WO2021068480A1 - 多区成像设备和方法 - Google Patents

多区成像设备和方法 Download PDF

Info

Publication number
WO2021068480A1
WO2021068480A1 PCT/CN2020/086083 CN2020086083W WO2021068480A1 WO 2021068480 A1 WO2021068480 A1 WO 2021068480A1 CN 2020086083 W CN2020086083 W CN 2020086083W WO 2021068480 A1 WO2021068480 A1 WO 2021068480A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
area
projection
image light
zone
Prior art date
Application number
PCT/CN2020/086083
Other languages
English (en)
French (fr)
Inventor
郎海涛
杨佳
王志超
杨丁铭
张鹤腾
王佩瑶
Original Assignee
宁波舜宇车载光学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910958039.7A external-priority patent/CN110764339A/zh
Priority claimed from CN201911375388.2A external-priority patent/CN111064941B/zh
Application filed by 宁波舜宇车载光学技术有限公司 filed Critical 宁波舜宇车载光学技术有限公司
Publication of WO2021068480A1 publication Critical patent/WO2021068480A1/zh
Priority to US17/716,578 priority Critical patent/US20220252878A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3147Multi-projection systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/147Optical correction of image distortions, e.g. keystone
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/26Projecting separately subsidiary matter simultaneously with main image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3152Modulator illumination systems for shaping the light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/317Convergence or focusing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/011Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion

Definitions

  • This application relates to the field of image data processing and generation, and more specifically, to a multi-zone imaging device and method.
  • Common projection equipment As one of the common Picture Generation Unit (PGU), projection equipment is widely used in a variety of application scenarios.
  • Common projection equipment generally uses Digital Micro-mirror Device (DMD) as the core unit of PGU.
  • DMD Digital Micro-mirror Device
  • the light signal emitted by the image light projection board containing the DMD chip is processed by the optical system and then projected onto the screen to display the image.
  • HUD head-up display
  • vehicle-mounted HUD includes many types, such as W-HUD, C-HUD, and AR-HUD.
  • AR-HUD integrates augmented reality technology and HUD technology well, and can help the driver analyze the surrounding driving environment without affecting the driver's perception of the real driving environment.
  • AR images are often approximately "integrated" with objects in the real driving environment. This requires AR-HUD to have a larger field of view and a longer imaging distance.
  • the existing method for realizing dual imaging distance HUD is to use two sets of PGU.
  • a set of Digital Light Processing (DLP) PGU is used to realize AR imaging, and then a set of Thin Film Transistor (Thin Film Transistor) PGU is used to realize imaging of indication information.
  • DLP Digital Light Processing
  • Thin Film Transistor Thin Film Transistor
  • two sets of TFT-PGU are used to realize AR imaging and instruction information imaging respectively.
  • two or more sets of PGUs occupy a relatively large volume and have a relatively high cost.
  • the present application provides a multi-zone imaging device, the multi-zone imaging device includes: an image light projection board, the image light projection board includes a first area and a second area that do not overlap with each other, the first area and the The second area emits image light for imaging; an optical path compensation portion, the optical path compensation portion is arranged on the propagation path of the image light emitted by the second area, and the image light emitted by the second area passes through the The optical path compensation portion transmits and is compensated for the optical path; an imaging lens group that images the image light emitted by the first region to transmit the first imaging light, and transmits the optical path compensation portion The image light is imaged to transmit the second imaging light, and the first imaging light and the second imaging light have different imaging surfaces.
  • the multi-zone imaging device further includes a prism disposed between the image light projection plate and the imaging lens group, and the prism emitted by the first area and the second area The image light exits after being deflected by the prism.
  • the optical path compensation part is attached to the light incident surface or the light exit surface of the prism.
  • the optical path compensation part is arranged between the light incident surface of the prism and the image light projection plate and is spaced apart from the prism and the image light projection plate.
  • the optical path compensation part is disposed between the light exit surface of the prism and the imaging lens group and spaced apart from the prism and the imaging lens group.
  • the optical path compensation part is provided between the image light projection plate and the imaging lens group.
  • the image light projection plate further includes at least one image light area different from the first area and the second area, and the at least one image light area emits image light for imaging;
  • the imaging lens group images the image light emitted by the at least one image light area to transmit the third imaging light.
  • the optical path compensation part and the light incident surface or the light exit surface of the prism are integrally formed.
  • the optical path compensation part is attached to the image light projection plate.
  • the image light projection board includes a DMD chip, and the DMD chip includes an effective pixel area corresponding to the first area and the second area.
  • the effective pixel area corresponding to the first area emits image light for synthesizing an AR image
  • the effective pixel area corresponding to the second area emits image light for generating a state indicating image
  • the effective pixel area corresponding to the first area is larger than the effective pixel area corresponding to the second area.
  • the DMD chip includes a disabled non-effective pixel area, and the non-effective pixel area is separated from the effective pixel area corresponding to the first area and the effective pixel area corresponding to the second area. open.
  • the multi-zone imaging device further includes a pixel controller, which realizes the effective pixel area and the non-effective pixel of the DMD chip by enabling or disabling the pixel points of the DMD chip. area.
  • the optical path compensation part includes a flat glass, a compensation lens or an optical lens group.
  • the multi-zone imaging device further includes a free-form surface mirror group, the free-form surface mirror group includes a plurality of free-form surface mirrors, and the free-form surface is based on a vehicle on which the multi-zone imaging device is installed
  • the shape of the windshield glass is designed to reflect the image formed by the first imaging surface and the second imaging surface to the windshield glass.
  • the present application provides a multi-zone imaging method.
  • the multi-zone imaging method includes: using a first area and a second area of the image light projection plate that do not overlap each other to respectively emit image light for imaging;
  • the optical path compensation part on the propagation path of the image light emitted from the second area compensates the optical path of the image light emitted from the second area; and uses an imaging lens group to image the image light emitted from the first area so as to transmit the second area.
  • An imaging light, and imaging the image light transmitted by the optical path compensation part to transmit the second imaging light, and the first imaging light and the second imaging light have different imaging surfaces.
  • the imaging method further includes: using an effective pixel area corresponding to the first area to emit image light for synthesizing an AR image; and using an effective pixel area corresponding to the second area to emit The image light that indicates the image in the generation state.
  • using the first area and the second area of the image light projection plate that do not overlap each other to respectively emit image light for imaging includes: activating the pixel points of different areas of the DMD chip of the image light projection plate To use the first area and the second area of the image light projection plate that do not overlap each other to emit image light for imaging, respectively.
  • the multi-zone imaging method further includes: using a free-form surface mirror group designed based on the shape of the windshield glass of the vehicle to reflect the image formed on the first imaging surface and the second imaging surface to The windshield glass.
  • the image light projection plate is used in sections, and the optical path compensation part compensates the optical path of the image light in one of the areas. Therefore, a set of imaging equipment can be used to achieve multi-zone imaging at different imaging distances, thereby saving space and reducing costs.
  • the multi-zone projection device includes: an image light projection board, the image light projection board includes a first projection area and a second projection area, the first projection area and The second projection area emits image light for imaging; an optical path compensation section, the optical path compensation section is arranged on the propagation path of the image light, and the optical path compensation section includes different optical path compensation amounts A first compensation area and a second compensation area, the first compensation area and the second compensation area respectively correspond to the first projection area and the second projection area; imaging lens group, the imaging lens group The image light transmitted through the first compensation area is imaged to transmit the first imaging light, and the image light transmitted through the second compensation area is imaged to transmit the second imaging light.
  • the best imaging surface of the first imaging light is at a first distance from the imaging lens group
  • the best imaging surface of the second imaging light is at a first distance from the imaging lens group.
  • the imaging depth of the imaging lens group is greater than the difference between the first distance and the second distance.
  • the multi-zone projection device further includes a prism disposed between the image light projection plate and the imaging lens group, and is composed of the first projection area and the second projection area.
  • the emitted image light exits after being deflected by the prism.
  • the optical path compensation part further includes at least one additional compensation area.
  • the optical path compensation part is attached to the light incident surface or the light exit surface of the prism.
  • the optical path compensation part is arranged between the light incident surface of the prism and the image light projection plate and is spaced apart from the prism and the image light projection plate.
  • the optical path compensation part is disposed between the light exit surface of the prism and the imaging lens group and spaced apart from the prism and the imaging lens group.
  • the optical path compensation part and the light incident surface or the light exit surface of the prism are integrally formed.
  • the optical path compensation part is attached to the image light projection plate.
  • the image light projection board includes a DMD chip, and the DMD chip includes a first effective pixel area corresponding to the first projection area and a second effective pixel area corresponding to the second projection area .
  • the first effective pixel area emits image light for synthesizing an AR image
  • the second effective pixel area emits image light for generating a state indicating image
  • the first effective pixel area and the second effective pixel area jointly emit image light for generating a full-frame image.
  • the first effective pixel area is larger than the second effective pixel area.
  • the multi-zone projection device further includes a pixel controller that controls the first effective pixel area and the second pixel area of the DMD chip by enabling and disabling the pixel points of the DMD chip.
  • Two effective pixel areas emit image light.
  • the multi-zone projection device further includes a first light homogenizing element arranged at the first distance and a second light homogenizing element arranged at the second distance.
  • a light homogenizing element is provided with a first microstructure unit for diffusing the first imaging light
  • the second light homogenizing element is provided with a second microstructure unit for diffusing the second imaging light.
  • the multi-zone projection device further includes a plurality of mirrors for reflecting and reflecting the first imaging light and the second imaging light to an imaging position.
  • the multi-zone projection device includes: an image light projection board, the image light projection board includes a first projection area and a second projection area, the first projection area And the second projection area emits image light for imaging; an optical path compensation portion, the optical path compensation portion is provided on the propagation path of the image light emitted by the second projection area, and the second projection area emits The image light of the image light is transmitted through the optical path compensation part and is compensated for the optical path; an imaging lens group that images the image light transmitted through the first compensation area to transmit the first imaging light, and The image light transmitted by the second compensation area is imaged to transmit the second imaging light; the best imaging surface of the first imaging light is at a first distance from the imaging lens group, and the second imaging light is The best imaging surface is at a second distance from the imaging lens group, and the imaging depth of the imaging lens group is greater than the difference between the first distance and the second distance.
  • the multi-zone projection method includes: using a first projection area and a second projection area of an image light projection plate to respectively emit image light for imaging;
  • the optical path compensation portion on the propagation path of the image light compensates for the optical paths of the image light emitted by the first projection area and the second projection area, and the optical path compensation portion has the same distance as the first projection area and the second projection area.
  • the first compensation area and the second compensation area corresponding to the second projection area and having different optical path compensation amounts; and the imaging lens group is used to image the image light transmitted through the first compensation area so as to transmit the first compensation area.
  • Imaging light, and imaging the image light transmitted through the second compensation area to transmit the second imaging light, and the first imaging light and the second imaging light have different optimal imaging surfaces.
  • the best imaging surface of the first imaging light is at a first distance from the imaging lens group
  • the best imaging surface of the second imaging light is at a first distance from the imaging lens group.
  • the imaging depth of the imaging lens group is greater than the difference between the first distance and the second distance.
  • the method further includes using a prism disposed between the image light projection plate and the imaging lens group to deflect the image light emitted by the first projection area and the second projection area .
  • the imaging method further includes: using a first effective pixel area corresponding to the first projection area to emit image light for synthesizing an AR image; and using a first effective pixel area corresponding to the second projection area.
  • the two effective pixel areas emit image light for generating a state indicating image.
  • using the first projection area and the second projection area of the image light projection plate to respectively emit image light for imaging includes: activating the first effective of the DMD chip of the image light projection plate.
  • the pixel points of the pixel area and the second effective pixel area control the first projection area and the second projection area of the image light projection plate to respectively emit image light for imaging.
  • the multi-zone projection method further includes: using a plurality of mirrors to reflect the first imaging light and the second imaging light to an imaging position.
  • PGU image generation units
  • Fig. 1 is a schematic block diagram of a multi-zone imaging device according to an embodiment of the present application
  • Fig. 2 is a schematic block diagram of a multi-zone imaging device according to another embodiment of the present application.
  • FIG. 3 is a schematic diagram of the layout of an optical length compensation part according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the layout of an optical length compensation part according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the layout of an optical length compensation part according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the layout of an optical length compensation part according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of pixel control of a DMD chip according to an embodiment of the present application.
  • Fig. 8 is a schematic diagram of an AR-HUD projection method according to an embodiment of the present application.
  • Fig. 9 is a flowchart of a multi-zone imaging method according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a multi-zone projection device according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a multi-zone projection device according to another embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a multi-zone projection device according to another embodiment of the present application.
  • FIG. 13 is a schematic diagram of the layout of an optical length compensation part according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the layout of an optical length compensation part according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the layout of an optical length compensation part according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of the layout of an optical length compensation part according to an embodiment of the present application.
  • Fig. 17 is a schematic diagram of pixel control of a DMD chip according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of pixel control of a DMD chip according to another embodiment of the present application.
  • FIG. 19 is a schematic diagram of an AR-HUD projection method according to an embodiment of the present application.
  • FIG. 20 is a schematic diagram of the structure of an optical path compensation unit according to an embodiment of the present application.
  • FIG. 21 is a schematic diagram of the structure of an optical path compensation part according to another embodiment of the present application.
  • FIG. 22 is a schematic block diagram of a multi-zone projection device according to another embodiment of the present application.
  • Fig. 23 is a flowchart of a multi-zone projection method according to an embodiment of the present application.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first area discussed below may also be referred to as the second area. vice versa.
  • Fig. 1 is a schematic block diagram of a multi-zone imaging device according to an embodiment of the present application.
  • the multi-zone imaging apparatus 1000' includes an image light projection plate 1100', an optical path compensation part 1200', and an imaging lens group 1300'.
  • the image light projection board 1100' may include a light source and an image light processing chip (e.g., a DMD chip).
  • the first area 1110' and the second area 1120' respectively emit image light for imaging.
  • the image light projection plate 1100' can project different image lights based on digital light signals.
  • the first area 1100' and the second area 1120' may be spaced apart from each other by a non-luminous area.
  • the first area 1100' and the second area 1120' may be connected to each other.
  • the optical path compensation unit 1200' is arranged on the propagation path of the image light emitted from the second area 1120', and the image light emitted from the second area 1120' passes through the optical path compensation unit 1200' and is transmitted by the optical path compensation unit 1200' to compensate the optical path. .
  • the optical path compensation unit 1200' can adjust the optical path by using its material characteristics, so that the image light transmitted through the optical path compensation unit 1200' and the image light not transmitted through the optical path compensation unit 1200' have a different optical path. Such optical path compensation can promote the image light emitted from different areas to be finally imaged at different distances.
  • the imaging lens group 1300' images the image light emitted from the first region 1110' to transmit the first imaging light 1410'.
  • the imaging lens group 1300' also images the image light transmitted by the optical path compensation part 1200' to transmit the second imaging light 1420'.
  • the imaging lens group 1300' may include a series of optical lenses, which are correspondingly designed and arranged according to imaging requirements.
  • the first imaging light 1410' can present first information
  • the second imaging light 1420' can present second information.
  • the first imaging light 1410' and the second imaging light 1420' have different imaging surfaces.
  • the imaging surface 1510' of the first imaging light 1410' and the imaging surface 1520' of the second imaging light 1420' are not on the same plane.
  • the image light projection plate is used in sections, and the optical path compensation part compensates the optical path of the image light in one of the areas. Therefore, a set of imaging equipment can be used to achieve multi-zone imaging at different imaging distances, thereby saving space and reducing costs.
  • Fig. 2 is a schematic block diagram of a multi-zone imaging device according to another embodiment of the present application.
  • the multi-zone imaging apparatus 2000' includes an image light projection plate 2100', an optical path compensation part 2200', an imaging lens group 2300', and a prism 1600'.
  • the first area 2110' and the second area 2120' respectively emit image light for imaging.
  • the optical path compensation unit 2200' is arranged on the propagation path of the image light emitted from the second area 2120'.
  • the image light emitted from the second area 2120' passes through the optical path compensation unit 2200' and is transmitted by the optical path compensation unit 2200' to compensate the optical path. .
  • the optical path compensation part 2200' can adjust the optical path by using its material characteristics, so that the image light transmitted through the optical path compensation part 2200' and the image light not transmitted through the optical path compensation part 2200' have a different optical path.
  • the imaging lens group 2300' images the image light emitted from the first region 2110' to transmit the first imaging light 2410'.
  • the imaging lens group 2300' also images the image light transmitted by the optical path compensation part 2200' to transmit the second imaging light 2420'.
  • the first imaging light 2410' and the second imaging light 2420' have different imaging surfaces. For example, the imaging surface 2510' of the first imaging light 2410' and the imaging surface 2520' of the second imaging light 2420' are not on the same plane.
  • the multi-zone projection device 2000' shown in FIG. 2 also includes a prism 2600'.
  • the prism 2600' is disposed between the image light projection plate 2100' and the imaging lens group 2300'.
  • the image light emitted from the first area 2110' and the second area 2120' is deflected by the prism 2600' and then exits.
  • the prism 2600' can also be used for light splitting.
  • the multi-zone projection solution provided in this application is not only applicable to PGU that is not refracted by a prism, but also applicable to PGU that is refracted by a prism.
  • the optical path compensation part 2200' may be disposed between the light exit surface of the prism 2600' and the imaging lens group 2300' and spaced apart from the prism 2600' and the imaging lens group 2300'.
  • the optical path compensation part 2200' may also be disposed between the light incident surface of the prism 2600' and the image light projection plate 2100' and spaced apart from the prism 2600' and the image light projection plate 2100'.
  • the optical path compensation part 2200' may be attached to the light exit surface of the prism 2600'.
