can be used either individually or as a mixture.
  • the carboxylic acids used are preferably adipic acid, sebacic acid and / or succinic acid, particularly preferably adipic acid and / or succinic acid.
  • Hydroxycarboxylic acids that can be used as reactants in the production of a polyester polyol with terminal hydroxyl groups are, for example, hydroxycaproic acid, hydroxybutyric acid, hydroxydecanoic acid, Hydroxystearic acid and the like.
  • Suitable lactones include caprolactone, butyrolactone and homologues.
  • bio-based starting materials and / or their derivatives are particularly suitable, such as.
  • diols examples include ethylene glycol, butylene glycol, diethylene glycol, triethylene glycol, polyalkylene glycols such as polyethylene glycol, also 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol and isomers, Neopentyl glycol or neopentyl glycol hydroxypivalate.
  • Ethylene glycol diethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol or mixtures of at least two of the diols mentioned, in particular mixtures of 1,4-butanediol, 1,5-pentanediol and 1, are preferably used 6-hexanediol.
  • polyols such as trimethylolpropane, glycerol, erythritol, pentaerythritol, trimethylolbenzene or trishydroxyethyl isocyanurate can also be used, glycerol and trimethylolpropane being preferred.
  • monohydric alkanols can also be used.
  • Polyether polyols used according to the invention are obtained by production methods known to the person skilled in the art, such as, for example, by anionic polymerization of one or more alkylene oxides having 2 to 4 carbon atoms with alkali hydroxides, such as sodium or potassium hydroxide, alkali alcoholates, such as sodium methylate, sodium or potassium ethylate or potassium isopropylate, or aminic alkoxylation s - Catalysts, such as dimethylethanolamine (DMEOA), imidazole and / or imidazole derivatives, using at least one starter molecule which contains 2 to 8, preferably 2 to 6, reactive hydrogen atoms bonded.
  • alkali hydroxides such as sodium or potassium hydroxide
  • alkali alcoholates such as sodium methylate, sodium or potassium ethylate or potassium isopropylate
  • aminic alkoxylation s - Catalysts such as dimethylethanolamine (DMEOA), imidazole and / or imi
  • Suitable alkylene oxides are, for example, tetrahydrofuran, 1,3-propylene oxide, 1,2- or 2,3-butylene oxide, styrene oxide and preferably ethylene oxide and 1,2-propylene oxide.
  • the alkylene oxides can be used individually, alternately in succession or as mixtures.
  • Preferred alkylene oxides are propylene oxide and ethylene oxide, and ethylene oxide is particularly preferred.
  • the alkylene oxides can be converted in combination with CO2.
  • Suitable starter molecules are, for example: water, organic dicarboxylic acids such as succinic acid, adipic acid, phthalic acid and terephthalic acid, aliphatic and aromatic, optionally N-mono-, N, N- and N, N'-dialkyl-substituted diamines with 1 to 4 carbon atoms in the alkyl radical such as optionally mono- and dialkyl-substituted ethylenediamine, diethylenetriamine, triethylenetetramine, 1,3-propylenediamine, 1,3- or 1,4-butylenediamine, 1,2-, 1,3-, 1,4-, 1,5- and 1,6-hexamethylenediamine, phenylenediamines, 2,3-, 2,4- and 2,6-tolylenediamine, and 2,2'-, 2,4'- and 4,4'-diaminodiphenylmethane.
  • organic dicarboxylic acids such as succinic acid, adipic acid,
  • two or polyhydric alcohols such as ethanediol, 1,2- and 1,3-propanediol, diethylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexanediol, triethanolamine, bisphenols, glycerol, trimethylolpropane, pentaerythritol, sorbitol and Sucrose.
  • Polycarbonate polyols which can be used are polycarbonates containing hydroxyl groups, for example polycarbonate diols. These arise in the reaction of carbonic acid derivatives, such as diphenyl carbonate, dimethyl carbonate or phosgene, with polyols, preferably diols.
  • diols examples include ethylene glycol, 1,2- and 1,3-propanediol, 1,3- and 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, neopentyl glycol, 1,4-
  • polyether-polycarbonate diols which are obtainable, for example, by copolymerizing alkylene oxides, such as propylene oxide, with CO 2.
  • Polyetherester polyols which can be used are those compounds which contain ether groups, ester groups and OH groups.
  • Organic dicarboxylic acids with up to 12 carbon atoms are suitable for the production of the polyetherester polyols, preferably aliphatic dicarboxylic acids with 4 to 6 carbon atoms or aromatic dicarboxylic acids, which are used individually or in a mixture.
  • Examples are suberic acid, azelaic acid, decanedicarboxylic acid, furanedicarboxylic acid, maleic acid, malonic acid, phthalic acid, pimelic acid and sebacic acid and, in particular, glutaric acid, fumaric acid, succinic acid, adipic acid, phthalic acid, terephthalic acid and isoterephthalic acid.
  • organic dicarboxylic acids it is also possible to use derivatives of these acids, for example their anhydrides and their esters and half-esters with low molecular weight, monofunctional alcohols having 1 to 4 carbon atoms.
  • bio-based starting materials mentioned above in particular fatty acids or fatty acid derivatives (oleic acid, soybean oil, etc.) is also possible and can have advantages, e.g. with regard to storage stability of the polyol formulation, dimensional stability, fire behavior and compressive strength of the foams.
  • Polyether polyols obtained by alkoxylating starter molecules such as polyhydric alcohols are used as a further component for the production of the polyether ester polyols.
  • the starter molecules are at least difunctional, but can optionally also contain proportions of higher-functional, in particular trifunctional, starter molecules.
  • Starter molecules are, for example, diols such as 1,2-ethanediol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,5-pentenediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,10-decanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2-butyl-2-ethyl-l, 3-propanediol, 2-butene-l, 4-diol and 2-butyne-l, 4-diol, ether diols such as diethylene glycol, triethylene glycol, tetraethylene glycol
  • Starter molecules with functionalities other than OH can also be used alone or in a mixture.
  • compounds with more than 2 Zerewitinoff-active hydrogens especially with number-average functionalities from 3 to 8, in particular from 3 to 6, for example 1,1,1-trimethylolpropane, triethanolamine, can also be used as starter molecules for the production of the polyethers , Glycerine, sorbitan and pentaerythritol as well as polyethylene oxide polyols started on triols or tetraoene.
  • Polyetherester polyols can also be prepared by alkoxylation, in particular ethoxylation and / or propoxylation, of reaction products obtained by reacting organic dicarboxylic acids and their derivatives and components with Zerewitinoff-active hydrogens, especially diols and polyols.
  • organic dicarboxylic acids for example, their anhydrides can be used, such as phthalic anhydride.
  • polyester and polyether polyols from suitable polymer recyclates via glycolysis.
  • Suitable polyether-polycarbonate polyols and their production are described, for example, in EP 2 910 585 A1, [0024] - [0041]. Examples of polycarbonate polyols and their production can be found, inter alia, in EP 1 359 177 A1.
  • the production of suitable polyetherester polyols is described in WO 2010/043624 A and in EP 1 923 417 A, among others.
  • the isocyanate-reactive component Al can contain low molecular weight isocyanate-reactive compounds, in particular di- or trifunctional amines and alcohols, particularly preferably diols and / or triols with molar masses M n of less than 400 g / mol, preferably from 60 to 300 g / mol, are used, for example triethanolamine, diethylene glycol, ethylene glycol and glycerine. If such low molecular weight isocyanate-reactive compounds are used to produce the polyurethane foams, for example in the function of chain extenders and / or crosslinking agents, these are expediently used in an amount of up to 5% by weight, based on the total weight of component Al Commitment.
  • low molecular weight isocyanate-reactive compounds in particular di- or trifunctional amines and alcohols, particularly preferably diols and / or triols with molar masses M n of less than 400 g / mol, preferably from 60 to 300
  • component Al can contain further isocyanate-reactive compounds, for example graft polyols, polyamines, polyamino alcohols and polythiols.
  • isocyanate-reactive components described also include compounds with mixed functionalities.
  • Component Al can consist of one or more of the above-mentioned isocyanate-reactive components.
  • blowing agent A2 can be used as blowing agent A2, such as, for example, low-boiling organic compounds such as hydrocarbons, halogenated hydrocarbons, ethers, ketones, carboxylic acid esters or carbonic acid esters.
  • Examples of such, preferably used organic compounds are alkanes, such as heptane, hexane, n- and iso-pentane, preferably technical mixtures of n- and iso-pentanes, n- and iso-butane and propane, cycloalkanes, such as. B. cyclopentane and / or cyclohexane, ethers, such as. B. furan, dimethyl ether and diethyl ether, ketones, such as. B. acetone and methyl ethyl ketone, carboxylic acid alkyl esters, such as. B.
  • alkanes such as heptane, hexane, n- and iso-pentane, preferably technical mixtures of n- and iso-pentanes, n- and iso-butane and propane
  • cycloalkanes such as. B. cyclopentane and / or cyclo
  • halogenated hydrocarbons such as. B. methylene chloride, dichloromonofluoromethane, difluoromethane, trifluoromethane, difluoroethane, tetrafluoroethane, chlorodifluoroethane, l, l-dichloro-2,2,2-trifluoroethane, 2,2-dichloro-2-fluoroethane and heptafluoropropane.
  • (hydro) fluorinated olefins such as. B.
  • HFO 1233zd (E) (trans-l-chloro-3,3,3-trifluoro-1-propene) or HFO 1336mzz (Z) (cis-l, l, l, 4,4,4-hexafluoro-2 -butene) or additives such as FA 188 from 3M (l, l, l, 2,3,4,5,5,5-nonafluoro-4- (trifluoromethyl) pent-2-en).
  • Mixtures of two or more of the organic compounds mentioned can also be used.
  • the organic compounds can also be used in the form of an emulsion composed of small droplets.
