WO2021068703A1 - 一种电源控制电路及电器设备 - Google Patents

一种电源控制电路及电器设备 Download PDF

Info

Publication number
WO2021068703A1
WO2021068703A1 PCT/CN2020/114303 CN2020114303W WO2021068703A1 WO 2021068703 A1 WO2021068703 A1 WO 2021068703A1 CN 2020114303 W CN2020114303 W CN 2020114303W WO 2021068703 A1 WO2021068703 A1 WO 2021068703A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
power supply
chip
load
control circuit
Prior art date
Application number
PCT/CN2020/114303
Other languages
English (en)
French (fr)
Inventor
陈嘉琪
杨昆
陈育新
张秋俊
方召军
巨姗
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021068703A1 publication Critical patent/WO2021068703A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to the technical field of household appliances, and in particular to a power control circuit and electrical equipment.
  • the embodiments of the present disclosure provide a power control circuit and electrical equipment to overcome the problem of high power consumption during standby and energy waste caused by electrical appliances such as steaming and baking dual-energy machines and air conditioners in the related art.
  • an embodiment of the present disclosure provides a power control circuit, including: a transformer, a switching power supply chip, a current detection module, and a pulse current generator, wherein one end of the primary coil of the transformer is externally connected to a power supply, and the other end is Connected to the first output pin of the switching power supply chip, and the secondary coil of the transformer is connected to an external load; the control pin of the switching power supply chip is connected to the secondary coil and is configured to receive the secondary coil Output voltage signal, and control the on and off of the built-in switch of the switching power supply chip according to the voltage signal; the input end of the current detection module is connected to one end of the load, and the output end is connected to the pulse current generator The input terminal of the switching power supply chip is connected to the current signal of the load, and the current signal is sent to the pulse current generator to generate a pulse trigger signal; the detection pin of the switching power supply chip generates a pulse current The output terminal of the device is connected to the output terminal and is configured to receive the pulse trigger signal and
  • the power control circuit further includes: a voltage stabilizing circuit, the voltage stabilizing circuit includes: a first resistor, a second resistor, and a first voltage stabilizing chip, wherein one end of the first resistor is connected to One end of the load is connected, the other end is respectively connected to one end of the second resistor and the first end of the first voltage stabilizing chip, and the other end of the second resistor is connected to the first end of the first voltage stabilizing chip.
  • the two ends are connected to the ground, and the third end of the first voltage stabilizing chip is connected to the control pin of the switching power supply chip.
  • the power control circuit further includes: an isolation circuit, the isolation circuit includes: a third resistor, a fourth resistor, a first isolation switch, a second isolation switch, and a rectifier diode, wherein the first The first input terminal of an isolating switch is connected to one end of the load through the third resistor, the second input terminal is connected to the third terminal of the first voltage regulator chip, and the first output terminal is connected to one end of the load through the rectifier diode.
  • the primary coil of the transformer is connected to ground, and the second output terminal is connected to the control pin of the switching power supply chip; the first input terminal of the second isolation switch is connected to the pulse current generator through the fourth resistor The second input terminal is connected to the ground, the first output terminal is connected to the first output terminal of the first isolation switch, and the second output terminal is connected to the detection pin of the switching power supply chip.
  • the current detection module includes: a current sampling circuit, a reference voltage generating circuit, and a comparison circuit, wherein the input end of the current sampling circuit is connected to one end of the load, and the output end is connected to the comparison circuit.
  • the first input terminal of the reference voltage generating circuit is connected; the input terminal of the reference voltage generating circuit is connected to the external level signal, and the output terminal is connected to the second input terminal of the comparison circuit; the output terminal of the comparison circuit is connected to the pulse current generator Input terminal connection.
  • the current sampling circuit includes: a fifth resistor, a sixth resistor, a seventh resistor, an eighth resistor, a ninth resistor, a tenth resistor, and an operational amplifier, wherein one end of the load is connected to the One end of the fifth resistor is connected, the other end of the fifth resistor is connected to one end of the sixth resistor and one end of the seventh resistor, and the other end of the sixth resistor is grounded.
  • the other end is respectively connected to one end of the eighth resistor and the positive input end of the operational amplifier, the other end of the eighth resistor is connected to an external level signal, and the negative input end of the operational amplifier is connected to the first One end of the nine resistor and one end of the tenth resistor are connected, the output end of the operational amplifier is respectively connected to the other end of the tenth resistor and the first input end of the comparison circuit, and the other end of the ninth resistor One end is grounded.
  • the reference voltage generating circuit includes: an eleventh resistor, a twelfth resistor, a thirteenth resistor, and a second voltage stabilizing chip, wherein one end of the eleventh resistor is externally connected to a level signal, The other end is respectively connected to one end of the twelfth resistor, the first end of the second voltage stabilizing chip and the second input end of the comparison circuit, and the second end of the second voltage stabilizing chip is respectively connected to the first end of the comparison circuit.
  • the other end of the twelve resistor is connected to one end of the thirteenth resistor, and the third end of the second voltage stabilizing chip is connected to the other end of the thirteenth resistor and then grounded.
  • the comparison circuit includes a comparator, wherein the first input terminal of the comparator is connected to the output terminal of the current sampling circuit, and the second input terminal is connected to the output terminal of the reference voltage generating circuit. The output terminal is connected with the input terminal of the pulse current generator.
  • the current sampling circuit further includes: a fourteenth resistor, a fifteenth resistor, a sixteenth resistor, a first capacitor, and a second capacitor, wherein the fourteenth resistor and the sixth resistor The resistors are connected in parallel, the fifteenth resistor is connected to the output terminal of the operational amplifier and then grounded, one end of the sixteenth resistor is connected to the output terminal of the operational amplifier, and the other end is connected to the second capacitor and then grounded , The first capacitor is connected in parallel with the tenth resistor.
  • the comparison circuit further includes: a seventeenth resistor, an eighteenth resistor, a third capacitor, a fourth capacitor, and a fifth capacitor, wherein one end of the seventeenth resistor is connected to the current sampler The output end of the circuit is connected, the other end is connected to the first input end of the comparator, one end of the eighteenth resistor is connected to the output end of the comparator, and the other end is connected to the input end of the pulse current generator Connected, the third capacitor is connected to the first input terminal of the comparator and then grounded, the fourth capacitor is connected to the second input terminal of the comparator and then grounded, and the fifth capacitor is connected to the comparator Connect the output terminal to ground.
  • the voltage detection pin of the switching power supply chip is connected to the primary coil of the transformer, and is configured to detect the voltage signal of the switching power supply chip, and to control the switching power supply chip according to the voltage signal. Perform voltage protection.
  • the power control circuit further includes a freewheeling diode, one end of the freewheeling diode is connected to one end of the secondary coil of the transformer, and the other end is connected to one end of the load.
  • the power control circuit further includes: a sixth capacitor and a seventh capacitor, wherein the sixth capacitor is connected in parallel to both ends of the power supply, and the seventh capacitor is connected to one end of the load. Ground after connection.
  • the first voltage regulator chip is a TL431 first voltage regulator chip.
  • the first isolation switch and the second isolation switch are photocouplers.
  • an embodiment of the present disclosure further provides an electrical device, including: a power supply, a main body of the electrical device, and the power control circuit described in another embodiment of the present disclosure, wherein the power supply is passed through the power supply The control circuit supplies power to the main body of the electrical equipment.
  • the power control circuit includes: a transformer, a switching power supply chip, a current detection module, and a pulse current generator, wherein one end of the primary coil of the transformer is externally connected to the power supply, and the other end is connected to the first of the switching power supply chip.
  • the output pin is connected, the secondary coil of the transformer is connected to the load; the control pin of the switching power supply chip is connected with the secondary coil, the input end of the current detection module is connected to one end of the load, and the output end is connected to the input end of the pulse current generator.
  • the detection pin of the switching power supply chip is connected with the output terminal of the pulse current generator.
  • the operating frequency of the switching power supply chip is controlled, that is, the on-off frequency of its built-in switch is controlled, and the output voltage of the transformer secondary coil is then controlled.
  • the power is switched on and off when the load is in the standby state, that is, when the load is light.
  • the chip is in the low-frequency working mode, which realizes the low power consumption of the switching power supply chip and even close to zero watt standby, avoids energy waste, energy saving and environmental protection, and the switching power supply chip is in high-frequency working mode when the load is heavy to ensure the normal operation of the load. Affected.
  • the electrical equipment provided by the embodiments of the present disclosure includes: a power supply, a main body of the electrical equipment, and the power control circuit described in another embodiment of the present disclosure, wherein the power supply supplies power to the electrical equipment through the power control circuit.
  • the main body of the device is powered.
