WO2021068980A1 - 三维地图生成方法、移动装置和计算机可读存储介质 - Google Patents

三维地图生成方法、移动装置和计算机可读存储介质 Download PDF

Info

Publication number
WO2021068980A1
WO2021068980A1 PCT/CN2020/123058 CN2020123058W WO2021068980A1 WO 2021068980 A1 WO2021068980 A1 WO 2021068980A1 CN 2020123058 W CN2020123058 W CN 2020123058W WO 2021068980 A1 WO2021068980 A1 WO 2021068980A1
Authority
WO
WIPO (PCT)
Prior art keywords
map
axis
mobile device
dimensional map
preset
Prior art date
Application number
PCT/CN2020/123058
Other languages
English (en)
French (fr)
Inventor
郑欣
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Publication of WO2021068980A1 publication Critical patent/WO2021068980A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation

Definitions

  • the embodiments of the present invention relate to the field of automatic driving technology, and in particular to a method for generating a three-dimensional map, a mobile device, and a computer-readable storage medium.
  • Robots use sensors to build a three-dimensional map of space to achieve complex path planning.
  • Three-dimensional maps nowadays mostly use voxel maps, that is, point cloud information acquired by robot perception sensors is used for down-sampling to construct grid maps.
  • the method of scrolling local maps is often used, that is, the map only builds robots. In a certain area around, the excess part is cleared.
  • the mobile device is at the center of the cube scrolling map, its detection distance for the surroundings is fixed. As the speed of the mobile device increases, the time to move the same distance becomes shorter, leaving it for movement The path planning or obstacle avoidance calculation time of the device is shortened, and the safety of the mobile device is reduced.
  • the main purpose of the present invention is to provide a method for generating a three-dimensional map, a mobile device and a computer-readable storage medium, which aims to solve the technical problem that the existing mobile devices use voxel maps with low safety.
  • embodiments of the present disclosure provide a three-dimensional map generation method, which is used to provide a three-dimensional map when a mobile device is moving, and the three-dimensional map generation method includes:
  • a three-dimensional map is generated according to the point cloud data and the second map.
  • the calculating the preset scrolling amount of the first map relative to the mobile device according to the moving speed V and the moving direction includes:
  • the calculation of the preset scroll components of the first map on the x-axis, y-axis and z-axis of the preset spatial coordinate system according to the scroll amount value ⁇ d and the movement direction includes:
  • the scrolling and updating the first map according to the amount of scrolling of the first map relative to the mobile device includes:
  • the method before calculating the preset scroll amount of the first map relative to the mobile device according to the moving speed V and the moving direction, the method further includes:
  • the moving speed V is filtered.
  • the maximum scroll amount dmax is less than half of the minimum length of the first map in the x-axis direction, the y-axis direction, or the z-axis direction.
  • the present invention also provides a mobile device, the mobile device includes a memory and a processor, the memory stores a three-dimensional map generation program that can be run on the processor, and is characterized in that the processor executes the The three-dimensional map generation program implements the above-mentioned three-dimensional map generation method.
  • the present invention also provides a computer-readable storage medium on which a three-dimensional map generation program is stored, characterized in that the three-dimensional map generation program is executed by a processor to implement the above-mentioned three-dimensional map generation method.
  • the three-dimensional map generation method, terminal equipment, aircraft, and flight system calculate the amount of scrolling of the preset first map relative to the mobile device according to the moving speed V and the moving direction. , Scrolling and updating the first map according to the amount of scrolling of the first map relative to the mobile device to generate a second map, so as to obtain the final three-dimensional map, under the condition that the size of the map does not change, only the method of the present invention is used In this way, the observation range in the forward direction of the mobile device is increased, the map utilization rate and the detection range are improved, and the safety of the mobile device when moving is also improved.
  • the technical solution of the present invention can use a relatively smaller size of the first map Therefore, the consumption of computing resources and memory is relatively reduced, and the operating frame rate of the mobile device is increased, and it is especially suitable for mobile devices that have strict power consumption requirements.
  • FIG. 1 is a schematic flowchart of a method for generating a three-dimensional map according to a first embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for generating a three-dimensional map provided by a second embodiment of the present invention
  • 3A is a schematic diagram of the projection of the moving direction on the plane where the x-axis and the y-axis are located in the present invention
  • 3B is a schematic diagram of the projection of the moving direction on the plane where the x-axis and the z-axis are located in the present invention
  • FIG. 4 is a schematic flowchart of a method for generating a three-dimensional map provided by a third embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the hardware structure of a mobile device provided by the fourth embodiment of the present invention.
  • the first embodiment of the present invention provides a three-dimensional map generation method, which is executed by a three-dimensional map generation device, which can be implemented by hardware and/or software, and is usually integrated in
  • the mobile device is used to provide a three-dimensional map when moving the mobile device.
  • the mobile device performs obstacle avoidance, path planning, and surveying based on the three-dimensional map.
  • the three-dimensional map generation method of the present invention has the advantage of increasing the observation range of the moving device in the forward direction.
  • the three-dimensional map generation method includes:
  • Mobile devices include but are not limited to self-driving cars and drones, and mobile devices can realize automatic movement.
  • the present invention does not limit the method of obtaining the moving speed V of the mobile device.
  • the mobile device includes a speed sensor and a direction sensor, and the moving speed V of the mobile device can be obtained according to the speed sensor, and the moving direction of the mobile device can be obtained according to the direction sensor.
  • the moving direction is the direction in the three-dimensional space, and is not limited to being parallel to the horizontal plane. If the mobile device goes up and down on the ground, or the mobile device flies up or down in the air, the moving direction of the mobile device is not parallel to the horizontal plane.
  • S12 Calculate the preset scrolling amount of the first map relative to the mobile device according to the moving speed V and the moving direction.