  • Chemical blowing agents such as, for example, water, carboxylic acid and mixtures thereof, can also be used as blowing agent A2. These react with isocyanate groups to form the propellant gas, as in the case of water, for example, carbon dioxide is formed and in the case of z.
  • formic acid produces carbon dioxide and carbon monoxide. At least one compound selected from the group consisting of formic acid, acetic acid, oxalic acid and ricinoleic acid is preferably used as the carboxylic acid. Water is particularly preferably used as the chemical blowing agent.
  • blowing agents Preferably no halogenated hydrocarbons are used as blowing agents. At least one compound selected from the group consisting of physical and chemical blowing agents is used as blowing agent A2. Only physical blowing agent is preferably used.
  • auxiliaries and additives can be used as component A3.
  • component A3 are catalysts, surface-active substances, foam stabilizers, cell regulators, fillers, dyes, pigments, hydrolysis inhibitors, fungistatic and bacteriostatic substances.
  • a catalyst for the production of the polyurethane foams compounds are used which accelerate the reaction of the reactive hydrogen atoms, in particular compounds containing hydroxyl groups, with the isocyanate component B, such as. B. tertiary amines or metal salts.
  • the catalyst components can be metered into the reaction mixture or completely or partially in the isocyanate-reactive component A1.
  • tertiary amines such as triethylamine, tributylamine, dimethylbenzylamine, dicyclohexylmethylamine, dimethylcyclohexylamine, N, N, N ', N'-tetramethyldiaminodiethyl ether, bis (dimethylaminopropyl) urea, N-methylmorpholine or N-ethylmorpholine, N-cyclohexylmorpholine, are used , N, N, N ', N'-tetramethylethylenediamine, N, N, N, N-tetramethylbutanediamine, N, N, N, N-tetramethylhexanediamine-1,6, pentamethyldiethylenetriamine, bis [2- (dimethylamino) ethyl] ether, Dimethylpiperazine, N-dimethylaminoethylpiperidine, 1,2-dimethyl-imidazole, l-azabic
  • the transition metal salts used are, for example, zinc, bismuth, iron, lead or, preferably, tin salts.
  • transition metal salts used are iron (II) chloride, zinc chloride, lead octoate, tin dioctoate, tin diethylhexoate and dibutyltin dilaurate.
  • the transition metal salt is particularly preferably selected from at least one compound from the group consisting of tin dioctoate, tin diethylhexoate and dibutyltin dilaurate.
  • alkali metal salts are alkali alcoholates, such as. B.
  • alkali metal carboxylates such as B. potassium acetate
  • alkali metal salts of long-chain fatty acids with 10 to 20 carbon atoms and optionally pendant OH groups are preferably used as the alkali metal salt.
  • amidines such as. B. 2,3-dimethyl-3,4,5,6-tetrahydropyrimidine
  • tetraalkylammonium hydroxides such as. B. tetramethylammonium hydroxide
  • alkali hydroxides such as. B. sodium hydroxide
  • tetraalkylammonium or phosphonium carboxylates tetraalkylammonium or phosphonium carboxylates.
  • Mannich bases and salts of phenols are also suitable catalysts. It is also possible to run the reactions without catalysis. In this case, the catalytic activity of polyols started with amines is used.
  • Catalysts forming isocyanurate groups for example ammonium ion or alkali metal salts, especially ammonium or alkali metal carboxylates, alone or in combination with tertiary amines.
  • isocyanurate leads to particularly flame-retardant PIR foams.
  • the above-mentioned catalysts can be used alone or in combination with one another.
  • Suitable surface-active substances are, for example, compounds which serve to support the homogenization of the starting materials and are optionally also suitable for regulating the cell structure of the plastics.
  • emulsifiers such as the sodium salts of castor oil sulfates or of fatty acids and salts of fatty acids with amines, for example oleic diethylamine, stearic diethanolamine, ricinolic acid diethanolamine, salts of sulfonic acids, for example alkali metal or ammonium salts of dodecylbenzylbenzylbenzyl or dinaphonic acid sulfonate;
  • Foam stabilizers such as siloxane oxalkylene copolymers and other organopolysiloxanes, ethoxylated alkylphenols, ethoxylated fatty alcohols, paraffin oils, castor oil or ricinoleic acid esters, Turkish red oil and peanut oil, and cell regulators such as paraffins,
  • oligomeric acrylates with polyoxyalkylene and fluoroalkane radicals as side groups are also suitable for improving the emulsifying effect, the cell structure and / or stabilizing the foam.
  • the usual organic and inorganic fillers, reinforcing agents, weighting agents, agents for improving the abrasion behavior in paints, coating agents, etc., which are known per se, are to be mentioned as fillers, in particular reinforcing fillers.
  • inorganic fillers such as silicate minerals, for example sheet silicates such as. B.
  • metal oxides such as kaolin, aluminum oxides, titanium oxides and iron oxides, metal salts such as chalk, barite and inorganic pigments such as cadmium sulfide and zinc sulfide, as well as glass and other natural and synthetic fibrous Minerals such as wollastonite, metal and especially glass fibers of various lengths, which can optionally be sized.
  • organic fillers are: carbon, melamine, rosin, cyclopentadienyl resins and graft polymers and cellulose fibers, polyamide, polyacrylonitrile, polyurethane, polyester fibers based on aromatic and / or aliphatic dicarboxylic acid esters and carbon fibers.
  • phosphates or phosphonates such as. B. Diethyl ethyl phosphonate (DEEP), triethyl phosphate (TEP), triphenyl phosphate (TPP), tricresyl phosphate, diphenyl cresyl phosphate (DPK), dimethyl methyl phosphonate (DMMP), diethanolaminomethylphosphonic acid diethyl ester, 9, 10-dihydro-9-oxa-10-oxide ) and dimethylpropylphosphonate (DMPP) can be used.
  • DEEP Diethyl ethyl phosphonate
  • TPP triethyl phosphate
  • TPP triphenyl phosphate
  • DPK diphenyl cresyl phosphate
  • DMMP dimethyl methyl phosphonate
  • DMPP diethanolaminomethylphosphonic acid diethyl ester, 9, 10-dihydro-9-oxa-10-oxide
  • DMPP dimethylprop
  • Suitable flame retardants A4 are, for example, brominated esters, brominated ethers (Ixol) or brominated alcohols such as dibromoneopentyl alcohol, tribromoneopentyl alcohol, tetrabromophthalate diol, and also chlorinated phosphates such as tris (2-chloroethyl) phosphate, tris (2-chloropropyl) phosphate (TCPP), tris (1,3-dichloropropyl) phosphate, tris (2,3-dibromopropyl) phosphate, tetrakis (2-chloroethyl) ethylene diphosphate, as well as commercially available halogen-containing flame retardant polyols. Diphenyl cresyl phosphate, triethyl phosphate and bisphenol A bis (diphenyl phosphate) are preferred. It is particularly preferred that no halogen-containing flame retardants are used.
  • Suitable isocyanate component B are, for. B. polyisocyanates, ie isocyanates with an NCO functionality of at least 2, are possible.
  • suitable polyisocyanates are 1,4-butylene diisocyanate, 1,5-pentane diisocyanate, 1,6-hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 2,2,4- and / or 2,4,4-trimethylhexamethylene diisocyanate, the isomers Bis (4,4'-isocyanatocyclohexyl) methanes or mixtures thereof with any isomer content, 1,4-cyclohexylene diisocyanate, 1,4-phenylene diisocyanate, 2,4- and / or 2,6-tolylene diisocyanate (TDI), 1,5-naphthylene diisocyanate, 2,2'- and / or 2, 4'- and / or 4,4'-diphenylmethane
  • NCO prepolymers can also be used as isocyanate component B.
  • the prepolymers can be prepared by reacting one or more polyisocyanates with one or more polyols, corresponding to the polyols described under the isocyanate-reactive components A1.
  • the isocyanate index (also called index or isocyanate index) is understood to mean the quotient of the amount of substance [mol] of isocyanate groups actually used and the amount of substance [mol] of isocyanate-reactive groups actually used, multiplied by 100:
  • the number of NCO groups in the isocyanate and the number of isocyanate-reactive groups in the reaction mixture lead to an index of 90 to 600, preferably between 250 and 450.
  • This index is preferably in a range of 300 up to 400 in which a high proportion of polyisocyanurates (PIR) is present (the polyurethane foam is referred to as PIR foam or PUR / PIR foam) and leads to a higher flame retardancy of the polyurethane foam itself.
  • PIR foam polyurethane foam
  • PUR / PIR foam polyisocyanurates
  • Another preferred range for the isocyanate index is the range of values from> 90 to ⁇ 150 in which the polyurethane foam, for example, tends to be less brittle.
  • the NCO value (also: NCO content, isocyanate content) is determined using EN ISO 11909 (May 2007). Unless otherwise stated, the values are at 25 ° C.
  • the polyurethane foams produced according to the invention are used, for example, in the production of insulating material, furniture upholstery, textile inserts, mattresses, automobile seats, headrests, armrests, sponges and structural elements, as well as seat and instrument panel linings.
  • FIG. 1 shows a mixing chamber containing a mixing element with two closely intermeshing, co-rotating and single-flight screw shafts.
  • Fig. 1 shows the schematic structure of a mixing chamber (1) with two separate positions (2a) and (2b) for supplying the components to be mixed.
  • the positions (2a) and (2b) are offset from one another in the conveying direction (3).
  • the mixing chamber (1) contains two closely intermeshing, co-rotating and single-flight screw shafts (4) as a mixing element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Gegenstand der Erfindung ist eine Vorrichtung zur Vermischung von reaktiven Komponenten zur Herstellung von Polyurethan-Schaumstoffen umfassend eine Mischkammer enthaltend ein Mischelement, dadurch gekennzeichnet, dass als Mischelement zwei dichtkämmende Schneckenwellen eingesetzt werden, die geeignet sind mit einer Geschwindigkeit von mindestens 1200 U/min zu rotieren, wobei die zwei rotierenden Wellen ineinandergreifen, mit der gleichen Geschwindigkeit rotieren und die gleichen Maße hinsichtlich ihres Durchmessers von jeweils 10 mm bis 80 mm und hinsichtlich ihrer Länge vom 3- bis 20-fachen des jeweiligen Durchmessers aufweisen.