  • the optical path compensation unit 2200' should also be provided on the propagation path of the image light emitted from the second region 2120'.
  • the optical path compensation part 2200' may cover the cross section of the light beam emitted from the second region 2120'.
  • the optical path compensation part 2200' can be attached to the light emitting surface of the prism 2600' through an adhesive.
  • the optical path compensation part 2200' may be attached to the light incident surface of the prism 2600'.
  • the optical path compensation unit 2200' should also be provided on the propagation path of the image light emitted from the second region 2120'.
  • the optical path compensation part 2200' may cover the cross section of the light beam emitted from the second region 2120'.
  • the optical path compensation part 2200' can be attached to the light incident surface of the prism 2600' through an adhesive.
  • the optical path compensation part 2200' may be attached to the image light projection plate 2100'.
  • the optical path compensation unit 2200' should also be provided on the propagation path of the image light emitted from the second region 2120'.
  • the optical path compensation part 2200' may cover the cross section of the light beam emitted from the second region 2120'.
  • the optical path compensation part 2200' may be attached to the image light projection plate 2100' by an adhesive.
  • the optical path compensation part 2200' may be disposed between the image light projection plate and the imaging lens group.
  • the image light projection plate further includes at least one image light area different from the first area and the second area, and the at least one image light area emits image light for imaging; the imaging lens group responds to the at least one image light area The emitted image light is imaged to transmit the third imaging light.
  • the third imaging light corresponding to each of the at least one image light area may be imaged on the same or different imaging surface.
  • the third imaging light may have the same imaging surface as the first imaging light, or the same imaging surface as the second imaging light.
  • the third imaging light may have an imaging surface different from the first imaging light and the second imaging light.
  • an additional optical path compensation unit may be used to perform optical path compensation for the image light emitted by at least one image light area.
  • the light-incident surface or the light-exit surface of the optical path compensation portion 2200' and the prism 2600' can be integrally formed.
  • the prism 2600' can be processed into a special-shaped prism, so that the thickness of the region through which the propagation path of the image light emitted from the second region 2120' passes is changed, thereby compensating the optical path of the image light.
  • the optical path compensation part may include any one of a flat glass, a compensation lens, and an optical lens group, or a combination of any two of them.
  • the optical path compensation part may include a piece of flat glass arranged at the light entrance surface of the prism and a group of optical distance compensation optical lenses arranged at the light exit surface of the prism.
  • the optical path compensation part can adjust the optical path by using its material characteristics, so that the image light transmitted through the optical path compensation part and the image light not transmitted through the optical path compensation part have a different optical path.
  • the image light projection board may include a DMD chip.
  • the DMD chip may include effective pixel areas corresponding to the first area and the second area.
  • the effective pixel area corresponding to the first area and may be larger than the effective pixel area corresponding to the second area.
  • the effective pixel area corresponding to the first area and may be equal to the effective pixel area corresponding to the second area.
  • the effective pixel area corresponding to the first area and may be smaller than the effective pixel area corresponding to the second area.
  • the image light projection plate may further include a protective glass attached to the DMD chip.
  • the effective pixel area corresponding to the first area in the DMD chip can emit image light for synthesizing AR images, and the effective pixel area corresponding to the second area in the DMD chip can emit The generation state indicates the image light of the image. Since the indication information often does not need to occupy an excessively large display space, the effective pixel area corresponding to the first area may be larger than the effective pixel area corresponding to the second area.
  • the DMD chip may include disabled inactive pixel areas. The disabled non-effective pixel area separates the effective pixel area corresponding to the first area and the effective pixel area corresponding to the second area.
  • the DMD chip suitable for this application does not need to be designed separately, but can be implemented based on the hardware structure of the existing DMD chip.
  • the multi-zone imaging device of each embodiment of the present application may further include a pixel controller for controlling the pixels of the DMD chip.
  • the pixel controller can realize the effective pixel area and the ineffective pixel area of the DMD chip by enabling or disabling the pixel points of the DMD chip.
  • the 3030DMD chip of Texas Instruments is used as an example to explain the above-mentioned pixel control process.
  • the 3030DMD chip is referred to as the DMD chip 7000' below.
  • the DMD chip 7000' has a pixel arrangement of 864 ⁇ 480.
  • the DMD chip can be divided into a first effective pixel area 7100' corresponding to the first area and a second effective pixel area 7200' corresponding to the second area.
  • the first effective pixel area 7100' may have a pixel arrangement of 864 ⁇ 350
  • the second effective pixel area 7200' may have a pixel arrangement of 700 ⁇ 100.
  • the first effective pixel area 7100' may be controlled to emit image light for synthesizing an AR image.
  • the second effective pixel area 7200' may be controlled to emit image light for generating a state indicating image.
  • the pixel control of the DMD chip can be performed by program coding, so that the first effective pixel area 7100' and the second effective pixel area 7200' are separated by a segment of non-effective pixel area 7300' that does not emit light.
  • the ineffective pixel area 7300' can be in a disabled state through encoding control.
  • software control can be used to realize the divisional projection of the image light projection board, thereby finally realizing a multi-zone imaging device. This design solution avoids the high cost of the multi-lens/multi-PGU solution.
  • the multi-zone imaging device may further include a free-form surface mirror group.
  • the free-form surface mirror group includes a plurality of free-form surface mirrors. The image formed by the first imaging surface and the second imaging surface is reflected on the windshield glass. The following shows this solution with reference to FIG. 8 taking the scene of a vehicle-mounted AR-HUD as an example.
  • the basic structure of the multi-zone imaging device 8000' may be substantially the same as the multi-zone imaging device 1000' described above with reference to FIG. 1 or the multi-zone imaging device 2000' described above with reference to FIG. 2.
  • the image light projection plate, optical path compensation unit, and imaging lens group of the multi-zone imaging device 8000' are generally expressed as PGU 8100'.
  • the first imaging light and the second imaging light emitted by the PGU8100' are respectively imaged on the first imaging surface 8200' and the second imaging surface 8300'.
  • the multi-zone imaging device 8000' may also include a free-form surface mirror group.
  • the free-form surface mirror group may sequentially include a small free-form surface mirror 8400' and a large free-form surface mirror 8500' along the light propagation route.
  • the free-form surfaces of the small free-form mirror 8400' and the large free-form mirror 8500' are designed based on the shape of the windshield glass of the vehicle on which the multi-zone imaging device 8000' is installed to eliminate or reduce various aberrations as much as possible.
  • the small free-form surface mirror 8400' and the large free-form surface mirror 8500' respectively reflect the images formed by the first imaging surface 8200' and the second imaging surface 8300' onto the windshield glass. Because the projected positions and angles are different and the imaging points of the projected images are different, the driver can perceive the two images at different image depths. For example, the driver can perceive the AR image 8600' for in-depth analysis of the driving environment at a far imaging point, and perceive the instruction image 8700' for displaying vehicle information at a closer imaging point.
  • Fig. 9 is a flowchart of a multi-zone imaging method according to an embodiment of the present application.
  • the multi-zone imaging method 9000' includes: in operation S9100', using a first region and a second region of the image light projection plate that do not overlap each other to respectively emit image light for imaging; in operation S9200', using the image light set in the second region
  • the optical path compensation part on the propagation path of the emitted image light compensates the optical path of the image light emitted from the second area; and in operation S9300', image light emitted from the first area is imaged by the imaging lens group to transmit the first imaging And imaging the image light transmitted by the optical path compensation part to transmit the second imaging light, and the first imaging light and the second imaging light have different imaging surfaces.
  • the method further includes using a prism disposed between the image light projection plate and the imaging lens group to deflect the image emitted by the first area and the second area.
  • the imaging method further includes: using the effective pixel area corresponding to the first area to emit image light for synthesizing the AR image; and using the effective pixel area corresponding to the second area to emit the image light for generating the state indication image Image light.
  • using the first area and the second area of the image light projection plate that do not overlap with each other to respectively emit image light for imaging includes: activating the pixel points of different areas of the DMD chip of the image light projection plate to use The first area and the second area of the image light projection plate that do not overlap each other emit image light for imaging, respectively.
  • the multi-zone imaging method further includes: using a free-form surface mirror group designed based on the shape of the windshield glass of the vehicle to reflect the images formed on the first imaging surface and the second imaging surface onto the windshield glass.
  • Fig. 10 is a schematic block diagram of a multi-zone projection device according to an embodiment of the present application.
  • the multi-zone projection apparatus 1000 includes an image light projection plate 1100, an optical path compensation part 1200, and an imaging lens group 1300.
  • the image light projection plate 1100 may include a first projection area 1110 and a second projection area 1120.
  • the first projection area 1110 and the second projection area 1120 respectively emit image light for imaging.
  • the image light projection plate 1100 may project different image lights on the first projection area 1110 and the second projection area 1120 based on a digital light signal.
  • the first projection area 1110 and the second projection area 1120 can be equipped with different sizes according to actual needs. For example, the first projection area 1110 may be larger than the second projection area 1120, and vice versa. In addition, the first projection area 1110 and the second projection area 1120 may also have substantially the same size.
  • the optical path compensation part 1200 may include a first compensation area 1210 and a second compensation area 1220 having different optical path compensation amounts.
  • the optical path compensation part 1200 is provided on the propagation path of the image light emitted by the image light projection plate 1100.
  • the optical path compensation part 1200 may be a lens or a flat glass to compensate the optical path of the image light. Compensation materials with different refractive indexes or thicknesses are selected to realize the different optical path compensation requirements for different image lights.
  • the image light emitted from the first projection area 1110 and the second projection area 1120 of the image light projection plate 1100 respectively passes through the first compensation area 1210 and the second compensation area 1220 of the optical path compensation part 1200, and is transmitted by the optical path compensation part 1200.
  • Compensation areas with different optical path compensation amounts compensate different optical paths.
  • the first compensation area 1210 and the second compensation area 1220 may correspond to the first projection area 1110 and the second projection area 1120, respectively.
  • the optical path compensation section 1200 can adjust the optical path by using the characteristic that different compensation areas have different thicknesses, so that the image light transmitted through the different compensation areas of the optical path compensation section 1200 has different optical paths. Such optical path compensation can promote the image light emitted from different compensation areas to be finally imaged at different distances.
  • the imaging lens group 1300 images the image light transmitted through the first compensation area 1210 to transmit the first imaging light 1410.
  • the first imaging light 1410 can present the clearest image at a position at a first distance 1510 from the imaging lens group 1300, and the plane at this position is also referred to as the best imaging surface 1530 of the first imaging light 1410.
  • the imaging lens group 1300 also images the image light transmitted through the second compensation area 1220 to transmit the second imaging light 1420.
  • the second imaging light 1420 can present the clearest image at a position at a second distance 1520 from the imaging lens group 1300, and the plane at this position is also referred to as the best imaging surface 1540 of the second imaging light 1420.
  • the imaging lens group 1300 may include a series of optical lenses, which are correspondingly designed and arranged according to imaging requirements.
  • the image light projection plate is used in sections, and the optical path compensation part compensates the optical path of the image light emitted by the different projection areas of the image light projection plate by using the characteristics of different compensation areas having different optical path compensation amounts. Therefore, a set of projection equipment can be used to achieve multi-zone single-frame imaging at different imaging distances, thereby saving space and reducing costs.
  • Fig. 11 is a schematic block diagram of a multi-zone projection device according to another embodiment of the present application.
  • the multi-zone projection apparatus 2000 includes an image light projection plate 2100, an optical path compensation part 2200, and an imaging lens group 2300.
  • the image light projection plate 2100 may include a first projection area 2110 and a second projection area 2120.
  • the first projection area 2110 and the second projection area 2120 respectively emit image light for imaging.
  • the optical path compensation part 2200 may include a first compensation area 2210 and a second compensation area 2220 having different optical path compensation amounts.
  • the optical path compensation part 2200 is provided on the propagation path of the image light emitted by the image light projection plate 2100.
  • the optical path compensation part 2200 may be a lens or a flat glass to compensate the optical path of the image light. Compensation materials with different refractive indexes or thicknesses are selected to realize the different optical path compensation requirements for different image lights.
  • the compensation area of the optical path compensation amount compensates for different optical paths.
  • the first compensation area 2210 and the second compensation area 2220 correspond to the first projection area 2110 and the second projection area 2120, respectively.
  • the optical path compensation part 2200 can adjust the optical path by using the characteristic that different compensation areas have different thicknesses, so that the image light transmitted through the different compensation areas of the optical path compensation part 2200 has different optical paths.
  • the imaging lens group 2300 images the image light transmitted through the first compensation area 2210 to transmit the first imaging light 2410.
  • the imaging lens group 2300 also images the image light transmitted through the second compensation area 2220 to transmit the second imaging light 2420.
  • the first imaging light 2410 can present a clear image within a certain distance from the imaging lens group 2300, wherein the best imaging surface 2530 of the first imaging light 2410 is at a first distance 2510 from the imaging lens group 2300.
  • the second imaging light 2420 can present a clear image within a certain distance from the imaging lens group 2300, wherein the best imaging surface 2540 of the second imaging light 2420 is at a second distance 2520 from the imaging lens group 2300.
  • the imaging lens group 2300 of the multi-zone projection apparatus 2000 of FIG. 2 may have a large imaging depth.
  • the imaging depth 2600 of the imaging lens group 2300 is greater than the difference between the first distance 2510 and the second distance 2520.
  • the first imaging light 2410 and the second imaging light 2420 can be simultaneously imaged at the imaging plane between the first distance 2510 and the second distance 2520 from the imaging lens group 2300.
  • the first imaging light 2410 can present a clear image within a certain range on the left and right of the optimal imaging surface 2530, and the depth of this range in the optical axis direction is the imaging depth 2600 of the imaging lens group 2300.
  • the second imaging light 2420 can present a clear image within a certain range on the left and right of the optimal imaging surface 2540, and the depth of this range in the optical axis direction is also the imaging depth 2600 of the imaging lens group 2300.
  • the imaging depth 2600 is large, for example, when the imaging depth 2600 is greater than the difference between the first distance 2510 and the second distance 2520, the first imaging light 2410 can clearly image the range and the second imaging light 2420 can clearly image the range Will overlap each other. In the overlapping area 2610, both the first imaging light 2410 and the second imaging light 2420 can clearly image.
  • the multi-zone projection device 2000 can realize clear full-frame imaging in the above-mentioned overlapping area 2610. In this case, the multi-zone projection device 2000 can maximize the use of the pixels of the image light projection plate 2100 to achieve a large screen and high resolution.
  • the multi-zone projection device 2000 as shown in FIG. 11 may further include a first light homogenizing element 2710 and a second light homogenizing element 2720.
  • the first homogenizing element 2710 may be located at the best imaging surface 2530 at a first distance 2510 from the imaging lens group 2300.
  • the second homogenizing element 2720 may be located at the best imaging surface 2540 at a second distance 2520 from the imaging lens group 2300.
  • Fig. 12 is a schematic block diagram of a multi-zone projection device according to another embodiment of the present application.
  • the multi-zone projection device 3000 includes an image light projection plate 3100, an optical path compensation part 3200, an imaging lens group 3300, and a prism 3800.
  • the image light projection plate 3100 may include a first projection area 3110 and a second projection area 3120.
  • the first projection area 3110 and the second projection area 3120 respectively emit image light for imaging.
  • the optical path compensation part 3200 may include a first compensation area 3210 and a second compensation area 3220 having different optical path compensation amounts.
  • the optical path compensation part 3200 is provided on the propagation path of the image light emitted from the image light projection plate 3100.
  • the image light emitted from the first projection area 3110 and the second projection area 3120 of the image light projection plate 3100 respectively passes through the first compensation area 3210 and the second compensation area 3220 of the optical path compensation part 3200 and is transmitted by the optical path compensation part 3200.
  • the compensation area of the optical path compensation amount compensates for different optical paths.
  • the first compensation area 3210 and the second compensation area 3220 correspond to the first projection area 3110 and the second projection area 3120, respectively.
  • the optical path compensation part 3200 can adjust the optical path by using the characteristic that different compensation areas have different thicknesses, so that the image light transmitted through the different compensation areas of the optical path compensation part 3200 has different optical paths.
  • the imaging lens group 3300 images the image light transmitted through the first compensation area 3210 to transmit the first imaging light 3410.
  • the imaging lens group 3300 also images the image light transmitted through the second compensation area 3220 to transmit the second imaging light 3420.
  • the first imaging light 3410 can present a clear image within a certain distance from the imaging lens group 3300, wherein the best imaging surface 3530 of the first imaging light 3410 is at a first distance 3510 from the imaging lens group 3300.
  • the second imaging light 3420 can present a clear image within a certain distance from the imaging lens group 3300, wherein the best imaging surface 3540 of the second imaging light 3420 is at a second distance 3520 from the imaging lens group 3300.
  • the imaging lens group 3300 of the multi-zone projection device 3000 of FIG. 12 may have a large imaging depth. For example, the imaging depth 3600 of the imaging lens group 3300 is greater than the difference between the first distance 3510 and the second distance 3520.
  • the first imaging light 3410 and the second imaging light 3420 can be simultaneously imaged at the imaging plane between the first distance 3510 and the second distance 3520 from the imaging lens group 3300.
  • the first imaging light 3410 can present a clear image within a certain range on the left and right of the optimal imaging surface 3530, and the depth of this range in the optical axis direction is the imaging depth 3600 of the imaging lens group 3300.
  • the second imaging light 3420 can present a clear image within a certain range on the left and right of the optimal imaging surface 3540, and the depth of this range in the optical axis direction is also the imaging depth 3600 of the imaging lens group 3300.