  • the first map is a three-dimensional map of a preset size, and the corresponding scene in the space is inserted in the first map in real time to obtain a complete real-life map.
  • the size of the first map does not change.
  • the mobile device is located at the center of the first map.
  • the first map is a cube with a length, width, and height of 200m, and the mobile device is located at the center of the first map.
  • the mobile device When the mobile device is not moving, it can observe the front, back, up, down, left and right 100m each. distance. When the mobile device moves, the first map will scroll relative to the mobile device.
  • the amount of scrolling of the first map relative to the mobile device has a corresponding relationship with the moving speed V and the moving direction, and the amount of scrolling of the first map relative to the mobile device can be calculated according to the moving speed V and the moving direction.
  • the scroll amount of the first map relative to the mobile device includes a scroll direction and a scroll distance. It can be understood that the first map is not limited to a cube with the same length, width, and height, and is also considered to be a cuboid, or a sphere, etc.
  • the shape of the first map is preferably a cube or a sphere.
  • S13 Scroll and update the first map according to the scroll amount of the first map relative to the mobile device to generate a second map.
  • the first map is moved, and the first map is moved according to the scroll direction by the corresponding scroll distance.
  • the second map is obtained.
  • the mobile device includes a binocular stereo vision measurement system, and the depth information of the external environment of the mobile device can be obtained according to the binocular stereo vision measurement system, and the depth information is converted into point cloud data.
  • the mobile device includes one or more lidars, the point cloud data can be obtained according to the one or more lidars.
  • the point cloud data is processed, and the processed point cloud data is inserted into the second map to generate a three-dimensional map.
  • voxelized description of point cloud data combined with the location of the mobile device to achieve the current three-dimensional map construction.
  • the three-dimensional map contains the location of various items in the environment. If there is a pillar 10 meters in front of the mobile device at the current moment, the three-dimensional map will correspond to the place where the mobile device is 5 meters in front of the mobile device according to the mapping scale. Build a three-dimensional model similar to a pillar. Real-time acquisition of point cloud data for the surrounding environment of the mobile device, real-time perception of the surrounding environment, and continuous real-time update of the three-dimensional map.
  • the first map, the second map, and the three-dimensional map are essentially the same map frame in implementation, the second map is the first map after the movement, and the three-dimensional map is the map after the second map is updated.
  • the three-dimensional map of the current cycle is used as the first map of the next cycle, that is, a new cycle of three-dimensional map update can be continuously completed.
  • the three-dimensional map generation method calculates the preset scrolling amount of the first map relative to the mobile device according to the moving speed V and the moving direction, and according to the scrolling amount of the first map relative to the mobile device
  • the first map is scrolled and updated to generate the second map, thereby obtaining the final three-dimensional map.
  • the method of the present invention can be used to increase the observation range in the forward direction of the mobile device.
  • the map utilization rate and detection range are improved, and the safety of the mobile device when moving is also improved.
  • the method of the present invention can use a relatively smaller size, so the consumed computing resources and memory are relatively reduced, which is suitable for improving the operation of the mobile device.
  • the frame rate is especially suitable for mobile devices with strict power consumption requirements.
  • the second embodiment of the present invention also provides a method for generating a three-dimensional map. Based on the foregoing embodiment, this embodiment provides a solution for specifically moving the first map.
  • the method for generating a three-dimensional map include:
  • S22 Calculate the preset scroll amount value ⁇ d of the first map relative to the mobile device according to the preset maximum speed Vmax of the mobile device, the preset maximum scroll amount dmax of the first map, and the movement speed V of the mobile device.
  • the maximum moving speed Vmax of the mobile device is the maximum speed that the mobile device can reach, or the maximum speed that the mobile device can reach theoretically. If the maximum speed that the mobile device can travel on the road is 40m/s, or the maximum speed of the mobile device flying in the air is 40m/s, the maximum moving speed is 40m/s.
  • the maximum scrolling amount dmax of the first map is the distance that the mobile device needs to scroll in the moving direction at the maximum speed. The maximum scrolling amount dmax of the first map can be set as required.
  • the maximum scrolling amount dmax is less than half of the shortest length of the first map, and the maximum scrolling amount dmax is greater than 0, so that when the mobile device moves in any direction at the maximum moving speed Vmax, the final generated map includes movement A map of the mobile device at the back of the moving direction.
  • the scrolling value ⁇ d of the mobile device is proportional to the moving speed V of the mobile device
  • the scrolling value ⁇ d of the mobile device is proportional to the maximum scrolling amount dmax of the first map
  • the scrolling value ⁇ d of the mobile device is proportional to the maximum moving speed of the mobile device.
  • Vmax is inversely proportional.
  • S23 Calculate the preset scroll components of the first map on the x-axis, y-axis and z-axis of the preset spatial coordinate system according to the scroll amount value ⁇ d and the movement direction.
  • the preset space coordinate system includes x-axis, y-axis, and z-axis.
  • the plane where the x-axis and the y-axis are located can be parallel to the horizontal plane, and the z-axis can be perpendicular to the horizontal plane.
  • the x-axis, y-axis, and z-axis directions of the spatial coordinate system are not limited as such, and the spatial coordinate system can calibrate the three-dimensional space.
  • the x-axis and the y-axis of the space coordinate system are described with a plane parallel to the horizontal plane, and the z-axis is perpendicular to the horizontal plane.
  • the scrolling value ⁇ d and the projection on the x-axis, y-axis and z-axis in the space coordinate system can be obtained.
  • the projection of the scroll value ⁇ d on the x-axis is the scroll component of the first map on the x-axis
  • the projection of the scroll value ⁇ d on the y-axis is the scroll component of the first map on the y-axis
  • the projection is the rolling component of the first map on the z axis.
