WO2021068442A1 - 低损耗馈电网络和高效率天线设备 - Google Patents

低损耗馈电网络和高效率天线设备 Download PDF

Info

Publication number
WO2021068442A1
WO2021068442A1 PCT/CN2020/075448 CN2020075448W WO2021068442A1 WO 2021068442 A1 WO2021068442 A1 WO 2021068442A1 CN 2020075448 W CN2020075448 W CN 2020075448W WO 2021068442 A1 WO2021068442 A1 WO 2021068442A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
waveguide
loss
energy
parallel
Prior art date
Application number
PCT/CN2020/075448
Other languages
English (en)
French (fr)
Inventor
郝张成
吴逸文
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/257,271 priority Critical patent/US11456541B2/en
Publication of WO2021068442A1 publication Critical patent/WO2021068442A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • H01Q21/005Slotted waveguides arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path

Definitions

  • the present invention relates to the field of communication technology, in particular to a low-loss feeder network and high-efficiency antenna equipment.
  • millimeter wave wireless applications Due to the advantages of wide frequency spectrum, low absorption rate and high spatial resolution, millimeter wave wireless applications have received extensive attention in high-resolution passive imaging systems, high-precision radars, high-speed communication systems, and point-to-point data transmission. Among them, high gain Antennas play a key role in millimeter wave wireless systems.
  • Traditional low-frequency and high-gain antennas mainly include reflector antennas, horn antennas, metal waveguide antennas and microstrip patch antennas.
  • traditional reflector antennas, horn antennas, and metal waveguide slot antennas have disadvantages such as high cost, bulky size, and low integration, which limit their commercial applications.
  • Traditional microstrip antennas have severe insertion loss at high frequencies, and severe radiation will be generated at discontinuous structures, which leads to low efficiency, low gain and high lobe levels of the antenna.
  • Substrate Integrated Waveguide (SIW) technology combines the advantages of metal waveguides and microstrip lines: low cost, low loss and easy integration.
  • SIW Substrate Integrated Waveguide
  • Many slot antenna arrays based on substrate-integrated waveguide technology have shown the potential to design high-gain antennas.
  • there are very few high-efficiency antenna devices that have a gain of 30dBi in the W-band.
  • Traditional related high-gain antennas have a problem of high damage and easily affect the corresponding gain.
  • the present invention proposes a low-loss feeder network and a high-efficiency antenna device.
  • a low-loss feed network which includes: a vertical switching structure, a substrate integrated waveguide, a 2 N- way power splitter, a coupling slot, a matching metal via and a parallel waveguide;
  • the energy provided by the standard waveguide is coupled to the substrate integrated waveguide through the vertical switching structure; the energy output by the substrate integrated waveguide is equally divided into 1/2 N through the 2 N- way power divider; 2 Each channel of energy output by the N- channel power divider is coupled to the two parallel waveguides through the coupling gap and the matching metal through hole.
  • each slot of the coupling slot excites two paths of energy, and the excited two paths of energy are transmitted to the parallel waveguide; the electric fields of the two adjacent paths of the parallel waveguide are equal in amplitude and opposite in phase.
  • the electric field at the junction of two adjacent parallel waveguides is zero.
  • a high-efficiency antenna device comprising: a slot antenna array and the low-loss feeder network according to any one of the above embodiments; the electric fields of parallel waveguides in the low-loss feeder network are equal in amplitude and opposite in phase; and the parallel waveguides The energy of the medium antiphase electric field is radiated in phase through the slot antenna array.
  • the slot antenna array is a symmetrical slot antenna array.
  • the low-loss feed network is arranged on the lower layer of the slot antenna array.
  • the feed provided by the standard waveguide is coupled to the substrate integrated waveguide through a vertical switching structure, and the energy output by the substrate integrated waveguide is equally divided into 1 through 2 N power dividers /2 N (2 N channels); each channel of energy output by the 2 N channel power divider is coupled to the parallel waveguide through the coupling gap and the matching metal through hole.
  • the electric field at the junction of two adjacent parallel waveguides Zero can form an ideal artificial electric wall, simplify the structure of the feed network, at the same time reduce the metal loss at the place, can maintain the gain of the corresponding antenna equipment; finally, the energy provided by the low-loss feed network is symmetrical
  • the slot antenna array radiates in phase.
  • Fig. 1 is a schematic diagram of a low-loss feeder network structure according to an embodiment
  • Fig. 2 is a schematic structural diagram of a high-efficiency antenna device according to an embodiment
  • FIG. 3 is a schematic diagram of a slot array structure of a high-efficiency antenna device according to an embodiment
  • Fig. 4 shows the return loss obtained by antenna simulation and testing of an embodiment