Description

Vorrichtung zur Vermischung reaktiver Komponenten
Die vorliegende Erfindung betrifft eine Vorrichtung zur Vermischung von reaktiven Komponenten zur Herstellung von Polyurethan-Schaumstoffen, ein Verfahren zur Herstellung von Polyurethan-Schaumstoffen und die Verwendung dieser Polyurethan- Schaumstoffe.
Polyurethan-Schaumstoffe werden erhalten durch Reaktion von einer Isocyanat-reaktiven Komponente mit einem Isocyanat. Zur Vermischung dieser beiden Komponenten werden die Isocyanat-reaktive Komponente und das Isocyanat separat in eine Mischkammer zugeführt. Die Mischung der beiden Komponenten erfolgt dabei beispielsweise durch Gegenstrominjektion oder durch ein Mischelement, wie z. B. einen Stachelrührer. Bei der Vermischung kommt es bereits zu Reaktionen der beiden Komponenten miteinander und es bilden sich Ablagerungen im Bereich von Totzonen und Wandungen. Diese Ablagerungen wachsen mit der Zeit an und es ist notwendig diese zu entfernen um eine Blockade der Mischkammer zu verhindern.
Hierzu werden beispielsweise bei Gegenstrominjektionsmischköpfen Reinigungsstößel eingesetzt, was zu einer Limitierung des Verfahrens hinsichtlich des Füllstoffgehalts an festen Additiven der Reaktionsmischung führt (EP2886280). DE 41 11 458 CI offenbart eine Mischkammer mit einer Mischschnecke als Mischelement, wobei die Mischkammer und Mischschnecke konisch ausgeführt sind und die Mischschnecke mit einer Geschwindigkeit von 5000 bis 10000 U/min rotiert. Nachteil dieser Ausführung ist der komplexe Aufbau und ein notwendiger zusätzlicher Schritt zur Reinigung der Mischschnecke bei hohen Geschwindigkeiten im Bereich von 15000 bis 20000 U/min.
Es war daher die Aufgabe der vorliegenden Erfindung eine Vorrichtung bereitzustellen, bei der ein geringer Aufwand zur Reinigung und Instandhaltung notwendig ist und somit längere Standzeiten in Verfahren zur Herstellung von Polyurethan-Schaumstoffen erzielt werden können. Gleichzeitig sollte die Auftragsmenge und Verweilzeit für großtechnische Prozesse geeignet sein.
Überraschend wurde gefunden, dass die technische Aufgabe gelöst wird durch eine Vorrichtung zur Vermischung von reaktiven Komponenten zur Herstellung von Polyurethan-Schaumstoffen umfassend eine Mischkammer enthaltend ein Mischelement, dadurch gekennzeichnet, dass als Mischelement zwei dichtkämmende Schneckenwellen eingesetzt werden, die geeignet sind mit einer Geschwindigkeit von mehr als 1200 U/min zu rotieren, wobei die zwei rotierenden Wellen ineinandergreifen, mit der gleichen Geschwindigkeit rotieren und die gleichen Maße hinsichtlich ihres Durchmessers von jeweils 10 mm bis 80 mm und hinsichtlich ihrer Länge vom 3- bis 20-fachen des jeweiligen Durchmessers aufweisen.
Ein weiterer Bestandteil der Erfindung ist ein Verfahren zur Herstellung von Polyurethan- Schaumstoffen durch Vermischung von Al) Isocyanat-reaktive Komponente,
A2) Treibmittel,
A3) gegebenenfalls Hilfs- und Zusatzstoff,
A4) Flammschutzmittel mit
B) einer Isocyanatkomponente, dadurch gekennzeichnet, dass die Komponenten A) und B) mit der erfindungsgemäßen Vorrichtung vermischt wurden.
Bevorzugt handelt es sich bei dem erfindungsgemäßen Verfahren um ein kontinuierlich durchgeführtes Verfahren.
Die als Mischelement eingesetzten Schneckenwellen der erfindungsgemäßen Vorrichtung rotieren mit einer Geschwindigkeit von mehr als 1200 U/min, bevorzugt von mehr als 1200 U/min bis 25000 U/min, besonders bevorzugt von 2000 U/min bis 20000 U/min und insbesondere bevorzugt von 2500 U/min bis 15000 U/min. Noch mehr bevorzugt rotieren die als Mischelement eingesetzten Schneckenwellen mit einer Geschwindigkeit von mehr als 4000 U/min oder mehr als 4200 U/min, am meisten bevorzugt mit einer Geschwindigkeit von mehr als 4000 U/min bis 15000 U/min oder mehr als 4200 U/min bis 15000 U/min. Bevorzugt werden als Mischelement zwei dichtkämmende Schneckenwellen eingesetzt, die geeignet sind, mit einer Geschwindigkeit von mehr als 4000 U/min oder mehr als 4200 U/min zu rotieren. Der Durchmesser der einzelnen rotierenden Schneckenwelle beträgt 10 mm bis 80 mm, bevorzugt 20 mm bis 60 mm, besonders bevorzugt 30 mm bis 60 mm und die Länge der einzelnen rotierenden Schneckenwelle beträgt das 3- bis 20-fache, bevorzugt 5- bis 15-fache, besonders bevorzugt 8 bis 12-fache des Durchmessers.
Weiterhin bevorzugt weist das Mischelement ein Spaltmaß im Verhältnis zum Gehäusedurchmesser von wenigstens 1 pm/mm, insbesondere bevorzugt von wenigstens 2.5 pm/mm. Vorzugsweise weist das Mischelement ein Spaltmaß im Verhältnis zum Gehäusedurchmesser von höchstens 20 pm/mm auf.
Es ist bevorzugt, dass die Geschwindigkeit und die Maße der rotierenden Schneckenwellen so miteinander abgestimmt sind, dass die mittlere Verweilzeit der reaktiven Komponenten in der Mischkammer weniger als 10 Sekunden, vorzugsweise von 0,01 bis weniger als 10 Sekunden, weiter bevorzugt kleiner 5 Sekunden, besonders bevorzugt kleiner 2 Sekunden beträgt. Die Bestimmung der mittleren Verweilzeit ist dem Fachmann geläufig und kann beispielsweise durch Zugabe eines Tracers gemessen werden.
Das Zuführen der reaktiven Komponenten in die Mischkammer kann auf unterschiedliche Art und Weise erfolgen. Generell wird das zu vermischende Material über geeignete Öffnungen von außen in die Mischkammer eingebracht. Dies können z.B. Düsen, Injektionslanzen oder einfach nur Öffnungen sein. Es können alle reaktiven Komponenten bereits vor der Mischkammer zusammengeführt und als ein Stoffstrom in die Mischkammer gegeben werden. Dieser wird dann in der Mischkammer vermischt. Es können aber auch alle reaktiven Komponenten einzeln der Mischkammer zugeführt werden. Dabei ist die Anzahl der reaktiven Komponenten nicht auf zwei beschränkt, es können auch drei oder mehr sein. Es können auch einzelne Bestandteile einer üblicherweise vorgemischten Komponente einzeln zudosiert werden, die Vermischung übernimmt dann ebenfalls das Mischelement.
Das Zuführen der zu vermischenden Komponenten kann an der gleichen Position des Mischelementes in Längsrichtung (Wellenrichtung bzw. Förderrichtung) gesehen erfolgen. Dann müssen natürlich unterschiedliche Positionen in Umfangsrichtung gewählt werden, es sei denn, alle Komponenten werden gemeinsam an einer Stelle zugeführt. Die Komponenten können aber auch an unterschiedlichen Positionen in Längsrichtung und, falls gewünscht, auch in Umfangsrichtung zugeführt werden. Wichtig ist, dass am Ende der Mischkammer die gewünschte Vermischung erreicht wird. Dabei kann die Zuführposition z.B. in Längsrichtung so gewählt werden, dass schwer zu vermischende Komponenten am Anfang der Mischkammer und leicht zu vermischende Komponenten am Ende der Mischkammer zugeführt werden. Es können z.B. auch Komponenten, die keine zu intensive Mischung vertragen, eher zum Ende der Mischkammer zugeführt werden.