  • the maximum scrolling amount dmax is less than half of the minimum length of the first map in the x-axis direction, the y-axis direction, or the z-axis direction.
  • the calculation of the preset scroll components of the first map on the x-axis, y-axis, and z-axis of the preset spatial coordinate system according to the scroll amount value ⁇ d and the movement direction includes:
  • the moving direction is known
  • the x-axis, y-axis and z-axis are known
  • the angle ⁇ of the projection of the moving direction on the plane where the x-axis and y-axis are located relative to the x-axis can be obtained, and the movement
  • the calculation formula ⁇ dz - ⁇ d*cos ⁇ of the rolling component ⁇ dz of the first map on the z-axis of the preset spatial coordinate system.
  • S24 Scroll and update the first map according to the scroll amount of the first map relative to the mobile device to generate a second map.
  • scrolling and updating the first map according to the amount of scrolling of the first map relative to the mobile device includes:
  • the moving device has an extra observation range of ⁇ d*cos ⁇ in the x-axis direction, the moving device has an extra observation range of ⁇ d*sin ⁇ in the y-axis direction, and the moving device has an extra observation range of ⁇ d*cos ⁇ in the z-axis direction. After moving the first map, you can get the second map.
  • the method for generating a three-dimensional map of this embodiment quickly and simply updates the first map, and finally a three-dimensional map can be obtained quickly.
  • the moving direction of the mobile device can be increased only by the method of the present invention.
  • the observation range in the front improves the map utilization and detection range, thereby also improving the safety of the mobile device when moving.
  • the method of the present invention can use a relatively smaller size, so the consumption of computing resources and memory is relatively reduced. It is suitable for increasing the operating frame rate of mobile devices, especially for mobile devices with strict power consumption requirements.
  • the third embodiment of the present invention also provides a three-dimensional map generation method. Based on the foregoing embodiment, this embodiment provides a specific filtering solution for moving speed.
  • the three-dimensional map generation method includes:
  • Filtering the moving speed V can filter out the unstable moving speed V.
  • a low-pass filter can be used.
  • S33 Calculate the preset scrolling amount of the first map relative to the mobile device according to the moving speed V and the moving direction;
  • the moving speed V is the moving speed after filtering.
  • S34 Scroll and update the first map according to the scroll amount of the first map relative to the mobile device to generate a second map.
  • S35 Acquire point cloud data of the surrounding environment of the mobile device.
  • S36 Generate a three-dimensional map according to the point cloud data and the second map.
  • the three-dimensional map generation method of this embodiment performs filtering processing on the moving speed V, which can avoid large fluctuations in the speed of the mobile device, and the unstable direction of the moving speed V leads to unstable map scrolling updates and unnecessary calculations and memory consumption.
  • the fourth embodiment of the present invention provides a mobile device 40, and the mobile device 40 can execute a three-dimensional map generation method described in the above embodiments.
  • the mobile device 40 includes, but is not limited to, self-driving cars, unmanned aerial vehicles, and the mobile device 40 can realize automatic movement.
  • the mobile device 40 includes:
  • processors 41 and memory 42 are taken as an example in the figure.
  • the processor 41 and the memory 42 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in the figure.
  • the memory 42 can be used to store non-volatile software programs and non-volatile computer-executable programs that can run on the processor, as in the above-mentioned embodiments of the present invention.
  • a three-dimensional map generation program corresponding to a three-dimensional map generation method.
  • the processor 41 executes various functional applications and data processing of a three-dimensional map generation method by running a three-dimensional map generation program stored in the memory 42, that is, implements a three-dimensional map generation method in the foregoing method embodiment.
  • the memory 42 may include a program storage area and a data storage area, where the program storage area may store an operating system, an application program required by at least one function, and the like.
  • the memory 42 may include a high-speed random access memory 42, and may also include a non-volatile memory 42, such as 42 pieces of at least one magnetic disk memory, a flash memory device, or 42 other non-volatile solid-state memories.
  • the memory 42 may optionally include a memory 42 remotely arranged with respect to the processor 41, and these remote memories 42 may be connected to the processor 41 through a network. Examples of the foregoing network include, but are not limited to, the Internet, an intranet, a local area network, Mobile communication network and its combination.
  • the program instructions are stored in the memory 42, and when executed by the one or more processors 41, each step of a three-dimensional map generation method in any of the foregoing method embodiments is executed.
  • the above-mentioned product can execute the method provided in the above-mentioned embodiment of the present invention, and has the corresponding beneficial effect of the execution method.
  • the method provided in the foregoing embodiment of the present invention please refer to the method provided in the foregoing embodiment of the present invention.
  • the embodiment of the present invention also provides a computer-readable storage medium that stores a computer-executable three-dimensional map generation program, and the computer-executable three-dimensional map generation program is executed by one or more processors
  • a processor 41 in the figure can cause a computer to execute each step of a method for generating a three-dimensional map in any of the foregoing method embodiments.
  • the embodiment of the present invention also provides a computer program product, the computer program product includes a computer program stored on a non-volatile computer-readable storage medium, the computer program includes a three-dimensional map generation program, when the three-dimensional map
  • the generation program is executed by one or more processors, for example, a processor 41 in the figure, which can cause a computer to execute a three-dimensional map generation method in any of the foregoing method embodiments.
  • each embodiment can be implemented by software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • a person of ordinary skill in the art can understand that all or part of the processes in the methods of the foregoing embodiments can be implemented by computer programs instructing relevant hardware.
  • the programs can be stored in a computer-readable storage medium, and the program can be executed during execution. At the time, it may include the flow of the implementation method of each method as described above.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Sensing (AREA)
  • Processing Or Creating Images (AREA)
  • Instructional Devices (AREA)