  • the imaging depth 3600 When the imaging depth 3600 is large, for example, when the imaging depth 3600 is greater than the difference between the first distance 3510 and the second distance 3520, the range where the first imaging light 3410 can be clearly imaged and the range where the second imaging light 3420 can be clearly imaged Will overlap each other. In the overlap area 3610, both the first imaging light 3410 and the second imaging light 3420 can clearly image.
  • the multi-zone projection device 3000 can realize full-frame imaging in the overlap area 3610. In this case, the multi-zone projection device 3000 can maximize the use of the pixels of the image light projection plate 3100 to achieve a large screen and high resolution.
  • the multi-zone projection device 3000 shown in FIG. 12 may further include a first light homogenizing element 3710 and a second light homogenizing element 3720.
  • the first homogenizing element 3710 may be located at the best imaging surface 3530 at a first distance 3510 from the imaging lens group 3300.
  • the second homogenizing element 3720 may be located at the best imaging surface 2540 at a second distance 3520 from the imaging lens group 3300.
  • the multi-zone projection device 3000 shown in FIG. 12 further includes a prism 3800.
  • the prism 3800 is disposed between the image light projection plate 3100 and the imaging lens group 3300.
  • the image light emitted by the first projection area 3110 and the second projection area 3120 is deflected by the prism 3800 and then exits.
  • the multi-zone projection solution provided by this application is not only applicable to direct-type PGU, but also applicable to prism-type PGU.
  • the optical path compensation part 3200 may be disposed between the light exit surface of the prism 3800 and the imaging lens group 3300 and spaced apart from the prism 3800 and the imaging lens group 3300.
  • the optical path compensation part 3200 may also be disposed between the light incident surface of the prism 3800 and the image light projection plate 3100 and spaced apart from the prism 3800 and the image light projection plate 3100.
  • the optical path compensation part 3200 may be attached to the light emitting surface of the prism 3800.
  • the optical path compensation part 3200 should also be provided on the propagation path of the image light emitted by the image light projection plate 3100.
  • the optical path compensation part 3200 may cover the cross section of the light beam emitted by the image light projection plate 3100.
  • the optical path compensation part 3200 may be attached to the light emitting surface of the prism 3800 by gluing.
  • the optical path compensation part 3200 may be attached to the light incident surface of the prism 3800.
  • the optical path compensation part 3200 should also be provided on the propagation path of the image light emitted by the image light projection plate 3100.
  • the optical path compensation part 3200 may cover the cross section of the light beam emitted by the image light projection plate 3100.
  • the optical path compensation part 3200 may be attached to the light incident surface of the prism 3800 by gluing.
  • the optical path compensation part 3200 may be attached to the image light projection plate 3100.
  • the optical path compensation part 3200 should also be provided on the propagation path of the image light emitted by the image light projection plate 3100.
  • the optical path compensation part 3200 may cover the cross section of the light beam emitted by the image light projection plate 3100.
  • the optical path compensation part 3200 may be attached to the image light projection plate 3100 by gluing.
  • the image light projection board 3100 may include a DMD chip.
  • the DMD chip may include a first effective pixel area and a second effective pixel area corresponding to the first projection area 3110 and the second projection area 3120, respectively.
  • the first effective pixel area in the DMD chip can emit image light for synthesizing AR images
  • the second effective pixel area in the DMD chip can emit image light for generating state-indicating images.
  • the first effective pixel area of the DMD chip applied in this scenario may be larger than the second effective pixel area.
  • the first effective pixel area and the second effective pixel area in the DMD chip can jointly emit image light for generating full-frame images, so that single-frame images such as AR images and status indication images are not required to be displayed separately. Able to achieve larger full-frame images.
  • the image light emitted by the first effective pixel area and the second effective pixel area in the DMD chip may be continuous on the imaging surface, thereby jointly displaying the same frame of image.
  • the optimal imaging surface of the image light of the full-frame image may be located between the optimal imaging surfaces of the image light after the compensation of the corresponding multiple compensation regions.
  • the imaging depth of the imaging lens group may be greater than the distance between the above-mentioned optimal imaging surfaces.
  • the imaging depth of the imaging lens group may be greater than the distance between the optimal imaging surface of the AR image and the optimal imaging surface of the state indication image.
  • all effective pixel areas of the DMD chip can be controlled to cooperate to generate image light corresponding to the full-frame image. Such image light can be clearly imaged between the optimal imaging surface of the AR image and the optimal imaging surface of the state indication image.
  • the multi-zone projection device of each embodiment of the present application may further include a pixel controller for controlling the pixels of the DMD chip.
  • the pixel controller can realize the first effective pixel area and the second effective pixel area of the DMD chip by enabling or disabling the pixel points of the DMD chip. For example, the first effective pixel may be enabled and the second effective pixel may be disabled; the second effective pixel may be enabled and the first effective pixel may be disabled; the first effective pixel and the second effective pixel may also be enabled at the same time.
  • the DMD chip 8000 may include a first effective pixel area 8100 corresponding to the first projection area and a second effective pixel area 8200 corresponding to the second projection area.
  • the first effective pixel area 8100 and the second effective pixel area 8200 may be controlled to emit different image lights.
  • the first effective pixel area 8100 may be controlled to emit image light used to synthesize the split-frame image of the AR image.
  • the second effective pixel area 8200 may be controlled to emit image light for generating a split-frame image of the state indication image.
  • the first effective pixel area 8100 and the second effective pixel area 8200 can also be jointly controlled to emit image light for generating a full-frame image.
  • the pixel control of the DMD chip 8000 can be performed by program coding, so that the DMD chip 8000 is divided into a first effective pixel area 8100 and a second effective pixel area 8200 through software control (rather than hardware design).
  • the pixels in the first pixel area can be in the enabled state and the pixels in the second pixel area are in the disabled state through coding control; the pixels in the second pixel area can also be in the enabled state, and the pixels in the first pixel area can be enabled.
  • the dots are in a disabled state; or, the pixel dots in the first pixel area and the pixel dots in the second pixel area can also be in an activated state at the same time.
  • the DMD chip 9000 shown in FIG. 18 may include three effective pixel areas with different area sizes.
  • the DMD chip may also include a plurality of effective pixel areas of different area sizes.
  • the optical path compensation part may also include multiple compensation areas with different optical path compensation amounts, the multiple compensation areas with different optical path compensation amounts of the optical path compensation part may be the same as the multiple effective pixels of different area sizes in the DMD chip.
  • the multi-zone projection device may further include a first light homogenizing element arranged at the optimal imaging surface of the first image light and a second light homogenizing element arranged at the optimal imaging surface of the second image light , Using a mechanical structure to control the opening or closing of the first homogenizing element or the second homogenizing unit, wherein a first microstructure unit for diffusing the first imaging light is provided on the first homogenizing element, and the second homogenizing element is The light element is provided with a second microstructure unit for diffusing the second imaging light.
  • the micro-structure unit (Diffuser) has an imaging display function, which can change the divergence angle of light to improve the uniformity and brightness of the image.
  • the microstructure unit may be light scattering particles dispersed on the light homogenizing element, or may be electro-scattering particles that are turned on or off under the stimulation of an external excitation source such as an electric field.
  • an external excitation source such as an electric field.
  • AR-HUD when the pixels in the first pixel area are in the enabled state and the pixels in the second pixel area are in the disabled state, and the first microstructure unit is turned on, and the second microstructure unit is turned off, that is, The AR image can be displayed on the first homogenizing element.
  • the state can be displayed on the second homogenizing element Indicates the screen of the image.
  • the multi-zone projection device may further include a third homogenizing element disposed at the imaging surface between the best imaging surface closest to the imaging lens group and the best imaging surface farthest from the imaging lens group, wherein A third microstructure unit used for diffusing the third imaging light is provided on the three homogenizing element.
  • a third homogenizing element disposed at the imaging surface between the best imaging surface closest to the imaging lens group and the best imaging surface farthest from the imaging lens group, wherein A third microstructure unit used for diffusing the third imaging light is provided on the three homogenizing element.
  • the multi-zone projection device may further include a lens group, and the lens group includes a plurality of mirrors.
  • the reflecting mirror may be a free-form surface mirror or a plane mirror, and a free-form surface mirror is preferable.
  • the mirror can magnify the image at the imaging carrier.
  • the free-form surface is designed based on the shape of the windshield glass of a motor vehicle equipped with a multi-zone projection device to reflect the images formed on the first, second and third light homogenizing elements to the windshield glass. The following shows this solution with reference to FIG. 19 taking the scene of a vehicle-mounted AR-HUD as an example.
  • the basic structure of the multi-zone projection device 10000 may be substantially the same as the multi-zone projection device 2000 described above with reference to FIG. 11 or the multi-zone projection device 3000 described above with reference to FIG. 12.
  • the image light projection plate, optical path compensation part, and imaging lens group of the multi-zone projection device 10000 are generally expressed as PGU 11000.
  • the first imaging light, the second imaging light, and the third imaging light emitted by the PGU 11000 are respectively imaged on the first homogenizing element 12000, the second homogenizing element 13000, and the third homogenizing element 14000.
  • the imaging light emitted by the PGU 11000 for generating an AR image is imaged on the first homogenizing element 12000.
  • the imaging light emitted by the PGU 11000 for generating the instruction image is imaged on the second homogenizing element 13000.
  • the imaging light emitted by the PGU 11000 for generating a full-frame image is imaged on the third homogenizing element 14000.
  • the multi-zone projection device 10000 may further include a lens group.
  • the lens group may be a free-form surface lens group.
  • the free-form mirror group can sequentially include 15000 small free-form mirrors and 16000 large free-form mirrors along the light propagation route.
  • the free-form surfaces of the small free-form mirror 15000 and the large free-form mirror 16000 are designed based on the shape of the windshield glass of a motor vehicle on which the multi-zone projection device 10000 is installed to eliminate or reduce various aberrations as much as possible.
  • the small free-form surface mirror 15000 and the large free-form surface mirror 16000 respectively reflect the images formed on the first homogenizing element 12000, the second homogenizing element 13000 and the third homogenizing element 14000 to the windshield glass. Because the projected positions and angles are different and the imaging points of the projected images are different, the driver can perceive these three images at different image depths.
  • the driver can perceive an AR image 17000 for in-depth analysis of the driving environment at a far imaging point, and perceive an indication image 18000 for displaying vehicle information at a closer imaging point.
  • the full-frame image 19000 can be perceived at the imaging point of the imaging surface between the far imaging point and the closer imaging point.
  • the optical path compensation part 3200 may further include at least one additional compensation area. Different compensation areas of the optical path compensation part 3200 have different thicknesses.
  • the shape of the optical path compensation part 3200 can also be designed accordingly as required.
  • the optical length compensation part 3200 can be designed as a rectangular optical length compensation part 3210 with three different optical length compensation amounts as shown in FIG. 20 according to needs.
  • the optical path compensation part 3200 can be designed as an optical path compensation part 3220 having two U-shaped grooves or grooves with different optical path compensation amounts as shown in FIG. 21.
  • FIG. 22 is a schematic block diagram of a multi-zone projection device according to another embodiment of the present application.
  • the multi-zone imaging device 20000 includes an image light projection plate 21000, an optical path compensation part 22000, and an imaging lens group 23000.
  • the image light projection board 21000 may include a light source and an image light processing chip (for example, a DMD chip).
  • the first projection area 21100 and the second projection area 21200 in which the image light projection plate 21000 does not overlap each other.
  • the first projection area 21100 and the second projection area 21200 respectively emit image light for imaging.
  • the image light projection plate 21000 can project different image lights based on digital light signals.
  • the first projection area 21100 and the second projection area 21200 may be spaced apart from each other by a non-luminous area.
  • the first projection area 21100 and the second projection area 21200 may be connected to each other.
  • the optical path compensation unit 22000 is disposed on the propagation path of the image light emitted by the second projection area 21200.
  • the image light emitted by the second projection area 21200 passes through the optical path compensation unit 22000 and is compensated for the optical path by the optical path compensation unit 22000.
  • the optical path compensation unit 22000 can adjust the optical path by using its material characteristics, so that the image light transmitted through the optical path compensation unit 22000 and the image light not transmitted through the optical path compensation unit 22000 have a different optical path.
  • Such optical path compensation can promote the image light emitted from different projection areas to be finally imaged at different distances.
  • the image light projection plate is used in sections, and the optical path compensation section compensates the optical path of the image light in one of the areas.
  • the imaging lens group 23000 images the image light emitted by the first projection area 21100 to transmit the first imaging light 24100. In addition, the imaging lens group 23000 also images the image light transmitted by the optical path compensation part 22000 to transmit the second imaging light 24200.
  • the imaging lens group 23000 may include a series of optical lenses, which are correspondingly designed and arranged according to imaging requirements.
  • the first imaging light 24100 can present a clear image within a certain distance from the imaging lens group 23000, wherein the best imaging surface 25300 of the first imaging light 24100 is at a first distance 25100 from the imaging lens group 23000.
  • the second imaging light 24200 can present a clear image within a certain distance from the imaging lens group 23000, wherein the best imaging surface 25400 of the second imaging light 24200 is at a second distance 25200 from the imaging lens group 23000.
  • the imaging lens group 23000 of the multi-zone projection apparatus 20000 of FIG. 22 may have a large imaging depth.
  • the imaging depth 26000 of the imaging lens group 23000 is greater than the difference between the first distance 25100 and the second distance 25200. In this case, as shown in FIG.
  • the first imaging light 24100 can present a clear image within a certain range on the left and right of the optimal imaging surface 25300, and the depth of this range in the optical axis direction is equal to that of the imaging lens group 23000.
  • the imaging depth is 26000.
  • the second imaging light 24200 can present a clear image within a certain range on the left and right of the optimal imaging surface 25400, and the depth of this range in the optical axis direction is also the imaging depth of 26000 of the imaging lens group 23000.
  • the imaging depth of 26000 is large, for example, when the imaging depth of 26000 is greater than the difference between the first distance 25100 and the second distance 25200, the first imaging light 24100 can clearly image the range and the second imaging light 24200 can clearly image the range Will overlap each other.
  • both the first imaging light 24100 and the second imaging light 24200 can clearly image.
  • the multi-zone projection device 20000 can realize full-frame imaging at the overlapping area 26100.
  • the multi-zone projection device 20000 can maximize the use of the 21000 pixels of the image light projection board to achieve a large screen and high resolution.
  • the multi-zone projection device 20000 as shown in FIG. 22 may further include a first light homogenizing element 27100 and a second light homogenizing element 27200.
  • the first homogenizing element 27100 may be located at the best imaging surface 25300 at a first distance 25100 from the imaging lens group 23000.
  • the second homogenizing element 27200 may be located at the best imaging surface 25400 at a second distance 25200 from the imaging lens group 23000.
  • the installation position of the optical path compensation unit 22000 may be the same as the installation position of the optical path compensation unit 3200 as described above.
  • the multi-zone projection device shown in FIG. 22 may further include a prism 28000, and the prism 28000 may have the same functions and functions as the aforementioned prism 3800.
  • FIG. 22 shows a multi-zone projection device with a prism 28000, referring to FIG. 10, the multi-zone projection device may not include the prism.
  • Fig. 23 is a flowchart of a multi-zone projection method according to an embodiment of the present application.
  • the multi-zone projection method 30000 may include: in operation S31000, using the first projection area and the second projection area of the image light projection plate to respectively emit image light for imaging; in operation S32000, using the setting on the propagation path of the image light
  • the optical path compensation section having a first compensation area and a second compensation area with different optical path compensation amounts corresponding to the first projection area and the second projection area respectively compensates the image emitted by the first compensation area and the second compensation area
  • imaging the image light transmitted through the first compensation area to transmit the first imaging light using the imaging lens group, and imaging the image light transmitted through the second compensation area to transmit the second
  • the imaging light, the first imaging light and the second imaging light have different optimal imaging surfaces.
  • the best imaging surface of the first imaging light is at a first distance from the imaging lens group
  • the best imaging surface of the second imaging light is at a first distance from the imaging lens group.
  • the imaging depth of the imaging lens group is greater than the difference between the first distance and the second distance.
  • the method may further include using a prism disposed between the image light projection plate and the imaging lens group to deflect the image light emitted by the first projection area and the second projection area.
  • the imaging method may further include: using a first effective pixel area corresponding to the first projection area to emit image light for synthesizing the AR image; and using a second effective pixel area corresponding to the second projection area to emit The image light used to generate the status indication image.
  • using the first projection area and the second projection area of the image light projection plate to respectively emit image light for imaging may include: activating the first effective pixel area and the second pixel area of the DMD chip of the image light projection plate.
  • the pixel points of the effective pixel area control the first projection area and the second projection area of the image light projection plate to respectively emit image light for imaging.
  • the multi-zone projection method may further include: using a plurality of mirrors to reflect the first imaging light and the second imaging light to the imaging position.
  • the above description mainly uses a vehicle-mounted HUD as an example to illustrate the multi-region image device and method according to the embodiments of the present application.
  • a vehicle-mounted HUD as an example to illustrate the multi-region image device and method according to the embodiments of the present application.
  • the above solution can also be applied to a variety of imaging scenarios. For example, multiple imaging distances can be imaged together and can also be applied to intelligent large-scale imaging. Fields such as lamps, projectors and laser TVs.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种多区成像设备(1000', 2000')和方法(9000'),多区成像设备(1000', 2000')包括:图像光投射板(1100', 2100'),图像光投射板(1100', 2100')包括彼此不重叠的第一区域(1110', 2110')和第二区域(1120', 2120'),第一区域(1110', 2110')和第二区域(1120', 2120')发射用于成像的图像光;光程补偿部(1200', 2200'),光程补偿部(1200', 2200')设置在第二区域(1120', 2120')发射的图像光的传播路径上,第二区域(1120', 2120')发射的图像光经过光程补偿部(1200', 2200')透射并被补偿光程;成像透镜组(1300', 2300'),成像透镜组(1300', 2300')对第一区域(1110', 2110')发射的图像光进行成像以透射第一成像光(1410', 2410'),并且对光程补偿部(1200', 2200')透射的图像光进行成像以透射第二成像光(1420', 2420'),第一成像光(1410', 2410')和第二成像光(1420', 2420')具有不同的成像面。