  • Fig. 5 is a schematic diagram of gain, radiation and aperture efficiency obtained by antenna simulation and testing of an embodiment
  • Fig. 6 is a radiation pattern obtained by simulation and testing of an antenna according to an embodiment.
  • Figure 1 is a schematic diagram of a low-loss feeder network structure according to an embodiment.
  • Figure 1 shows a block diagram of the low-loss feeder network as well as the various parts of the low-loss feeder network. Positional relationship.
  • the above-mentioned low-loss feed network includes: vertical switching structure 1, substrate integrated waveguide 2, 2 N- way power splitter 3, coupling slot 4, matching metal via 5 and parallel waveguide 6; standard waveguide energy provided through said vertical transfer structure 1 is coupled to the substrate integrated waveguide 2; 2 of the substrate integrated waveguide output through the 2 N-way power splitters 3 equally divided into 1/2 N ( 2 N channels); each channel of energy output by the 2 N power divider is coupled to the parallel waveguide 6 through the coupling slot 4 and the matching metal via 5.
  • the energy provided by the standard waveguide is coupled to the substrate integrated waveguide 2 through the vertical switching structure 1 (WG-to-SIW), and then passes through the 2 N- way power divider 3 to divide the energy equally into 1/2 N. 2
  • Each channel of energy output by the N- channel power divider passes through the coupling gap 4 and the matching metal through hole 5 to couple the energy to the parallel waveguide 6 of the upper layer, forming a feed with equal amplitude and opposite phase, which excites the two parallel waveguides.
  • the electric field at the junction of two adjacent parallel waveguides is zero, which can form an ideal artificial electric wall, so the metal wall here can be omitted, thus simplifying the structure of the feed network and reducing the metal loss there. .
  • the energy input by the low-loss feed network can be radiated through the upper slot antenna array.
  • the slot antenna array on the upper layer can also adopt a constant-amplitude and antiphase feed with center excitation.
  • the slot antenna array is designed symmetrically with respect to the artificial electric wall, thereby ensuring the in-phase radiation of the slot antenna array.
  • the feed provided by the standard waveguide is coupled to the substrate integrated waveguide 2 through the vertical switching structure 1, and the energy output by the substrate integrated waveguide 2 is equally divided into 1/ by the 2 N-way power divider 3 2 N (2 N channels); each channel of energy output by the 2 N channel power divider 3 is coupled to the two parallel waveguides 6 through the coupling gap 4 and the matching metal via 5, and the junction of two adjacent parallel waveguides 6
  • the electric field is zero, an ideal artificial electric wall can be formed, which simplifies the structure of the feed network and reduces the metal loss there.
  • the energy provided by the low-loss feed network is radiated in phase through the symmetrical slot antenna array.
  • each slot of the coupling slot excites two paths of energy, and the excited two paths of energy are transmitted to the parallel waveguide; the electric fields of the two adjacent paths of the parallel waveguide are equal in amplitude and opposite in phase.
  • the electric field at the junction of two adjacent parallel waveguides is zero.
  • a high-efficiency antenna device including: a slot antenna array and the low-loss feed network described in any of the above embodiments; the electric field amplitudes of the parallel waveguides in the low-loss feed network are equal, The phase is opposite; the energy of the medium amplitude and antiphase electric field of the parallel waveguide is radiated in phase through the slot antenna array.
  • the electric field of the parallel waveguides in the low-loss feed network is equal in amplitude and opposite in phase, and the electric field at the boundary of adjacent parallel waveguides is zero, which is equivalent to an artificial electric wall;
  • the slot antenna array is symmetrically designed with respect to the artificial electric wall to ensure the gap The array can be stimulated by the same phase.
  • the slot antenna array is a symmetrical slot antenna array.
  • the low-loss feed network is arranged on the lower layer of the slot antenna array.
  • the feed provided by the standard waveguide passes through a vertical switching structure (WG-to-SIW) to couple the energy to the substrate integrated waveguide, and then passes through a 2 N- way power divider to divide the energy into equal parts 1/2 N.
  • WG-to-SIW vertical switching structure
  • Each of the power dividers couples energy to the upper layer of parallel waveguides through the coupling gap and the matching metal through hole to form feeds with equal amplitude and opposite phase, which excites two parallel waveguides.
  • the matching metal via is used to ensure a good match between the coupling slot and the parallel waveguide.
  • the parallel waveguide adopts the same amplitude and antiphase feeding, the electric field at the junction of two adjacent parallel waveguides is zero, forming an ideal artificial electric wall, so the metal wall here can be omitted, thereby simplifying the feeding network Structure, while reducing the metal loss there.
  • the low-loss feed network can excite 2 N+1 parallel waveguides to ensure that energy is radiated in phase through the slot antenna array. Since the slot antenna array adopts a constant-amplitude and antiphase feed with center excitation, the slot antenna array is designed symmetrically with respect to the artificial electric wall, thereby ensuring the in-phase radiation of the slot antenna array.
  • the low-loss feed network is located on the lower layer, and the symmetrical slot antenna array is located on the upper layer.
  • the coupling slot is located in the upper metal layer of the 2N power splitter and the lower metal layer of the parallel waveguide, the matching metal via is located in the dielectric layer of the parallel waveguide, and the slot array is located in the upper metal layer of the parallel waveguide.
  • the entire high-efficiency antenna device includes metalized vias and metal layers.
  • the entire structure can be completed by traditional LTCC or PCB technology; the antenna uses constant amplitude and inverted excitation, and there is no traditional metalized via between adjacent parallel waveguides.
  • the multi-channel slot array is excited; the antenna slot array is designed symmetrically, with higher gain and efficiency at high frequencies, symmetrical pattern, and lower cross-polarization.
  • the above-mentioned high-efficiency antenna device can be referred to as shown in Fig. 2, which includes a low-loss feeder network 81 and a symmetrical slot antenna array 82.
  • Fig. 2 also shows an artificial electric wall 7, a vertical switching structure ( WG-to-SIW)1, substrate integrated waveguide 2, 2 N- way power divider 3, coupling slot 4, matching metal via 5 and parallel waveguide 6.
  • WG-to-SIW vertical switching structure
  • the feed provided by the standard waveguide passes through the vertical switching structure to couple the energy to the substrate integrated waveguide, and then passes through the 2 N- way power divider 3 to divide the energy into 1/2 N equally.
  • Each power divider couples energy to the upper layer parallel waveguide 6 through the coupling gap 4 and the matching metal through hole 5 to form feeds of equal amplitude and opposite phase, and excite the two parallel waveguides.
  • the matching metal via 5 is used to ensure a good matching between the coupling slot 4 and the parallel waveguide 6. Since the parallel waveguide adopts equal amplitude and antiphase feeding, the electric field at the junction of two adjacent parallel waveguides is zero, forming an ideal artificial electric wall 7, so the metal wall here can be omitted, thereby simplifying the feeding network The structure, while reducing the metal loss. Finally, the low-loss feed network can excite 2 N+1 parallel waveguides to ensure that energy is radiated in phase through the slot antenna array. As shown in FIG. 3, since the slot antenna array 82 adopts a constant amplitude and antiphase feed with center excitation, the slot antenna array 82 is symmetrically arranged with respect to the ideal artificial electric wall 7, thereby ensuring the in-phase radiation of the slot antenna array.
  • the high-efficiency antenna device includes a low-loss feed network 81 and a symmetrical slot antenna array 82 that are sequentially arranged from bottom to top.
  • the low-loss feed network 81 located below includes a vertical conversion structure (WG-to-SIW) 1, a substrate integrated waveguide 2, 2 N- way power splitters 3, a coupling slot 4, a matching metal via 5 and a parallel waveguide 6 .
  • the coupling slot 4 is located in the upper metal layer of the 2N- way power splitter 3 and the lower metal layer of the parallel waveguide 6.
  • the matching metal via 5 is located on the dielectric layer of the parallel waveguide 6, and the slot array 82 is located on the upper metal layer of the parallel waveguide 6, and the symmetrical design ensures the in-phase radiation of the antenna and the symmetry of the pattern.
  • this example uses PCB technology to make a high-efficiency, high-gain antenna, and conduct related tests:
  • Figure 4 shows the return loss obtained from antenna simulation and testing;
  • Figure 5 shows the gain, radiation, and aperture efficiency obtained from antenna simulation and testing;
  • Fig. 6 is the normalized pattern of E-plane and H-plane of high-gain antenna simulation and test at 91.6GHz, 92.6GHz and 93.6GHz; the test shows that the high-efficiency antenna device has higher radiation efficiency and higher gain.
  • the antenna of this kind of structure can be applied in high frequency, even in the terahertz frequency band, can have higher gain and radiation efficiency at the same time.
  • Substrate Integrated Waveguide (SIW) technology combines the advantages of metal waveguides and microstrip lines: low cost, low loss and easy integration.
  • the antenna adopts a low-loss feed network with constant amplitude and anti-phase excitation, which can remove the metal wall of the traditional substrate integrated waveguide, thereby simplifying the structure of the feed network, reducing the insertion loss, and ensuring the gain and efficiency of the high-frequency millimeter wave antenna.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明公开了一种低损耗馈电网络和高效率天线设备。其中,低损耗馈电网络,包括:垂直转接结构、基片集成波导、2 N路功分器、耦合缝隙、匹配金属通孔和平行波导;标准波导提供的能量经过上述垂直转接结构,耦合到基片集成波导,基片集成波导输出的能量经过2N路功分器等分为1/2 N;2N路功分器输出的每一路能量经过所述耦合缝隙和所述匹配金属通孔耦合到平行波导,相邻两路平行波导的交界处电场为零,可以形成一个理想的人工电壁,简化了馈电网络的结构,同时减少了该处的金属损耗;最终,该低损耗馈电网络提供的能量通过对称的缝隙天线阵同相辐射。

Description

低损耗馈电网络和高效率天线设备 技术领域
本发明涉及通信技术领域,尤其涉及一种低损耗馈电网络和高效率天线设备。
背景技术
由于宽频谱、低吸收率和高空间分辨率等优势,毫米波无线应用在高分辨率无源成像系统、高精度雷达、高速通讯系统和点对点数据传输等领域得到了广泛的关注,其中高增益天线在毫米波无线系统中起着关键作用。传统的低频高增益天线主要有反射面天线、喇叭天线、金属波导天线和微带贴片天线等。然而传统反射面天线、喇叭天线和金属波导缝隙天线有造价高,体积庞大,集成度低等缺点,限制了其商业应用。传统微带天线在高频处有严重的插入损耗,而且在不连续结构处会产生严重的辐射,这导致了天线的低效率,低增益和较高的幅瓣电平。
基片集成波导(SIW)技术结合了金属波导和微带线的优点:低造价,低损耗和易集成。许多基于基片集成波导技术的缝隙天线阵列展现出设计高增益天线的潜力。然而很少有高效率天线设备在W波段的增益达到30dBi,传统的相关高增益天线存在损坏高的问题,容易影响相应增益。
发明内容
针对以上问题,本发明提出一种低损耗馈电网络和高效率天线设备。
为实现本发明的目的,提供一种低损耗馈电网络,包括:垂直转接结构、基片集成波导、2 N路功分器、耦合缝隙、匹配金属通孔和平行波导;
标准波导提供的能量经过所述垂直转接结构,耦合到所述基片集成波导;所述基片集成波导输出的能量经过所述2 N路功分器等分为1/2 N;所述2 N路功分器输出的每一路能量经过所述耦合缝隙和匹配金属通孔耦合到两路平行波导。
在一个实施例中,所述耦合缝隙的每一个缝隙激励起两路能量,激励的两路能量传输至所述平行波导;所述平行波导相邻两路的电场幅度相等、相位相反。
在一个实施例中,所述平行波导相邻两路的交界处电场为零。
一种高效率天线设备,包括:缝隙天线阵、以及上述任一实施例所述的低损耗馈电网络;所述低损耗馈电网络中平行波导的电场幅度相等、相位相反;所述平行波导中等 幅反相电场的能量通过缝隙天线阵同相辐射。
在一个实施例中,所述缝隙天线阵为对称的缝隙天线阵。
在一个实施例中,所述低损耗馈电网络设置在所述缝隙天线阵的下层。
上述低损耗馈电网络和高效率天线设备中,标准波导提供的馈电经过垂直转接结构,耦合到基片集成波导,基片集成波导输出的能量经过2 N路功分器等分为1/2 N(2 N路);2 N路功分器输出的每一路能量经过所述耦合缝隙和匹配金属通孔耦合到平行波导,在平行波导中,相邻两路平行波导的交界处电场为零,可以形成一个理想的人工电壁,简化了馈电网络的结构,同时减少了该处的金属损耗,可以保持相应天线设备的增益;最终,该低损耗馈电网络提供的能量通过对称的缝隙天线阵同相辐射。
附图说明
图1是一个实施例的低损耗馈电网络结构示意图;
图2是一个实施例的高效率天线设备结构示意图;
图3是一个实施例的高效率天线设备的缝隙阵结构示意图;
图4为一个实施例的天线仿真和测试得到的回波损耗;
图5为一个实施例的天线仿真和测试得到的增益、辐射和口径效率示意图;
图6为一个实施例的天线仿真和测试得到的辐射方向图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
参考图1所示,图1为一个实施例的低损耗馈电网络结构示意图,图1中既示出了低损耗馈电网络的结构框图,又示出了低损耗馈电网络中各部分的位置关系。如图1所示,上述低损耗馈电网络包括:垂直转接结构1、基片集成波导2、2 N路功分器3、耦合缝隙4、匹配金属通孔5和平行波导6;标准波导提供的能量经过所述垂直转接结构1, 耦合到所述基片集成波导2;所述基片集成波导2输出的能量经过所述2 N路功分器3等分为1/2 N(2 N路);所述2 N路功分器输出的每一路能量经过所述耦合缝隙4和匹配金属通孔5耦合到平行波导6。
具体地,标准波导提供的能量经过垂直转接结构1(WG–to–SIW),耦合到所述基片集成波导2,然后经过2 N路功分器3,将能量等分为1/2 N。2 N路功分器输出的每一路能量经过耦合缝隙4和匹配金属通孔5将能量耦合到上一层的平行波导6,形成幅度相等,相位相反的馈电,激励起两路平行波导,且相邻两路平行波导的交界处电场为零,可以形成一个理想的人工电壁,所以此处的金属壁可以省去,进而简化了馈电网络的结构,同时减少了该处的金属损耗。最终,该低损耗馈电网络输入的能量可以通过上层的缝隙天线阵辐射。上层的缝隙天线阵还可以采用中心激励的等幅反相馈电,缝隙天线阵关于人工电壁对称设计,从而保证了缝隙天线阵的同相辐射。
上述低损耗馈电网络中,标准波导提供的馈电经过垂直转接结构1,耦合到基片集成波导2,基片集成波导2输出的能量经过2 N路功分器3等分为1/2 N(2 N路);2 N路功分器3输出的每一路能量经过所述耦合缝隙4和匹配金属通孔5耦合到两路平行波导6,相邻两路平行波导6的交界处电场为零,可以形成一个理想的人工电壁,简化了馈电网络的结构,同时减少了该处的金属损耗;最终,该低损耗馈电网络提供的能量通过对称的缝隙天线阵同相辐射。
在一个实施例中,所述耦合缝隙的每一个缝隙激励起两路能量,激励的两路能量传输至所述平行波导;所述平行波导相邻两路的电场幅度相等、相位相反。
在一个实施例中,所述平行波导的相邻两路交界处电场为零。
在一个实施例中,提供一种高效率天线设备,包括:缝隙天线阵、以及上述任一实施例所述的低损耗馈电网络;所述低损耗馈电网络中平行波导的电场幅度相等、相位相反;所述平行波导中等幅反相电场的能量通过缝隙天线阵同相辐射。
具体地,低损耗馈电网络中平行波导的电场幅度相等、相位相反,且相邻平行波导分界处电场为零,等效为人工电壁;缝隙天线阵关于人工电壁对称设计,保证了缝隙阵能够被同相激励。
在一个实施例中,所述缝隙天线阵为对称的缝隙天线阵。
在一个实施例中,所述低损耗馈电网络设置在所述缝隙天线阵的下层。
在低损耗馈电网络中,标准波导提供的馈电经过垂直转接结构(WG–to–SIW),将能量耦合到基片集成波导,然后经过2 N路功分器,将能量等分为1/2 N。其中每一路功 分器经过耦合缝隙和匹配金属通孔将能量耦合到上一层平行波导,形成幅度相等,相位相反的馈电,激励起两路平行波导。匹配金属通孔用来保证耦合缝隙到平行波导良好匹配。由于平行波导采用等幅反相的馈电,相邻两路平行波导的交界处电场为零,形成一个理想的人工电壁,所以此处的金属壁可以省去,进而简化了馈电网络的结构,同时减少了该处的金属损耗。最终,该低损耗馈电网络可以激励起2 N+1路平行波导,保证能量通过缝隙天线阵同相辐射。由于缝隙天线阵采用了中心激励的等幅反相馈电,所以缝隙天线阵关于人工电壁对称设计,从而保证了缝隙天线阵的同相辐射。
进一步,低损耗馈电网络位于下层、对称缝隙天线阵位于上层。例如,耦合缝隙位于2 N路功分器的上金属层和平行波导的下金属层,匹配金属通孔位于平行波导的介质层,缝隙阵列位于平行波导的上金属层。
上述高效率天线设备具有以下有益效果:
整个高效率天线设备包括金属化通孔和金属层,整个结构可由传统LTCC或PCB工艺完成;该天线采用等幅反相的激励,相邻平行波导之间没有传统的金属化通孔,可同时激励起多路缝隙阵;其中天线缝隙阵列对称设计,在高频处具有较高的增益和效率,方向图对称,且具有较低的交叉极化。
在一个实施例中,上述高效率天线设备可以参考图2所示,包括一个低损耗馈电网络81和对称的缝隙天线阵82,图2还示出了人工电壁7,垂直转接结构(WG–to–SIW)1,基片集成波导2、2 N路功分器3,耦合缝隙4,匹配金属通孔5和平行波导6。
如图1所示,低损耗馈电网络81包括垂直转接结构(WG–to–SIW)1、基片集成波导2、N(N=1,2,3,…)级两路功分器级联而成的2 N路功分器3、耦合缝隙4、匹配金属通孔5和平行波导6构成。标准波导提供的馈电经过垂直转接结构,将能量耦合到基片集成波导,然后经过2 N路功分器3,将能量等分为1/2 N。其中每一路功分器经过耦合缝隙4和匹配金属通孔5将能量耦合到上一层平行波导6,形成幅度相等,相位相反的馈电,激励起两路平行波导。匹配金属通孔5用来保证耦合缝隙4到平行波导6的良好匹配。由于平行波导采用等幅反相的馈电,相邻两路平行波导的交界处电场为零,形成一个理想的人工电壁7,所以此处的金属壁可以省去,进而简化了馈电网络的结构,同时减少了该处的金属损耗。最终,该低损耗馈电网络可以激励起2 N+1路平行波导,保证能量通过缝隙天线阵同相辐射。如图3所示,由于缝隙天线阵82采用了中心激励的等幅反相馈电,所以缝隙天线阵82关于理想人工电壁7对称设置,从而保证了缝隙天线阵的同相辐射。
在一个示例中,如图1、2、3所示,高效率天线设备包括由下往上依次设置的低损耗馈电网络81和对称缝隙天线阵82。位于下面的低损耗馈电网络81包括垂直转换结构(WG–to–SIW)1、基片集成波导2、2 N路功分器3、耦合缝隙4、匹配金属通孔5和平行波导6构成。耦合缝隙4位于2 N路功分器3的上金属层和平行波导6的下金属层。匹配金属通孔5位于平行波导6的介质层,缝隙阵列82位于平行波导6的上金属层,并且对称设计,保证了天线的同相辐射和方向图的对称性。
进一步地,本示例利用PCB工艺制作高效率、高增益天线,并进行相关测试:图4为天线仿真和测试得到的回波损耗;图5为天线仿真和测试得到的增益、辐射和口径效率;图6为高增益天线仿真和测试在91.6GHz、92.6GHz和93.6GHz的E面和H面归一化方向图;测试表明,该高效率天线设备具有较高的辐射效率和较高增益。且该种结构的天线可以应用在高频,甚至在太赫兹频段,可以同时具有较高的增益和辐射效率。测试表明:基片集成波导(SIW)技术结合了金属波导和微带线的优点:低造价,低损耗和易集成。天线采用等幅反相激励的低损耗馈电网络,可以将传统基片集成波导的金属壁去掉,从而简化馈电网络结构,减少了插入损耗,保证了高频毫米波天线的增益和效率。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
本申请实施例的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或模块的过程、方法、装置、产品或设备没有限定于已列出的步骤或模块,而是可选地还包括没有列出的步骤或模块,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或模块。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (6)

  1. 一种低损耗馈电网络,其特征在于,包括:垂直转接结构、基片集成波导、2 N路功分器、耦合缝隙、匹配金属通孔和平行波导;
    标准波导提供的能量经过所述垂直转接结构,耦合到所述基片集成波导;所述基片集成波导输出的能量经过所述2 N路功分器等分为1/2 N;所述2 N路功分器输出的每一路能量经过所述耦合缝隙和匹配金属通孔耦合到两路平行波导。
  2. 根据权利要求1所述的低损耗馈电网络,其特征在于,所述耦合缝隙的每一个缝隙激励起两路能量,激励的两路能量传输至所述平行波导;所述平行波导相邻两路的电场幅度相等、相位相反。
  3. 根据权利要求1所述的低损耗馈电网络,其特征在于,所述平行波导相邻两路的交界处电场为零。
  4. 一种高效率天线设备,其特征在于,包括:缝隙天线阵、以及权利要求1至3任一项所述的低损耗馈电网络;所述低损耗馈电网络中平行波导的电场幅度相等、相位相反;所述平行波导中等幅反相电场的能量通过缝隙天线阵同相辐射。
  5. 根据权利要求4所述的高效率天线设备,其特征在于,所述缝隙天线阵为对称的缝隙天线阵。
  6. 根据权利要求4所述的高效率天线设备,其特征在于,所述低损耗馈电网络设置在所述缝隙天线阵的下层。
PCT/CN2020/075448 2019-10-10 2020-02-15 低损耗馈电网络和高效率天线设备 WO2021068442A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/257,271 US11456541B2 (en) 2019-10-10 2020-02-15 Low-loss feeding network and high-efficiency antenna device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910957016.4A CN110649388B (zh) 2019-10-10 2019-10-10 低损耗馈电网络和高效率天线设备
CN201910957016.4 2019-10-10

Publications (1)

Publication Number Publication Date
WO2021068442A1 true WO2021068442A1 (zh) 2021-04-15

Family

ID=69012491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075448 WO2021068442A1 (zh) 2019-10-10 2020-02-15 低损耗馈电网络和高效率天线设备

Country Status (3)

Country Link
US (1) US11456541B2 (zh)
CN (1) CN110649388B (zh)
WO (1) WO2021068442A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113506985A (zh) * 2021-06-29 2021-10-15 华南理工大学 一种毫米波基片集成波导喇叭一维立体布局扫描相控阵
CN113690594A (zh) * 2021-07-23 2021-11-23 华南理工大学 应用于多普勒雷达的毫米波高增益平面口径天线
CN114024129A (zh) * 2021-10-12 2022-02-08 中国电子科技集团公司第二十九研究所 一种平衡式微带串馈阵列天线
US20220271435A1 (en) * 2020-12-21 2022-08-25 Southeast University Dual-band shared-aperture antenna array based on dual-mode parallel waveguide