Abstract

一种三维地图生成方法、移动装置和计算机可读存储介质,涉及自动驾驶技术领域。所述三维地图生成方法包括:获取移动装置的移动速度V和移动方向(S11);根据所述移动速度V和移动方向计算预设的第一地图相对所述移动装置的滚动量(S12);根据所述第一地图相对所述移动装置的滚动量滚动更新所述第一地图以生成第二地图(S13);获取所述移动装置周围环境的点云数据(S14);根据所述点云数据和所述第二地图生成三维地图(S15)。所述方法使移动装置移动时安全性较高。

Description

三维地图生成方法、移动装置和计算机可读存储介质 技术领域
本发明实施例涉及自动驾驶技术领域,尤其涉及一种三维地图生成方法、移动装置和计算机可读存储介质。
背景技术
随着无人机与无人车等移动装置的普及,越来越多的移动装置配备自动路径规划以及避障等的功能,机器人利用传感器构建空间三维地图以实现复杂的路径规划。三维地图现今多采用体素地图的方式,即用机器人感知传感器获取的点云信息进行降采样,构建网格地图,为减小内存的消耗,往往用滚动局部地图的方式,即地图只构建机器人四周的一定区域,超出的部分即清除,当移动装置处于立方体滚动地图中心时,其对于四周的探测距离即固定,而随着移动装置速度的加快,移动相同距离的时间变短,留给移动装置的路径规划或避障计算的时间变短,移动装置的安全性降低。
因此如何提供一种能提高移动装置安全性的地图方案,就成了现有技术的需求。
发明内容
本发明的主要目的在于提供一种三维地图生成方法、移动装置和计算机可读存储介质,旨在解决现有的移动装置使用体素地图安全性较低的技术问题。
第一方面,本公开实施例提供了一种三维地图生成方法,其用于给移动装置移动时提供三维地图,所述三维地图生成方法包括,
获取移动装置的移动速度V和移动方向;
根据所述移动速度V和移动方向计算预设的第一地图相对所述移动装置的滚动量;
根据所述第一地图相对所述移动装置的滚动量滚动更新所述第一地图以生成第二地图;
获取所述移动装置周围环境的点云数据;
根据所述点云数据和所述第二地图生成三维地图。
优选地,所述根据所述移动速度V和移动方向计算预设的第一地图相对所述移动装置的滚动量包括,
根据预设的移动装置的最大速度Vmax、预设的第一地图的最大滚动量dmax以及移动装置的移动速度V计算预设的第一地图相对所述移动装置的滚动量数值Δd;
根据所述滚动量数值Δd和所述移动方向计算预设的所述第一地图在预设的空间坐标系的x轴、y轴和z轴上的滚动分量。
优选地,所述移动装置的滚动量数值Δd的计算公式为:Δd=dmax*V/Vmax。
优选地,所述根据所述滚动量数值Δd和所述移动方向计算预设的所述第一地图在预设的空间坐标系的x轴、y轴和z轴上的滚动分量包括,
获取所述移动方向在x轴和y轴所在的平面的投影相对x轴的夹角θ,以及获取所述移动方向在x轴和z轴所在的平面的投影相对z轴的夹角μ;
根据所述夹角θ、所述夹角μ计算所述第一地图在预设的空间坐标系的x轴、y轴和z轴上的滚动分量。
优选地,所述第一地图在预设的空间坐标系的x轴上的滚动分量Δdx的计算公式为:Δdx=﹣Δd*cosθ;
所述第一地图在预设的空间坐标系的y轴上的滚动分量Δdy的计算公式为:Δdy=﹣Δd*sinθ;
所述第一地图在预设的空间坐标系的z轴上的滚动分量Δdz的计算公式为:Δdz=﹣Δd*cosμ。
优选地,所述根据所述第一地图相对所述移动装置的滚动量滚动更新所述第一地图包括,
把所述第一地图向所述x轴方向移动滚动分量Δdx;
把所述第一地图向所述y轴方向移动滚动分量Δdy;
把所述第一地图向所述z轴方向移动滚动分量Δdz。
优选地,所述根据所述移动速度V和移动方向计算预设的第一地图相对所述移动装置的滚动量之前,还包括,
滤波处理所述移动速度V。
优选地,所述最大滚动量dmax小于所述第一地图在x轴方向、y轴方向或z轴方向最小长度的二分之一。
第二方面,本发明还提供一种移动装置,所述移动装置包括存储器及处理器,存储器上存储有可在处理器上运行的三维地图生成程序,其特征在于:所述处理器执行所述三维地图生成程序时实现上述的三维地图生成方法。
第三方面,本发明还提供计算机可读存储介质,其上存储有三维地图生成程序,其特征在于,该三维地图生成程序被处理器执行时实现上述的三维地图生成方法。
与现有技术相比,本发明的提供的三维地图生成方法、终端设备、飞行器和飞行系统,通过根据所述移动速度V和移动方向计算预设的第一地图相对所述移动装置的滚动量,根据所述第一地图相对所述移动装置的滚动量滚动更新所述第一地图以生成第二地图,从而获得最终的三维地图,在地图大小不变的情况下,仅通过本发明的方法即可实现增大移动装置移动方向前方的观测范围,提高了地图利用率以及探测范围,从而也提高了移动装置移动时的安全性,本发明的技术方案可以使用相对更小尺寸的第一地图,故消耗的运算资源以及内存相对减小,提高移动装置的运行帧率,尤其适用对功耗要求严格的移动装置。
附图说明
图1为本发明第一实施例提供的三维地图生成方法的流程示意图;
图2为本发明第二实施例提供的三维地图生成方法的流程示意图;
图3A为本发明中移动方向在x轴和y轴所在的平面的投影的示意图;
图3B为本发明中移动方向在x轴和z轴所在的平面的投影的示意图;
图4为本发明第三实施例提供的三维地图生成方法的流程示意图;
图5为本发明第四实施例提供的一种移动装置的硬件结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施 例仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
请参阅图1,本发明第一实施例提供了一种三维地图生成方法,该三维地图生成方法三维地图生成装置来执行,该装置可通过硬件和/或软件的方式来实现,并通常集成于移动装置中,用于在给移动装置移动时提供三维地图,移动装置根据三维地图进行避障,路径规划,测绘,本发明的三维地图生成方法具有增加移动装置前进方向观测范围的优点。该三维地图生成方法包括:
S11:获取移动装置的移动速度V和移动方向。
移动装置包括但不限于自动驾驶汽车和无人机,移动装置可实现自动移动。本发明对获取移动装置的移动速度V的方式不做限定,如移动装置上包括速度传感器和方向传感器,可根据速度传感器获取移动装置的移动速度V,可根据方向传感器获取移动装置的移动方向。移动方向是在立体空间内的方向,不限定于平行于水平面。如移动装置在地面上上下坡,或移动装置在空 中向上或向下飞行,移动装置的移动方向和水平面不平行。
S12:根据所述移动速度V和移动方向计算预设的第一地图相对所述移动装置的滚动量。
第一地图为预设大小的三维的地图,在第一地图上实时插入空间内对应的景物,则获取到完整的实景地图。第一地图的大小不变。在移动装置没有移动时,移动装置位于所述第一地图的中心。如第一地图为长、宽、高各200m的立方体,移动装置位于所述第一地图的中心,移动装置在没有移动时,能观测到前、后、上、下、左、右各100m远的距离。在移动装置移动时,第一地图会相对所述移动装置滚动。第一地图相对所述移动装置的滚动量和移动速度V和移动方向有对应关系,则可根据移动速度V和移动方向计算第一地图相对所述移动装置的滚动量。移动装置的移动速度V越快,则移动装置的移动方向的前方能观察到的实景地图越远。第一地图相对移动装置的滚动量包括滚动方向和滚动距离。可以理解,第一地图不限于长、宽、高相等的正方体,也以为为长方体,也可以为球体等,第一地图的形状优选为正方体或球体。
S13:根据所述第一地图相对所述移动装置的滚动量滚动更新所述第一地图以生成第二地图。
在已知第一地图相对移动装置的滚动量,即在已知第一地图相对移动装置滚动方向和滚动距离,则移动第一地图,把第一地图按照滚动方向移动对应的滚动距离。从而使得移动装置的移动方向的前方的地图比移动装置的移动方向的后方的地图多,从而便于路径规划。把第一地图进行移动后,得到第二地图。
S14:获取所述移动装置周围环境的点云数据。
本发明对获取点云数据的方式不做限定,如移动装置上包括双目立体视觉测量系统,可根据双目立体视觉测量系统获取移动装置外部环境的深度信息,将深度信息转化为点云数据。如移动装置上包括一个或多个激光雷达,可根据所述一个或多个激光雷达获取点云数据。
S15:根据所述点云数据和所述第二地图生成三维地图。
对点云数据进行处理,并把处理过的点云数据插入第二地图,即可生成三维地图。具体的,如对点云数据进行体素化描述,结合移动装置的位置实 现当前三维地图的构建。三维地图中包含环境中的各种物品所处的位置,如当前时刻移动装置正前方10米处存在一个柱子,则三维地图中会按照建图比例在移动装置与正前方5米处对应的地方建立一个类似柱子的三维模型。对移动装置周围环境进行实时获取点云数据,实时感知周围环境,则可持续实时的更新三维地图。可以理解,第一地图、第二地图和三维地图本质上在实施中,是同一个地图框架,第二地图是移动后的第一地图,三维地图是更新第二地图后的地图。在实时更新三维地图时,本循环的三维地图作为下一个循环的第一地图,即可持续完成新一轮循环的三维地图更新。
本实施例提供的三维地图生成方法,通过根据所述移动速度V和移动方向计算预设的第一地图相对所述移动装置的滚动量,根据所述第一地图相对所述移动装置的滚动量滚动更新所述第一地图以生成第二地图,从而获得最终的三维地图,在地图大小不变的情况下,仅通过本发明的方法即可实现增大移动装置移动方向前方的观测范围,提高了地图利用率以及探测范围,从而也提高了移动装置移动时的安全性,本发明的方法可以使用相对更小尺寸的尺寸,故消耗的运算资源以及内存相对减小,适合提高移动装置的运行帧率,尤其适用对功耗要求严格的移动装置。
请参阅图2,本发明第二实施例也提供了一种三维地图生成方法,本实施例以前述实施例为基础,提供了一种具体移动所述第一地图的方案,该三维地图生成方法包括:
S21:获取移动装置的移动速度V和移动方向。
S22:根据预设的移动装置的最大速度Vmax、预设的第一地图的最大滚动量dmax以及移动装置的移动速度V计算预设的第一地图相对所述移动装置的滚动量数值Δd。
移动装置的最大移动速度Vmax,为移动装置能达到的最大速度,或移动装置理论上能达到的最大速度。如移动装置在路面上能行驶的最大速度为40m/s,或移动装置在空中飞行的最大速度为40m/s,则最大移动速度为40m/s。第一地图的最大滚动量dmax,即为移动装置在最大速度时移动速度在移动方向的需要滚动的距离,第一地图的最大滚动量dmax可根据需要进行设定。优选地,最大滚动量dmax小于第一地图最短长度的二分之一,且最大滚动量 dmax大于0,以使移动装置在任何方向以最大移动速度Vmax移动时,最终生成的地图上都包括移动移动装置在移动方向的后方的地图。移动装置的滚动量数值Δd与移动装置的移动速度V成正比,移动装置的滚动量数值Δd与第一地图的最大滚动量dmax成正比,移动装置的滚动量数值Δd与移动装置的最大移动速度Vmax成反比。具体的,移动装置的滚动量数值Δd的计算公式为:Δd=dmax*V/Vmax。可以理解,移动装置的滚动量数值Δd可以乘以一个系数k,0<k<1,即移动装置的滚动量数值Δd的计算公式为:Δd=k*dmax*V/Vmax。
S23:根据所述滚动量数值Δd和所述移动方向计算预设的所述第一地图在预设的空间坐标系的x轴、y轴和z轴上的滚动分量。
预设的空间坐标系包括x轴、y轴和z轴,可以x轴和y轴所在的平面平行于水平面,z轴垂直于水平面。可以理解,空间坐标系的x轴、y轴和z轴方向并不做此限定,空间坐标系能标定三维空间即可。本实施例以空间坐标系的x轴和y轴所在的平面平行于水平面,z轴垂直于水平面进行说明。根据滚动量数值Δd和移动方向可获取滚动量数值Δd和在空间坐标系分别在x轴、y轴和z轴上的投影。滚动量数值Δd在x轴的投影即为第一地图在x轴的滚动分量,滚动量数值Δd在y轴的投影即为第一地图在y轴的滚动分量,滚动量数值Δd在z轴的投影即为第一地图在z轴的滚动分量。其中,最大滚动量dmax小于所述第一地图在x轴方向、y轴方向或z轴方向最小长度的二分之一。
具体的,所述根据所述滚动量数值Δd和所述移动方向计算预设的所述第一地图在预设的空间坐标系的x轴、y轴和z轴上的滚动分量包括:
获取所述移动方向在x轴和y轴所在的平面的投影相对x轴的夹角θ,以及获取所述移动方向在x轴和z轴所在的平面的投影相对z轴的夹角μ;
请参阅图3A和图3B,移动方向已知,x轴、y轴和z轴已知,即可获取移动方向在x轴和y轴所在的平面的投影相对x轴的夹角θ,以及移动方向在x轴和z轴所在的平面的投影相对z轴的夹角μ。
根据所述夹角θ、所述夹角μ计算所述第一地图在预设的空间坐标系的x轴、y轴和z轴上的滚动分量。
其中,第一地图在预设的空间坐标系的x轴上的滚动分量Δdx的计算公式 为Δdx=﹣Δd*cosθ;第一地图在预设的空间坐标系的y轴上的滚动分量Δdy的计算公式Δdy=﹣Δd*sinθ;第一地图在预设的空间坐标系的z轴上的滚动分量Δdz的计算公式Δdz=﹣Δd*cosμ。
S24:根据所述第一地图相对所述移动装置的滚动量滚动更新所述第一地图以生成第二地图。
其中,根据所述第一地图相对所述移动装置的滚动量滚动更新所述第一地图包括:
把所述第一地图向所述x轴方向移动滚动分量Δdx;把所述第一地图向所述y轴方向移动滚动分量Δdy;把所述第一地图向所述z轴方向移动滚动分量Δdz。
移动装置在x轴方向多出了Δd*cosθ的观测范围,移动装置在y轴方向多出了Δd*sinθ的观测范围,移动装置在z轴方向多出了Δd*cosμ的观测范围。把第一地图进行移动后,即可得到第二地图。
S25:获取所述移动装置周围环境的点云数据。
S26:根据所述点云数据和所述第二地图生成三维地图。
本实施例的三维地图生成方法快速简单的对第一地图进行滚动更新,最终能快速得到三维地图,在地图大小不变的情况下,仅通过本发明的方法即可实现增大移动装置移动方向前方的观测范围,提高了地图利用率以及探测范围,从而也提高了移动装置移动时的安全性,本发明的方法可以使用相对更小尺寸的尺寸,故消耗的运算资源以及内存相对减小,适合提高移动装置的运行帧率,尤其适用对功耗要求严格的移动装置。
请参阅图4,本发明的第三实施例还提供一种三维地图生成方法,本实施例以前述实施例为基础,提供了一种具体滤波处理移动速度的方案,该三维地图生成方法包括:
S31:获取移动装置的移动速度V和移动方向。
S32:滤波处理所述移动速度V。
对移动速度V滤波处理,能过滤掉不稳定的移动速度V。进行滤波处理时,可以采用低通滤波器。
S33:根据所述移动速度V和移动方向计算预设的第一地图相对所述移动 装置的滚动量;
其中,移动速度V为滤波处理后的移动速度。
S34:根据所述第一地图相对所述移动装置的滚动量滚动更新所述第一地图以生成第二地图。
S35:获取所述移动装置周围环境的点云数据。
S36:根据所述点云数据和所述第二地图生成三维地图。
本实施例的三维地图生成方法,对移动速度V进行滤波处理,能避免移动装置速度波动大,移动速度V的方向不稳定导致地图滚动更新不稳定带来不必要的计算和内存消耗。
请参阅图5,本发明第四实施例提供了一种移动装置40,移动装置40能够执行以上实施例所述的一种三维地图生成方法。移动装置40包括但不限于自动驾驶汽车,无人机,移动装置40可实现自动移动。该移动装置40包括:
一个或多个处理器41以及存储器42。其中,图中以一个处理器41为例。
处理器41和存储器42可以通过总线或者其他方式连接,图中以通过总线连接为例。
存储器42作为一种非易失性的计算机可读存储介质,可用于存储可在处理器上运行的非易失性软件程序、非易失性计算机可执行程序,如本发明上述实施例中的一种三维地图生成方法对应的三维地图生成程序。处理器41通过运行存储在存储器42中的三维地图生成程序,从而执行一种三维地图生成方法的各种功能应用以及数据处理,即实现上述方法实施例中的一种三维地图生成方法。
存储器42可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序等。
此外,存储器42可以包括高速随机存取存储器42,还可以包括非易失性存储器42,例如至少一个磁盘存储器42件、闪存器件、或其他非易失性固态存储器42件。在一些实施例中,存储器42可选包括相对于处理器41远程设置的存储器42,这些远程存储器42可以通过网络连接至处理器41上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述程序指令存储在所述存储器42中,当被所述一个或者多个处理器41 执行时,执行上述任意方法实施例中的一种三维地图生成方法的各个步骤。
上述产品可执行本发明上述实施例所提供的方法,具备执行方法相应的有益效果。未在本实施例中详尽描述的技术细节,可参见本发明上述实施例所提供的方法。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行的三维地图生成程序,该计算机可执行的三维地图生成程序被一个或多个处理器执行,例如图中的一个处理器41,可使得计算机执行上述任意方法实施例中的一种三维地图生成方法的各个步骤。
本发明实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括三维地图生成程序,当所述三维地图生成程序被一个或多个处理器执行,例如图中的一个处理器41,可使得计算机执行上述任意方法实施例中的一种三维地图生成方法。
通过以上的实施例的描述,本领域普通技术人员可以清楚地了解到各实施例可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施方法的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上描述仅为本发明的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本发明中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本发明中发明的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因 此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种三维地图生成方法,用于在移动装置移动时提供三维地图,其特征在于:所述三维地图生成方法包括,
    获取移动装置的移动速度V和移动方向;
    根据所述移动速度V和移动方向计算预设的第一地图相对所述移动装置的滚动量;
    根据所述第一地图相对所述移动装置的滚动量滚动更新所述第一地图以生成第二地图;
    获取所述移动装置周围环境的点云数据;
    根据所述点云数据和所述第二地图生成三维地图。
  2. 如权利要求1所述的三维地图生成方法,其特征在于:所述根据所述移动速度V和移动方向计算预设的第一地图相对所述移动装置的滚动量包括,
    根据预设的移动装置的最大速度Vmax、预设的第一地图的最大滚动量dmax以及移动装置的移动速度V计算预设的第一地图相对所述移动装置的滚动量数值Δd;
    根据所述滚动量数值Δd和所述移动方向计算预设的所述第一地图在预设的空间坐标系的x轴、y轴和z轴上的滚动分量。
  3. 如权利要求2所述的三维地图生成方法,其特征在于:所述移动装置的滚动量数值Δd的计算公式为:Δd=dmax*V/Vmax。
  4. 如权利要求2所述的三维地图生成方法,其特征在于:所述根据所述滚动量数值Δd和所述移动方向计算预设的所述第一地图在预设的空间坐标系的x轴、y轴和z轴上的滚动分量包括,
    获取所述移动方向在x轴和y轴所在的平面的投影相对x轴的夹角θ,以及获取所述移动方向在x轴和z轴所在的平面的投影相对z轴的夹角μ;
    根据所述夹角θ、所述夹角μ计算所述第一地图在预设的空间坐标系的x轴、y轴和z轴上的滚动分量。
  5. 如权利要求4所述的三维地图生成方法,其特征在于:所述第一地图在预设的空间坐标系的x轴上的滚动分量Δdx的计算公式为:Δdx=﹣Δd*cosθ;
    所述第一地图在预设的空间坐标系的y轴上的滚动分量Δdy的计算公式为:Δdy=﹣Δd*sinθ;
    所述第一地图在预设的空间坐标系的z轴上的滚动分量Δdz的计算公式为:Δdz=﹣Δd*cosμ。
  6. 如权利要求5所述的三维地图生成方法,其特征在于,所述根据所述第一地图相对所述移动装置的滚动量滚动更新所述第一地图包括:
    把所述第一地图向所述x轴方向移动滚动分量Δdx;
    把所述第一地图向所述y轴方向移动滚动分量Δdy;
    把所述第一地图向所述z轴方向移动滚动分量Δdz。
  7. 如权利要求1所述的三维地图生成方法,其特征在于:所述根据所述移动速度V和移动方向计算预设的第一地图相对所述移动装置的滚动量之前,还包括,
    滤波处理所述移动速度V。
  8. 如权利要求2所述的三维地图生成方法,其特征在于:所述最大滚动量dmax小于所述第一地图在x轴方向、y轴方向或z轴方向最小长度的二分之一。
  9. 一种移动装置,所述移动装置包括存储器及处理器,存储器上存储有可在处理器上运行的三维地图生成程序,其特征在于:所述处理器执行所述三维地图生成程序时实现如权利要求1-8中任一所述的三维地图生成方法。
  10. 一种计算机可读存储介质,其上存储有三维地图生成程序,其特征在于:该三维地图生成程序被处理器执行时实现如权利要求1-8中任一项所述的三维地图生成方法。
PCT/CN2020/123058 2019-10-11 2020-10-23 三维地图生成方法、移动装置和计算机可读存储介质 WO2021068980A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910964857.8 2019-10-11
CN201910964857.8A CN110930506B (zh) 2019-10-11 2019-10-11 三维地图生成方法、移动装置和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021068980A1 true WO2021068980A1 (zh) 2021-04-15