Am Ende der Mischkammer steht das vermischte Reaktionsgemisch dann zur weiteren Nutzung oder Verarbeitung bereit. Die erfindungsgemäße Vorrichtung kann entweder kontinuierlich oder diskontinuierlich betrieben werden.
Das Profil der Schneckenwellen kann ein- oder mehrgängig ausgeführt sein, kann also einen oder mehrere Schneckengänge aufweisen. Bevorzug ist ein mehrgängiges Profil, besonders bevorzugt ein zweigängiges Profil. Solche Profile sind bevorzugt, weil dadurch ein größeres freies Volumen bei gleichzeitig gutem Druckaufbauvermögen erzielt werden kann. Die einhüllende Fläche der rotierenden Wellen ist vorzugsweise zylindrisch, kann aber auch konisch sein oder weitere Formen annehmen.
Als Isocyanat-reaktive Komponente Al wird mindestens eine Verbindung ausgewählt aus der Gruppe bestehend aus Polyetherpolyolen, Polyesterpolyolen, Polyetheresterpolyolen, Polycarbonatpolyolen und Polyether-Polycarbonatpolyolen eingesetzt. Bevorzugt sind Polyesterpolyole und/oder Polyetherpolyole. Die Isocyanat-reaktive Komponente Al kann bevorzugt eine Hydroxylzahl zwischen 25 bis 800 mg KOH/g, insbesondere 50 bis 500 mg KOH/g und besonders bevorzugt 100 bis 300 mg KOH/g aufweisen. Vorzugsweise weist die einzelne Polyolkomponente ein zahlenmittleres Molekulargewicht von 120 g/mol bis 6000 g/mol, insbesondere 400 g/mol bis 2000 g/mol und besonders bevorzugt 500 g/mol bis 1000 g/mol auf.
Die zahlenmittlere Molmasse Mn (auch: Molekulargewicht) wird im Rahmen dieser Erfindung durch Gelpermeationschromatographie nach DIN 55672-1 (August 2007) bestimmt.
Die OH-Zahl (auch: Hydroxylzahl) gibt im Falle eines einzelnen zugesetzten Polyols dessen OH-Zahl an. Angaben der OH-Zahl für Mischungen beziehen sich auf die zahlenmittlere OH-Zahl der Mischung, berechnet aus den OH-Zahlen der einzelnen Komponenten in ihren jeweiligen molaren Anteilen. Die OH-Zahl gibt die Menge an Kaliumhydroxid in Milligramm an, welche der bei einer Acetylierung von einem Gramm Substanz gebundenen Menge Essigsäure gleichwertig ist. Die OH-Zahl wird im Rahmen der vorliegenden Erfindung nach der Norm DIN 53240-1 (Juni 2013) bestimmt.
„Funktionalität“ bezeichnet im Rahmen der vorliegenden Erfindung die theoretische, aus den bekannten Einsatzstoffen und deren Mengenverhältnissen berechnete mittlere Funktionalität (Anzahl an gegenüber Isocyanaten bzw. gegenüber Polyolen reaktiven Funktionen im Molekül).
Die Polyesterpolyole der Komponente Al können beispielsweise Polykondensate aus mehrwertigen Alkoholen, vorzugsweise Diolen, mit 2 bis 12 Kohlenstoffatomen, vorzugsweise mit 2 bis 6 Kohlenstoffatomen, und Polycarbonsäuren, wie z.B. Di-, Tri- oder sogar Tetracarbonsäuren, oder Hydroxycarbonsäuren oder Lactonen sein, bevorzugt werden aromatische Dicarbonsäuren oder Gemische aus aromatischen und aliphatischen Dicarbonsäuren verwendet. Anstelle der freien Polycarbonsäuren können auch die entsprechenden Polycarbonsäureanhydride oder entsprechende Polycarbonsäureester von niederen Alkoholen zur Herstellung der Polyester verwendet werden. Bevorzugt verwendet werden Phthalsäureanhydrid, Terephthalsäure und/oder Isophthalsäure.
Als Carbonsäuren kommen insbesondere in Betracht: Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure, Sebazinsäure, Decandicarbonsäure, Tetrahydrophthalsäure, Hexahydrophthalsäure, Cyclohexandicarbonsäure,
Tetrachlorphthalsäure, Itaconsäure, Malonsäure, 2-Methylbemsteinsäure, 3,3- Diethylglutarsäure, 2,2-Dimethylbemsteinsäure, Dodekandisäure,
Endomethylentetrahydrophthalsäure, Dimerfettsäure, Trimerfettsäure, Zitronensäure, Trimellithsäure, Benzoesäure, Trimellitsäure, Maleinsäure, Fumarsäure, Phthalsäure, Isophthalsäure und Terephthalsäure. Verwendet werden können ebenso Derivate dieser Carbonsäuren, wie beispielsweise Dimethylterephthalat. Die Carbonsäuren können dabei sowohl einzeln als auch im Gemisch verwendet werden. Als Carbonsäuren werden bevorzugt Adipinsäure, Sebacinsäure und/oder Bernsteinsäure, besonders bevorzugt Adipinsäure und/oder Bemsteinsäure, verwendet.
Hydroxycarbonsäuren, die als Reaktionsteilnehmer bei der Herstellung eines Polyesterpolyols mit endständigen Hydroxylgruppen mitverwendet werden können, sind beispielsweise Hydroxycapronsäure, Hydroxybuttersäure, Hydroxydecansäure, Hydroxystearinsäure und dergleichen. Geeignete Lactone sind unter anderem Caprolacton, Butyrolacton und Homologe.
Zur Herstellung der Polyesterpolyole kommen insbesondere auch biobasierte Ausgangsstoffe und/oder deren Derivate in Frage, wie z. B. Rizinusöl, Polyhydroxyfettsäuren, Ricinolsäure, Hydroxyl-modifizierte Öle, Weintraubenkemöl, schwarzem Kümmelöl, Kürbiskemöl, Borretschsamenöl, Sojabohnenöl, Weizensamenöl, Rapsöl, Sonnenblumenkernöl, Erdnussöl, Aprikosenkernöl, Pistazienöl, Mandelöl, Olivenöl, Macadamianussöl, Avocadoöl, Sanddomöl, Sesamöl, Hanföl, Haselnussöl, Primelöl, Wildrosenöl, Distelöl, Walnussöl, Fettsäuren, hydroxylmodifizierte und epoxidierte Fettsäuren und Fettsäureester, beispielsweise basierend auf Myristoleinsäure, Palmitoleinsäure, Ölsäure, Vaccensäure, Petroselinsäure, Gadoleinsäure, Erukasäure, Nervonsäure, Linolsäure, alpha- und gamma-Linolensäure, Stearidonsäure, Arachidonsäure, Timnodonsäure, Clupanodonsäure und Cervonsäure. Insbesondere bevorzugt sind Ester der Rizinolsäure mit mehrfunktionellen Alkoholen, z.B. Glycerin. Bevorzugt ist auch die Verwendung von Mischungen solcher biobasierten Säuren mit anderen Carbonsäuren, z.B. Phthalsäuren.
Beispiele für geeignete Diole sind Ethylenglykol, Butylenglykol, Diethylenglykol, Triethylenglykol, Polyalkylenglykole wie Polyethylenglykol, weiterhin 1,2-Propandiol, 1,3-Propandiol, 1,3-Butandiol, 1,4-Butandiol, 1,6-Hexandiol und Isomere, Neopentylglykol oder Hydroxypivalinsäureneopentylglykolester. Vorzugsweise verwendet werden Ethylenglykol, Diethylenglykol, 1,4-Butandiol, 1,5-Pentandiol, 1,6-Hexandiol oder Mischungen aus mindestens zwei der genannten Diole, insbesondere Mischungen aus 1,4- Butandiol, 1,5-Pentandiol und 1,6-Hexandiol.
Daneben können auch Polyole wie Trimethylolpropan, Glycerin, Erythrit, Pentaerythrit, Trimethylolbenzol oder Trishydroxyethylisocyanurat eingesetzt werden, wobei Glycerin und Trimethylolpropan bevorzugt sind.
Es können zusätzlich auch einwertige Alkanole mit verwendet werden.
Erfindungsgemäß eingesetzte Polyetherpolyole werden nach dem Fachmann bekannten Herstellungsmethoden erhalten, wie beispielsweise durch anionische Polymerisation von einem oder mehreren Alkylenoxiden mit 2 bis 4 Kohlenstoffatomen mit Alkalihydroxiden, wie Natrium- oder Kaliumhydroxid, Alkalialkoholaten, wie Natriummethylat, Natrium oder Kaliumethylat oder Kaliumisopropylat, oder aminischen Alkoxylierung s- Katalysatoren, wie Dimethylethanolamin (DMEOA), Imidazol und/oder Imidazolderivate, unter Verwendung mindestens eines Startermoleküls, das 2 bis 8, vorzugsweise 2 bis 6 reaktive Wasserstoffatome gebunden enthält.