Description

多区成像设备和方法
相关申请的交叉引用
本申请要求于2019年10月10日提交至中国国家知识产权局(CNIPA)的专利申请号为201910958039.7的中国专利申请以及于2019年12月27日提交至中国国家知识产权局的专利申请号为201911375388.2的中国专利申请的优先权和权益,上述中国专利申请通过引用整体并入本文。
技术领域
本申请涉及图像数据处理和产生领域,更具体地,涉及一种多区成像设备和方法。
背景技术
作为常见的图像生成单元(Picture Generation Unit,PGU)之一,投影设备广泛应用于多种应用场景。常见的投影设备一般采用数字微镜器件(Digital Micro-mirror Device,DMD)作为PGU的核心单元。经包含DMD芯片的图像光投射板发射的光信号经过光学系统进行光处理后投射到屏幕上以显示图像。
投影设备目前也广泛应用于交通工具中以实现抬头显示(Head-UP Display,HUD)。目前车载HUD包括多种类型,诸如W-HUD、C-HUD、AR-HUD。
AR-HUD将增强现实技术与HUD技术很好的进行了融合,能够在不影响驾驶员感知真实驾驶环境的情况下帮助驾驶员分析周边驾驶环境。在AR-HUD的应用场景下,AR画面往往与真实驾驶环境中的物体近似地“融为一体”。这要求AR-HUD具有较大的视场角和较远的成像距离。
然而,即使在AR-HUD的场景下,驾驶员依然需要获取一些与车辆本身相关的指示信息,诸如时速、档位、车内温度等。这些指示信息往往需要成像在较近的距离处以方便查看。
现有的实现双成像距离HUD的方法是采用两套PGU来实现。例如,利用一套数字光处理(Digital Light Processing,DLP)PGU来实现AR成像,然后利用一套薄膜晶体管(Thin Film Transistor)PGU来实现指示信息成像。再例如,利用两套TFT-PGU(或者两套DLP-PGU)分别实现AR成像和指示信息成像。然而,在这种实现方式中,两套或者更多套的PGU占用体积较大,并且成本较高。
此外,除了上述车载HUD之外,在许多其它领域也存在多成像距离共同成像的投影显示需求。
发明内容
本申请提供了一种多区成像设备,所述多区成像设备包括:图像光投射板,所述图像光投射板包括彼此不重叠的第一区域和第二区域,所述第一区域和所述第二区域发射用于成像的图像光;光程补偿部,所述光程补偿部设置在所述第二区域发射的图像光的传播路径上,所述第二区域发射的图像光经过所述光程补偿部透射并被补偿光程;成像透镜组,所述成像透镜组对所述第一区域发射的图像光进行成像以透射第一成像光,并且对所述光程补偿部透射的图像光进行成像以透射第二成像光,所述第一成像光和所述第二成像光具有不同的成像面。
根据本申请实施方式,所述多区成像设备还包括棱镜,所述棱镜设置在所述图像光投射板与所述成像透镜组之间,由所述第一区域和所述第二区域发射的图像光经由所述棱镜偏折后出射。
根据本申请实施方式,所述光程补偿部附着在所述棱镜的入光面或出光面上。
根据本申请实施方式,所述光程补偿部设置在所述棱镜的入光面与所述图像光投射板之间并且与所述棱镜和所述图像光投射板间隔开。
根据本申请实施方式,所述光程补偿部设置在所述棱镜的出光面与所述成像透镜组之间并且与所述棱镜和所述成像透镜组间隔开。
根据本申请实施方式,所述光程补偿部设置在所述图像光投射板与所述成像透镜组之间。
根据本申请实施方式,所述图像光投射板还包括与所述第一区域和所述第二区域不同的至少一个图像光区域,所述至少一个图像光区域发射用于成像的图像光;所述成像透镜组对所述至少一个图像光区域发射的图像光进行成像以透射第三成像光。
根据本申请实施方式,所述光程补偿部与所述棱镜的入光面或出光面一体成型。
根据本申请实施方式,所述光程补偿部附着在所述图像光投射板上。
根据本申请实施方式,所述图像光投射板包括DMD芯片,所述DMD芯片包括与所述第一区域和所述第二区域对应的有效像素区域。
根据本申请实施方式,与所述第一区域对应的有效像素区域发射用于合成AR图像的图像光,并且与所述第二区域对应的有效像素区域发射用于生成状态指示图像的图像光。
根据本申请实施方式,与所述第一区域对应的有效像素区域大于与所述第二区域对应的有效像素区域。
根据本申请实施方式,所述DMD芯片包括被禁用的非有效像素区域,所述非有效像素区域将与所述第一区域对应的有效像素区域和与所述第二区域对应的有效像素区域间隔开。
根据本申请实施方式,所述多区成像设备还包括像素控制器,所述像素控制器通过对所述DMD芯片的像素点的启用或禁用来实现所述DMD芯片的有效像素区域和非有效像素区域。
根据本申请实施方式,所述光程补偿部包括平板玻璃、补偿透镜或光学透镜组。
根据本申请实施方式,所述多区成像设备还包括自由曲面镜组,所述自由曲面镜组包括多片具有自由曲面的反射镜,所述自由曲面基于安装所述多区成像设备的交通工具的风挡玻璃的形状设计以将所述第一成像面和所述第二成像面上成的像反射到所述风挡玻璃上。
本申请提供了一种多区成像方法,所述多区成像方法包括:使用图像光投射板的彼此不重叠的第一区域和第二区域分别发射用于成像的图像光;利用设置在所述第二区域发射的图像光的传播路径上的光程补偿部补偿所述第二区域发射的图像光的光程;以及利用成像透镜组对所述第一区域发射的图像光进行成像以透射第一成像光,并且对所述光程补偿部透射的图像光进行成像以透射第二成像光,所述第一成像光和所述第二成像光具有不同的成像面。
根据本申请实施方式,所述方法还包括利用设置在所述图像光投射板与所述成像透 镜组之间的棱镜偏折由所述第一区域和所述第二区域发射的图像。
根据本申请实施方式,所述成像方法还包括:利用与所述第一区域对应的有效像素区域发射用于合成AR图像的图像光;以及利用与所述第二区域对应的有效像素区域发射用于生成状态指示图像的图像光。
根据本申请实施方式,使用图像光投射板的彼此不重叠的第一区域和第二区域分别发射用于成像的图像光包括:通过启用所述图像光投射板的DMD芯片的不同区域的像素点来使用所述图像光投射板的彼此不重叠的第一区域和第二区域分别发射用于成像的图像光。
根据本申请实施方式,所述多区成像方法还包括:利用基于交通工具的风挡玻璃的形状设计的自由曲面镜组将所述第一成像面和所述第二成像面上成的像反射到所述风挡玻璃上。
根据本申请提出的实施方案,图像光投射板被分区使用,并且光程补偿部补偿其中一个区域的图像光的光程。因此,可以通过一套成像设备来实现不同成像距离的多区成像,从而节省了空间并降低了成本。
本申请一方面提供了一种多区投影设备,所述多区投影设备包括:图像光投射板,所述图像光投射板包括第一投射区域和第二投射区域,所述第一投射区域和所述第二投射区域发射用于成像的图像光;光程补偿部,所述光程补偿部设置在所述图像光的传播路径上,所述光程补偿部包括具有不同光程补偿量的第一补偿区域和第二补偿区域,所述第一补偿区域和所述第二补偿区域分别与所述第一投射区域和所述第二投射区域相对应;成像透镜组,所述成像透镜组对经过所述第一补偿区域透射的图像光进行成像以透射第一成像光,并且对经过所述第二补偿区域透射的图像光进行成像以透射第二成像光。
根据本申请实施方式,所述第一成像光的最佳成像面在与所述成像透镜组相距第一距离处,所述第二成像光的最佳成像面在与所述成像透镜组相距第二距离处,并且所述成像透镜组的成像深度大于所述第一距离与所述第二距离的差值。
根据本申请实施方式,所述多区投影设备还包括棱镜,所述棱镜设置在所述图像光投射板与所述成像透镜组之间,由所述第一投射区域和所述第二投射区域发射的图像光经由所述棱镜偏折后出射。
根据本申请实施方式,所述光程补偿部还包括至少一个附加补偿区域。
根据本申请实施方式,所述光程补偿部附着在所述棱镜的入光面或出光面上。
根据本申请实施方式,所述光程补偿部设置在所述棱镜的入光面与所述图像光投射板之间并且与所述棱镜和所述图像光投射板间隔开。
根据本申请实施方式,所述光程补偿部设置在所述棱镜的出光面与所述成像透镜组之间并且与所述棱镜和所述成像透镜组间隔开。
根据本申请实施方式,所述光程补偿部与所述棱镜的入光面或出光面一体成型。
根据本申请实施方式,所述光程补偿部附着在所述图像光投射板上。
根据本申请实施方式,所述图像光投射板包括DMD芯片,所述DMD芯片包括与所述第一投射区域对应的第一有效像素区域以及与所述第二投射区域对应的第二有效像素区域。
根据本申请实施方式,所述第一有效像素区域发射用于合成AR图像的图像光,所述第二有效像素区域发射用于生成状态指示图像的图像光。
根据本申请实施方式,所述第一有效像素区域和所述第二有效像素区域共同发射用于生成全画幅图像的图像光。
根据本申请实施方式,所述第一有效像素区域大于所述第二有效像素区域。
根据本申请实施方式,所述多区投影设备还包括像素控制器,所述像素控制器通过对所述DMD芯片的像素点的启用和禁用来控制所述DMD芯片的第一有效像素区域和第二有效像素区域发射图像光。
根据本申请实施方式,所述多区投影设备还包括设置在所述第一距离处的第一匀光元件以及设置在所述第二距离处的第二匀光元件,其中,在所述第一匀光元件上设置有用于扩散所述第一成像光的第一微结构单元,并且在所述第二匀光元件上设置有用于扩散所述第二成像光的第二微结构单元。
根据本申请实施方式,所述多区投影设备还包括多片反射镜,所述反射镜用于反射将所述第一成像光和所述第二成像光反射到成像位置处。
本申请另一方面提供了一种多区投影设备,所述多区投影设备包括:图像光投射板,所述图像光投射板包括第一投射区域和第二投射区域,所述第一投射区域和所述第二投射区域发射用于成像的图像光;光程补偿部,所述光程补偿部设置在所述第二投射区域发射的图像光的传播路径上,所述第二投射区域发射的图像光经过所述光程补偿部透射并被补偿光程;成像透镜组,所述成像透镜组对经过所述第一补偿区域透射的图像光进行成像以透射第一成像光,并且对经过所述第二补偿区域透射的图像光进行成像以透射第二成像光;所述第一成像光的最佳成像面在与所述成像透镜组相距第一距离处,所述第二成像光的最佳成像面在与所述成像透镜组相距第二距离处,并且所述成像透镜组的成像深度大于所述第一距离与所述第二距离的差值。
本申请另一方面提供了一种多区投影方法,所述多区投影方法包括:使用图像光投射板的第一投射区域和第二投射区域分别发射用于成像的图像光;利用设置在所述图像光的传播路径上的光程补偿部补偿所述第一投射区域和所述第二投射区域发射的图像光的光程,所述光程补偿部具有分别与所述第一投射区域和所述第二投射区域相对应的、具有不同光程补偿量的第一补偿区域和第二补偿区域;以及利用成像透镜组对经过所述第一补偿区域透射的图像光进行成像以透射第一成像光,并且对经过所述第二补偿区域透射的图像光进行成像以透射第二成像光,所述第一成像光和所述第二成像光具有不同的最佳成像面。
根据本申请实施方式,所述第一成像光的最佳成像面在与所述成像透镜组相距第一距离处,所述第二成像光的最佳成像面在与所述成像透镜组相距第二距离处,所述成像透镜组的成像深度大于所述第一距离与所述第二距离的差值。
根据本申请实施方式,所述方法还包括利用设置在所述图像光投射板与所述成像透镜组之间的棱镜偏折由所述第一投射区域和所述第二投射区域发射的图像光。
根据本申请实施方式,所述成像方法还包括:利用与所述第一投射区域对应的第一有效像素区域发射用于合成AR图像的图像光;以及利用与所述第二投射区域对应的第二有效像素区域发射用于生成状态指示图像的图像光。
根据本申请实施方式,使用图像光投射板的所述第一投射区域和所述第二投射区域分别发射用于成像的图像光包括:通过启用所述图像光投射板的DMD芯片的第一有效像素区域和第二有效像素区域的像素点来控制所述图像光投射板的所述第一投射区域和所述第二投射区域分别发射用于成像的图像光。
根据本申请实施方式,所述多区投影方法还包括:利用多片反射镜将所述第一成像光和所述第二成像光反射到成像位置处。
根据本申请所提供的多区投影设备和多区投影方法,能够达到以下至少一个有益效果:
利用一套图像生成单元(PGU)在不同投影距离处显示不同的分画幅投影图像,从而节约了成本和PGU安装空间;以及
利用PGU的全部像素在恰当的位置处显示清晰的全画幅投影图像,从而实现高的成像分辨率、大画幅和多信息综合成像。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1是根据本申请实施方式的多区成像设备的示意性框图;
图2是根据本申请另一实施方式的多区成像设备的示意性框图;
图3是根据本申请实施方式的光程补偿部的布局的示意图;
图4是根据本申请实施方式的光程补偿部的布局的示意图;
图5是根据本申请实施方式的光程补偿部的布局的示意图;
图6是根据本申请实施方式的光程补偿部的布局的示意图;
图7是根据本申请实施方式的DMD芯片像素控制的示意图;
图8是根据本申请实施方式的AR-HUD投射方式的示意图;
图9是根据本申请实施方式的多区成像方法的流程图;
图10是根据本申请实施方式的多区投影设备的示意性框图;
图11是根据本申请另一实施方式的多区投影设备的示意性框图;
图12是根据本申请另一实施方式的多区投影设备的示意性框图;
图13是根据本申请实施方式的光程补偿部的布局的示意图;
图14是根据本申请实施方式的光程补偿部的布局的示意图;
图15是根据本申请实施方式的光程补偿部的布局的示意图;
图16是根据本申请实施方式的光程补偿部的布局的示意图;
图17是根据本申请实施方式的DMD芯片像素控制的示意图;
图18是根据本申请另一实施方式的DMD芯片像素控制的示意图;
图19是根据本申请实施方式的AR-HUD投射方式的示意图;
图20是根据本申请实施方式的光程补偿部的结构的示意图;
图21是根据本申请另一实施方式的光程补偿部的结构的示意图;
图22是根据本申请另一实施方式的多区投影设备的示意性框图;以及
图23是根据本申请实施方式的多区投影方法的流程图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一区域也可被称作第二区域。反之亦然。
在附图中,为了便于说明,已稍微调整了部件的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。如在本文中使用的,用语“大致”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
还应理解的是,诸如“包括”、“包括有”、“具有”、“包含”和/或“包含有”等表述在本说明书中是开放性而非封闭性的表述,其表示存在所陈述的特征、元件和/或部件,但不排除一个或多个其它特征、元件、部件和/或它们的组合的存在。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,其修饰整列特征,而非仅仅修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有措辞(包括工程术语和科技术语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,除非本申请中有明确的说明,否则在常用词典中定义的词语应被解释为具有与它们在相关技术的上下文中的含义一致的含义,而不应以理想化或过于形式化的意义解释。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。另外,除非明确限定或与上下文相矛盾,否则本申请所记载的方法中包含的具体步骤不必限于所记载的顺序,而可以任意顺序执行或并行地执行。下面将参考附图并结合实施例来详细说明本申请。
图1是根据本申请实施方式的多区成像设备的示意性框图。
多区成像设备1000’包括图像光投射板1100’、光程补偿部1200’和成像透镜组1300’。
图像光投射板1100’可包括光源和图像光处理芯片(例如,DMD芯片)。图像光投射板1100’彼此不重叠的第一区域1110’和第二区域1120’。第一区域1110’和第二区域1120’分别发射用于成像的图像光。图像光投射板1100’可基于数字光信号投射不同的图像光。在一种图像光投射板1100’的布局中,第一区域1100’和第二区域1120’可通过不发光的区域彼此间隔开一段距离。在另一种图像光投射板1100’的布局中,第一区域1100’和第二区域1120’可彼此衔接。
光程补偿部1200’设置在第二区域1120’发射的图像光的传播路径上,第二区域1120’发射的图像光经过光程补偿部1200’透射并被光程补偿部1200’补偿光程。光程补偿部1200’可利用其材质特性对光程进行调节,从而使得经过光程补偿部1200’透射的图像光与不经过光程补偿部1200’透射的图像光具有不同的光程。这样的光程补偿可以促使不同区域发射出来的图像光最终成像在不同距离处。
成像透镜组1300’对第一区域1110’发射的图像光进行成像以透射第一成像光1410’。此外,成像透镜组1300’还对光程补偿部1200’透射的图像光进行成像以透射第二成像光1420’。成像透镜组1300’可包括一系列光学透镜,这些光学透镜根据成像需求而相应设计和排布。
第一成像光1410’可以呈现第一信息,而第二成像光1420’可以呈现第二信息。第一成像光1410’和第二成像光1420’具有不同的成像面。例如,第一成像光1410’ 的成像面1510’与第二成像光1420’的成像面1520’不在同一平面上。
根据本申请提出的实施方案,图像光投射板被分区使用,并且光程补偿部补偿其中一个区域的图像光的光程。因此,可以通过一套成像设备来实现不同成像距离的多区成像,从而节省了空间并降低了成本。
图2是根据本申请另一实施方式的多区成像设备的示意性框图。
多区成像设备2000’包括图像光投射板2100’、光程补偿部2200’、成像透镜组2300’和棱镜1600’。
图像光投射板2100’彼此不重叠的第一区域2110’和第二区域2120’。第一区域2110’和第二区域2120’分别发射用于成像的图像光。光程补偿部2200’设置在第二区域2120’发射的图像光的传播路径上,第二区域2120’发射的图像光经过光程补偿部2200’透射并被光程补偿部2200’补偿光程。光程补偿部2200’可利用其材质特性对光程进行调节,从而使得经过光程补偿部2200’透射的图像光与不经过光程补偿部2200’透射的图像光具有不同的光程。成像透镜组2300’对第一区域2110’发射的图像光进行成像以透射第一成像光2410’。此外,成像透镜组2300’还对光程补偿部2200’透射的图像光进行成像以透射第二成像光2420’。第一成像光2410’和第二成像光2420’具有不同的成像面。例如,第一成像光2410’的成像面2510’与第二成像光2420’的成像面2520’不在同一平面上。
与图1所示的设备1000’不同,图2所示的多区投影设备2000’还包括棱镜2600’。棱镜2600’设置在图像光投射板2100’与成像透镜组2300’之间。由第一区域2110’和第二区域2120’发射的图像光经由棱镜2600’偏折后出射。除了偏折光线之外,棱镜2600’还可用于分光。本申请提供的多区投影的方案不仅可适用于未经过棱镜折射的PGU,还可适用于经过棱镜折射的PGU。
如图2所示,光程补偿部2200’可设置在棱镜2600’的出光面与成像透镜组2300’之间并且与棱镜2600’和成像透镜组2300’间隔开。或者,如图3所示,光程补偿部2200’还可设置在棱镜2600’的入光面与图像光投射板2100’之间并且与棱镜2600’和图像光投射板2100’间隔开。
如图4所示,光程补偿部2200’可附着在棱镜2600’的出光面上。此外,如上文所述,光程补偿部2200’还应设置在第二区域2120’发射的图像光的传播路径上。例如,光程补偿部2200’可覆盖与第二区域2120’发射的光束的截面。光程补偿部2200’可通过粘合剂与棱镜2600’的出光面附着。
如图5所示,光程补偿部2200’可附着在棱镜2600’的入光面上。此外,如上文所述,光程补偿部2200’还应设置在第二区域2120’发射的图像光的传播路径上。例如,光程补偿部2200’可覆盖与第二区域2120’发射的光束的截面。光程补偿部2200’可通过粘合剂与棱镜2600’的入光面附着。
如图6所示,光程补偿部2200’可附着在图像光投射板2100’上。此外,如上文所述,光程补偿部2200’还应设置在第二区域2120’发射的图像光的传播路径上。例如,光程补偿部2200’可覆盖与第二区域2120’发射的光束的截面。光程补偿部2200’可通过粘合剂与图像光投射板2100’附着。
根据本申请实施方式,光程补偿部2200’可设置在图像光投射板与成像透镜组之间。
根据本申请实施方式,图像光投射板还包括与第一区域和第二区域不同的至少一个图像光区域,至少一个图像光区域发射用于成像的图像光;成像透镜组对至少一个图像 光区域发射的图像光进行成像以透射第三成像光。
与至少一个图像光区域中每个图像光区域对应的第三成像光可成像在相同或不同的成像面上。此外,第三成像光可以与第一成像光具有相同的成像面,或者与第二成像光具有相同的成像面。此外第三成像光,可具有与第一成像光和第二成像光均不同的成像面。例如,可以通过附加的光程补偿部来对至少一个图像光区域发射的图像光进行光程补偿。
根据本申请实施方式,光程补偿部2200’与棱镜2600’的入光面或出光面可一体成型。例如,棱镜2600’可加工成异形棱镜,使得第二区域2120’发射的图像光的传播路径所穿过的区域的厚度被改变,从而对该图像光的光程进行补偿。
根据本申请实施方式,光程补偿部可包括平板玻璃、补偿透镜和光学透镜组中的任一项,或者其中任意两者的组合。例如,光程补偿部可包括设置在棱镜入光面处的一块平板玻璃和设置在棱镜出光面处的一组光程补偿光学透镜。光程补偿部可利用其材质特性对光程进行调节,从而使得经过光程补偿部透射的图像光与不经过光程补偿部透射的图像光具有不同的光程。
根据本申请实施方式,图像光投射板可包括DMD芯片。DMD芯片可包括与第一区域和第二区域对应的有效像素区域。与第一区域和对应的有效像素区域可大于与第二区域对应的有效像素区域。或者,与第一区域和对应的有效像素区域可等于与第二区域对应的有效像素区域。再或者,与第一区域和对应的有效像素区域可小于与第二区域对应的有效像素区域。图像光投射板还可包括附着在DMD芯片上的保护玻璃。在例如AR-HUD的应用场景中,DMD芯片中与第一区域对应的有效像素区域可发射用于合成AR图像的图像光,并且DMD芯片中与第二区域对应的有效像素区域可发射用于生成状态指示图像的图像光。由于指示信息往往不需要占据过大的显示空间,因此,与第一区域对应的有效像素区域可大于与第二区域对应的有效像素区域。DMD芯片可包括被禁用的非有效像素区域。该被禁用的非有效像素区域将与第一区域对应的有效像素区域和与第二区域对应的有效像素区域间隔开。
适用于本申请的DMD芯片可无需单独设计,而可基于现有DMD芯片的硬件结构来实现。具体地,本申请各实施方式的多区成像设备还可包括用于对DMD芯片的像素进行控制的像素控制器。像素控制器可通过对DMD芯片的像素点的启用或禁用来实现DMD芯片的有效像素区域和非有效像素区域。
以下参照图7以德州仪器(TI)公司的3030DMD芯片为例阐释上述像素控制过程。为方便引述,以下将该3030DMD芯片称作为DMD芯片7000’。DMD芯片7000’具有864×480的像素排布。根据诸如车载AR-HUD等多区投影应用的需求,可将DMD芯片划分为与第一区域对应的第一有效像素区域7100’和与第二区域对应的第二有效像素区域7200’。第一有效像素区域7100’可具有864×350的像素排布,而第二有效像素区域7200’可具有700×100的像素排布。第一有效像素区域7100’可被控制为发射用于合成AR图像的图像光。第二有效像素区域7200’可被控制为发射用于生成状态指示图像的图像光。可通过程序编码来对DMD芯片进行像素控制,使得第一有效像素区域7100’和第二有效像素区域7200’通过一段不发光的非有效像素区域7300’间隔开。例如,可通过编码控制来使非有效像素区域7300’处于禁用状态。根据这一技术方案,可以在不改变现有DMD芯片的硬件设计的情况下,利用软件控制来实现图像光投射板的分区投射,从而最终实现多区成像设备。这种设计方案避免了多镜头/多PGU方案带 来的高昂成本。
根据本申请实施方式,多区成像设备还可包括自由曲面镜组,自由曲面镜组包括多片具有自由曲面的反射镜,自由曲面基于安装多区成像设备的交通工具的风挡玻璃的形状设计以将第一成像面和第二成像面上成的像反射到风挡玻璃上。以下参照图8以车载AR-HUD的场景为例示出这种方案。
参照图8,多区成像设备8000’的基本结构可与以上参照图1描述的多区成像设备1000’或以上参照图2描述的多区成像设备2000’大致相同。多区成像设备8000’的图像光投射板、光程补偿部、成像透镜组概括表述为PGU 8100’。PGU8100’发出的第一成像光和第二成像光分别成像在第一成像面8200’和第二成像面8300’上。多区成像设备8000’还可包括自由曲面镜组。自由曲面镜组可沿光线传播路线依次包括小自由曲面镜8400’和大自由曲面镜8500’。小自由曲面镜8400’和大自由曲面镜8500’的自由曲面基于安装多区成像设备8000’的交通工具的风挡玻璃的形状进行设计以尽可能地消除或降低各种像差。小自由曲面镜8400’和大自由曲面镜8500’将第一成像面8200’和第二成像面8300’所成的像分别反射到风挡玻璃上。由于投射的位置和角度不同并且所投射的像的成像点不同,驾驶员可在不同的图像深度上感知这两个图像。例如,驾驶员可在较远的成像点上感知到对驾驶环境进行深度分析的AR图像8600’,而在较近的成像点上感知到显示车辆信息的指示图像8700’。
图9是根据本申请实施方式的多区成像方法的流程图。多区成像方法9000’包括:在操作S9100’,使用图像光投射板的彼此不重叠的第一区域和第二区域分别发射用于成像的图像光;在操作S9200’,利用设置在第二区域发射的图像光的传播路径上的光程补偿部补偿第二区域发射的图像光的光程;以及在操作S9300’,利用成像透镜组对第一区域发射的图像光进行成像以透射第一成像光,并且对光程补偿部透射的图像光进行成像以透射第二成像光,第一成像光和第二成像光具有不同的成像面。