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110649388B (zh) 2019-10-10 2021-04-13 东南大学 低损耗馈电网络和高效率天线设备
CN111370857B (zh) * 2020-05-27 2020-08-18 东南大学 一种基于基片集成多线馈电网络的天线
CN112531355B (zh) * 2020-11-27 2022-06-17 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种±45°双极化毫米波阵列天线
CN113612020B (zh) * 2021-06-22 2022-08-30 北京邮电大学 一种馈电网络及多波束阵列天线
CN114069184B (zh) * 2021-11-24 2022-08-02 南通大学 一种具有任意功分比的毫米波滤波功分器
CN114361769A (zh) * 2022-01-04 2022-04-15 上海航天电子通讯设备研究所 一种非周期排布阵列天线
CN115189150A (zh) * 2022-06-08 2022-10-14 电子科技大学 一种低副瓣波导缝隙阵列天线及设计方法
CN115663485B (zh) * 2022-11-16 2023-03-28 广东大湾区空天信息研究院 毫米波太赫兹高增益缝隙阵列天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808439B2 (en) * 2007-09-07 2010-10-05 University Of Tennessee Reserch Foundation Substrate integrated waveguide antenna array
CN104201465A (zh) * 2014-08-29 2014-12-10 西安电子科技大学 一种基片集成波导天线
CN109687107A (zh) * 2018-12-24 2019-04-26 东南大学 基于人造电壁的高辐射效率、高选择性太赫兹滤波天线
CN109818158A (zh) * 2019-03-13 2019-05-28 东南大学 一种采用l形缝隙单元的宽带siw背腔缝隙天线阵列
CN110649388A (zh) * 2019-10-10 2020-01-03 东南大学 低损耗馈电网络和高效率天线设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317094B1 (en) * 1999-05-24 2001-11-13 Litva Antenna Enterprises Inc. Feed structures for tapered slot antennas
CN2796136Y (zh) * 2005-05-30 2006-07-12 东南大学 基片集成波导宽带多路功率分配器
CN200956576Y (zh) * 2006-02-27 2007-10-03 东南大学 微波单板射频装置
CN101320846B (zh) * 2008-06-24 2011-12-14 东南大学 基片集成波导多波束智能天线
CN101621149B (zh) * 2008-07-01 2013-01-16 电子科技大学 一种微波毫米波空间功率合成放大器的设计方法
CN101533961B (zh) * 2009-04-17 2012-08-15 东南大学 基于八端口结的共基片多波束天线
CN103367915B (zh) * 2013-07-10 2015-02-25 上海大学 一种高转换效率的基片集成波导缝隙整流天线
CN103441340B (zh) * 2013-08-14 2016-05-04 北京航空航天大学 极化可变和频率扫描的半模基片集成波导漏波天线
CN204885389U (zh) * 2015-08-18 2015-12-16 中国人民解放军理工大学 基于基片集成波导结构的宽带四路功分器
CN108270072A (zh) * 2016-12-30 2018-07-10 深圳超级数据链技术有限公司 低剖面天线
CN206412475U (zh) * 2017-01-05 2017-08-15 深圳超级数据链技术有限公司 馈电线源
CN207074711U (zh) * 2017-07-31 2018-03-06 深圳光启尖端技术有限责任公司 一种天线及其馈电线源
US11621486B2 (en) * 2017-09-13 2023-04-04 Metawave Corporation Method and apparatus for an active radiating and feed structure
US11515639B2 (en) * 2017-10-15 2022-11-29 Metawave Corporation Method and apparatus for an active radiating and feed structure
CN107819201B (zh) * 2017-10-24 2019-09-10 东南大学 一种适用于5g毫米波通信的紧凑型渐变缝隙阵列天线
US11355854B2 (en) * 2017-11-27 2022-06-07 Metawave Corporation Method and apparatus for reactance control in a transmission line
WO2019204782A1 (en) * 2018-04-19 2019-10-24 Metawave Corporation Method and apparatus for radiating elements of an antenna array
US20200028260A1 (en) * 2018-07-19 2020-01-23 Metawave Corporation Method and apparatus for wireless systems
US11342684B2 (en) * 2018-08-17 2022-05-24 Metawave Corporation Dual edge-fed slotted waveguide antenna for millimeter wave applications
CN109193180B (zh) * 2018-08-30 2020-11-27 电子科技大学 用于近场二维聚焦的高效率基片集成波导漏波缝隙阵天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808439B2 (en) * 2007-09-07 2010-10-05 University Of Tennessee Reserch Foundation Substrate integrated waveguide antenna array
CN104201465A (zh) * 2014-08-29 2014-12-10 西安电子科技大学 一种基片集成波导天线
CN109687107A (zh) * 2018-12-24 2019-04-26 东南大学 基于人造电壁的高辐射效率、高选择性太赫兹滤波天线
CN109818158A (zh) * 2019-03-13 2019-05-28 东南大学 一种采用l形缝隙单元的宽带siw背腔缝隙天线阵列
CN110649388A (zh) * 2019-10-10 2020-01-03 东南大学 低损耗馈电网络和高效率天线设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANG, MEI: "Investigations on Millimeter-Wave Reflectarray and Lens Antennas", INFORMATION & TECHNOLOGY, CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 15 August 2016 (2016-08-15), pages 139, XP009527283 *
WU YI-WEN; HAO ZHANG-CHENG; TAO MING-CUI; HONG WEI: "Extracting extremely wideband complex dielectric permittivity and effective conductivity by using one pair of SIW circular cavities", 2018 IEEE MTT-S INTERNATIONAL WIRELESS SYMPOSIUM (IWS), IEEE, 6 May 2018 (2018-05-06), pages 1 - 3, XP033369167, DOI: 10.1109/IEEE-IWS.2018.8400857 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220271435A1 (en) * 2020-12-21 2022-08-25 Southeast University Dual-band shared-aperture antenna array based on dual-mode parallel waveguide
US11749902B2 (en) * 2020-12-21 2023-09-05 Southeast University Dual-band shared-aperture antenna array based on dual-mode parallel waveguide
CN113506985A (zh) * 2021-06-29 2021-10-15 华南理工大学 一种毫米波基片集成波导喇叭一维立体布局扫描相控阵
CN113506985B (zh) * 2021-06-29 2022-09-20 华南理工大学 一种毫米波基片集成波导喇叭一维立体布局扫描相控阵
CN113690594A (zh) * 2021-07-23 2021-11-23 华南理工大学 应用于多普勒雷达的毫米波高增益平面口径天线
CN113690594B (zh) * 2021-07-23 2022-11-18 华南理工大学 应用于多普勒雷达的毫米波高增益平面口径天线
CN114024129A (zh) * 2021-10-12 2022-02-08 中国电子科技集团公司第二十九研究所 一种平衡式微带串馈阵列天线
CN114024129B (zh) * 2021-10-12 2023-04-07 中国电子科技集团公司第二十九研究所 一种平衡式微带串馈阵列天线

Also Published As

Publication number Publication date
CN110649388A (zh) 2020-01-03
US20210367354A1 (en) 2021-11-25
CN110649388B (zh) 2021-04-13
US11456541B2 (en) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2021068442A1 (zh) 低损耗馈电网络和高效率天线设备
CN106887722B (zh) 一种毫米波双极化缝隙天线阵列
KR102614892B1 (ko) 안테나 유닛 및 단말 장비
EP4053998A1 (en) Antenna module and electronic device
KR102589691B1 (ko) 안테나 유닛 및 단말 장비
CN107394395B (zh) 基于平面正交模耦合器的双极化喇叭天线
US11749902B2 (en) Dual-band shared-aperture antenna array based on dual-mode parallel waveguide
CN109066065A (zh) 一种低剖面ltcc毫米波双极化天线
CN107658568A (zh) 双频双极化共口径波导喇叭平面阵列天线
CN207320331U (zh) 双频双极化共口径波导喇叭平面阵列天线
JP2015002491A (ja) 2ポートトリプレート線路−導波管変換器
KR101833241B1 (ko) 폭이 다른 트랜지션 기판들을 구비하는 밀리미터파 대역 공간 전력 합성기
Filgueiras et al. Wideband Omnidirectional Slotted‐Waveguide Antenna Array Based on Trapezoidal Slots
CN116247428B (zh) 一种毫米波阵列天线
Sun et al. A dual-polarized 2-D monopulse antenna array based on substrate integrated waveguide
Verma et al. Circularly polarized hybrid mode substrate integrated waveguide antenna for two quadrant scanning beamforming applications for 5G
CN107394330A (zh) 一种固态电路‑波导功率合成装置
CN115225114B (zh) 一种弹载跳频通信体制全向电扫描射频组件
Aourik et al. A New Design and Implementation of 4x4 Butler Matrix for Ka Band Applications
CN113273033B (zh) 具有固定馈电天线的相控阵列天线系统
Busuioc et al. Low-cost antenna array and phased array architectures—Design concepts and prototypes
Khan et al. Substrate integrated waveguide slot-fed grid array antenna
JP4010419B2 (ja) 導波管スロット結合を用いた電力分配器
WO2015172291A1 (zh) 一种天线及无线设备
Wang et al. Millimeter-wave horizontally polarized end-fire magneto-electric dipole antenna array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20874440

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20874440

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15.05.2023.)

122 Ep: pct application non-entry in european phase

Ref document number: 20874440

Country of ref document: EP

Kind code of ref document: A1