Geeignete Alkylenoxide sind beispielsweise Tetrahydrofuran, 1,3 -Propylenoxid, 1,2- bzw. 2,3-Butylenoxid, Styroloxid und vorzugsweise Ethylenoxid und 1,2-Propylenoxid. Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischungen verwendet werden. Bevorzugte Alkylenoxide sind Propylenoxid und Ethylenoxid, besonders bevorzugt ist Ethylenoxid. Die Alkylenoxide können in Kombination mit CO2 umgesetzt werden.
Als Startermoleküle kommen beispielsweise in Betracht: Wasser, organische Dicarbonsäuren, wie Bernsteinsäure, Adipinsäure, Phthalsäure und Terephthalsäure, aliphatische und aromatische, gegebenenfalls N-mono-, N,N- und N,N'-dialkylsubstituierte Diamine mit 1 bis 4 Kohlenstoffatomen im Alkylrest, wie gegebenenfalls mono- und dialkylsubstituiertes Ethylendiamin, Diethylentriamin, Triethylentetramin, 1,3- Propylendiamin, 1,3- bzw. 1,4-Butylendiamin, 1,2-, 1,3-, 1,4-, 1,5- und 1,6- Hexamethylendiamin, Phenylendiamine, 2,3-, 2,4- und 2,6-Toluylendiamin und 2,2'-, 2,4'- und 4,4'-Diaminodiphenylmethan.
Vorzugsweise verwendet werden zwei oder mehrwertige Alkohole, wie Ethandiol, 1,2- und 1,3-Propandiol, Diethylenglykol, Dipropylenglykol, 1,4-Butandiol, 1,6-Hexandiol, Triethanolamin, Bisphenole, Glycerin, Trimethylolpropan, Pentaerythrit, Sorbit und Saccharose.
Verwendbare Polycarbonatpolyole sind Hydroxylgruppen aufweisende Polycarbonate, zum Beispiel Polycarbonatdiole. Diese entstehen in der Reaktion von Kohlensäurederivaten, wie Diphenylcarbonat, Dimethylcarbonat oder Phosgen, mit Polyolen, bevorzugt Diolen.
Beispiele derartiger Diole sind Ethylenglykol, 1,2- und 1,3-Propandiol, 1,3- und 1,4- Butandiol, 1,6-Hexandiol, 1,8-Octandiol, Neopentylglykol, 1,4-
Bishydroxymethylcyclohexan, 2-Methyl- 1 ,3-propandiol, 2,2,4-Trimethylpentandiol- 1 ,3 , Dipropylenglykol, Polypropylenglykole, Dibutylenglykol, Polybutylenglykole, Bisphenole und lactonmodifizierte Diole der vorstehend genannten Art. Statt oder zusätzlich zu reinen Polycarbonatdiolen können auch Polyether- Polycarbonatdiole eingesetzt werden, welche beispielsweise durch Copolymerisation von Alkylenoxiden, wie zum Beispiel Propylenoxid, mit CO2 erhältlich sind.
Verwendbare Polyetheresterpolyole sind solche Verbindungen, die Ethergruppen, Estergruppen und OH-Gruppen enthalten. Organische Dicarbonsäuren mit bis zu 12 Kohlenstoffatomen sind zur Herstellung der Polyetheresterpolyole geeignet, vorzugsweise aliphatische Dicarbonsäuren mit 4 bis 6 Kohlenstoffatomen oder aromatische Dicarbonsäuren, die einzeln oder im Gemisch verwendet werden. Beispielhaft seien Korksäure, Azelainsäure, Decandicarbonsäure, Furandicarbonsäure, Maleinsäure, Malonsäure, Phthalsäure, Pimelinsäure und Sebacinsäure sowie insbesondere Glutarsäure, Fumarsäure, Bemsteinsäure, Adipinsäure, Phthalsäure, Terephthalsäure und Isoterephthalsäure genannt. Neben organischen Dicarbonsäuren können auch Derivate dieser Säuren, beispielsweise deren Anhydride sowie deren Ester und Halbester mit niedermolekularen, monofunktionellen Alkoholen mit 1 bis 4 Kohlenstoffatomen eingesetzt werden. Der anteilige Einsatz der oben genannten biobasierten Ausgangsstoffe, insbesondere von Fettsäuren bzw. Fettsäurederivaten (Ölsäure, Sojaöl etc.) ist ebenfalls möglich und kann Vorteile aufweisen, z.B. im Hinblick auf Lagerstabilität der Polyolformulierung, Dimensions Stabilität, Brandverhalten und Druckfestigkeit der Schäume.
Als weitere Komponente zur Herstellung der Polyetheresterpolyole werden Polyetherpolyole eingesetzt, die man durch Alkoxylieren von Startermolekülen wie mehrwertigen Alkoholen erhält. Die Startermoleküle sind mindestens difunktionell, können aber gegebenenfalls auch Anteile höherfunktioneller, insbesondere trifunktioneller, Startermoleküle enthalten.
Startermoleküle sind zum Beispiel Diole wie 1,2-Ethandiol, 1,3-Propandiol, 1,2- Propandiol, 1,4-Butandiol, 1,5-Pentendiol, 1,5-Pentandiol, Neopentylglykol, 1,6- Hexandiol, 1,7-Heptandiol, 1,8-Octandiol, 1,10-Decandiol, 2-Methyl-l,3-propandiol, 2,2- Dimethyl-l,3-propandiol, 3-Methyl-l,5-pentandiol, 2-Butyl-2-ethyl-l,3-propandiol, 2- Buten-l,4-diol und 2-Butin-l,4-diol, Etherdiole wie Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Dibutylenglykol, Tributylenglykol, Tetrabutylenglykol, Dihexylenglykol, Trihexylenglykol, Tetrahexylenglykol und Oligomerengemische von Alkylenglykolen, wie Diethylenglykol. Auch Startermoleküle mit von OH verschiedenen Funktionalitäten können alleine oder in Mischung eingesetzt werden. Neben den Diolen können als Startermoleküle für die Herstellung der Polyether auch Verbindungen mit mehr als 2 Zerewitinoff-aktiven Wasserstoffen, besonders mit zahlenmittleren Funktionalitäten von 3 bis 8, insbesondere von 3 bis 6 mitverwendet werden, zum Beispiel 1,1,1-Trimethylolpropan, Triethanolamin, Glycerin, Sorbitan und Pentaerythrit sowie auf Triolen oder Tetraoien gestartete Polyethylenoxidpolyole.
Polyetheresterpolyole können auch durch die Alkoxylierung, insbesondere durch Ethoxylierung und/oder Propoxylierung, von Reaktionsprodukten, die durch die Umsetzung von organischen Dicarbonsäuren und deren Derivaten sowie Komponenten mit Zerewitinoff-aktiven Wasserstoffen, insbesondere Diolen und Polyolen, erhalten werden, hergestellt werden. Als Derivate dieser Säuren können beispielsweise deren Anhydride eingesetzt werden, wie zum Beispiel Phthalsäureanhydrid.
Es ist auch möglich, Polyester- und Polyetherpolyole über Glykolyse von geeigneten Polymer-Rezyklaten zu gewinnen. Geeignete Polyether-Polycarbonatpolyole und ihre Herstellung werden beispielsweise in der EP 2 910 585 Al, [0024]-[0041], beschrieben. Beispiele zu Polycarbonatpolyolen und ihre Herstellung finden sich unter anderem in der EP 1 359 177 Al. Die Herstellung geeigneter Polyetheresterpolyole ist unter anderem in der WO 2010/043624 A und in der EP 1 923 417 A beschrieben.
Weiterhin können in der Isocyanat-reaktiven Komponente Al niedermolekulare Isocyanat- reaktive Verbindungen enthalten sein, insbesondere können di- oder trifunktionelle Amine und Alkohole, besonders bevorzugt Diole und/oder Triole mit Molmassen Mn kleiner als 400 g/mol, vorzugsweise von 60 bis 300 g/mol, zum Einsatz kommen, z.B. Triethanolamin, Diethylenglykol, Ethylenglykol und Glycerin. Sofern zur Herstellung der Polyurethan-Schaumstoffe solche niedermolekularen Isocyanat-reaktiven Verbindungen Anwendung finden, z.B. in der Funktion als Kettenverlängerungsmittel und/oder Vemetzungsmittel kommen diese zweckmäßigerweise in einer Menge von bis zu 5 Gew.- %, bezogen auf das Gesamtgewicht der Komponente Al, zum Einsatz.
Neben den oben beschriebenen Polyolen und Isocyanat-reaktiven Verbindungen können in der Komponente Al weitere Isocyanat-reaktive Verbindungen enthalten sein, beispielsweise Graft-Polyole, Polyamine, Polyaminoalkohole und Polythiole. Selbstverständlich umfassen die beschriebenen Isocyanat-reaktiven Komponenten auch solche Verbindungen mit gemischten Funktionalitäten. Die Komponente Al kann aus einer oder mehreren der oben genannten Isocyanat- reaktiven Komponenten bestehen.
