WO2021068482A1 - 一种可高温灭菌的探针式生物量在线检测装置 - Google Patents

一种可高温灭菌的探针式生物量在线检测装置 Download PDF

Info

Publication number
WO2021068482A1
WO2021068482A1 PCT/CN2020/086707 CN2020086707W WO2021068482A1 WO 2021068482 A1 WO2021068482 A1 WO 2021068482A1 CN 2020086707 W CN2020086707 W CN 2020086707W WO 2021068482 A1 WO2021068482 A1 WO 2021068482A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
light
optical fiber
detection device
filter cover
Prior art date
Application number
PCT/CN2020/086707
Other languages
English (en)
French (fr)
Inventor
王�忠
万玉明
杜晓英
艾澈熙
崔金明
Original Assignee
广州中国科学院先进技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州中国科学院先进技术研究所 filed Critical 广州中国科学院先进技术研究所
Priority to EP20851403.4A priority Critical patent/EP3828282B1/en
Priority to US17/272,662 priority patent/US20220120694A1/en
Publication of WO2021068482A1 publication Critical patent/WO2021068482A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • G01N2021/054Bubble trap; Debubbling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • G01N2021/8514Probe photometers, i.e. with optical measuring part dipped into fluid sample with immersed mirror
    • G01N2021/8521Probe photometers, i.e. with optical measuring part dipped into fluid sample with immersed mirror with a combination mirror cell-cuvette
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke

Definitions

  • the invention relates to the technical field of biological experiment equipment, in particular to a probe-type biomass online detection device capable of high temperature sterilization.
  • OD optical density
  • biomass online detection devices on the market that do not require manual sampling and detection, which frees scientific researchers from frequent manual operations, and also greatly reduces the risk of manual infection of bacteria.
  • the biomass online detection devices on the market can be divided into contact type and non-contact type according to whether they are directly in contact with the cell fluid.
  • the non-contact biomass on-line detection device does not directly contact the measured cell fluid, so there is no need to consider sterilization; however, when cell culture is carried out, the fermentation tank where the cells are cultured often contains a lot of bubbles, which will cause great interference to the measured value. How to avoid the influence of bubbles is the first problem that everyone needs to solve.
  • the contact type biomass on-line detection device is directly in contact with the cell liquid to be tested, so it needs to be sterilized at high temperature with the fermentor before use. Since the probe often contains a light source, a light receiving sensor or other electronic components, how Ensuring that they can withstand the high temperature in the high-temperature sterilization pot is a problem that needs to be addressed; on the other hand, a large number of bubbles in the fermentation tank will also cause great interference to the measured value. How to avoid the influence of bubbles is also the first thing you need to solve The problem.
  • a certain amount of microorganisms are often inoculated into a liquid medium and then stored in a specific environment for cultivation.
  • OD optical density
  • optical density (OD) measurement method in laboratories is to manually take out a part of the sample by scientific researchers and use an optical density (OD) detector for offline detection.
  • CN105044038A discloses a non-invasive biomass online detection device for shake flask culture, which comprises a main control unit, a shake flask capable of containing biological suspension, and a fixed sleeve covering the outside of the shake flask.
  • the device can realize online detection of the concentration of the biological suspension in the shake flask.
  • CN101042327A discloses an optical fiber sensor system for online measurement of biomass concentration.
  • the system is composed of an optical fiber sensor, a photoelectric conversion device, and a data processing display unit.
  • the system can realize the measurement of the biomass concentration of different biological bacteria liquids.
  • CN105044038A discloses a non-invasive biomass on-line detection device for shake flask culture. Because it does not directly contact the measured cell fluid, it does not need to be sterilized. However, due to design limitations, the device is only suitable for shake flask measurement. And it is necessary to shading the shake flask.
  • CN101042327A discloses an optical fiber sensor system for online measurement of biomass concentration, which can realize the measurement of biomass concentration of different biological bacterial liquids.
  • the system does not specify whether it can be sterilized by high temperature, and the system uses the optical transmission measurement principle.
  • the range is about OD600 value 0-4), and from the structure of the system, it can be seen that the system is difficult to avoid the influence of bubbles in the cell sap.
  • the present invention proposes a high-temperature sterilizable probe-type biomass online detection device.
  • the optical fiber probe can achieve high-temperature sterilization, and at the same time, it can eliminate the measurement of air bubbles in the fermentation tank Disturbance of the result.
  • the present invention solves the above-mentioned problems through the following technical means:
  • a high-temperature sterilizable probe-type biomass online detection device including an optical fiber probe, a light source & light receiving sensor module, and a signal processing module;
  • the light source & light receiving sensor module includes a light source and a light receiving sensor
  • the measurement light is emitted from the light source and reaches the measurement area through the optical fiber probe.
  • the cells in the measurement area reflect the light.
  • the reflected light returns to the optical fiber probe and reaches the light receiving sensor through the optical fiber probe.
  • the light intensity signal received by the light receiving sensor directly reflects Cell concentration, the signal processing module calculates the cell concentration according to the light intensity signal received by the light receiving sensor.
  • the light source & light receiving sensor module is detachably connected to the optical fiber probe.
  • the optical fiber probe includes a light guide part, a probe base and a bubble filter cover; the light guide part is arranged on the probe base, and the bubble filter cover surrounds the light guide part and is connected to the probe base.
  • the light guide component is a high temperature resistant optical fiber.
  • the bubble filter cover includes a fluid inlet, a fluid outlet, and a measuring cavity; the fluid inlet is arranged on the bottom surface of the bubble filter cover, and the fluid outlet is arranged on the side of the bubble filter cover.
  • the bubble filter cover is cylindrical, and it must be ensured that the fluid outlet on the cylindrical arc surface of the bubble filter cover is not tangent to the flow velocity direction of the cell liquid during installation.
  • the bubble filter cover is cylindrical, and the fluid outlet on the cylindrical arc surface of the bubble filter cover must be perpendicular to the direction of the cell fluid flow rate during installation.
  • the bubble filter cover is cylindrical, and a plurality of fluid outlets are arranged in the circumferential direction of the cylindrical arc surface of the bubble filter cover, so as to ensure that no matter which direction it is installed in, at least one fluid outlet is not tangent to the direction of the cell fluid flow rate.