根据本申请实施方式,方法还包括利用设置在图像光投射板与成像透镜组之间的棱镜偏折由第一区域和第二区域发射的图像。
根据本申请实施方式,成像方法还包括:利用与第一区域对应的有效像素区域发射用于合成AR图像的图像光;以及利用与第二区域对应的有效像素区域发射用于生成状态指示图像的图像光。
根据本申请实施方式,使用图像光投射板的彼此不重叠的第一区域和第二区域分别发射用于成像的图像光包括:通过启用图像光投射板的DMD芯片的不同区域的像素点来使用图像光投射板的彼此不重叠的第一区域和第二区域分别发射用于成像的图像光。
根据本申请实施方式,多区成像方法还包括:利用基于交通工具的风挡玻璃的形状设计的自由曲面镜组将第一成像面和第二成像面上成的像反射到风挡玻璃上。
图10是根据本申请实施方式的多区投影设备的示意性框图。
多区投影设备1000包括图像光投射板1100、光程补偿部1200和成像透镜组1300。
图像光投射板1100可包括第一投射区域1110和第二投射区域1120。第一投射区域1110和第二投射区域1120分别发射用于成像的图像光。图像光投射板1100可基于数字光信号在第一投射区域1110和第二投射区域1120投射不同的图像光。第一投射区域1110和第二投射区域1120可根据实际需要配备不同的尺寸。例如,第一投射区域1110可大于第二投射区域1120,反之亦然。另外,第一投射区域1110和第二投射区域1120也可具有大致相同的尺寸。
光程补偿部1200可包括具有不同光程补偿量的第一补偿区域1210和第二补偿区域1220。光程补偿部1200设置在图像光投射板1100发射的图像光的传播路径上。光程补偿部1200可以是透镜或平板玻璃以补偿图像光的光程。通过选用不同折射率或厚度的补偿材料来实现对不同图像光的不同光程补偿的需求。图像光投射板1100的第一投射区域1110和第二投射区域1120发射的图像光分别经过光程补偿部1200的第一补偿区域1210和第二补偿区域1220透射,并被光程补偿部1200的不同光程补偿量的补偿区域补偿不同的光程。具体地,第一补偿区域1210和第二补偿区域1220可分别与第一投射区域1110和第二投射区域1120相对应。光程补偿部1200可利用其不同补偿区域具有不同的厚度的特性对光程进行调节,从而使得经过光程补偿部1200不同补偿区域透射的图像光具有不同的光程。这样的光程补偿可以促使不同补偿区域发射出来的图像光最终成像在不同距离处。
成像透镜组1300对经过第一补偿区域1210透射的图像光进行成像以透射第一成像光1410。第一成像光1410可以在与成像透镜组1300相距第一距离1510的位置处呈现最清晰的像,位于该位置处的平面也称作第一成像光1410的最佳成像面1530。此外,成像透镜组1300还对经过第二补偿区域1220透射的图像光进行成像以透射第二成像光1420。第二成像光1420可以在与成像透镜组1300相距第二距离1520的位置处呈现最清晰的像,位于该位置处的平面也称作第二成像光1420的最佳成像面1540。成像透镜组1300可包括一系列光学透镜,这些光学透镜根据成像需求而相应设计和排布。
根据本申请提出的实施方案,图像光投射板被分区使用,并且光程补偿部利用其不同补偿区域具有不同光程补偿量的特性补偿图像光投射板不同投射区域发射的图像光的光程。因此,可以通过一套投影设备来实现不同成像距离的多区单画幅成像,从而节省了空间并降低了成本。
图11是根据本申请另一实施方式的多区投影设备的示意性框图。
多区投影设备2000包括图像光投射板2100、光程补偿部2200和成像透镜组2300。
图像光投射板2100可包括第一投射区域2110和第二投射区域2120。第一投射区域2110和第二投射区域2120分别发射用于成像的图像光。光程补偿部2200可包括具有不同光程补偿量的第一补偿区域2210和第二补偿区域2220。光程补偿部2200设置在图像光投射板2100发射的图像光的传播路径上。光程补偿部2200可以是透镜或平板玻璃以补偿图像光的光程。通过选用不同折射率或厚度的补偿材料来实现对不同图像光的不同光程补偿的需求。图像光投射板2100的第一投射区域2110和第二投射区域2120发射的图像光分别经过光程补偿部2200的第一补偿区域2210和第二补偿区域2220透射并被光程补偿部2200的不同光程补偿量的补偿区域补偿不同的光程。具体地,第一补偿区域2210和第二补偿区域2220分别与第一投射区域2110和第二投射区域2120相对应。光程补偿部2200可利用其不同补偿区域具有不同的厚度的特性对光程进行调节,从而使得经过光程补偿部2200不同补偿区域透射的图像光具有不同的光程。此外,成像透镜组2300对经过第一补偿区域2210透射的图像光进行成像以透射第一成像光2410。成像透镜组2300还对经过第二补偿区域2220透射的图像光进行成像以透射第二成像光2420。
第一成像光2410能够在距离成像透镜组2300的一定距离内呈现清晰的图像,其中第一成像光2410的最佳成像面2530在与成像透镜组2300相距第一距离2510处。第二成像光2420能够在距离成像透镜组2300的一定距离内呈现清晰的图像,其中第二成像 光2420的最佳成像面2540在与成像透镜组2300相距第二距离2520处。图2的多区投影设备2000的成像透镜组2300可以具有大的成像深度。例如,成像透镜组2300的成像深度2600大于第一距离2510与第二距离2520的差值。在这种情况下,第一成像光2410和第二成像光2420可以同时成像在与成像透镜组2300相距第一距离2510与第二距离2520之间的成像面处。
如图11所示,第一成像光2410可以在最佳成像面2530的左右一定范围内呈现清晰的像,该范围在光轴方向上的深度即为成像透镜组2300的成像深度2600。类似地,第二成像光2420可以在最佳成像面2540的左右一定范围内呈现清晰的像,该范围在光轴方向上的深度也是成像透镜组2300的成像深度2600。当成像深度2600较大时,例如,当成像深度2600大于第一距离2510与第二距离2520的差值时,第一成像光2410能够清晰成像的范围与第二成像光2420能够清晰成像的范围会彼此交叠。在交叠区域2610中,第一成像光2410和第二成像光2420均可清晰成像。
通过采用这样的具有大成像深度的成像透镜组2300,多区投影设备2000可以在上述交叠区域2610中实现清晰的全幅成像。在这种情况下,多区投影设备2000可以最大程度利用图像光投射板2100的像素,实现大画面和高分辨率。
此外,如图11所示的多区投影设备2000还可包括第一匀光元件2710和第二匀光元件2720。第一匀光元件2710可位于与成像透镜组2300相距第一距离2510的最佳成像面2530处。第二匀光元件2720可位于与成像透镜组2300相距第二距离2520的最佳成像面2540处。
图12是根据本申请另一实施方式的多区投影设备的示意性框图。
多区投影设备3000包括图像光投射板3100、光程补偿部3200、成像透镜组3300和棱镜3800。
图像光投射板3100可包括第一投射区域3110和第二投射区域3120。第一投射区域3110和第二投射区域3120分别发射用于成像的图像光。光程补偿部3200可包括具有不同光程补偿量的第一补偿区域3210和第二补偿区域3220。光程补偿部3200设置在图像光投射板3100发射的图像光的传播路径上。图像光投射板3100的第一投射区域3110和第二投射区域3120发射的图像光分别经过光程补偿部3200的第一补偿区域3210和第二补偿区域3220透射并被光程补偿部3200的不同光程补偿量的补偿区域补偿不同的光程。具体地,第一补偿区域3210和第二补偿区域3220分别与第一投射区域3110和第二投射区域3120相对应。光程补偿部3200可利用其不同补偿区域具有不同的厚度的特性对光程进行调节,从而使得经过光程补偿部3200不同补偿区域透射的图像光具有不同的光程。此外,成像透镜组3300对经过第一补偿区域3210透射的图像光进行成像以透射第一成像光3410。成像透镜组3300还对经过第二补偿区域3220透射的图像光进行成像以透射第二成像光3420。
第一成像光3410能够在距离成像透镜组3300的一定距离内呈现清晰的图像,其中第一成像光3410的最佳成像面3530在与成像透镜组3300相距第一距离3510处。第二成像光3420能够在距离成像透镜组3300的一定距离内呈现清晰的图像,其中第二成像光3420的最佳成像面3540在与成像透镜组3300相距第二距离3520处。图12的多区投影设备3000的成像透镜组3300可以具有大的成像深度。例如,成像透镜组3300的成像深度3600大于第一距离3510和第二距离3520的差值。在这种情况下,第一成像光3410和第二成像光3420可以同时成像在与成像透镜组3300相距第一距离3510与第 二距离3520之间的成像面处。如图12所示,第一成像光3410可以在最佳成像面3530的左右一定范围内呈现清晰的像,该范围在光轴方向上的深度即为成像透镜组3300的成像深度3600。类似地,第二成像光3420可以在最佳成像面3540的左右一定范围内呈现清晰的像,该范围在光轴方向上的深度也是成像透镜组3300的成像深度3600。当成像深度3600较大时,例如,当成像深度3600大于第一距离3510与第二距离3520的差值时,第一成像光3410能够清晰成像的范围与第二成像光3420能够清晰成像的范围会彼此交叠。在交叠区域3610中,第一成像光3410和第二成像光3420均可清晰成像。通过采用这样的具有大成像深度的成像透镜组3300,多区投影设备3000可以在交叠区域3610实现全幅成像。在这种情况下,多区投影设备3000可以最大程度利用图像光投射板3100的像素,实现大画面和高分辨率。
此外,如图12所示的多区投影设备3000还可包括第一匀光元件3710和第二匀光元件3720。第一匀光元件3710可位于与成像透镜组3300相距第一距离3510的最佳成像面3530处。第二匀光元件3720可位于与成像透镜组3300相距第二距离3520的最佳成像面2540处。
与图11所示的多区投影设备2000不同,图12所示的多区投影设备3000还包括棱镜3800。棱镜3800设置在图像光投射板3100与成像透镜组3300之间。由第一投射区域3110和第二投射区域3120发射的图像光经由棱镜3800偏折后出射。本申请提供的多区投影的方案不仅可适用于直射式的PGU,还可适用于棱镜式的PGU。
如图12所示,光程补偿部3200可设置在棱镜3800的出光面与成像透镜组3300之间并且与棱镜3800和成像透镜组3300间隔开。或者,如图13所示,光程补偿部3200还可设置在棱镜3800的入光面与图像光投射板3100之间并且与棱镜3800和图像光投射板3100间隔开。
如图14所示,光程补偿部3200可附着在棱镜3800的出光面上。此外,如上文所述,光程补偿部3200还应设置在图像光投射板3100发射的图像光的传播路径上。例如,光程补偿部3200可覆盖于图像光投射板3100发射的光束的截面。光程补偿部3200可通过胶合与棱镜3800的出光面附着。
如图15所示,光程补偿部3200可附着在棱镜3800的入光面上。此外,如上文所述,光程补偿部3200还应设置在图像光投射板3100发射的图像光的传播路径上。例如,光程补偿部3200可覆盖于图像光投射板3100发射的光束的截面。光程补偿部3200可通过胶合与棱镜3800的入光面附着。
如图16所示,光程补偿部3200可附着在图像光投射板3100上。此外,如上文所述,光程补偿部3200还应设置在图像光投射板3100发射的图像光的传播路径上。例如,光程补偿部3200可覆盖于图像光投射板3100发射的光束的截面。光程补偿部3200可通过胶合与图像光投射板3100附着。
根据本申请实施方式,图像光投射板3100可包括DMD芯片。DMD芯片可包括与第一投射区域3110和第二投射区域3120分别对应的第一有效像素区域和第二有效像素区域。在例如AR-HUD的应用场景中,DMD芯片中的第一有效像素区域可发射用于合成AR图像的图像光,DMD芯片中的第二有效像素区域可发射用于生成状态指示图像的图像光。由于指示信息往往不需要占据过大的显示空间,因此,应用于这种场景下的DMD芯片的第一有效像素区域可大于第二有效像素区域。
另外,DMD芯片中的第一有效像素区域和第二有效像素区域可共同发射用于生成 全画幅图像的图像光,以在不需要分别显示AR图像和状态指示图像等单画幅图像的情况下,能够实现像面较大的全画幅图像。例如,DMD芯片中的第一有效像素区域和第二有效像素区域发射的图像光可以在成像面上连续,从而共同衔接显示同一帧图像。
根据本申请实施方式,全画幅图像的图像光的最佳成像面可位于对应的多个补偿区域补偿后的图像光的最佳成像面之间。为了得到清晰的全画幅图像,成像透镜组的成像深度可以大于上述最佳成像面之间的距离。例如,成像透镜组的成像深度可大于AR图像的最佳成像面与状态指示图像的最佳成像面之间的距离。在这种情况下,可控制DMD芯片的全部有效像素区域协同配合生成与全画幅图像对应的图像光。这样的图像光可清晰地成像在AR图像的最佳成像面和状态指示图像的最佳成像面之间。
适用于本申请的DMD芯片可无需单独设计,而可基于现有DMD芯片的硬件结构来实现。具体地,本申请各实施方式的多区投影设备还可包括用于对DMD芯片的像素进行控制的像素控制器。像素控制器可通过对DMD芯片的像素点的启用或禁用来实现DMD芯片的第一有效像素区域和第二有效像素区域。例如,可以启用第一有效像素,禁用第二有效像素;还可以启用第二有效像素,禁用第一有效像素;也可以同时启用第一有效像素和第二有效像素。
以下参照图17所示的DMD芯片阐释上述像素控制过程。根据诸如车载AR-HUD等多区投影应用的需求,DMD芯片8000可包括与第一投射区域对应的第一有效像素区域8100以及与第二投射区域对应的第二有效像素区域8200。第一有效像素区域8100和第二有效像素区域8200可被控制为发射不同的图像光。例如,第一有效像素区域8100可被控制为发射用于合成AR图像的分画幅图像的图像光。第二有效像素区域8200可被控制为发射用于生成状态指示图像的分画幅图像的图像光。此外,第一有效像素区域8100和第二有效像素区域8200还可被共同控制为发射用于生成全画幅图像的图像光。
可通过程序编码来对DMD芯片8000进行像素控制,使得DMD芯片8000通过软件控制(而非硬件设计)被划分为第一有效像素区域8100和第二有效像素区域8200。例如,可通过编码控制来使第一像素区域的像素点处于启用状态,第二像素区域的像素点处于禁用状态;也可使第二像素区域的像素点处于启用状态,第一像素区域的像素点处于禁用状态;或者,还可以同时使第一像素区域的像素点和第二像素区域的像素点处于启用状态。根据这一技术方案,可以在不改变现有DMD芯片的硬件设计的情况下,利用软件控制来实现图像光投射板的分区投射,从而最终实现多区投影设备。这种设计方案避免了重新开模带来的高昂成本。
与图17所示的DMD芯片8000不同,图18所示的DMD芯片9000可包括三个不同区域大小的有效像素区域。此外,DMD芯片还可包括多个不同区域大小的有效像素区域。由于光程补偿部也可包括多个具有不同光程补偿量的补偿区域,因此光程补偿部的多个不同光程补偿量的补偿区域可以与DMD芯片中的多个不同区域大小的有效像素区域一一对应,以实现多距离多区域成像。
根据本申请实施方式,多区投影设备还可包括设置在第一图像光的最佳成像面处的第一匀光元件以及设置在第二图像光的最佳成像面处的第二匀光元件,利用机械结构控制第一匀光元件或第二匀光单元的开启或者关闭,其中,在第一匀光元件上设置有用于扩散第一成像光的第一微结构单元,并且在第二匀光元件上设置有用于扩散第二成像光的第二微结构单元。微结构单元(Diffuser),具有成像显示作用,可以改变光线的发散角,以提高图像的均匀性和亮度。微结构单元可以是散布于匀光元件上的光散射颗粒, 也可以是在电场等外部激励源的刺激下开启或关闭的电致散射颗粒。在例如AR-HUD的应用场景中,当第一像素区域的像素点处于启用状态,第二像素区域的像素点处于禁用状态,并打开第一微结构单元,关闭第二微结构单元时,即可在第一匀光元件上显示AR图像的画面。当第二像素区域的像素点处于启用状态,第一像素区域的像素点处于禁用状态,并打开第二微结构单元,关闭第一微结构单元时,即可在第二匀光元件上显示状态指示图像的画面。
此外,多区投影设备还可包括设置在距离成像透镜组最近的最佳成像面与距离成像透镜组最远的最佳成像面之间的成像面处的第三匀光元件,其中,在第三匀光元件上设置有用于扩散第三成像光的第三微结构单元。当同时使第一像素区域的像素点和第二像素区域的像素点处于启用状态,并打开第三微结构单元时,即可在第三匀光元件上显示全画幅图像的画面。当DMD芯片中具有多个不同区域大小的有效像素区域时,通过控制不同的有效像素的像素点的启用和禁用,即可在投影设备的不同距离处显示多种不同图像的画面。并且,多种不同距离的成像画面可同时显示,也可通过控制DMD芯片上的不同像素区域的像素点以及对应的成像面的匀光元件进行切换显示。
根据本申请实施方式,多区投影设备还可包括透镜组,透镜组包括多片反射镜。反射镜可以是自由曲面镜或平面镜,并优选自由曲面镜。反射镜可以将成像载体处的图像放大。自由曲面基于安装多区投影设备的机动车的风挡玻璃的形状设计以将第一匀光元件、第二匀光元件和第三匀光元件上成的像反射到风挡玻璃上。以下参照图19以车载AR-HUD的场景为例示出这种方案。
参考图19,多区投影设备10000的基本结构可与以上参照图11描述的多区投影设备2000或以上参照图12描述的多区投影设备3000大致相同。多区投影设备10000的图像光投射板、光程补偿部、成像透镜组概括表述为PGU 11000。PGU 11000发出的第一成像光、第二成像光和第三成像光分别成像在第一匀光元件12000、第二匀光元件13000和第三匀光元件14000上。在例如AR-HUD的应用场景中,PGU 11000发出的用于生成AR图像的成像光成像在第一匀光元件12000上。PGU 11000发出的用于生成指示图像的成像光成像在第二匀光元件13000上。PGU 11000发出的用于生成全画幅图像的成像光成像在第三匀光元件14000上。多区投影设备10000还可包括透镜组。透镜组可以是自由曲面镜组。自由曲面镜组可沿光线传播路线依次包括小自由曲面镜15000和大自由曲面镜16000。小自由曲面镜15000和大自由曲面镜16000的自由曲面基于安装多区投影设备10000的机动车的风挡玻璃的形状进行设计以尽可能地消除或降低各种像差。小自由曲面镜15000和大自由曲面镜16000将第一匀光元件12000、第二匀光元件13000和第三匀光元件14000上所成的像分别反射到风挡玻璃上。由于投射的位置和角度不同并且所投射的像的成像点不同,驾驶员可在不同的图像深度上感知这三个图像。例如,驾驶员可在较远的成像点上感知到对驾驶环境进行深度分析的AR图像17000,而在较近的成像点上感知到显示车辆信息的指示图像18000。当驾驶员不需要观察AR图像17000和车辆信息的指示图像18000时,可在较远的成像点与较近的成像点之间的成像面的成像点上感知到全画幅图像19000。
根据本申请实施方式,光程补偿部3200还可包括至少一个附加补偿区域。光程补偿部3200的不同补偿区域具有不同的厚度。光程补偿部3200的形状也可根据需要进行相应的设计。例如,根据需要可将光程补偿部3200设计成如图20所示的具有三个不同光程补偿量的矩形的光程补偿部3210。根据需要可将光程补偿部3200设计成如图21 所示的具有两个不同光程补偿量的U型槽或凹槽的光程补偿部3220等。
图22是根据本申请另一实施方式的多区投影设备的示意性框图。
多区成像设备20000包括图像光投射板21000、光程补偿部22000和成像透镜组23000。
图像光投射板21000可包括光源和图像光处理芯片(例如,DMD芯片)。图像光投射板21000彼此不重叠的第一投射区域21100和第二投射区域21200。第一投射区域21100和第二投射区域21200分别发射用于成像的图像光。图像光投射板21000可基于数字光信号投射不同的图像光。在一种图像光投射板21000的布局中,第一投射区域21100和第二投射区域21200可通过不发光的区域彼此间隔开一段距离。在另一种图像光投射板21000的布局中,第一投射区域21100和第二投射区域21200可彼此衔接。
光程补偿部22000设置在第二投射区域21200发射的图像光的传播路径上,第二投射区域21200发射的图像光经过光程补偿部22000透射并被光程补偿部22000补偿光程。光程补偿部22000可利用其材质特性对光程进行调节,从而使得经过光程补偿部22000透射的图像光与不经过光程补偿部22000透射的图像光具有不同的光程。这样的光程补偿可以促使不同投射区域发射出来的图像光最终成像在不同距离处。在这种情况下,图像光投射板被分区使用,并且光程补偿部补偿其中一个区域的图像光的光程。
成像透镜组23000对第一投射区域21100发射的图像光进行成像以透射第一成像光24100。此外,成像透镜组23000还对光程补偿部22000透射的图像光进行成像以透射第二成像光24200。成像透镜组23000可包括一系列光学透镜,这些光学透镜根据成像需求而相应设计和排布。
第一成像光24100能够在距离成像透镜组23000的一定距离内呈现清晰的图像,其中第一成像光24100的最佳成像面25300在与成像透镜组23000相距第一距离25100处。第二成像光24200能够在距离成像透镜组23000的一定距离内呈现清晰的图像,其中第二成像光24200的最佳成像面25400在与成像透镜组23000相距第二距离25200处。图22的多区投影设备20000的成像透镜组23000可以具有大的成像深度。例如,成像透镜组23000的成像深度26000大于第一距离25100与第二距离25200的差值。在这种情况下,如图22所示,第一成像光24100可以在最佳成像面25300的左右一定范围内呈现清晰的像,该范围在光轴方向上的深度即为成像透镜组23000的成像深度26000。类似地,第二成像光24200可以在最佳成像面25400的左右一定范围内呈现清晰的像,该范围在光轴方向上的深度也是成像透镜组23000的成像深度26000。当成像深度26000较大时,例如,当成像深度26000大于第一距离25100与第二距离25200的差值时,第一成像光24100能够清晰成像的范围与第二成像光24200能够清晰成像的范围会彼此交叠。在交叠区域26100中,第一成像光24100和第二成像光24200均可清晰成像。通过采用这样的具有大成像深度的成像透镜组23000,多区投影设备20000可以在交叠区域26100处实现全幅成像。在这种情况下,多区投影设备20000可以最大程度利用图像光投射板21000的像素,实现大画面和高分辨率。
此外,如图22所示的多区投影设备20000还可包括第一匀光元件27100和第二匀光元件27200。第一匀光元件27100可位于与成像透镜组23000相距第一距离25100的最佳成像面25300处。第二匀光元件27200可位于与成像透镜组23000相距第二距离25200的最佳成像面25400处。
根据本申请实施方式,在图22所示的多区投影设备中,光程补偿部22000设置位 置可以和如前述的光程补偿部3200的设置位置相同。
根据本申请实施方式,图22所示的多区投影设备还可包括棱镜28000,棱镜28000可以与前述的棱镜3800的功能和作用均相同。虽然图22以具有棱镜28000的方式示出了多区投影设备,但参照图10,多区投影设备也可不包含该棱镜。
图23是根据本申请实施方式的多区投影方法的流程图。
多区投影方法30000可包括:在操作S31000,使用图像光投射板的的第一投射区域和第二投射区域分别发射用于成像的图像光;在操作S32000,利用设置在图像光的传播路径上的具有分别与第一投射区域和第二投射区域相对应的具有不同光程补偿量的第一补偿区域和第二补偿区域的光程补偿部补偿第一补偿区域和第二补偿区域发射的图像光的光程;以及在操作S33000,利用成像透镜组对经过第一补偿区域透射的图像光进行成像以透射第一成像光,并且对经过第二补偿区域透射的图像光进行成像以透射第二成像光,第一成像光和第二成像光具有不同的最佳成像面。
根据本申请实施方式,所述第一成像光的最佳成像面在与所述成像透镜组相距第一距离处,所述第二成像光的最佳成像面在与所述成像透镜组相距第二距离处,成像透镜组的成像深度大于第一距离与第二距离的差值。
根据本申请实施方式,方法还可包括利用设置在图像光投射板与成像透镜组之间的棱镜偏折由第一投射区域和第二投射区域发射的图像光。
根据本申请实施方式,成像方法还可包括:利用与第一投射区域对应的第一有效像素区域发射用于合成AR图像的图像光;以及利用与第二投射区域对应的第二有效像素区域发射用于生成状态指示图像的图像光。
根据本申请实施方式,使用图像光投射板的第一投射区域和第二投射区域分别发射用于成像的图像光可包括:通过启用图像光投射板的DMD芯片的第一有效像素区域和第二有效像素区域的像素点来控制图像光投射板的第一投射区域和第二投射区域分别发射用于成像的图像光。
根据本申请实施方式,多区投影方法还可包括:利用多片反射镜将第一成像光和第二成像光反射到成像位置处。
上文主要以车载HUD为例阐述了根据本申请实施方式的多区域图像设备和方法。然而,本领域技术人员可知,在不背离本申请所教导的技术构思的前提下,还可将上述方案应用于多种成像场景中,例如,可将多成像距离共同成像还可应用于智能大灯、投影仪和激光电视等领域。
以上描述仅为本申请的实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的保护范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述技术构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (46)

  1. 一种多区成像设备,其特征在于,所述多区成像设备包括:
    图像光投射板,所述图像光投射板包括彼此不重叠的第一区域和第二区域,所述第一区域和所述第二区域发射用于成像的图像光;
    光程补偿部,所述光程补偿部设置在所述第二区域发射的图像光的传播路径上,所述第二区域发射的图像光经过所述光程补偿部透射并被补偿光程;
    成像透镜组,所述成像透镜组对所述第一区域发射的图像光进行成像以透射第一成像光,并且对所述光程补偿部透射的图像光进行成像以透射第二成像光,所述第一成像光和所述第二成像光具有不同的成像面。
  2. 根据权利要求1所述的多区成像设备,其特征在于,所述多区成像设备还包括棱镜,所述棱镜设置在所述图像光投射板与所述成像透镜组之间,由所述第一区域和所述第二区域发射的图像光经由所述棱镜偏折后出射。
  3. 根据权利要求1所述的多区成像设备,其特征在于,所述光程补偿部设置在所述图像光投射板与所述成像透镜组之间。
  4. 根据权利要求2所述的多区成像设备,其特征在于,所述光程补偿部设置在所述棱镜的入光面与所述图像光投射板之间并且与所述棱镜和所述图像光投射板间隔开。
  5. 根据权利要求2所述的多区成像设备,其特征在于,所述光程补偿部设置在所述棱镜的出光面与所述成像透镜组之间并且与所述棱镜和所述成像透镜组间隔开。
  6. 根据权利要求2所述的多区成像设备,其特征在于,所述光程补偿部附着在所述棱镜的入光面或出光面上。
  7. 根据权利要求1或2所述的多区成像设备,其特征在于,所述图像光投射板还包括与所述第一区域和所述第二区域不同的至少一个图像光区域,所述至少一个图像光区域发射用于成像的图像光;
    所述成像透镜组对所述至少一个图像光区域发射的图像光进行成像以透射第三成像光。
  8. 根据权利要求2所述的多区成像设备,其特征在于,所述光程补偿部与所述棱镜的入光面或出光面一体成型。
  9. 根据权利要求1至8任一所述的权利要求所述的多区成像设备,其特征在于,所述光程补偿部附着在所述图像光投射板上。
  10. 根据权利要求1至9任一所述的权利要求所述的多区成像设备,其特征在于,所述图像光投射板包括DMD芯片,所述DMD芯片包括与所述第一区域和所述第二区 域对应的有效像素区域。
  11. 根据权利要求10所述的多区成像设备,其特征在于,与所述第一区域对应的有效像素区域发射用于合成AR图像的图像光,并且与所述第二区域对应的有效像素区域发射用于生成状态指示图像的图像光。
  12. 根据权利要求11所述的多区成像设备,其特征在于,与所述第一区域对应的有效像素区域大于与所述第二区域对应的有效像素区域。
  13. 根据权利要求10所述的多区成像设备,其特征在于,所述DMD芯片包括被禁用的非有效像素区域,所述非有效像素区域将与所述第一区域对应的有效像素区域和与所述第二区域对应的有效像素区域间隔开。
  14. 根据权利要求13所述的多区成像设备,其特征在于,所述多区成像设备还包括像素控制器,所述像素控制器通过对所述DMD芯片的像素点的启用或禁用来实现所述DMD芯片的有效像素区域和非有效像素区域。
  15. 根据权利要求1或2所述的多区成像设备,其特征在于,所述光程补偿部包括平板玻璃、补偿透镜或光学透镜组。
  16. 根据权利要求10所述的多区成像设备,其特征在于,所述多区成像设备还包括自由曲面镜组,所述自由曲面镜组包括多片具有自由曲面的反射镜,所述自由曲面基于安装所述多区成像设备的交通工具的风挡玻璃的形状设计以将所述第一成像面和所述第二成像面上成的像反射到所述风挡玻璃上。
  17. 一种多区成像方法,其特征在于,所述多区成像方法包括:
    使用图像光投射板的彼此不重叠的第一区域和第二区域分别发射用于成像的图像光;
    利用设置在所述第二区域发射的图像光的传播路径上的光程补偿部补偿所述第二区域发射的图像光的光程;以及
    利用成像透镜组对所述第一区域发射的图像光进行成像以透射第一成像光,并且对所述光程补偿部透射的图像光进行成像以透射第二成像光,所述第一成像光和所述第二成像光具有不同的成像面。
  18. 根据权利要求17所述的多区成像方法,其特征在于,所述方法还包括利用设置在所述图像光投射板与所述成像透镜组之间的棱镜偏折由所述第一区域和所述第二区域发射的图像。
  19. 根据权利要求17或18所述的多区成像方法,其特征在于,所述成像方法还包括:
    利用与所述第一区域对应的有效像素区域发射用于合成AR图像的图像光;以及
    利用与所述第二区域对应的有效像素区域发射用于生成状态指示图像的图像光。
  20. 根据权利要求17或18所述的多区成像方法,其特征在于,使用图像光投射板的彼此不重叠的第一区域和第二区域分别发射用于成像的图像光包括:
    通过启用所述图像光投射板的DMD芯片的不同区域的像素点来使用所述图像光投射板的彼此不重叠的第一区域和第二区域分别发射用于成像的图像光。
  21. 根据权利要求17至20任一权利要求所述的多区成像方法,其特征在于,所述多区成像方法还包括:
    利用基于交通工具的风挡玻璃的形状设计的自由曲面镜组将所述第一成像面和所述第二成像面上成的像反射到所述风挡玻璃上。
  22. 一种多区投影设备,其特征在于,所述多区投影设备包括:
    图像光投射板,所述图像光投射板包括第一投射区域和第二投射区域,所述第一投射区域和所述第二投射区域发射用于成像的图像光;
    光程补偿部,所述光程补偿部设置在所述图像光的传播路径上,所述光程补偿部包括具有不同光程补偿量的第一补偿区域和第二补偿区域,所述第一补偿区域和所述第二补偿区域分别与所述第一投射区域和所述第二投射区域相对应;
    成像透镜组,所述成像透镜组对经过所述第一补偿区域透射的图像光进行成像以透射第一成像光,并且对经过所述第二补偿区域透射的图像光进行成像以透射第二成像光。
  23. 根据权利要求22所述的多区投影设备,其特征在于,所述第一成像光的最佳成像面在与所述成像透镜组相距第一距离处,所述第二成像光的最佳成像面在与所述成像透镜组相距第二距离处,并且所述成像透镜组的成像深度大于所述第一距离与所述第二距离的差值的绝对值。
  24. 根据权利要求22或23所述的多区投影设备,其特征在于,所述多区投影设备还包括棱镜,所述棱镜设置在所述图像光投射板与所述成像透镜组之间,由所述第一投射区域和所述第二投射区域发射的图像光经由所述棱镜偏折后出射。
  25. 根据权利要求22-24中任一项所述的多区投影设备,其特征在于,所述光程补偿部还包括至少一个附加补偿区域,所述图像光投射板还包括至少一个附加投射区域,所述附加补偿区域与所述附加投射区域相对应。
  26. 根据权利要求24所述的多区投影设备,其特征在于,所述光程补偿部附着在所述棱镜的入光面或出光面上。
  27. 根据权利要求24所述的多区投影设备,其特征在于,所述光程补偿部设置在所述棱镜的入光面与所述图像光投射板之间并且与所述棱镜和所述图像光投射板间隔开。
  28. 根据权利要求24所述的多区投影设备,其特征在于,所述光程补偿部设置在所述棱镜的出光面与所述成像透镜组之间并且与所述棱镜和所述成像透镜组间隔开。
  29. 根据权利要求24所述的多区投影设备,其特征在于,所述光程补偿部与所述棱镜的入光面或出光面一体成型。
  30. 根据权利要求22-24中任一项所述的多区投影设备,其特征在于,所述光程补偿部附着在所述图像光投射板上。
  31. 根据权利要求22-24中任一项所述的多区投影设备,其特征在于,所述图像光投射板包括DMD芯片,所述DMD芯片包括与所述第一投射区域对应的第一有效像素区域以及与所述第二投射区域对应的第二有效像素区域。
  32. 根据权利要求31所述的多区投影设备,其特征在于,所述第一有效像素区域发射用于合成AR图像的图像光,所述第二有效像素区域发射用于生成状态指示图像的图像光。
  33. 根据权利要求31所述的多区投影设备,其特征在于,所述第一有效像素区域和所述第二有效像素区域共同发射用于生成全画幅图像的图像光。
  34. 根据权利要求32所述的多区投影设备,其特征在于,所述多区投影设备还包括像素控制器,所述像素控制器通过对所述DMD芯片的像素点的启用和禁用来控制所述DMD芯片的第一有效像素区域和第二有效像素区域发射图像光。
  35. 根据权利要求22-24中任一项所述的多区投影设备,其特征在于,所述多区投影设备还包括设置在所述第一距离处的第一匀光元件以及设置在所述第二距离处的第二匀光元件。
  36. 根据权利要求22-24中任一项所述的多区投影设备,其特征在于,所述多区投影设备还包括多片反射镜,所述反射镜用于将所述第一成像光和所述第二成像光反射到成像位置处。
  37. 一种多区投影设备,其特征在于,所述多区投影设备包括:
    图像光投射板,所述图像光投射板包括第一投射区域和第二投射区域,所述第一投射区域和所述第二投射区域发射用于成像的图像光;
    光程补偿部,所述光程补偿部设置在所述第二投射区域发射的图像光的传播路径上,所述第二投射区域发射的图像光经过所述光程补偿部透射并被补偿光程;
    成像透镜组,所述成像透镜组对经过所述第一投射区域投射的图像光进行成像以透射第一成像光,并且对经过所述第二补偿区域透射的图像光进行成像以透射第二成像光;
    所述第一成像光的最佳成像面在与所述成像透镜组相距第一距离处,所述第二成像 光的最佳成像面在与所述成像透镜组相距第二距离处,并且所述成像透镜组的成像深度大于所述第一距离与所述第二距离的差值。
  38. 根据权利要求37所述的多区投影设备,其特征在于,所述多区投影设备还包括棱镜,所述棱镜设置在所述图像光投射板与所述成像透镜组之间,由所述第一投射区域和所述第二投射区域发射的图像光经由所述棱镜偏折后出射。
  39. 根据权利要求37或38所述的多区投影设备,其特征在于,所述光程补偿部还包括至少一个附加补偿区域,所述图像光投射板还包括至少一个附加投射区域,所述附加补偿区域与所述附加投射区域相对应。
  40. 根据权利要求39所述的多区投影设备,其特征在于,所述多区投影设备还包括设置在所述第一距离处的第一匀光元件以及设置在所述第二距离处的第二匀光元件。
  41. 一种多区投影方法,其特征在于,所述多区投影方法包括:
    使用图像光投射板的第一投射区域和第二投射区域分别发射用于成像的图像光;
    利用设置在所述图像光的传播路径上的光程补偿部补偿所述第一投射区域和所述第二投射区域发射的图像光的光程,所述光程补偿部具有分别与所述第一投射区域和所述第二投射区域相对应的、具有不同光程补偿量的第一补偿区域和第二补偿区域;以及
    利用成像透镜组对经过所述第一补偿区域透射的图像光进行成像以透射第一成像光,并且对经过所述第二补偿区域透射的图像光进行成像以透射第二成像光,所述第一成像光和所述第二成像光具有不同的最佳成像面。
  42. 根据权利要求41所述的多区投影方法,其特征在于,所述第一成像光的最佳成像面在与所述成像透镜组相距第一距离处,所述第二成像光的最佳成像面在与所述成像透镜组相距第二距离处,所述成像透镜组的成像深度大于所述第一距离与所述第二距离的差值的绝对值。
  43. 根据权利要求41或42所述的多区投影方法,其特征在于,所述方法还包括利用设置在所述图像光投射板与所述成像透镜组之间的棱镜偏折由所述第一投射区域和所述第二投射区域发射的图像光。
  44. 根据权利要求41-43中任一项所述的多区投影方法,其特征在于,所述成像方法还包括:
    利用与所述第一投射区域对应的第一有效像素区域发射用于合成AR图像的图像光;以及
    利用与所述第二投射区域对应的第二有效像素区域发射用于生成状态指示图像的图像光。
  45. 根据权利要求41-44中任一项所述的多区投影方法,其特征在于,使用所述图像光投射板的所述第一投射区域和所述第二投射区域分别发射用于成像的图像光包括:
    通过启用所述图像光投射板的DMD芯片的第一有效像素区域和第二有效像素区域的像素点来控制所述图像光投射板的所述第一投射区域和所述第二投射区域分别发射用于成像的图像光。
  46. 根据权利要求41-45中任一项所述的多区投影方法,其特征在于,所述多区投影方法还包括:
    利用多片反射镜将所述第一成像光和所述第二成像光反射到成像位置处。
PCT/CN2020/086083 2019-10-10 2020-04-22 多区成像设备和方法 WO2021068480A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/716,578 US20220252878A1 (en) 2019-10-10 2022-04-08 Multi-region imaging device and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910958039.7A CN110764339A (zh) 2019-10-10 2019-10-10 多区成像设备和方法
CN201910958039.7 2019-10-10
CN201911375388.2 2019-12-27
CN201911375388.2A CN111064941B (zh) 2019-12-27 2019-12-27 多区投影设备及多区投影方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/716,578 Continuation US20220252878A1 (en) 2019-10-10 2022-04-08 Multi-region imaging device and method