Family

ID=69848802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123058 WO2021068980A1 (zh) 2019-10-11 2020-10-23 三维地图生成方法、移动装置和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN110930506B (zh)
WO (1) WO2021068980A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110930506B (zh) * 2019-10-11 2022-09-09 深圳市道通智能航空技术股份有限公司 三维地图生成方法、移动装置和计算机可读存储介质
CN112819956A (zh) * 2020-12-30 2021-05-18 南京科沃斯机器人技术有限公司 一种三维地图构建方法、系统及服务器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095919A1 (en) * 2011-01-13 2012-07-19 Sony Corporation Information processing apparatus, method, and non-transitory computer-readable medium
CN106202140A (zh) * 2015-06-01 2016-12-07 佳能株式会社 数据浏览装置和数据浏览方法
CN108629847A (zh) * 2018-05-07 2018-10-09 网易(杭州)网络有限公司 虚拟对象移动路径生成方法、装置、存储介质及电子设备
CN110221616A (zh) * 2019-06-25 2019-09-10 清华大学苏州汽车研究院(吴江) 一种地图生成的方法、装置、设备及介质
CN110930506A (zh) * 2019-10-11 2020-03-27 深圳市道通智能航空技术有限公司 三维地图生成方法、移动装置和计算机可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9091755B2 (en) * 2009-01-19 2015-07-28 Microsoft Technology Licensing, Llc Three dimensional image capture system for imaging building facades using a digital camera, near-infrared camera, and laser range finder
CN108369775B (zh) * 2015-11-04 2021-09-24 祖克斯有限公司 响应于物理环境的改变自适应制图以对自主车辆进行导航
CN109341707B (zh) * 2018-12-03 2022-04-08 南开大学 未知环境下移动机器人三维地图构建方法
CN110009718B (zh) * 2019-03-07 2021-09-24 深兰科技(上海)有限公司 一种三维高精度地图生成方法及装置
CN109991636A (zh) * 2019-03-25 2019-07-09 启明信息技术股份有限公司 基于gps、imu以及双目视觉的地图构建方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095919A1 (en) * 2011-01-13 2012-07-19 Sony Corporation Information processing apparatus, method, and non-transitory computer-readable medium
CN106202140A (zh) * 2015-06-01 2016-12-07 佳能株式会社 数据浏览装置和数据浏览方法
CN108629847A (zh) * 2018-05-07 2018-10-09 网易(杭州)网络有限公司 虚拟对象移动路径生成方法、装置、存储介质及电子设备
CN110221616A (zh) * 2019-06-25 2019-09-10 清华大学苏州汽车研究院(吴江) 一种地图生成的方法、装置、设备及介质
CN110930506A (zh) * 2019-10-11 2020-03-27 深圳市道通智能航空技术有限公司 三维地图生成方法、移动装置和计算机可读存储介质

Also Published As

Publication number Publication date
CN110930506B (zh) 2022-09-09
CN110930506A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
JP6571274B2 (ja) レーザ深度マップサンプリングのためのシステム及び方法
CN110658531B (zh) 一种用于港口自动驾驶车辆的动态目标追踪方法
Iacono et al. Path following and obstacle avoidance for an autonomous UAV using a depth camera
US10705528B2 (en) Autonomous visual navigation
US8725273B2 (en) Situational awareness for teleoperation of a remote vehicle
WO2018058442A1 (zh) 路径规划的方法、装置、飞行控制系统、全方位避障系统与无人机
KR20190082291A (ko) 차량 환경 맵 생성 및 업데이트 방법 및 시스템
WO2021068980A1 (zh) 三维地图生成方法、移动装置和计算机可读存储介质
CN106569225B (zh) 一种基于测距传感器的无人车实时避障方法
US8078399B2 (en) Method and device for three-dimensional path planning to avoid obstacles using multiple planes
CN110488818B (zh) 一种基于激光雷达的机器人定位方法、装置和机器人
JP6829513B1 (ja) 位置算出方法及び情報処理システム
CN106909149B (zh) 一种深度摄像头避障的方法及装置
WO2017166767A1 (zh) 一种信息处理方法和移动装置、计算机存储介质
CN113246143A (zh) 一种机械臂动态避障轨迹规划方法及装置
US10105847B1 (en) Detecting and responding to geometric changes to robots
CN112184914A (zh) 目标对象三维位置的确定方法、装置和路侧设备
WO2018133077A1 (zh) 一种智能轮椅的环境信息收集与反馈系统及方法
CN110775288A (zh) 一种基于仿生的飞行机械颈眼系统及控制方法
US10134182B1 (en) Large scale dense mapping
JP7278740B2 (ja) 移動体制御装置
CN111767844A (zh) 用于三维建模的方法和装置
WO2020024150A1 (zh) 地图处理方法、设备、计算机可读存储介质
CN115222815A (zh) 障碍物距离检测方法、装置、计算机设备和存储介质
WO2020223868A1 (zh) 地面信息处理方法、装置和无人驾驶车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20875475

Country of ref document: EP

Kind code of ref document: A1