  • the end surface of the light guide component is installed or made into an inclined surface or an upward facing surface.
  • the end surface of the light guide member is coated with a material that is not easy to adhere to air bubbles.
  • the beneficial effects of the present invention include at least:
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of a probe-type biomass online detection device capable of high temperature sterilization according to the present invention
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of a probe-type biomass online detection device capable of high temperature sterilization according to the present invention
  • FIG. 3 is a schematic diagram of the structure of the optical fiber probe in Embodiment 3 of the present invention.
  • Figure 4 is a schematic view of the structure of the bubble filter in embodiment 4 of the present invention, in which Figure 4 (a) is an axonometric view, and Figure 4 (b) is a cross-sectional view;
  • Figure 5 is a schematic diagram of the installation orientation of the optical fiber probe in the fermentation tank in Embodiment 5 of the present invention
  • Figure 5 (a) is a front view
  • Figure 5 (b) is a top view
  • FIG. 6 is a schematic structural diagram of the end face of the optical fiber probe installed at an angle ⁇ on the horizontal plane in Embodiment 7 of the present invention.
  • Optical fiber probe 1. Optical fiber probe; 2. Light source & light receiving sensor module; 3. Signal processing module; 101, high temperature resistant optical fiber; 102, probe base; 103, bubble filter cover; 201, light source; 202, light receiving sensor; 1031, fluid Inlet; 1032, fluid outlet; 1033, measuring cavity; 00, fermentation tank.
  • the present invention provides a high-temperature sterilizable probe-type biomass online detection device, which mainly includes an optical fiber probe 1, a light source & light receiving sensor module 2, and a signal processing module 3;
  • the light source & light receiving sensor module 2 includes a light source 201 and a light receiving sensor 202;
  • the device adopts the principle of reflected light measurement: the measurement light is emitted from the light source 201 and reaches the measurement area through the optical fiber probe 1.
  • the cells in the measurement area reflect the light, and the reflected light returns to the optical fiber probe 1, and then reaches the light receiving sensor 202 through the optical fiber probe 1.
  • the light intensity signal received by the light receiving sensor 202 can directly reflect the cell concentration, and the signal processing module 3 calculates the cell concentration according to the light intensity signal received by the light receiving sensor 202.
  • this embodiment is based on embodiment 1, in order to achieve high temperature sterilization requirements, the light source & light receiving sensor module 2 and the optical fiber probe 1 adopt a detachable design, and the optical fiber probe 1 uses a detachable design when performing high temperature sterilization. &The light receiving sensor module 2 is removed, and then reinstalled for measurement after the sterilization is completed.
  • a bubble filtering structure is designed in the measurement area of the probe to reduce the flow velocity and volume of bubbles in the measurement area.
  • the optical fiber The probe 1 includes a high temperature resistant optical fiber 101, a probe base 102 and a bubble filter cover 103; the high temperature resistant optical fiber 101 is arranged on the probe base 102, and the bubble filter cover 103 surrounds the high temperature resistant optical fiber 101 and is connected to the probe base 102.
  • the bubble filter cover 103 includes a fluid inlet 1031, a fluid outlet 1032, and a measuring cavity 1033; the fluid inlet 1031
  • the fluid outlet 1032 is arranged on the bottom surface of the bubble filter cover 103, and the fluid outlet 1032 is arranged on the side surface of the bubble filter cover 103.
  • this embodiment is on the basis of embodiment 4. It is necessary to ensure that the fluid outlet 1032 on the cylindrical arc surface of the bubble filter 103 is not tangent to the direction of the cell fluid flow rate during installation. It is best to be in the vertical direction as shown in Figure 5). Its working principle is: when the cell fluid flows through the arc surface of the cylinder, its velocity is greater than the velocity when it flows through the bottom plane of the cylinder.
  • a plurality of fluid outlets 1032 are arranged in the circumferential direction of the cylindrical arc surface of the bubble filter cover 103, so as to ensure that no matter which direction is installed, at least one fluid outlet is not tangent to the direction of the cell fluid flow rate. In this way, the direction of the fluid outlet 1032 is not strictly restricted.
  • the bubbles in the measurement cavity 1033 tend to gather on the end face of the optical fiber, thereby affecting the measurement signal.
  • the end face of the optical fiber can be installed or made. Beveled or facing upwards, the end surface can also be coated with materials that are not easy to adhere to air bubbles.
  • the high-temperature sterilizable probe-type biomass online detection device of the present invention adopts a modular design arrangement of electronic components such as light source and light receiving sensor, and adopts a detachable design scheme for the part that needs to contact the cell sap with the probe ,
  • a bubble filtering structure is designed to reduce the bubble flow rate and bubble volume in the measurement area of the device, and combined with the software algorithm to measure the signal Carry out filtration optimization, and finally eliminate the interference of air bubbles.
  • the beneficial effects of the present invention include at least:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种可高温灭菌的探针式生物量在线检测装置,包括光纤探头(1)、光源&光接收传感器模块(2)和信号处理模块(3);测量光从光源(201)发出,经光纤探头(1)到达测量区域,测量区域的细胞对光发生反射作用,反射光再回到光纤探头(1),经光纤探头(1)到达光接收传感器(202),光接收传感器(202)接收到的光强度信号直接反映细胞浓度,信号处理模块(3)根据光接收传感器(202)接收到的光强度信号计算出细胞浓度,该装置需要接触细胞液的部分采用可拆卸式设计方案,实现探头(1)的高温灭菌要求;同时针对在发酵罐内气泡对测量数值的影响,提供了一种气泡滤除结构,以降低装置测量区域的气泡流速和气泡量,并结合软件算法对测量信号进行过滤优化,最终消除气泡的干扰。