Publications (1)

Publication Number Publication Date
WO2021068480A1 true WO2021068480A1 (zh) 2021-04-15

Family

ID=75437798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086083 WO2021068480A1 (zh) 2019-10-10 2020-04-22 多区成像设备和方法

Country Status (2)

Country Link
US (1) US20220252878A1 (zh)
WO (1) WO2021068480A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206057682U (zh) * 2016-08-19 2017-03-29 京东方科技集团股份有限公司 一种平视显示装置
CN207557584U (zh) * 2017-11-22 2018-06-29 苏州车萝卜汽车电子科技有限公司 增强现实抬头显示装置
CN109891300A (zh) * 2016-12-19 2019-06-14 麦克赛尔株式会社 平视显示器装置
US20190187475A1 (en) * 2017-12-19 2019-06-20 Panasonic Automotive Systems Company Of America, Division Of Panasonic Corporation Of North America Multi-image head up display (hud)
CN109932819A (zh) * 2017-12-18 2019-06-25 深圳点石创新科技有限公司 抬头显示器
CN110764339A (zh) * 2019-10-10 2020-02-07 宁波舜宇车载光学技术有限公司 多区成像设备和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201415632D0 (en) * 2014-09-04 2014-10-22 Bae Systems Plc Improvements in and relating to displays
JP6749334B2 (ja) * 2015-10-09 2020-09-02 マクセル株式会社 投影光学系及びヘッドアップディスプレイ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206057682U (zh) * 2016-08-19 2017-03-29 京东方科技集团股份有限公司 一种平视显示装置
CN109891300A (zh) * 2016-12-19 2019-06-14 麦克赛尔株式会社 平视显示器装置
CN207557584U (zh) * 2017-11-22 2018-06-29 苏州车萝卜汽车电子科技有限公司 增强现实抬头显示装置
CN109932819A (zh) * 2017-12-18 2019-06-25 深圳点石创新科技有限公司 抬头显示器
US20190187475A1 (en) * 2017-12-19 2019-06-20 Panasonic Automotive Systems Company Of America, Division Of Panasonic Corporation Of North America Multi-image head up display (hud)
CN110764339A (zh) * 2019-10-10 2020-02-07 宁波舜宇车载光学技术有限公司 多区成像设备和方法

Also Published As

Publication number Publication date
US20220252878A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
US10859826B2 (en) Head-up display device
JP3733852B2 (ja) 表示装置
CA2702064C (en) Pupil scan apparatus
US20170115553A1 (en) Scanning projector transmissive screen, and scanning projector system
US10634909B2 (en) Display device and head-up display
CN104554004A (zh) 一种抬头数字显示系统
KR20080048408A (ko) 프로젝터
CN109073887A (zh) 信息显示装置
WO2018061444A1 (ja) 反射板、情報表示装置および移動体
WO2015068337A1 (ja) ヘッドアップディスプレイ装置
EP3415973B1 (en) Display device and head-up display
WO2018225309A1 (ja) 虚像表示装置、中間像形成部および画像表示光生成ユニット
US20200159020A1 (en) Optical Systems For Electronic Devices With Displays
WO2021228061A1 (zh) 一种抬头显示系统和基于抬头显示系统的图像显示方法
JP2004126226A (ja) ヘッドアップディスプレイ
WO2019003514A1 (ja) 虚像表示装置
CN110764339A (zh) 多区成像设备和方法
CN111064941B (zh) 多区投影设备及多区投影方法
WO2017188008A1 (ja) 表示装置
WO2022143294A1 (zh) 一种hud系统及车辆
JP2002209162A (ja) 投影装置
WO2021258960A1 (zh) 基于四维光场的显示系统及其显示方法
EP3677947A1 (en) Headup display device
CN108351521A (zh) 紧凑的平视显示器
WO2021068480A1 (zh) 多区成像设备和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20874636

Country of ref document: EP

Kind code of ref document: A1