  • the power control circuit reduces the power consumption of the electrical equipment in the standby state, realizes low power consumption or even close to zero watt standby, avoids energy waste, and makes the electrical equipment more energy-saving and environmentally friendly.
  • FIG. 1 is a schematic structural diagram of a power control circuit according to an embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of a current detection module according to an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of the waveform of a pulse trigger signal according to an embodiment of the disclosure.
  • Fig. 4 is a schematic diagram of the structure of an electrical device according to an embodiment of the disclosure.
  • FIG. 1 shows a schematic structural diagram of the power control circuit.
  • the power control circuit includes: a transformer T, a switching power supply chip U1, a current detection module U2, and a pulse current generator U3.
  • the primary coil of the transformer T One end is connected to the power supply AC, the other end is connected to the first output pin D of the switching power supply chip U1, and the secondary coil of the transformer T is connected to the load RL;
  • the control pin FB of the switching power supply chip U1 is connected to the secondary coil and is set In order to receive the voltage signal output by the secondary coil, and control the on and off of the built-in switch of the switching power supply chip U1 according to the voltage signal;
  • the input end of the current detection module U2 is connected to one end of the load RL, and the output end is connected to the pulse current generator U3
  • the input terminal is connected and is set to detect the current signal of the load RL, and send the current signal to the pulse current generator U3 to generate a pulse trigger signal;
  • the above-mentioned power supply AC is an alternating current power supply, such as 220V city power, etc.
  • the AC power supply such as city power needs to be converted into direct current through an AC-DC conversion circuit to supply power to the load RL.
  • the AC-DC conversion circuit is implemented by a bridge circuit.
  • AC-DC conversion circuits in other related technologies can also be used to achieve the function of converting AC power to DC power. This disclosure is not limited to this.
  • the aforementioned load RL may be household appliances such as steaming and roasting dual-energy machines, air conditioners and the like.
  • a switch is provided inside the above-mentioned switching power supply chip U1.
  • the built-in switch of the switching power supply chip U1 is a MOS tube, and the switching power supply chip U1 controls the turning off and on of the internal MOS tube. In this way, the output voltage of the secondary coil of the transformer T is controlled.
  • the principle of electromagnetic induction when the MOS tube is turned on, the primary coil of the transformer T stores energy, and when the MOS tube is turned off, the energy of the primary coil of the transformer TT1 is transferred to the secondary coil.
  • the first output pin D of the switching power supply chip U1 is the drain pin of its built-in MOS tube (the MOS tube has a gate pin, a drain pin, and a source pin).
  • the MOS tube is a switch, and its drain pin is connected to the primary coil.
  • the S pin of the power supply chip U1 is the source pin of the MOS tube connected to ground, and the control pin FB of the switching power supply chip U1 is the gate lead of the MOS tube.
  • the pin is connected with the secondary coil to receive the feedback of the output voltage, and according to the feedback of the output voltage, the FB pin is used to control the switching of the MOS tube. When the FB pin inputs a high level, the MOS tube is turned on and the primary coil is charged.
  • the detection pin CS of the switching power supply chip U1 is the wake-up pin, which receives the pulse trigger signal output by the pulse current generator U3. After the CS pin detects the pulse trigger signal, it indicates that the load RL is overloaded and the switching power supply needs to be awakened. When the chip U1 enters the high-frequency working mode, it increases the turn-on and turn-off frequency of the built-in MOS tube.
  • the pulse trigger signal is not detected, it means that the load RL is lightly loaded at this time, that is, the load RL is in the standby state, and the switching power supply chip U1 is controlled to enter the low frequency
  • the working mode is to reduce the frequency of turning on and turning off the built-in MOS tube to reduce power consumption and reduce energy waste.
  • the specific operating frequency of the switching power supply chip U1 in the high-frequency working mode and the low-frequency working mode that is, the turn-on and turn-off frequency of the MOS tube, can be flexibly set according to the needs of the actual load RL, and the present disclosure is not limited to this. .
  • the switching power supply chip U1 can be set to not detect the pulse trigger signal within the preset time period, that is, enter the low-frequency working mode, that is, low power consumption mode or sleep mode; when the pulse trigger signal is detected , That is, enter the high-frequency working mode and enter the normal working mode. Because the load RL is an electrical product, when the electrical product is in the standby mode, the load RL is lighter, so the switching power supply chip U1 only needs to work in the low-frequency mode to ensure the output The voltage is stable. After entering the low frequency mode, the loss of the built-in MOS switch is greatly reduced, that is, low power consumption or even close to zero watt standby power consumption can be achieved.
  • the voltage detection pin HV of the above-mentioned switching power supply chip U1 is connected to the primary coil of the transformer T, and is set to detect the voltage signal of the switching power supply chip U1, and to control the switching power supply according to the voltage signal.
  • Chip U1 performs voltage protection.
  • the switching power supply chip U1 has an overvoltage and undervoltage protection detection function. When an overvoltage or undervoltage is detected in the switching power supply chip U1, the switching power supply chip U1 will reset intermittently until the voltage is normal, thereby realizing the Overvoltage protection and undervoltage protection of switching power supply chip U1.
  • the above-mentioned power control circuit further includes: a freewheeling diode D4, one end of which is connected to one end of the secondary coil of the transformer T, and the other end is connected to one end of the load RL.
  • the freewheeling diode D4 is set to provide a continuous current to the load RL, so as to avoid sudden changes in the current of the load RL and smooth the current.
  • the above-mentioned power supply control circuit further includes: a sixth capacitor C6 and a seventh capacitor C7, wherein the sixth capacitor C6 is connected in parallel to both ends of the power supply AC, and the seventh capacitor C7 is connected to the load One end of RL is connected to ground.
  • the above-mentioned sixth capacitor C6 and seventh capacitor C7 are both filter capacitors that play a filtering role.
  • the above-mentioned power control circuit further includes: a voltage stabilizing circuit 21, and the voltage stabilizing circuit 21 includes: a first resistor R1, a second resistor R2, and a first voltage stabilizing chip U4, wherein one end of the first resistor R1 is connected to one end of the load RL, the other end is respectively connected to one end of the second resistor R2 and the first end of the first voltage stabilizing chip U4, and the other end of the second resistor R2 is connected to the first end
  • the second end of the voltage stabilizing chip U4 is connected to the ground, and the third end of the first voltage stabilizing chip U4 is connected to the control pin FB of the switching power supply chip U1.
  • the first voltage stabilizing chip U4 adopts a TL431 voltage stabilizing chip, and the first stabilizing chip U4 contains a 2.5V reference voltage inside, and the first resistor R1 and the second resistor R2 are voltage divider resistors.
  • the TL431 voltage regulator chip is taken as an example for description. In practical applications, the above-mentioned first voltage regulator chip U4 can also be other types of voltage regulator chips in the related art. As long as it can achieve the same or similar functions as the TL431 voltage regulator chip, the present disclosure is not limited to this.
  • the above-mentioned power control circuit further includes an isolation circuit 22, and the isolation circuit 22 includes a third resistor R3, a fourth resistor R4, a first isolation switch D1, and a second isolation switch D1.
  • the isolation circuit 22 includes a third resistor R3, a fourth resistor R4, a first isolation switch D1, and a second isolation switch D1.
  • the first output terminal is connected to the primary coil of the transformer T through the rectifier diode D3 and then grounded.
  • the second output terminal is connected to the control pin FB of the switching power supply chip U1; the first input terminal of the second isolation switch D2 is connected to the primary coil of the transformer T through the fourth resistor R4.
  • the output terminal of the pulse current generator U3 is connected, the second input terminal is grounded, the first output terminal is connected with the first output terminal of the first isolation switch D1, and the second output terminal is connected with the detection pin CS of the switching power supply chip U1. Since the external power supply on the primary coil side of the transformer T in the above power supply control circuit is a strong electrical signal, and the secondary coil side of the transformer T is a weak electrical signal, interference between strong and weak electricity will occur. In order to ensure the safety of the entire power control power supply, it is necessary to implement a strong signal.
  • the above-mentioned first isolation switch D1 and second isolation switch D2 are photocouplers. By using photocouplers to isolate strong and weak currents, safe isolation of the power supply control circuit is realized. , And has the characteristics of simple implementation, low cost, high automation efficiency and good reliability. It should be noted that, in the embodiments of the present disclosure, the photoelectric coupler is taken as an example. In practical applications, the above-mentioned first isolation switch D1 and second isolation switch D2 can also be selected from other related technologies with strong A switch device with weak current isolation function, such as a circuit breaker, should only be capable of achieving the same or similar function as the photocoupler, and the present disclosure is not limited thereto.
  • the above-mentioned current detection module U2 includes: a current sampling circuit 11, a reference voltage generating circuit 12, and a comparison circuit 13, wherein the input terminal of the current sampling circuit 11 and the load RL The output terminal is connected with the first input terminal of the comparison circuit 13; the input terminal of the reference voltage generating circuit 12 is connected with a level signal, and the output terminal is connected with the second input terminal of the comparison circuit 13; the output terminal of the comparison circuit 13 is connected with The input terminal of the pulse current generator U3 is connected.
  • the aforementioned current sampling circuit 11 includes: a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, an eighth resistor R8, a ninth resistor R9, a tenth resistor R10, and an operational amplifier U6 , Wherein one end of the load RL is connected to one end of the fifth resistor R5, the other end of the fifth resistor R5 is connected to one end of the sixth resistor R6 and one end of the seventh resistor R7, and the other end of the sixth resistor R6 is grounded.
  • the other end of the seven resistor R7 is respectively connected to one end of the eighth resistor R8 and the positive input end of the operational amplifier U6, the other end of the eighth resistor R8 is connected with a level signal, and the negative input end of the operational amplifier U6 is connected to the ninth resistor respectively.
  • One end of R9 and one end of the tenth resistor R10 are connected, the output end of the operational amplifier U6 is respectively connected to the other end of the tenth resistor R10 and the first input end of the comparison circuit 13, and the other end of the ninth resistor R9 is grounded.
  • +VIN is connected to Vout as shown in Figure 1.
  • the voltage VC is obtained after sampling by the fifth resistor R5 and the sixth resistor R6, and the sampling current is obtained after passing through the seventh resistor R7. , After the sampling current is increased by the operational amplifier, the corresponding sampling voltage Vcurrent is obtained and input into the comparison circuit 13.
  • the sampling voltage Vcurrent can be specifically calculated by the following formula:
  • Vcurrent VCC*(R7/(R7+R8))*((R9+R10)/R10)+
  • the above-mentioned current sampling circuit 11 further includes: a fourteenth resistor R14, a fifteenth resistor R15, a sixteenth resistor R16, a first capacitor C1 and a second capacitor C2, among which,
  • the fourteenth resistor R14 is connected in parallel with the sixth resistor R6, the fifteenth resistor R15 is connected to the output end of the operational amplifier U6 and then grounded, one end of the sixteenth resistor R16 is connected to the output end of the operational amplifier U6, and the other end is connected to the second capacitor C2 is connected to ground, and the first capacitor C1 is connected in parallel with the tenth resistor R10.
  • the above-mentioned fifteenth resistor R15 is a grounding resistor, which is set to avoid voltage "floating" and cause circuit instability
  • the above-mentioned first capacitor C1 is set to filter out the interference of the differential signal
  • the above-mentioned sixteenth resistor R16 and the first capacitor constitute a filtering circuit, which is set to filter out the interference in the amplified current signal.
  • the above-mentioned reference voltage generating circuit 12 includes: an eleventh resistor R11, a twelfth resistor R12, a thirteenth resistor R13, and a second voltage stabilizing chip U5, wherein the eleventh resistor R11 One end is connected to an external level signal, and the other end is connected to one end of the twelfth resistor R12, the first end of the second voltage stabilizing chip U5 and the second input end of the comparison circuit 13, and the second end of the second voltage stabilizing chip U5 They are respectively connected to the other end of the twelfth resistor R12 and one end of the thirteenth resistor R13, and the third end of the second voltage stabilizing chip U5 is connected to the other end of the thirteenth resistor R13 and then grounded.
  • the reference voltage generating circuit 12 can generate a stable reference voltage VREF.
  • the second voltage stabilizing chip U5 adopts the TL431 first voltage stabilizing chip U4, and the second voltage stabilizing chip U4 is The chip U5 contains a 2.5V reference voltage, in which the twelfth resistor R12 and the thirteenth resistor R13 are voltage dividing resistors, which are set to adjust the reference voltage VREF of the output of the reference voltage generating circuit 12, thereby passing the voltage stabilizing circuit The function of regulating and stabilizing the output reference voltage VREF can be realized.
  • the reference voltage VREF is input to the comparison circuit 13 as the reference voltage VREF and compared with the sampled voltage output by the current sampling circuit 11, so as to determine whether the current load RL is at a light load or a heavy load.
  • the reference voltage generating circuit 12 can also be omitted.
  • a fixed level signal can be directly input to the comparison circuit 13 as the reference voltage VREF, and the present disclosure is not limited thereto.
  • the aforementioned comparison circuit 13 includes: a comparator U7, wherein the first input terminal of the comparator U7 is connected to the output terminal of the current sampling circuit 11, and the second input terminal is connected to the reference voltage generating circuit 12 Connect the output terminal of the, and the output terminal is connected to the input terminal of the pulse current generator U3.
  • the pulse trigger signal shown. The pulse current generator U3 can be the main control IC, Vout1 is connected to one of the I/O ports of the IC, and when the I/O port detects the input high level, it sends out a square wave pulse signal as shown in Figure 3)
  • the above-mentioned comparison circuit 13 further includes: a seventeenth resistor R17, an eighteenth resistor R18, a third capacitor C3, a fourth capacitor C4, and a fifth capacitor C5, where the tenth One end of the seven resistor R17 is connected to the output end of the current sampling circuit 11, the other end is connected to the first input end of the comparator U7, one end of the eighteenth resistor R18 is connected to the output end of the comparator U7, and the other end is connected to the pulse current generation
  • the input terminal of the comparator U3 is connected, the third capacitor C3 is connected to the first input terminal of the comparator U7 and then grounded, the fourth capacitor C4 is connected to the second input terminal of the comparator U7 and then grounded, and the fifth capacitor C5 is connected to the comparator U7.
  • the above-mentioned third capacitor C3 and the fourth capacitor C4 play the role of filtering
  • the above-mentioned seventeenth resistor R17 is a current-limiting resistor, which plays a role of current-limiting
  • the above-mentioned eighteenth resistor R18 It forms a filter circuit with the fifth capacitor C5 and is configured to filter out the interference of the voltage signal output by the comparison circuit 13.
  • the first voltage regulator chip U4 contains a 2.5V reference voltage VREF, and the output voltage of the transformer T is divided by resistors R1 and R2.
  • the first voltage regulator chip U4 is turned on, the first isolation switch D1 is turned on, and the MOS tube inside the switching power supply chip U1 is turned on, and the primary coil of the transformer T is charged.
  • the TL431 chip When the output voltage is low, the partial voltage is less than 2.5V, the TL431 chip is disconnected, the first isolating switch D1 is disconnected, and the MOS tube inside the switching power supply chip U1 is disconnected, and the energy stored in the primary coil is reversed back to the secondary coil. To increase the output voltage.
  • the sampled current value detected by the current detection module U2 is relatively large, and then outputs a high-level signal to the pulse current generator U3. After the pulse current generator U3 receives the high-level signal, it generates as shown in Figure 4.
  • the pulse trigger signal is output to the detection pin CS of the switching power supply chip U1.
  • the switching power supply chip U1 When the switching power supply chip U1 detects a pulse trigger signal, the switching power supply chip U1 will wake up and enter the high-frequency working mode to increase the built-in MOS
  • the frequency at which the tube is turned on and off is used to output a normal working voltage to the steaming and roasting dual-energy machine through the above-mentioned transformer T, thereby ensuring the normal operation of the steaming and roasting dual-energy machine.
  • the current value detected by the current detection module U2 is relatively small, and then outputs a low-level signal to the pulse current generator U3, and the pulse current generator U3 receives a low-level signal After that, no pulse trigger signal will be generated, so that the input of the detection pin CS of the switching power supply chip U1 is 0V.
  • the switching power supply chip U1 does not detect a pulse trigger signal within the preset time period, then Control the switching power supply chip U1 to enter the low-frequency work mode, that is, the low-power mode or the sleep mode, and reduce the turn-on and turn-off frequency of the built-in MOS tube, so as to reduce power consumption and reduce energy waste.
  • the length of the preset time period can be set according to actual needs, and the present disclosure is not limited to this. Since the electrical product such as the steaming and baking dual-energy machine is in standby mode, the load RL is relatively light, so the switching power supply chip U1 only needs to work in the low-frequency mode to ensure the output voltage is stable. After entering the low-frequency mode, the built-in MOS switch will lose Greatly reduce, that is, low power consumption or even close to zero watt standby power consumption can be achieved.
  • the power control circuit controls the operating frequency of the switching power supply chip by detecting the load current, that is, controls the on and off frequency of its built-in switch, and then controls the transformer frequency.
  • the output voltage of the first-level coil when the load RL is in the standby state, that is, when the load is light, the switching power supply chip is in low-frequency working mode, which realizes the low power consumption of the switching power supply chip or even close to zero watt standby, avoiding energy waste, energy saving and environmental protection, and
  • the switching power supply chip is in high-frequency working mode under heavy load to ensure that the normal operation of the load is not affected.
  • the TL431 chip is used to adjust and stabilize the output voltage, and the photocoupler is used to isolate strong and weak currents, so as to achieve safe isolation.
  • the circuit scheme provided by the embodiments of the present disclosure has the advantages of simple structure, low cost, high automation efficiency, and good reliability. .
  • the embodiment of the present disclosure also provides an electrical equipment.
  • the electrical equipment includes: a power supply AC, an electrical equipment main body 1 and a power control circuit 2 in another embodiment of the present disclosure, wherein the power supply AC Power is supplied to the electrical equipment main body 1 through the power control circuit 2.
  • the power supply control circuit 2 refer to the related content of the power supply control circuit in the above-mentioned embodiment, which will not be repeated here.
  • the electrical device 1 may be a household appliance equipped with a switching power supply chip, such as a steaming and baking dual-energy machine, an air conditioner, and the like, and the present disclosure is not limited to this.
  • the electrical equipment provided by the embodiments of the present disclosure includes: a power supply, a main body of the electrical equipment, and a power control circuit in another embodiment of the present disclosure, wherein the power supply is transmitted to the electrical equipment through the power control circuit.
  • the main body is powered.
  • the power control circuit reduces the power consumption of the electrical equipment in the standby state, realizes low power consumption or even close to zero watt standby, avoids energy waste, and makes the electrical equipment more energy-saving and environmentally friendly.

Abstract

一种电源控制电路及电器设备,该电源控制电路包括:变压器(T)、开关电源芯片(U1)、电流检测模块(U2)及脉冲电流发生器(U3),变压器(T)的初级线圈的一端外接供电电源(AC),另一端与开关电源芯片(U1)的第一输出引脚(D)连接,变压器(T)的次级线圈外接负载(RL);开关电源芯片(U1)的控制引脚(FB)与次级线圈连接,电流检测模块(U2)的输入端与负载(RL)的一端连接,输出端与脉冲电流发生器(U3)的输入端连接,开关电源芯片(U1)的检测引脚(CS)与脉冲电流发生器(U3)的输出端与连接。通过对负载(RL)电流的检测,控制开关电源芯片(U1)的工作频率,使其在待机状态下即轻载时处于低频工作模式,实现开关电源芯片(U1)的低功耗甚至接近零瓦待机,避免了能源的浪费,节能环保,并在重载时处于高频工作模式,保障负载(RL)正常工作不受影响。

Description

一种电源控制电路及电器设备
本公开要求于2019年10月11日提交中国专利局、申请号为201910966131.8、发明名称为“一种电源控制电路及电器设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及家用电器技术领域,具体涉及一种电源控制电路及电器设备。
背景技术
随着科学技术的发展和人们生活水平的不断提高,家用电器行业也在向着环保、节能、安全、低价的方向发展。目前很多常用的家用电器例如:蒸烤双能机、空调等家用电器在待机状态时,家用电器内部的部分电路或器件仍然需要供电电源为其供电,这就造成了家用电器在待机状态下功耗较高,进而造成了能源的浪费。
发明内容
有鉴于此,本公开实施例提供了一种电源控制电路及电器设备,以克服相关技术中的蒸烤双能机、空调等电器设置在待机过程中功耗高,造成能源浪费的问题。
根据第一方面,本公开实施例提供了一种电源控制电路,包括:变压器、开关电源芯片、电流检测模块及脉冲电流发生器,其中,所述变压器的初级线圈的一端外接供电电源,另一端与所述开关电源芯片的第一输出引脚连接,所述变压器的次级线圈外接负载;所述开关电源芯片的控制引脚与所述次级线圈连接,被设置为接收所述次级线圈输出的电压信号,并根据所述电压信号控制所述开关电源芯片内置开关的开通和关断;所述电流检测模块的输入端与所述 负载的一端连接,输出端与所述脉冲电流发生器的输入端连接,被设置为检测所述负载的电流信号,并将所述电流信号发送至所述脉冲电流发生器生成脉冲触发信号;所述开关电源芯片的检测引脚与所述脉冲电流发生器的输出端与连接,被设置为接收所述脉冲触发信号,并根据所述脉冲触发信号控制所述开关电源芯片的工作频率。
在一些实施方式中,所述电源控制电路,还包括:稳压电路,所述稳压电路包括:第一电阻、第二电阻及第一稳压芯片,其中,所述第一电阻的一端与所述负载的一端连接,另一端分别与所述第二电阻的一端及所述第一稳压芯片的第一端连接,所述第二电阻的另一端与所述第一稳压芯片的第二端连接后接地,所述第一稳压芯片的第三端与所述开关电源芯片的控制引脚连接。
在一些实施方式中,所述电源控制电路,还包括:隔离电路,所述隔离电路包括:第三电阻、第四电阻、第一隔离开关、第二隔离开关及整流二极管,其中,所述第一隔离开关的第一输入端通过所述第三电阻与所述负载的一端连接,第二输入端与所述第一稳压芯片的第三端连接,第一输出端通过所述整流二极管与所述变压器的初级线圈连接后接地,第二输出端与所述开关电源芯片的控制引脚连接;所述第二隔离开关的第一输入端通过所述第四电阻与所述脉冲电流发生器的输出端连接,第二输入端接地,第一输出端与所述第一隔离开关的第一输出端连接,第二输出端与所述开关电源芯片的检测引脚连接。
在一些实施方式中,所述电流检测模块包括:电流采样电路、基准电压生成电路和比较电路,其中,所述电流采样电路的输入端与所述负载的一端连接,输出端与所述比较电路的第一输入端连接;所述基准电压生成电路的输入端外接电平信号,输出端与所述比较电路的第二输入端连接;所述比较电路的输出端与所述脉冲电流发生器的输入端连接。
在一些实施方式中,所述电流采样电路包括:第五电阻、第六电阻、第七 电阻、第八电阻、第九电阻、第十电阻及运算放大器,其中,所述负载的一端与所述第五电阻的一端连接,所述第五电阻的另一端分别与所述第六电阻的一端及所述第七电阻的一端连接,所述第六电阻的另一端接地,所述第七电阻的另一端分别与所述第八电阻的一端及所述运算放大器的正向输入端连接,所述第八电阻的另一端外接电平信号,所述运算放大器的负向输入端分别与所述第九电阻的一端及所述第十电阻的一端连接,所述运算放大器的输出端分别与所述第十电阻的另一端及所述比较电路的第一输入端连接,所述第九电阻的另一端接地。
在一些实施方式中,所述基准电压生成电路包括:第十一电阻、第十二电阻、第十三电阻及第二稳压芯片,其中,所述第十一电阻的一端外接电平信号,另一端分别与所述第十二电阻的一端、第二稳压芯片的第一端及所述比较电路的第二输入端连接,所述第二稳压芯片的第二端分别与所述第十二电阻的另一端及所述第十三电阻的一端连接,所述第二稳压芯片的第三端与所述第十三电阻的另一端连接后接地。
在一些实施方式中,所述比较电路包括:比较器,其中,所述比较器的第一输入端与所述电流采样电路的输出端连接,第二输入端与所述基准电压生成电路的输出端连接,输出端与所述脉冲电流发生器的输入端连接。
在一些实施方式中,所述电流采样电路还包括:第十四电阻、第十五电阻、第十六电阻、第一电容及第二电容,其中,所述第十四电阻与所述第六电阻并联,所述第十五电阻与所述运算放大器的输出端连接后接地,所述第十六电阻的一端与所述运算放大器的输出端连接,另一端与所述第二电容连接后接地,所述第一电容与所述第十电阻并联。
在一些实施方式中,所述比较电路还包括:第十七电阻、第十八电阻、第三电容、第四电容及第五电容,其中,所述第十七电阻的一端与所述电流采样 电路的输出端连接,另一端与所述比较器的第一输入端连接,所述第十八电阻的一端与所述比较器的输出端连接,另一端与所述脉冲电流发生器的输入端连接,所述第三电容与所述比较器的第一输入端连接后接地,所述第四电容与所述比较器的第二输入端连接后接地,所述第五电容与所述比较器的输出端连接后接地。
在一些实施方式中,所述开关电源芯片的电压检测引脚与所述变压器的初级线圈连接,被设置为检测所述开关电源芯片的电压信号,并根据所述电压信号对所述开关电源芯片进行电压保护。
在一些实施方式中,所述电源控制电路还包括:续流二极管,所述续流二极管的一端与所述变压器的次级线圈的一端连接,另一端与所述负载的一端连接。
在一些实施方式中,所述电源控制电路还包括:第六电容和第七电容,其中,所述第六电容并联至所述供电电源的两端,所述第七电容与所述负载的一端连接后接地。
在一些实施方式中,所述第一稳压芯片为TL431第一稳压芯片。
在一些实施方式中,所述第一隔离开关与所述第二隔离开关为光电耦合器。
根据第二方面,本公开实施例还提供了一种电器设备,包括:供电电源、电器设备主体及本公开另一实施例中所述的电源控制电路,其中,所述供电电源通过所述电源控制电路向所述电器设备主体供电。
本公开技术方案,具有如下优点:
1.本公开实施例提供的电源控制电路,包括:变压器、开关电源芯片、电流检测模块及脉冲电流发生器,其中,变压器的初级线圈的一端外接供电电源, 另一端与开关电源芯片的第一输出引脚连接,变压器的次级线圈外接负载;开关电源芯片的控制引脚与次级线圈连接,电流检测模块的输入端与负载的一端连接,输出端与脉冲电流发生器的输入端连接,开关电源芯片的检测引脚与脉冲电流发生器的输出端与连接。从而通过对负载电流的检测,控制开关电源芯片的工作频率,即控制其内置开关的导通关断频率,进而控制变压器次级线圈的输出电压,在负载在待机状态下即轻载时开关电源芯片处于低频工作模式,实现了开关电源芯片的低功耗甚至接近零瓦待机,避免了能源的浪费,节能环保,并在重载时开关电源芯片处于高频工作模式,保障负载的正常工作不受影响。
2.本公开实施例提供的电器设备,包括:供电电源、电器设备主体及本公开另一实施例中所述的电源控制电路,其中,所述供电电源通过所述电源控制电路向所述电器设备主体供电。通过电源控制电路降低了电器设备在待机状态下的功耗,实现了低功耗甚至接近零瓦待机,避免了能源的浪费,使得该电器设备更加节能环保。
附图说明
为了更清楚地说明本公开具体实施方式或相关技术中的技术方案,下面将对具体实施方式或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的电源控制电路的结构示意图;
图2为本公开实施例的电流检测模块的结构示意图;
图3为本公开实施例的脉冲触发信号的波形示意图;
图4为本公开实施例的电器设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
下面所描述的本公开不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
图1示出了电源控制电路的结构示意图,如图1所示,该电源控制电路包括:变压器T、开关电源芯片U1、电流检测模块U2及脉冲电流发生器U3,其中,变压器T的初级线圈的一端外接供电电源AC,另一端与开关电源芯片U1的第一输出引脚D连接,变压器T的次级线圈外接负载RL;开关电源芯片U1的控制引脚FB与次级线圈连接,被设置为接收次级线圈输出的电压信号,并根据电压信号控制开关电源芯片U1内置开关的开通和关断;电流检测模块U2的输入端与负载RL的一端连接,输出端与脉冲电流发生器U3的输入端连接,被设置为检测负载RL的电流信号,并将电流信号发送至脉冲电流发生器U3生成脉冲触发信号;开关电源芯片U1的检测引脚CS与脉冲电流发生器U3的输出端与连接,被设置为接收脉冲触发信号,并根据脉冲触发信号控制开关电源芯片U1的工作频率。在实际应用中,上述的供电电源AC为交流电源,例如220V市电等,在实际应用中,市电等交流电源需要经过AC-DC转换电路将交流电转换为直流电后为负载RL进行供电,在本公开实施例中,如图1所示,该AC-DC转换电路采用桥式电路来实现,在实际应用中也可以采用其他相关技术中的AC-DC转换电路实现交流电转换为直流电的功能,本公开并不以此为限。上述的负载RL可以为例如蒸烤双能机、空调等家用电器产品。
具体地,在上述开关电源芯片U1的内部设置有开关,在本公开实施例中,该开关电源芯片U1内置的开关为MOS管,开关电源芯片U1通过控制内部的MOS管的关断和开通,从而实现对变压器T次级线圈输出电压的控制,根据电磁感应原理,MOS管开通时,上述变压器T初级线圈储能,MOS管关断时,变压器TT1初级线圈能量传输至次级线圈。如图1所示,上述开关电源芯片U1的第一输出引脚D是其内置MOS管的漏极引脚(MOS管有栅极引脚、漏极引脚、源极引脚)。MOS管是一个开关,其漏极引脚与初级线圈相连,电源芯片U1的S脚即MOS管的源极引脚与地相连,开关电源芯片U1的控制引脚FB即MOS管的栅极引脚与次级线圈连接,接收输出电压的反馈,并根据该输出电压的反馈通过FB脚控制MOS管的开断,当FB脚输入高电平时,MOS管导通,初级线圈充电,当FB脚输入低电平时,MOS管断开,初级线圈之前充电的能量反激到次级线圈,输出电压给负载RL。上述开关电源芯片U1的检测引脚CS为唤醒引脚,接收上述脉冲电流发生器U3输出的脉冲触发信号,CS脚在检测到脉冲触发信号后,说明此时负载RL重载,需要唤醒开关电源芯片U1进入高频工作模式即提高内置MOS管的开通和关断的频率,如果没有检测到脉冲触发信号,说明此时负载RL轻载,即负载RL处于待机状态,控制开关电源芯片U1进入低频工作模式即降低内置MOS管的开通和关断的频率,以降低功耗,减少能源的浪费。需要说明的是,开关电源芯片U1在高频工作模式和低频工作模式具体的工作频率即MOS管的开通关断频率可以根据实际负载RL的需求进行灵活的设置,本公开并不以此为限。在实际应用中,可以将该开关电源芯片U1设置为在预设时间周期内,没有检测到脉冲触发信号,即进入低频工作模式,即低功耗模式或睡眠模式;当检测到脉冲触发信号后,即进入高频工作模式,进入正常工作模式,因负载RL为电器产品,在电器产品为待机模式下时,负载RL较轻,所以开关电源芯片U1只需工作在低频模式,即可保证输出电压稳定,进入低频模式后,内置MOS开关的损耗大大减少,即能实现低功耗甚至接近零瓦待机功耗。
在实际应用中,如图1所示,上述的开关电源芯片U1的电压检测引脚HV与变压器T的初级线圈连接,被设置为检测开关电源芯片U1的电压信号,并根据电压信号对开关电源芯片U1进行电压保护。具体地,该开关电源芯片U1具有过压和欠压保护检测功能,当检测到开关电源芯片U1存在过压或欠压时,开关电源芯片U1会断续复位,直至电压正常,从而实现了对开关电源芯片U1的过压保护和欠压保护。
在实际应用中,如图1所示,上述的电源控制电路还包括:续流二极管D4,续流二极管D4的一端与变压器T的次级线圈的一端连接,另一端与负载RL的一端连接。具体地,该续流二极管D4被设置为给负载RL提供持续的电流,以免负载RL电流突变,起到平滑电流的作用。
在实际应用中,如图1所示,上述的电源控制电路还包括:第六电容C6和第七电容C7,其中,第六电容C6并联至供电电源AC的两端,第七电容C7与负载RL的一端连接后接地。具体地,上述的第六电容C6和第七电容C7均为滤波电容起到滤波的作用。
具体地,在一实施例中,如图1所示,上述的电源控制电路,还包括:稳压电路21,稳压电路21包括:第一电阻R1、第二电阻R2及第一稳压芯片U4,其中,第一电阻R1的一端与负载RL的一端连接,另一端分别与第二电阻R2的一端及第一稳压芯片U4的第一端连接,第二电阻R2的另一端与第一稳压芯片U4的第二端连接后接地,第一稳压芯片U4的第三端与开关电源芯片U1的控制引脚FB连接。在本公开实施例中,该第一稳压芯片U4采用TL431稳压芯片,该第一稳压芯片U4内部含有一个2.5V的基准电压,其中第一电阻R1和第二电阻R2为分压电阻,被设置为调节变压器T次级线圈的输出电压Vout,即可以通过如下公式计算:Vout=(1+R1/R2)*2.5V,从而通过该稳压电路可以实现调节和稳定输出电压的作用,使得向负载RL输出稳定的供电电压。需要说明的是,在本公开实施例中是以TL431稳压芯片为例进行的说明,在实际应用中,上述 的第一稳压芯片U4也可以选择相关技术中的其他型号的稳压芯片,只要能实现与TL431稳压芯片相同或相近的功能即可,本公开并不以此为限。
具体地,在一实施例中,如图1所示,上述的电源控制电路,还包括:隔离电路22,隔离电路22包括:第三电阻R3、第四电阻R4、第一隔离开关D1、第二隔离开关D2及整流二极管D3,其中,第一隔离开关D1的第一输入端通过第三电阻R3与负载RL的一端连接,第二输入端与第一稳压芯片U4的第三端连接,第一输出端通过整流二极管D3与变压器T的初级线圈连接后接地,第二输出端与开关电源芯片U1的控制引脚FB连接;第二隔离开关D2的第一输入端通过第四电阻R4与脉冲电流发生器U3的输出端连接,第二输入端接地,第一输出端与第一隔离开关D1的第一输出端连接,第二输出端与开关电源芯片U1的检测引脚CS连接。由于上述电源控制电路中变压器T初级线圈侧外接电源为强电信号,而变压器T次级线圈侧为弱电信号,强弱电之间会发生干扰,为了保障整个电源控制电源的安全,需要实现强弱电的隔离,在本公开实施例中,上述的第一隔离开关D1与第二隔离开关D2为光电耦合器,通过利用光电耦合器进行强弱电的隔离,实现了电源控制电路的安全隔离,并且具有实现方案简单、成本低、自动化效率高和可靠性好的特点。需要说明的是,在本公开实施例中是以光电耦合器为例进行的说明,在实际应用中,上述的第一隔离开关D1与第二隔离开关D2也可以选择相关技术中的其他具备强弱电隔离功能的开关器件例如断路器等器件,只要能实现与光电耦合器相同或相近的功能即可,本公开并不以此为限。
具体地,在一实施例中,如图2所示,上述的电流检测模块U2包括:电流采样电路11、基准电压生成电路12和比较电路13,其中,电流采样电路11的输入端与负载RL的一端连接,输出端与比较电路13的第一输入端连接;基准电压生成电路12的输入端外接电平信号,输出端与比较电路13的第二输入端连接;比较电路13的输出端与脉冲电流发生器U3的输入端连接。
具体地,如图2所示,上述的电流采样电路11包括:第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8、第九电阻R9、第十电阻R10及运算放大器U6,其中,负载RL的一端与第五电阻R5的一端连接,第五电阻R5的另一端分别与第六电阻R6的一端及第七电阻R7的一端连接,第六电阻R6的另一端接地,第七电阻R7的另一端分别与第八电阻R8的一端及运算放大器U6的正向输入端连接,第八电阻R8的另一端外接电平信号,运算放大器U6的负向输入端分别与第九电阻R9的一端及第十电阻R10的一端连接,运算放大器U6的输出端分别与第十电阻R10的另一端及比较电路13的第一输入端连接,第九电阻R9的另一端接地。在实际应用中,如图2所示,+VIN与如图1所示的Vout相连,经过第五电阻R5、第六电阻R6分压采样后得到电压VC,经过第七电阻R7后得到采样电流,采样电流经过运放发大后,得出与之对应的采样电压Vcurrent,输入比较电路13中。该采样电压Vcurrent可具体通过如下公式进行计算:
Vcurrent=VCC*(R7/(R7+R8))*((R9+R10)/R10)+
VC*(R8/(R7+R8))*((R9+R10)/R9)
在实际应用中,如图2所示,上述的电流采样电路11还包括:第十四电阻R14、第十五电阻R15、第十六电阻R16、第一电容C1及第二电容C2,其中,第十四电阻R14与第六电阻R6并联,第十五电阻R15与运算放大器U6的输出端连接后接地,第十六电阻R16的一端与运算放大器U6的输出端连接,另一端与第二电容C2连接后接地,第一电容C1与第十电阻R10并联。在本公开实施例中,上述的第十五电阻R15为拉地电阻,被设置为避免电压的“悬浮”,造成电路的不稳定,上述的第一电容C1被设置为滤除差分信号的干扰,起到滤波的作用,上述的第十六电阻R16与第电容构成滤波电路,被设置为滤除放大后电流信号中的干扰。
具体地,如图2所示,上述的基准电压生成电路12包括:第十一电阻R11、第十二电阻R12、第十三电阻R13及第二稳压芯片U5,其中,第十一电阻R11的一端外接电平信号,另一端分别与第十二电阻R12的一端、第二稳压芯片U5的第一端及比较电路13的第二输入端连接,第二稳压芯片U5的第二端分别与第十二电阻R12的另一端及第十三电阻R13的一端连接,第二稳压芯片U5的第三端与第十三电阻R13的另一端连接后接地。在本公开实施例中,通过该基准电压生成电路12可以产生稳定的参考电压VREF,在本公开实施例中,该第二稳压芯片U5采用TL431第一稳压芯片U4,该第二稳压芯片U5内部含有一个2.5V的基准电压,其中第十二电阻R12和第十三电阻R13为分压电阻,被设置为调节基准电压生成电路12的输出的参考电压VREF,从而通过该稳压电路可以实现调节和稳定输出参考电压VREF的作用。该参考电压VREF输入比较电路13作为参考电压VREF与电流采样电路11输出的采样电压进行比较,从而判断当前负载RL处于轻载还是重载。在实际应用中,为了精简电路结构,该基准电压生成电路12也可以省略,例如:可以通过直接向比较电路13输入一固定的电平信号作为参考电压VREF,本公开并不以此为限。
具体地,如图2所示,上述的比较电路13包括:比较器U7,其中,比较器U7的第一输入端与电流采样电路11的输出端连接,第二输入端与基准电压生成电路12的输出端连接,输出端与脉冲电流发生器U3的输入端连接。在实际应用中,该比较器U7通过对电流采样电路11输出的采样电压与基准电压生成电路12产生的参考电压VREF进行比较,进而判断当前负载RL处于轻载还是重载,例如:当采样电压大于参考电压VREF时,输出高电平信号,即Vout1=VCC,而当采样电压小于参考电压VREF时,输出低电平信号,即Vout1=0V。具体地,当Vout1为高电平时,即当负载RL中的电流大于设定值I时,该高电平输入至上述的脉冲电流发生器U3,使得该脉冲电流发生器U3发出如图3所示的脉冲触发信号。(该脉冲电流发生器U3可以是主控IC,Vout1接入IC的其中一个 I/O端口,在该I/O端口检测到输入高电平时,发出如图3所示的方波脉冲信号)
在实际应用中,如图2所示,上述的比较电路13还包括:第十七电阻R17、第十八电阻R18、第三电容C3、第四电容C4及第五电容C5,其中,第十七电阻R17的一端与电流采样电路11的输出端连接,另一端与比较器U7的第一输入端连接,第十八电阻R18的一端与比较器U7的输出端连接,另一端与脉冲电流发生器U3的输入端连接,第三电容C3与比较器U7的第一输入端连接后接地,第四电容C4与比较器U7的第二输入端连接后接地,第五电容C5与比较器U7的输出端连接后接地。在本公开实施例中,上述的第三电容C3、第四电容C4起到滤波的作用,上述的第十七电阻R17为限流电阻,起到限流的作用,上述的第十八电阻R18与第五电容C5构成滤波电路,被设置为滤除比较电路13输出电压信号的干扰。
下面将结合具体应用示例,对本公开实施例提供的电源控制电路的工作原理及工作过程进行详细的说明。
如图1所示的电源控制电路,假设该电源控制电路中的负载RL为蒸烤双能机,在该蒸烤双能机正常工作时,通过上述的第一稳压芯片U4检测变压器T输出电压的高低,第一稳压芯片U4内部含有一个2.5V的基准电压VREF,变压器T输出电压通过电阻R1和R2分压。当输出电压偏高时,其分压大于2.5V,,第一稳压芯片U4开通,第一隔离开关D1开通,同时开关电源芯片U1内部的MOS管开通,变压器T的初级线圈充电。当输出电压偏低时,其分压小于2.5V,TL431芯片断开,第一隔离开关D1断开,同时开关电源芯片U1内部的MOS管断开,初级线圈储存能量反激回次级线圈,以提高输出电压。于此同时,电流检测模块U2检测到的采样电流值比较大,进而输出高电平信号至脉冲电流发生器U3,脉冲电流发生器U3在接收到高电平信号后,产生如图4所示的脉冲触发信号,并将该脉冲触发信号输出至开关电源芯片U1的检测引脚CS,当开关 电源芯片U1检测到有脉冲触发信号时,唤醒开关电源芯片U1进入高频工作模式即提高内置MOS管的开通和关断的频率,通过上述的变压器T向蒸烤双能机输出正常工作的工作电压,进而保障蒸烤双能机的正常工作。
而当该蒸烤双能机处于在待机状态,电流检测模块U2检测到的电流值比较小,进而输出低电平信号至脉冲电流发生器U3,脉冲电流发生器U3在接收到低电平信号后,不会产生脉冲触发信号,进而使得开关电源芯片U1的检测引脚CS的输入为0V,此时,当上述开关电源芯片U1在预设时间周期内没有检测到有脉冲触发信号时,则控制开关电源芯片U1进入低频工作模式即低功耗模式或睡眠模式,降低内置MOS管的开通和关断的频率,以降低功耗,减少能源的浪费。在实际应用中,该预设时间周期的长短可以根据实际需要进行设置,本公开并不以此为限。由于蒸烤双能机这种电器产品为待机模式下时,负载RL较轻,所以开关电源芯片U1只需工作在低频模式,即可保证输出电压稳定,进入低频模式后,内置MOS开关的损耗大大减少,即能实现低功耗甚至接近零瓦待机功耗。
通过上述各个组成部分的协同合作,本公开实施例提供的电源控制电路,通过对负载电流的检测,控制开关电源芯片的工作频率,即控制其内置开关的导通关断频率,进而控制变压器次级线圈的输出电压,在负载RL在待机状态下即轻载时开关电源芯片处于低频工作模式,实现了开关电源芯片的低功耗甚至接近零瓦待机,避免了能源的浪费,节能环保,并在重载时开关电源芯片处于高频工作模式,保障负载的正常工作不受影响。同时利用TL431芯片调节和稳定输出电压,并利用光电耦合器隔离强弱电,实现为实现安全隔离,本公开实施例提供的电路方案具有结构简单、成本低、自动化效率高、可靠性好的优点。
本公开实施例还提供了一种电器设备,如图4所示,该电器设备包括:供电电源AC、电器设备主体1及本公开另一实施例中的电源控制电路2,其中,供电电源AC通过电源控制电路2向电器设备主体1供电。关于电源控制电路2 的详细描述参见上述实施例中电源控制电路的相关内容,在此不再进行赘述。在实际应用中,该电器设备1可以是例如蒸烤双能机、空调等设置有开关电源芯片的家用电器,本公开并不以此为限。
通过上述各个组成部分的协同合作,本公开实施例提供的电器设备,包括:供电电源、电器设备主体及本公开另一实施例中的电源控制电路,其中,供电电源通过电源控制电路向电器设备主体供电。通过电源控制电路降低了电器设备在待机状态下的功耗,实现了低功耗甚至接近零瓦待机,避免了能源的浪费,使得该电器设备更加节能环保。
虽然结合附图描述了本公开的实施例,但是本领域技术人员可以在不脱离本公开的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (15)

  1. 一种电源控制电路,包括:变压器、开关电源芯片、电流检测模块及脉冲电流发生器,其中,
    所述变压器的初级线圈的一端外接供电电源,另一端与所述开关电源芯片的第一输出引脚连接,所述变压器的次级线圈外接负载;
    所述开关电源芯片的控制引脚与所述次级线圈连接,被设置为接收所述次级线圈输出的电压信号,并根据所述电压信号控制所述开关电源芯片内置开关的开通和关断;
    所述电流检测模块的输入端与所述负载的一端连接,输出端与所述脉冲电流发生器的输入端连接,被设置为检测所述负载的电流信号,并将所述电流信号发送至所述脉冲电流发生器生成脉冲触发信号;
    所述开关电源芯片的检测引脚与所述脉冲电流发生器的输出端与连接,被设置为接收所述脉冲触发信号,并根据所述脉冲触发信号控制所述开关电源芯片的工作频率。
  2. 根据权利要求1所述的电源控制电路,还包括:稳压电路,所述稳压电路包括:第一电阻、第二电阻及第一稳压芯片,其中,
    所述第一电阻的一端与所述负载的一端连接,另一端分别与所述第二电阻的一端及所述第一稳压芯片的第一端连接,所述第二电阻的另一端与所述第一稳压芯片的第二端连接后接地,所述第一稳压芯片的第三端与所述开关电源芯片的控制引脚连接。
  3. 根据权利要求2所述的电源控制电路,还包括:隔离电路,所述隔离电路包括:第三电阻、第四电阻、第一隔离开关、第二隔离开关及整流二极管, 其中,
    所述第一隔离开关的第一输入端通过所述第三电阻与所述负载的一端连接,第二输入端与所述第一稳压芯片的第三端连接,第一输出端通过所述整流二极管与所述变压器的初级线圈连接后接地,第二输出端与所述开关电源芯片的控制引脚连接;
    所述第二隔离开关的第一输入端通过所述第四电阻与所述脉冲电流发生器的输出端连接,第二输入端接地,第一输出端与所述第一隔离开关的第一输出端连接,第二输出端与所述开关电源芯片的检测引脚连接。
  4. 根据权利要求1所述的电源控制电路,所述电流检测模块包括:电流采样电路、基准电压生成电路和比较电路,其中,
    所述电流采样电路的输入端与所述负载的一端连接,输出端与所述比较电路的第一输入端连接;
    所述基准电压生成电路的输入端外接电平信号,输出端与所述比较电路的第二输入端连接;
    所述比较电路的输出端与所述脉冲电流发生器的输入端连接。
  5. 根据权利要求4所述的电源控制电路,所述电流采样电路包括:第五电阻、第六电阻、第七电阻、第八电阻、第九电阻、第十电阻及运算放大器,其中,
    所述负载的一端与所述第五电阻的一端连接,所述第五电阻的另一端分别与所述第六电阻的一端及所述第七电阻的一端连接,所述第六电阻的另一端接地,所述第七电阻的另一端分别与所述第八电阻的一端及所述运算放大器的正向输入端连接,所述第八电阻的另一端外接电平信号,所述运算放大器的负向输入端分别与所述第九电阻的一端及所述第十电阻的一端连接,所述运算放大 器的输出端分别与所述第十电阻的另一端及所述比较电路的第一输入端连接,所述第九电阻的另一端接地。
  6. 根据权利要求4所述的电源控制电路,所述基准电压生成电路包括:第十一电阻、第十二电阻、第十三电阻及第二稳压芯片,其中,
    所述第十一电阻的一端外接电平信号,另一端分别与所述第十二电阻的一端、第二稳压芯片的第一端及所述比较电路的第二输入端连接,所述第二稳压芯片的第二端分别与所述第十二电阻的另一端及所述第十三电阻的一端连接,所述第二稳压芯片的第三端与所述第十三电阻的另一端连接后接地。
  7. 根据权利要求4所述的电源控制电路,所述比较电路包括:比较器,其中,所述比较器的第一输入端与所述电流采样电路的输出端连接,第二输入端与所述基准电压生成电路的输出端连接,输出端与所述脉冲电流发生器的输入端连接。
  8. 根据权利要求5所述的电源控制电路,所述电流采样电路还包括:第十四电阻、第十五电阻、第十六电阻、第一电容及第二电容,其中,所述第十四电阻与所述第六电阻并联,所述第十五电阻与所述运算放大器的输出端连接后接地,所述第十六电阻的一端与所述运算放大器的输出端连接,另一端与所述第二电容连接后接地,所述第一电容与所述第十电阻并联。
  9. 根据权利要求7所述的电源控制电路,所述比较电路还包括:第十七电阻、第十八电阻、第三电容、第四电容及第五电容,其中,
    所述第十七电阻的一端与所述电流采样电路的输出端连接,另一端与所述比较器的第一输入端连接,所述第十八电阻的一端与所述比较器的输出端连接,另一端与所述脉冲电流发生器的输入端连接,所述第三电容与所述比较器的第一输入端连接后接地,所述第四电容与所述比较器的第二输入端连接后接地, 所述第五电容与所述比较器的输出端连接后接地。
  10. 根据权利要求1所述的电源控制电路,其中,所述开关电源芯片的电压检测引脚与所述变压器的初级线圈连接,被设置为检测所述开关电源芯片的电压信号,并根据所述电压信号对所述开关电源芯片进行电压保护。
  11. 根据权利要求1所述的电源控制电路,其中,还包括:续流二极管,所述续流二极管的一端与所述变压器的次级线圈的一端连接,另一端与所述负载的一端连接。
  12. 根据权利要求1所述的电源控制电路,其中,还包括:第六电容和第七电容,其中,
    所述第六电容并联至所述供电电源的两端,所述第七电容与所述负载的一端连接后接地。
  13. 根据权利要求2所述的电源控制电路,其中,所述第一稳压芯片为TL431第一稳压芯片。
  14. 根据权利要求3所述的电源控制电路,其中,所述第一隔离开关与所述第二隔离开关为光电耦合器。
  15. 一种电器设备,包括:供电电源、电器设备主体及如权利要求1-14任一项所述的电源控制电路,其中,所述供电电源通过所述电源控制电路向所述电器设备主体供电。
PCT/CN2020/114303 2019-10-11 2020-09-10 一种电源控制电路及电器设备 WO2021068703A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910966131.8 2019-10-11
CN201910966131.8A CN110572044A (zh) 2019-10-11 2019-10-11 一种电源控制电路及电器设备

Publications (1)

Publication Number Publication Date
WO2021068703A1 true WO2021068703A1 (zh) 2021-04-15

Family

ID=68784514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114303 WO2021068703A1 (zh) 2019-10-11 2020-09-10 一种电源控制电路及电器设备

Country Status (2)

Country Link
CN (1) CN110572044A (zh)
WO (1) WO2021068703A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110572044A (zh) * 2019-10-11 2019-12-13 珠海格力电器股份有限公司 一种电源控制电路及电器设备
CN113037508B (zh) * 2019-12-24 2022-10-25 华为技术有限公司 一种下电控制电路以及下电控制方法
CN113992027B (zh) * 2021-10-26 2023-09-08 珠海格力电器股份有限公司 隔离开关电源控制电路、方法、装置及隔离开关电源

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110051467A1 (en) * 2009-08-26 2011-03-03 Sanken Electric Co., Ltd. Resonant switching power supply device
CN102195484A (zh) * 2010-03-18 2011-09-21 联想(北京)有限公司 一种开关电源的频率的调整方法和开关电源的控制装置
CN202713134U (zh) * 2012-02-10 2013-01-30 李中华 一种输出稳定的供电装置
CN103326587A (zh) * 2013-07-17 2013-09-25 潘海铭 Llc谐振变换器轻负载控制方法及装置
CN106253719A (zh) * 2016-08-06 2016-12-21 刘超 一种负载电源控制电路及装置
CN209389938U (zh) * 2018-12-18 2019-09-13 深圳市东嘉远电子有限公司 低损耗开关电源适配器
CN110572044A (zh) * 2019-10-11 2019-12-13 珠海格力电器股份有限公司 一种电源控制电路及电器设备
CN210444178U (zh) * 2019-10-11 2020-05-01 珠海格力电器股份有限公司 一种电源控制电路及电器设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110051467A1 (en) * 2009-08-26 2011-03-03 Sanken Electric Co., Ltd. Resonant switching power supply device
CN102195484A (zh) * 2010-03-18 2011-09-21 联想(北京)有限公司 一种开关电源的频率的调整方法和开关电源的控制装置
CN202713134U (zh) * 2012-02-10 2013-01-30 李中华 一种输出稳定的供电装置
CN103326587A (zh) * 2013-07-17 2013-09-25 潘海铭 Llc谐振变换器轻负载控制方法及装置
CN106253719A (zh) * 2016-08-06 2016-12-21 刘超 一种负载电源控制电路及装置
CN209389938U (zh) * 2018-12-18 2019-09-13 深圳市东嘉远电子有限公司 低损耗开关电源适配器
CN110572044A (zh) * 2019-10-11 2019-12-13 珠海格力电器股份有限公司 一种电源控制电路及电器设备
CN210444178U (zh) * 2019-10-11 2020-05-01 珠海格力电器股份有限公司 一种电源控制电路及电器设备

Also Published As

Publication number Publication date
CN110572044A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2021068703A1 (zh) 一种电源控制电路及电器设备
US20190379276A1 (en) Start-up circuit to discharge emi filter for power saving of power supplies
US8643222B2 (en) Power adapter employing a power reducer
JP2000116027A (ja) 電源装置
US5995388A (en) Switched-mode power supply with low power loss standby operation
WO2007087756A1 (fr) Alimentation électrique commutée par condensateur possédant une fonction d'attente économe en consommation de courant
CN107317491B (zh) 开关电源芯片及包括其的开关电源电路
CN104467437A (zh) 低待机功耗开关电源
CN201887660U (zh) 低功耗开关电源电路及具有所述电路的空调器
CN210444178U (zh) 一种电源控制电路及电器设备
CN101944857B (zh) 采用功率降低器的功率适配器
CN206099800U (zh) 基于arm控制的高功率因数ac‑dc恒流源电源系统
CN104578796A (zh) 电源装置
CN102299629A (zh) 一种直流高压电源供电控制方法及供电装置
CN209267438U (zh) 一种带启动控制的隔离直流开关电源
CN110581650A (zh) 一种电源控制电路及电器设备
TWI746117B (zh) 可節能之電源供應器和相關電子系統
CN209419478U (zh) 低待机功耗电路及电源开关系统
CN202488366U (zh) 用于带电子电路的插头插座的节能超小型开关电源
CN102684453A (zh) 对电源供应器的电磁干扰滤波器放电的启动电路
CN107707230B (zh) 智控联控电源开关
CN211018655U (zh) 一种电源控制电路及电器设备
CN217693075U (zh) 一种led灯带的高能效开关电源
CN215817935U (zh) 电发热件电源驱动电路及封口机电路
CN208890656U (zh) 一种高频开关电源电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20875543

Country of ref document: EP

Kind code of ref document: A1