Description

一种可高温灭菌的探针式生物量在线检测装置 技术领域
本发明涉及生物实验设备技术领域,具体涉及一种可高温灭菌的探针式生物量在线检测装置。
背景技术
在微生物培养过程中,通常需要通过光密度(OD)测量等方法来监测微生物的生长状态,目前实验室最普遍的光密度(OD)测量方法是手动取出一部分样品,用光密度(OD)检测仪进行离线检测。频繁手动取样操作繁琐,而且取样过程极大增加了感染杂菌的风险。
市场上也有一些无需人工取样检测的生物量在线检测装置,让科研人员从频繁的人工操作中解放出来,同时也大大降低了人工操作感染杂菌的风险。目前市场上的生物量在线检测装置按照是否直接与细胞液接触可分为接触式和非接触式两种。
非接触式生物量在线检测装置不直接与被测细胞液接触,因而无需考虑灭菌问题;但是进行细胞培养时,培养细胞的发酵罐内往往含有大量气泡,气泡会对测量数值造成很大干扰,如何避免气泡的影响就是大家首先需要解决的问题。
接触式生物量在线检测装置由于探针直接与被测细胞液接触,因而在使用前需要与发酵罐一起进行高温灭菌,由于探针内往往包含光源、光接收传感器或其它电子元器件,如何保证它们能够耐受高温灭菌锅内的高温就是一个需要着重解决的问题;另一方面,发酵罐内的大量气泡也会对测量数值造成很大干扰,如何避免气泡的影响也是大家首先需要解决的问题。
针对测量时发酵罐内气泡的干扰问题,目前有些生物量在线检测装置一方 面通过软件算法对测量信号进行一定过滤优化,另一方面建议用户在测量时采取减少通气量、降低发酵罐搅拌速度等方式来减少气泡量,但是改变通气量和搅拌速度往往会对整个发酵过程产生较大影响,从而使用场景受到较大限制。
在生物工程或发酵工程中,经常会在液体培养基内接种一定量的微生物,然后将其保存在某个特定的环境中培养。为了监测培养基中微生物的生长状态,通常需要通过光密度(OD)测量等方法来进行离线检测。
目前实验室最普遍的光密度(OD)测量方法,是由科研人员手动取出一部分样品,用光密度(OD)检测仪进行离线检测。
CN105044038A公开了一种用于摇瓶培养的非侵入式生物量在线检测装置,该装置包括主控单元、可容纳生物悬浊液的摇瓶和罩在摇瓶外侧的固定套。该装置能够实现对摇瓶内生物悬浊液的浓度进行在线检测。
CN101042327A公开了一种在线测量生物量浓度的光纤传感器系统,该系统由光纤传感器、光电转换装置、数据处理显示单元构成。该系统能够实现对不同生物菌液的生物量浓度测量。
目前实验室最普遍的离线光密度(OD)测量方法,需要科研人员手动多次取样,操作繁琐并且容易感染杂菌。
CN105044038A公开的一种用于摇瓶培养的非侵入式生物量在线检测装置,它由于不与被测细胞液直接接触,因而无需灭菌,但是受设计限制,该装置只适用于摇瓶测量,而且还需要对摇瓶进行遮光处理。
CN101042327A公开了一种在线测量生物量浓度的光纤传感器系统,该系统能够实现对不同生物菌液的生物量浓度测量。该系统并未说明是否能高温灭菌,而且该系统采用的是光学透射式测量原理,细胞液浓度越高,光接收传感器接收到的光信号越弱,直接导致其测量范围较低(一般测量范围为OD600值0-4左右),而且从该系统的结构可以看出,该系统很难避免细胞液内气泡的影响。
发明内容
有鉴于此,为了解决现有技术中的上述问题,本发明提出一种可高温灭菌的探针式生物量在线检测装置,光纤探头能实现高温灭菌,同时能消除发酵罐内气泡对测量结果的干扰。
本发明通过以下技术手段解决上述问题:
一种可高温灭菌的探针式生物量在线检测装置,包括光纤探头、光源&光接收传感器模块和信号处理模块;
所述光源&光接收传感器模块包括光源和光接收传感器;
测量光从光源发出,经光纤探头到达测量区域,测量区域的细胞对光发生反射作用,反射光再回到光纤探头,经光纤探头到达光接收传感器,光接收传感器接收到的光强度信号直接反映细胞浓度,信号处理模块根据光接收传感器接收到的光强度信号计算出细胞浓度。
进一步地,所述光源&光接收传感器模块与光纤探头可拆卸连接。
进一步地,所述光纤探头包括导光部件、探头座和气泡滤罩;导光部件设置于探头座上,气泡滤罩包围住导光部件并与探头座连接。
进一步地,所述导光部件为耐高温光纤。
进一步地,所述气泡滤罩包括流体入口、流体出口和测量腔体;所述流体入口设置于气泡滤罩底面,所述流体出口设置于气泡滤罩侧面。
进一步地,所述气泡滤罩为圆柱型,安装时要保证气泡滤罩圆柱弧面上的流体出口与细胞液流速方向不相切。
进一步地,所述气泡滤罩为圆柱型,安装时要保证气泡滤罩圆柱弧面上的流体出口与细胞液流速方向垂直。