Als Treibmittel A2 kann physikalisches Treibmittel eingesetzt werden, wie beispielsweise niedrig siedende organische Verbindungen, wie z.B. Kohlenwasserstoffe, halogenierte Kohlenwasserstoffe, Ether, Ketone, Carbonsäureester oder Kohlensäureester. Geeignet sind insbesondere organische Verbindungen, welche gegenüber der Isocyanatkomponente B inert sind und Siedepunkte unter 100 °C, vorzugsweise unter 50 °C bei Atmosphärendruck aufweisen. Diese Siedepunkte haben den Vorteil, dass die organischen Verbindungen unter dem Einfluss der exothermen Polyadditionsreaktion verdampfen. Beispiele solcher, vorzugsweise verwendeten organischen Verbindungen sind Alkane, wie Heptan, Hexan, n- und iso-Pentan, vorzugsweise technische Gemische aus n- und iso- Pentanen, n- und iso-Butan und Propan, Cycloalkane, wie z. B. Cyclopentan und/oder Cyclohexan, Ether, wie z. B. Furan, Dimethylether und Diethylether, Ketone, wie z. B. Aceton und Methylethylketon, Carbonsäurealkylester, wie z. B. Methylformiat, Dimethyloxalat und Ethylacetat und halogenierte Kohlenwasserstoffe, wie z. B. Methylenchlorid, Dichlormonofluormethan, Difluormethan, Trifluormethan, Difluorethan, Tetrafluorethan, Chlordifluorethane, l,l-Dichlor-2,2,2-trifluorethan, 2,2-Dichlor-2- fluorethan und Heptafluorpropan. Auch bevorzugt ist der Einsatz von (hydro)fluorierten Olefinen, wie z. B. HFO 1233zd(E) (Trans-l-chlor-3,3,3-trifluor-l-propen) oder HFO 1336mzz(Z) (cis-l,l,l,4,4,4-Hexafluor-2-buten) oder Additive wie FA 188 von 3M (l,l,l,2,3,4,5,5,5-Nonafluor-4-(trifluormethyl)pent-2-en). Auch Gemische zweier oder mehrerer der genannten organischen Verbindungen können verwendet werden. Die organischen Verbindungen können dabei auch in Form einer Emulsion aus kleinen Tröpfchen eingesetzt werden.
Als Treibmittel A2 kann auch chemisches Treibmittel, wie beispielsweise Wasser, Carbonsäure und deren Gemische, verwendet werden. Diese reagieren mit Isocyanatgruppen unter Bildung des Treibgases, wie beispielsweise im Falle von Wasser entsteht dabei Kohlendioxid und im Falle von z. B. Ameisensäure entsteht dabei Kohlendioxid und Kohlenstoffmonoxid. Als Carbonsäure wird bevorzugt mindestens eine Verbindung, ausgewählt aus der Gruppe bestehend aus Ameisensäure, Essigsäure, Oxalsäure und Ricinolsäure, eingesetzt. Als chemisches Treibmittel wird besonders bevorzugt Wasser eingesetzt.
Vorzugsweise werden keine halogenierten Kohlenwasserstoffe als Treibmittel verwendet. Als Treibmittel A2 wird mindestens eine Verbindung, ausgewählt aus der Gruppe bestehend aus physikalischen und chemischen Treibmittel, eingesetzt. Bevorzugt wird nur physikalisches Treibmittel eingesetzt.
Gegebenenfalls können Hilfs- und Zusatzstoffe als Komponente A3 eingesetzt werden. Beispiele für die Komponente A3 sind Katalysatoren, oberflächenaktive Substanzen, Schaumstabilisatoren, Zellregler, Füllstoffe, Farbstoffe, Pigmente, Hydrolyseschutzmittel, fungistatische und bakteriostatisch wirkende Substanzen.
Als Katalysator zur Herstellung der Polyurethan-Schaumstoffe werden Verbindungen verwendet, welche die Reaktion der reaktiven Wasserstoffatome, insbesondere Hydroxylgruppen enthaltenden Verbindungen mit der Isocyanatkomponente B beschleunigen, wie z. B. tertiäre Amine oder Metallsalze. Die Katalysatorkomponenten können dem Reaktionsgemisch zudosiert oder auch ganz oder teilweise in der Isocyanat- reaktiven Komponente Al vorgelegt werden.
Verwendet werden beispielsweise tertiäre Amine, wie Triethylamin, Tributylamin, Dimethylbenzylamin, Dicyclohexylmethylamin, Dimethylcyclohexylamin, N, N ,N', N'- Tetramethyldiaminodiethylether, Bis-(dimethylaminopropyl)-hamstoff, N-Methyl- bzw. N-Ethylmorpholin, N-Cyclohexylmorpholin, N,N,N',N'-Tetramethylethylendiamin, N,N,N,N-Tetramethylbutandiamin, N, N, N, N-Tetramethylhexandiamin-1,6, Pentamethyldiethylentriamin, Bis[2-(dimethylamino)ethyl]ether, Dimethylpiperazin, N- Dimethylaminoethylpiperidin, 1,2-Dimethyl-imidazol, l-Azabicyclo-(3,3,0)-octan, 1,4- Diaza-bi-cyclo-(2,2,2)-octan (Dabco) und Alkanolaminverbindungen, wie Triethanolamin, Triisopropanolamin, N-Methyl- und N-Ethyldiethanolamin, Dimethylaminoethanol, 2- (N,N-Dimethylaminoethoxy)ethanol, N,N',N"-Tris-(dialkylaminoalkyl)hexahydrotriazin, z.B. N,N',N"-Tris-(dimethylaminopropyl)hexahydrotriazin und Triethylendiamin.
Es können auch Metallsalze wie z. B. Alkali- oder Übergangsmetallsalze eingesetzt werden. Als Übergangsmetallsalze werden beispielsweise Zink-, Wismut-, Eisen-, Blei oder bevorzugt Zinnsalze eingesetzt. Beispiele für eingesetzte Übergangsmetallsalze sind Eisen(II)-chlorid, Zinkchlorid, Bleioctoat, Zinndioctoat, Zinndiethylhexoat und Dibutylzinndilaurat. Besonders bevorzugt ist das Übergangsmetallsalz ausgewählt aus mindestens einer Verbindung aus der Gruppe bestehend aus Zinndioctoat, Zinndiethylhexoat und Dibutylzinndilaurat. Beispiele für Alkalimetallsalze sind Alkalialkoholate, wie z. B. Natriummethylat und Kaliumisopropylat, Alkalicarboxylate, wie z. B. Kaliumacetat, sowie Alkalimetallsalze von langkettigen Fettsäuren mit 10 bis 20 C-Atomen und gegebenenfalls seitenständigen OH-Gruppen. Bevorzugt als Alkalimetallsalz werden ein oder mehrere Alkalicarboxylate eingesetzt.
Als Katalysator kommen ferner in Betracht: Amidine, wie z. B. 2,3-Dimethyl-3,4,5,6- tetrahydropyrimidin, Tetraalkylammoniumhydroxide, wie z. B. Tetramethylammonium hydroxid, Alkalihydroxide, wie z. B. Natriumhydroxid, und Tetraalkylammonium- oder Phosphoniumcarboxylate. Darüber hinaus sind Mannichbasen und Salze von Phenolen geeignete Katalysatoren. Es besteht auch die Möglichkeit, die Reaktionen ohne Katalyse ablaufen zu lassen. In diesem Fall wird die katalytische Aktivität von mit Aminen gestarteten Polyolen ausgenutzt.
Wird beim Verschäumen ein größerer Polyisocyanatüberschuss verwendet, kommen als Katalysatoren für die Trimerisierungsreaktion der überschüssigen NCO-Gruppen untereinander ferner in Betracht: Isocyanuratgruppen bildende Katalysatoren, beispielsweise Ammoniumionen- oder Alkalimetallsalze, speziell Ammonium- oder Alkalimetallcarboxylate, alleine oder in Kombination mit tertiären Aminen. Die Isocyanurat-Bildung führt zu besonders flammwidrigen PIR-Schaumstoffen.
Die oben genannten Katalysatoren können alleine oder in Kombination miteinander eingesetzt werden.