进一步地,所述气泡滤罩为圆柱型,气泡滤罩圆柱弧面的圆周方向设置多个流体出口,从而保证无论朝哪个方向安装,至少有一个流体出口不与细胞液流速方向相切。
进一步地,所述导光部件的端面安装或做成斜面或者朝上的面。
进一步地,所述导光部件的端面涂覆不易粘附气泡的材料。
与现有技术相比,本发明的有益效果至少包括:
1)、实现对培养液内的生物量在线检测,避免了人工取样的繁琐操作以及取样过程中感染杂菌的风险;
2)、可以放入高温灭菌锅内进行高温灭菌,保证被测细胞液不被杂菌污染;
3)、可以消除发酵罐内气泡对测量结果的干扰,保证测量结果的准确性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明可高温灭菌的探针式生物量在线检测装置实施例1的结构示意图;
图2是本发明可高温灭菌的探针式生物量在线检测装置实施例2的结构示意图;
图3是本发明实施例3中光纤探头的结构示意图;
图4是本发明实施例4中气泡滤罩的结构示意图,其中图4(a)为轴测图,图4(b)剖视图;
图5是本发明实施例5中光纤探头在发酵罐内的安装朝向示意图;其中图5(a)为主视图,图5(b)俯视图;
图6是本发明实施例7中光纤探头端面于水平面呈α角安装的结构示意图;
附图标记说明:
1、光纤探头;2、光源&光接收传感器模块;3、信号处理模块;101、耐高 温光纤;102、探头座;103、气泡滤罩;201、光源;202、光接收传感器;1031、流体入口;1032、流体出口;1033、测量腔体;00、发酵罐。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面将结合附图和具体的实施例对本发明的技术方案进行详细说明。需要指出的是,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1所示,本发明提供一种可高温灭菌的探针式生物量在线检测装置,主要包括光纤探头1、光源&光接收传感器模块2和信号处理模块3;
所述光源&光接收传感器模块2包括光源201和光接收传感器202;
装置采用反射光测量原理:测量光从光源201发出,经光纤探头1到达测量区域,测量区域的细胞对光发生反射作用,反射光再回到光纤探头1,经光纤探头1到达光接收传感器202,光接收传感器202接收到的光强度信号可以直接反映细胞浓度,信号处理模块3根据光接收传感器202接收到的光强度信号计算出细胞浓度。
实施例2
如图2所示,本实施例在实施例1的基础上,为了实现高温灭菌要求,光源&光接收传感器模块2与光纤探头1采用可拆卸设计,光纤探头1进行高温灭菌时将光源&光接收传感器模块2拆下,灭菌完成后再重新装上进行测量。
实施例3
如图3所示,本实施例在实施例1的基础上,为了避免气泡的干扰,在探头测量区域设计了一种气泡滤除结构,降低测量区域内的气泡流速和气泡量,所 述光纤探头1包括耐高温光纤101、探头座102和气泡滤罩103;耐高温光纤101设置于探头座102上,气泡滤罩103包围住耐高温光纤101并与探头座102连接。
实施例4
如图4(a)、4(b)所示,本实施例在实施例3的基础上,所述气泡滤罩103包括流体入口1031、流体出口1032和测量腔体1033;所述流体入口1031设置于气泡滤罩103底面,所述流体出口1032设置于气泡滤罩103侧面。
实施例5
如图5(a)、5(b)所示,本实施例在实施例4的基础上,安装时要保证气泡滤罩103圆柱弧面上的流体出口1032与细胞液流速方向不相切(最好是如图5所示的垂直方向),其工作原理为:细胞液流过圆柱弧面时,其流速大于流过圆柱底部平面时的流速,根据流体力学知识,流体流速越快,压强越小,从而由于细胞液的流动,在圆柱底部平面的入口与圆柱弧面的出口之间产生一个额外的压力差,使测量腔体1033外面的细胞液不断从入口流入,从出口流出,测量腔体1033内的细胞液气泡含量相对较少且流速较低,有利于降低气泡对测量结果的干扰。光纤探头1在发酵罐00内的安装朝向示意图如图5(a)、5(b)所示。
实施例6
本实施例在实施例4的基础上,在气泡滤罩103圆柱弧面的圆周方向设置多个流体出口1032,从而保证无论朝哪个方向安装,至少有一个流体出口不与细胞液流速方向相切,这样就可以不用严格限制流体出口1032的朝向。
实施例7
如图6所示,本实施例在实施例4的基础上,测量腔体1033内的气泡容易聚集在光纤端面,从而影响测量信号,为了避免气泡在光纤端面聚集,可以把光纤端面安装或做成斜面或者朝上的面,还可以对端面涂覆不易粘附气泡的材料。