Als oberflächenaktive Substanzen kommen z.B. Verbindungen in Betracht, welche zur Unterstützung der Homogenisierung der Ausgangsstoffe dienen und gegebenenfalls auch geeignet sind, die Zellstruktur der Kunststoffe zu regulieren. Genannt seien beispielsweise Emulgatoren, wie die Natriumsalze von Ricinusölsulfaten oder von Fettsäuren sowie Salze von Fettsäuren mit Aminen, z.B. ölsaures Diethylamin, stearinsaures Diethanolamin, ricinolsaures Diethanolamin, Salze von Sulfonsäuren, z.B. Alkali- oder Ammoniumsalze von Dodecylbenzol- oder Dinaphthylmethandisulfonsäure und Ricinolsäure; Schaumstabilisatoren, wie Siloxanoxalkylen-Mischpolymerisate und andere Organopolysiloxane, oxethylierte Alkylphenole, oxethylierte Fettalkohole, Paraffinöle, Rizinusöl- bzw. Ricinolsäureester, Türkischrotöl und Erdnussöl, und Zellregler, wie Paraffine, Fettalkohole und Dimethylpolysiloxane. Zur Verbesserung der Emulgierwirkung, der Zellstruktur und/oder Stabilisierung des Schaumes eignen sich ferner die oben beschriebenen oligomeren Acrylate mit Polyoxyalkylen- und Fluoralkanresten als Seitengruppen. Als Füllstoffe, insbesondere verstärkend wirkende Füllstoffe, sind die an sich bekannten, üblichen organischen und anorganischen Füllstoffe, Verstärkungsmittel, Beschwerungsmittel, Mittel zur Verbesserung des Abriebverhaltens in Anstrichfarben, Beschichtungsmittel usw. zu nennen. Im Einzelnen seien beispielhaft genannt: anorganische Füllstoffe wie silikatische Mineralien, beispielsweise Schichtsilikate wie z. B. Antigorit, Serpentin, Hornblenden, Amphibole, Chrisotil, Montmorillonit und Talkum, Metalloxide, wie Kaolin, Aluminiumoxide, Titanoxide und Eisenoxide, Metallsalze, wie Kreide, Schwerspat und anorganische Pigmente, wie Cadmiumsulfid und Zinksulfid, sowie Glas u.a. sowie natürliche und synthetische faserförmige Mineralien wie Wollastonit, Metall- und insbesondere Glasfasern verschiedener Länge, die gegebenenfalls geschlichtet sein können. Als organische Füllstoffe kommen beispielsweise in Betracht: Kohle, Melamin, Kolophonium, Cyclopentadienylharze und Pfropfpolymerisate sowie Cellulosefasern, Polyamid-, Polyacrylnitril-, Polyurethan-, Polyesterfasern auf der Grundlage von aromatischen und/oder aliphatischen Dicarbonsäureestern und Kohlenstofffasern.
Als Flammschutzmittel A4 können beispielsweise Phosphate oder Phosphonate, wie z. B. Diethylethylphosphonat (DEEP), Triethylphosphat (TEP), Triphenylphosphat (TPP), Trikresylphosphat, Diphenylkresylphosphat (DPK), Dimethylmethylphosphonat (DMMP), Diethanolaminomethylphosphonsäurediethylester, 9, 10-Dihydro-9-oxa- 10- phosphorylphenanthrene-10-oxid (DOPO) und Dimethylpropylphosphonat (DMPP), eingesetzt werden. Weitere geeignete Flammschutzmittel A4 sind beispielsweise bromierte Ester, bromierte Ether (Ixol) oder bromierte Alkohole wie Dibromneopentylakohol, Tribromneopentylalkohol, Tetrabromphthalat Diol, sowie chlorierte Phosphate wie Tris(2- chlorethyl)phosphat, Tris-(2-chlorpropyl)phosphat (TCPP), Tris(l,3- dichlorpropyl)phosphat, Tris-(2,3-dibrompropyl)phosphat, Tetrakis-(2-chlorethyl)- ethylendiphosphat, sowie handelsübliche halogenhaltige Flammschutzpolyole. Bevorzugt sind Diphenylkresylphosphat, Triethylphosphat und Bisphenol-A-bis(Diphenylphosphat). Es ist besonders bevorzugt, dass kein halogenhaltiges Flammschutzmittel eingesetzt wird.
Als geeignete Isocyanatkomponente B kommen z. B. Polyisocyanate, d. h. Isocyanate mit einer NCO-Funktionalität von mindestens 2, in Frage. Beispiele solcher geeigneten Polyisocyanate sind 1,4-Butylendiisocyanat, 1,5-Pentandiisocyanat, 1,6- Hexamethylendiisocyanat (HDI), Isophorondiisocyanat (IPDI), 2,2,4- und/oder 2,4,4- Trimethylhexamethylendiisocyanat, die isomeren Bis(4,4'- isocyanatocyclohexyl)methane oder deren Mischungen beliebigen Isomerengehalts, 1,4-Cyclohexylendiisocyanat, 1,4- Phenylendiisocyanat, 2,4- und/oder 2,6-Toluylendiisocyanat (TDI), 1,5- Naphthylendiisocyanat, 2,2'- und/oder 2,4'- und/oder 4,4'-Diphenylmethandiisocyanat (MDI) und/oder höhere Homologe (polymeres MDI), 1,3- und/oder l,4-Bis-(2-isocyanato- prop-2-yl)-benzol (TMXDI), l,3-Bis-(isocyanatomethyl)benzol (XDI), sowie Alkyl-2,6- diisocyanatohexanoate (Lysindiisocyanate) mit CI- bis C6-Alkylgruppen. Bevorzugt wird die Isocyanatkomponente B ausgewählt aus mindestens einer Verbindung aus der Gruppe bestehend aus MDI, polymeres MDI und TDI.
Neben den vorstehend genannten Polyisocyanaten können anteilig auch modifizierte Diisocyanate mit Uretdion-, Isocyanurat-, Urethan-, Carbodiimid-, Uretonimin-, Allophanat-, Biuret-, Amid-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur sowie nicht-modifiziertes Polyisocyanat mit mehr als 2 NCO-Gruppen pro Molekül wie zum Beispiel 4-Isocyanatomethyl-l,8-octandiisocyanat (Nonantriisocyanat) oder Triphenylmethan-4,4',4"-triisocyanat, mit eingesetzt werden.
Statt oder zusätzlich zu den oben genannten Polyisocyanaten können auch geeignete NCO- Präpolymere als Isocyanatkomponente B eingesetzt werden. Die Präpolymere sind herstellbar durch Umsetzung eines oder mehrerer Polyisocyanate mit einem oder mehreren Polyolen, entsprechend den unter den Isocyanat-reaktiven Komponenten Al beschriebenen Polyolen.
Unter der Isocyanat-Kennzahl (auch Kennzahl oder Isocyanat-Index genannt) wird der Quotient aus der tatsächlich eingesetzten Stoffmenge [Mol] an Isocyanat-Gruppen und der tatsächlich eingesetzten Stoffmenge [Mol] an Isocyanat-reaktiven Gruppen, multipliziert mit 100, verstanden:
Kennzahl = (Mole Isocyanat-Gruppen / Mole Isocyanat-reaktive Gruppen) * 100
Es ist möglich, dass im Reaktionsgemisch die Anzahl der NCO-Gruppen im Isocyanat und die Anzahl der gegenüber Isocyanaten reaktiven Gruppen zu einer Kennzahl (Index) von 90 bis 600 führen, bevorzugt zwischen 250 und 450. Diese Kennzahl liegt bevorzugt in einem Bereich von 300 bis 400 in dem ein hoher Anteil an Polyisocyanuraten (PIR) vorliegt (der Polyurethan- Schaumstoff wird als PIR-Schaumstoff oder PUR-/PIR- Schaumstoff bezeichnet) und zu einer höheren Flammwidrigkeit des Polyurethan- Schaumstoffes selbst führt. Ein anderer bevorzugter Bereich für die Isocyanat-Kennzahl ist der Wertebereich von > 90 bis < 150 in dem der Polyurethan- Schaumstoff zum Beispiel zu geringerer Sprödigkeit neigt.
Der NCO-Wert (auch: NCO-Gehalt, Isocyanatgehalt) wird bestimmt mittels EN ISO 11909 (Mai 2007). Falls nicht anders angegeben, handelt es sich um die Werte bei 25°C. Die erfindungsgemäß hergestellten Polyurethan-Schaumstoffe finden beispielsweise in der Herstellung von Isoliermaterial, Möbelpolsterungen, Textileinlagen, Matratzen, Automobilsitze, Kopfstützen, Armlehnen, Schwämme und Bauelemente, sowie Sitz- und Armaturenverkleidungen V erwendung .
Die vorliegende Erfindung wird anhand der nachfolgenden Zeichnung weiter erläutert, ohne jedoch darauf beschränkt zu sein. Es zeigt:
Fig. 1 eine Mischkammer enthaltend ein Mischelement mit zwei dichtkämmenden, gleichläufigen und eingängigen Schneckenwellen.
Fig. 1 zeigt den schematischen Aufbau einer Mischkammer (1) mit zwei separaten Positionen (2a) und (2b) zum Zuführen der zu vermischenden Komponenten. Die Positionen (2a) und (2b) sind in Förderrichtung (3) voneinander versetzt. Die Mischkammer (1) enthält zwei dichtkämmende, gleichläufige und eingängige Schneckenwellen (4) als Mischelement.

Claims

Patentansprüche
1. Vorrichtung zur Vermischung von reaktiven Komponenten zur Herstellung von Polyurethan-Schaumstoffen umfassend eine Mischkammer enthaltend ein Mischelement, dadurch gekennzeichnet, dass als Mischelement zwei dichtkämmende Schneckenwellen eingesetzt werden, die geeignet sind mit einer Geschwindigkeit von mehr als 1200 U/min zu rotieren, wobei die zwei rotierenden Wellen ineinandergreifen, mit der gleichen Geschwindigkeit rotieren und die gleichen Maße hinsichtlich ihres Durchmessers von jeweils 10 mm bis 80 mm und hinsichtlich ihrer Länge vom 3- bis 20-fachen des jeweiligen Durchmessers aufweisen.
2. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass die Schneckenwellen jeweils einen Durchmesser von 20 mm bis 60 mm aufweisen.
3. Vorrichtung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Schneckenwellen jeweils eine Länge vom 5- bis 15-fachen des Durchmessers der einzelnen Schnecken welle aufweisen.
4. Vorrichtung gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Schneckenwellen so angeordnet sind, dass diese gegenläufig rotieren.
5. Vorrichtung gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Schneckenwellen so angeordnet sind, dass diese gleichläufig rotieren.
6. Vorrichtung gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Schneckenwelle ein mehrgängiges Profil aufweist.
7. Vorrichtung gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Schneckenwellen geeignet sind, mit einer Geschwindigkeit von mehr als 4000 U/min zu rotieren.
8. Vorrichtung gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Schneckenwellen gegenüber der Gehäusebohrung ein Spaltmaß von wenigstens 1 pm/mm aufweist.
9. Verfahren zur Herstellung von Polyurethan-Schaumstoffen durch Vermischung von Al) einer Isocyanat-reaktiven Komponente,
A2) Treibmittel,
A3) gegebenenfalls Hilfs- und Zusatzstoff,
A4) Flammschutzmittel mit
B) einer Isocyanatkomponente, dadurch gekennzeichnet, dass die Komponenten mit einer Vorrichtung gemäß einem der Ansprüche 1 bis 8 vermischt wurden.
10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass die mittlere Verweilzeit der Komponenten in der Mischkammer weniger als 10 Sekunden beträgt.
11. Verfahren gemäß Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Schneckenwellen mit einer Geschwindigkeit von mehr als 1200 U/min bis 25000 U/min betrieben werden.
12. Verfahren gemäß einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Schneckenwellen mit einer Geschwindigkeit von mehr als 4000 U/min bis 25000 U/min betrieben werden.
13. Verfahren gemäß einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass es ein kontinuierliches Verfahren ist.
14. Verwendung eines Polyurethan-Schaumstoffes erhalten nach dem Verfahren gemäß einem der Ansprüche 9 bis 13 zur Herstellung von Isoliermaterial, Möbelpolsterungen, Textileinlagen, Matratzen, Automobilsitze, Kopfstützen, Armlehnen, Schwämme und Bauelemente, sowie Sitz- und Armaturenverkleidungen.
PCT/EP2020/077543 2019-10-08 2020-10-01 Vorrichtung zur vermischung reaktiver komponenten WO2021069306A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20780729.8A EP4041512A1 (de) 2019-10-08 2020-10-01 Vorrichtung zur vermischung reaktiver komponenten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19201951 2019-10-08
EP19201951.1 2019-10-08

Publications (1)

Publication Number Publication Date
WO2021069306A1 true WO2021069306A1 (de) 2021-04-15

Family

ID=68242332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/077543 WO2021069306A1 (de) 2019-10-08 2020-10-01 Vorrichtung zur vermischung reaktiver komponenten

Country Status (2)

Country Link
EP (1) EP4041512A1 (de)
WO (1) WO2021069306A1 (de)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171824A (ja) * 1987-12-26 1989-07-06 Toyo Tire & Rubber Co Ltd 熱硬化性樹脂の高粘度溶液の二軸かく拌装置
DE4111458C1 (de) 1991-04-09 1992-08-13 Kloeckner Ferromatik Desma Gmbh, 7831 Malterdingen, De
EP0931640A1 (de) * 1998-01-23 1999-07-28 KLÖCKNER DESMA SCHUHMASCHINEN GmbH Vorrichtung zum schussweisen Mischen und Ausbringen von in der Kavität eines Formwerkzeugs einer Spritzgiessmaschine ausreagierenden und aushärtenden Mehrkomponenten-Kunststoffen
EP1359177A1 (de) 2002-04-29 2003-11-05 Bayer Aktiengesellschaft Herstellung und Verwendung von hochmolekularen aliphatischen Polycarbonaten
EP1923417A1 (de) 2006-11-13 2008-05-21 Bayer MaterialScience AG Verfahren zur Herstellung von Polyetherester-Polyolen
WO2010043624A2 (de) 2008-10-15 2010-04-22 Basf Se Polyesterpolyole auf basis von terephthalsäure
EP2886280A1 (de) 2013-12-23 2015-06-24 Afros S.p.A. Verfahren und vorrichtung zum hochdruckmischen reaktiver polymerer komponenten
EP2910585A1 (de) 2014-02-21 2015-08-26 Bayer MaterialScience AG Schotterkörper sowie Verfahren zur Herstellung von Schotterkörpern

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171824A (ja) * 1987-12-26 1989-07-06 Toyo Tire & Rubber Co Ltd 熱硬化性樹脂の高粘度溶液の二軸かく拌装置
DE4111458C1 (de) 1991-04-09 1992-08-13 Kloeckner Ferromatik Desma Gmbh, 7831 Malterdingen, De
EP0931640A1 (de) * 1998-01-23 1999-07-28 KLÖCKNER DESMA SCHUHMASCHINEN GmbH Vorrichtung zum schussweisen Mischen und Ausbringen von in der Kavität eines Formwerkzeugs einer Spritzgiessmaschine ausreagierenden und aushärtenden Mehrkomponenten-Kunststoffen
EP1359177A1 (de) 2002-04-29 2003-11-05 Bayer Aktiengesellschaft Herstellung und Verwendung von hochmolekularen aliphatischen Polycarbonaten
EP1923417A1 (de) 2006-11-13 2008-05-21 Bayer MaterialScience AG Verfahren zur Herstellung von Polyetherester-Polyolen
WO2010043624A2 (de) 2008-10-15 2010-04-22 Basf Se Polyesterpolyole auf basis von terephthalsäure
EP2886280A1 (de) 2013-12-23 2015-06-24 Afros S.p.A. Verfahren und vorrichtung zum hochdruckmischen reaktiver polymerer komponenten
EP2910585A1 (de) 2014-02-21 2015-08-26 Bayer MaterialScience AG Schotterkörper sowie Verfahren zur Herstellung von Schotterkörpern

Also Published As

Publication number Publication date
EP4041512A1 (de) 2022-08-17

Similar Documents

Publication Publication Date Title
EP2800769B1 (de) Verfahren zur herstellung von polyurethan-hartschäumen und polyisocyanurat-hartschäumen
EP2804886B1 (de) Verfahren zur herstellung von polyurethan-hartschäumen
EP2828309B1 (de) Verfahren zur herstellung von polyurethan-hartschäumen und polyisocyanurat-hartschäumen
EP3036267B1 (de) Verbesserte polyurethan- und polyisocyanurat-hartschaumstoffe auf basis von fettsäuremodifizierten polyetherpolyolen
EP2855551B1 (de) Verfahren zur herstellung von polyurethan-hartschaumstoffen
EP2492297A1 (de) Polyesterpolyole auf Basis aromatischer Dicarbonsäuren und daraus hergestellte Polyurethanhartschäume
EP2855557B1 (de) Polyesterole zur herstellung von polyurethan-hartschaumstoffen
EP3833703B1 (de) Phosphinat als flammschutzadditiv für pur-/pir-hartschaumstoffe
EP3774963B1 (de) Herstellung von flammwidrigen pur-/pir-hartschaumstoff
WO2020201187A1 (de) Verfahren zur herstellung von flammgeschützten pur-/pir-schaumstoffen
EP3728362A1 (de) Flammgeschützte polyurethan-hartschaumstoffe
WO2021008921A1 (de) Verfahren zur herstellung von flammwidrigen pur-/pir-hartschäumen
EP3728377B1 (de) Flammgeschützte polyurethan-hartschaumstoffe
WO2015150304A1 (de) Verfahren zur herstellung von polyurethan-hartschäumen
EP4001335A1 (de) Verfahren zur herstellung von polyurethan-schaumstoffen
WO2021069306A1 (de) Vorrichtung zur vermischung reaktiver komponenten
EP3428210A1 (de) Flammgeschützte pur/pir - hartschaumstoffe
EP2956246A1 (de) Verfahren zur herstellung von verbundelementen
EP4011891A1 (de) Verfahren zur herstellung von flammgeschützten pur/pir-hartschaumstoffen
EP3083232B1 (de) Verfahren zur herstellung von hartschaumstoff-verbundelementen mit isocyanatreaktiven haftvenmittlern
WO2021170542A1 (de) Neuartige polyolverbindungen und ein verfahren zur herstellung von pur-/pir-schaumstoffen auf ihrer basis
WO2022038056A1 (de) Polyolformulierungen und ein verfahren zur herstellung von pur-/pir-schaumstoffen auf basis dieser polyolformulierungen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20780729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020780729

Country of ref document: EP

Effective date: 20220509