本发明可高温灭菌的探针式生物量在线检测装置,该装置通过将光源、光接收传感器等电子元器件采用模块化设计布置,并与探头需要接触细胞液的部 分采用可拆卸式设计方案,实现探头的高温灭菌要求;同时针对在发酵罐内气泡对测量数值的影响,设计了一种气泡滤除结构,以降低装置测量区域的气泡流速和气泡量,并结合软件算法对测量信号进行过滤优化,最终消除气泡的干扰。
与现有技术相比,本发明的有益效果至少包括:
1)、实现对培养液内的生物量在线检测,避免了人工取样的繁琐操作以及取样过程中感染杂菌的风险;
2)、可以放入高温灭菌锅内进行高温灭菌,保证被测细胞液不被杂菌污染;
3)、可以消除发酵罐内气泡对测量结果的干扰,保证测量结果的准确性。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种可高温灭菌的探针式生物量在线检测装置,其特征在于,包括光纤探头、光源&光接收传感器模块和信号处理模块;
    所述光源&光接收传感器模块包括光源和光接收传感器;
    测量光从光源发出,经光纤探头到达测量区域,测量区域的细胞对光发生反射作用,反射光再回到光纤探头,经光纤探头到达光接收传感器,光接收传感器接收到的光强度信号直接反映细胞浓度,信号处理模块根据光接收传感器接收到的光强度信号计算出细胞浓度。
  2. 根据权利要求1所述的可高温灭菌的探针式生物量在线检测装置,其特征在于,所述光源&光接收传感器模块与光纤探头可拆卸连接。
  3. 根据权利要求1所述的可高温灭菌的探针式生物量在线检测装置,其特征在于,所述光纤探头包括导光部件、探头座和气泡滤罩;导光部件设置于探头座上,气泡滤罩包围住导光部件并与探头座连接。
  4. 根据权利要求3所述的可高温灭菌的探针式生物量在线检测装置,其特征在于,所述导光部件为耐高温光纤。
  5. 根据权利要求3所述的可高温灭菌的探针式生物量在线检测装置,其特征在于,所述气泡滤罩包括流体入口、流体出口和测量腔体;所述流体入口设置于气泡滤罩底面,所述流体出口设置于气泡滤罩侧面。
  6. 根据权利要求5所述的可高温灭菌的探针式生物量在线检测装置,其特征在于,所述气泡滤罩为圆柱型,安装时要保证气泡滤罩圆柱弧面上的流体出口与细胞液流速方向不相切。
  7. 根据权利要求5所述的可高温灭菌的探针式生物量在线检测装置,其特征在于,所述气泡滤罩为圆柱型,安装时要保证气泡滤罩圆柱弧面上的流体出口与细胞液流速方向垂直。
  8. 根据权利要求5所述的可高温灭菌的探针式生物量在线检测装置,其特征在于,所述气泡滤罩为圆柱型,气泡滤罩圆柱弧面的圆周方向设置多个流体出口,从而保证无论朝哪个方向安装,至少有一个流体出口不与细胞液流速方向相切。
  9. 根据权利要求3所述的可高温灭菌的探针式生物量在线检测装置,其特征在于,所述导光部件的端面安装或做成斜面或者朝上的面。
  10. 根据权利要求3所述的可高温灭菌的探针式生物量在线检测装置,其特征在于,所述导光部件的端面涂覆不易粘附气泡的材料。
PCT/CN2020/086707 2020-03-12 2020-04-24 一种可高温灭菌的探针式生物量在线检测装置 WO2021068482A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20851403.4A EP3828282B1 (en) 2020-03-12 2020-04-24 System with probe-style on-line biomass measurement apparatus able to undergo high temperature sterilization
US17/272,662 US20220120694A1 (en) 2020-03-12 2020-04-24 Probe-Type Online Biomass Detection Apparatus Capable of Being Subjected to High-Temperature Sterilization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010171350.X 2020-03-12
CN202010171350.XA CN113388488B (zh) 2020-03-12 2020-03-12 一种可高温灭菌的探针式生物量在线检测装置

Publications (1)

Publication Number Publication Date
WO2021068482A1 true WO2021068482A1 (zh) 2021-04-15

Family

ID=75437797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086707 WO2021068482A1 (zh) 2020-03-12 2020-04-24 一种可高温灭菌的探针式生物量在线检测装置

Country Status (4)

Country Link
US (1) US20220120694A1 (zh)
EP (1) EP3828282B1 (zh)
CN (1) CN113388488B (zh)
WO (1) WO2021068482A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101042327A (zh) 2007-03-02 2007-09-26 重庆工学院 在线测量生物量浓度的光纤传感器系统
CN101368207A (zh) * 2008-09-24 2009-02-18 南京航空航天大学 检测单核苷酸多态性的长周期光纤光栅核酸传感器系统及检测方法
US20090093375A1 (en) * 2003-01-30 2009-04-09 Stephen Arnold DNA or RNA detection and/or quantification using spectroscopic shifts or two or more optical cavities
CN101750280A (zh) * 2008-12-08 2010-06-23 吴群林 回音壁模式的光纤生物传感器
CN102410850A (zh) * 2010-09-21 2012-04-11 王建伟 一种反射式光纤传感器装置
CN202886279U (zh) * 2012-09-14 2013-04-17 燕山大学 一种光纤探针传感器
CN105044038A (zh) 2015-08-31 2015-11-11 广州中国科学院先进技术研究所 一种用于摇瓶培养的非侵入式生物量在线检测装置
CN107148937A (zh) * 2016-03-02 2017-09-12 卢志勇 一种红外线探头用于水位探测时防止气泡干扰的方法及装置
CN109520968A (zh) * 2019-01-16 2019-03-26 南昌航空大学 一种异常熔接结构的微纳光纤生物传感器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659218A (en) * 1985-05-23 1987-04-21 Canadian Patents & Development Corporation Multi-probe system for measuring bubble characteristics gas hold-up, liquid hold-up and solid hold-up in a three-phase fluidized bed
US4893935A (en) * 1988-08-19 1990-01-16 Mandel William R Apparatus and method for optical density measurements of biomass processes
US5740291A (en) * 1995-10-13 1998-04-14 The University Of Western Ontario Fiber optic sensor for sensing particle movement in a catalytic reactor
BRPI0813135A2 (pt) * 2007-06-20 2014-12-23 Varian Inc Aparelho e métodos para inserção automática, desborbulhamento, limpeza e calibração de uma sonda espectral durante testes de dissolução.
US20120182546A1 (en) * 2009-09-29 2012-07-19 Jamal Chaouki Method and device for simultaneous measurements of a sample in a multiphase system
CN103712927B (zh) * 2012-09-29 2016-12-21 埃科莱布美国股份有限公司 检测系统和方法以及水处理系统和方法
CN206345859U (zh) * 2016-12-29 2017-07-21 陕西公众智能科技有限公司 一种在线监测水中细菌浓度的计数器
CN107677590A (zh) * 2017-08-09 2018-02-09 利多(香港)有限公司 流式细胞分析仪
WO2019084969A1 (zh) * 2017-11-06 2019-05-09 广州中国科学院先进技术研究所 一种浸泡式生物量在线检测装置
CN210114985U (zh) * 2019-06-06 2020-02-28 南京擅水科技有限公司 一种多通道吸气式微细气泡产生装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090093375A1 (en) * 2003-01-30 2009-04-09 Stephen Arnold DNA or RNA detection and/or quantification using spectroscopic shifts or two or more optical cavities
CN101042327A (zh) 2007-03-02 2007-09-26 重庆工学院 在线测量生物量浓度的光纤传感器系统
CN101368207A (zh) * 2008-09-24 2009-02-18 南京航空航天大学 检测单核苷酸多态性的长周期光纤光栅核酸传感器系统及检测方法
CN101750280A (zh) * 2008-12-08 2010-06-23 吴群林 回音壁模式的光纤生物传感器
CN102410850A (zh) * 2010-09-21 2012-04-11 王建伟 一种反射式光纤传感器装置
CN202886279U (zh) * 2012-09-14 2013-04-17 燕山大学 一种光纤探针传感器
CN105044038A (zh) 2015-08-31 2015-11-11 广州中国科学院先进技术研究所 一种用于摇瓶培养的非侵入式生物量在线检测装置
CN107148937A (zh) * 2016-03-02 2017-09-12 卢志勇 一种红外线探头用于水位探测时防止气泡干扰的方法及装置
CN109520968A (zh) * 2019-01-16 2019-03-26 南昌航空大学 一种异常熔接结构的微纳光纤生物传感器

Also Published As

Publication number Publication date
EP3828282B1 (en) 2023-05-17
CN113388488B (zh) 2023-09-29
US20220120694A1 (en) 2022-04-21
EP3828282A1 (en) 2021-06-02
EP3828282A4 (en) 2021-12-01
CN113388488A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
Junker et al. On-line and in-situ monitoring technology for cell density measurement in microbial and animal cell cultures
CN105044038A (zh) 一种用于摇瓶培养的非侵入式生物量在线检测装置
US3962041A (en) Method and apparatus for measuring the opacity of fluids
CN105842178B (zh) 一种细胞培养液酸碱度非侵入式在线检测装置和检测方法
Clarke et al. Monitoring reactor biomass
WO2021068482A1 (zh) 一种可高温灭菌的探针式生物量在线检测装置
US3694317A (en) Method of and instrument for micro-biological analysis
TWI770040B (zh) 細胞培養容器的可消毒接合器、可消毒裝置的用途以及用於在搖動條件下細胞培養的方法
WO2019084969A1 (zh) 一种浸泡式生物量在线检测装置
CN204964400U (zh) 同时检测菌落总数和大肠菌群的多道快速检测系统
CN112342130A (zh) 容纳件及具有容纳件的生物反应器和制造生物材料的方法
US20240175822A1 (en) Probe-Type Online Biomass Detection Apparatus Capable of Being Subjected to High-Temperature Sterilization
CN114112534B (zh) 一种适用于微生物悬浮液和固体培养基的智能取样及检测装置
CN110358684A (zh) 一种细胞自动培养装置及其使用方法
CN212622383U (zh) 基于微流控芯片的溶解氧检测装置
CN212364078U (zh) 一种发酵液菌浓在线检测装置
CN107764754A (zh) 一种微生物生物量的在线检测方法
US6232091B1 (en) Electrooptical apparatus and method for monitoring cell growth in microbiological culture
CN218026104U (zh) 一种便于实时监测生物培养参数、状态的检测组件及生物反应检测系统
CN202649201U (zh) 水体中大肠菌群在线自动检测系统
CN105973787B (zh) 一种集成有试剂的流动计数池
CN1288441C (zh) 用于光生物反应器的在线生物状态检测系统
CN109868206A (zh) 高通量藻类培养及测试方法
Allman Bioreactors: design, operation, and applications
CN215050328U (zh) 一种食品微生物检验用微生物快速培养检测器皿

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020851403

Country of ref document: EP

Effective date: 20210224

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE