WO2021068152A1 - Configuring a scheduling request resource for an alarm mode of a user equipment - Google Patents

Configuring a scheduling request resource for an alarm mode of a user equipment Download PDF

Info

Publication number
WO2021068152A1
WO2021068152A1 PCT/CN2019/110315 CN2019110315W WO2021068152A1 WO 2021068152 A1 WO2021068152 A1 WO 2021068152A1 CN 2019110315 W CN2019110315 W CN 2019110315W WO 2021068152 A1 WO2021068152 A1 WO 2021068152A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling request
uplink
alarm mode
base station
indication
Prior art date
Application number
PCT/CN2019/110315
Other languages
French (fr)
Inventor
Min Huang
Qiaoyu Li
Ruiming Zheng
Chao Wei
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/110315 priority Critical patent/WO2021068152A1/en
Publication of WO2021068152A1 publication Critical patent/WO2021068152A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for configuring a scheduling request resource for an alarm mode of a user equipment.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include transmitting, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the UE; receiving, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern; transmitting, to the base station, a scheduling request in the scheduling request resource; and receiving, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
  • a method of wireless communication may include receiving, from a UE, an indication of a data pattern for uplink data associated with an alarm mode of the UE; transmitting, to the UE, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern; receiving, from the UE, a scheduling request in the scheduling request resource; and transmitting, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
  • a UE for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to transmit, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the UE; receive, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern; transmit, to the base station, a scheduling request in the scheduling request resource; and receive, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
  • a base station for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to receive, from a UE, an indication of a data pattern for uplink data associated with an alarm mode of the UE; transmit, to the UE, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern; receive, from the UE, a scheduling request in the scheduling request resource; and transmit, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to: transmit, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the UE; receive, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern; transmit, to the base station, a scheduling request in the scheduling request resource; and receive, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a base station, may cause the one or more processors to: receive, from a UE, an indication of a data pattern for uplink data associated with an alarm mode of the UE; transmit, to the UE, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern; receive, from the UE, a scheduling request in the scheduling request resource; and transmit, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
  • an apparatus for wireless communication may include means for transmitting, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the apparatus; means for receiving, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern; means for transmitting, to the base station, a scheduling request in the scheduling request resource; and means for receiving, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
  • an apparatus for wireless communication may include means for receiving, from a UE, an indication of a data pattern for uplink data associated with an alarm mode of the UE; means for transmitting, to the UE, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern; means for receiving, from the UE, a scheduling request in the scheduling request resource; and means for transmitting, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 3 is a diagram illustrating an example of using a buffer status report to allocate uplink resources for uplink data, in accordance with various aspects of the present disclosure.
  • Figs. 4-6 are diagrams illustrating examples of configuring a scheduling request resource for an alarm mode of a UE, in accordance with various aspects of the present disclosure.
  • Fig. 7 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
  • Fig. 8 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • a UE may include a video camera or another type of video capture device.
  • the wireless network may support a large number of video cameras via large capacity MTC services.
  • Large capacity MTC services may be tailored for video for public services (e.g., city surveillance, vehicle traffic monitoring, and/or the like) , video for factory services (e.g., fish farm monitoring, mining supervision, and/or the like) with low cost and high efficiency.
  • the wireless network may support Mbps everywhere services, which may include a large number of UEs and/or CPEs with fixed QoS uploading.
  • the wireless network may support a large number of video streams and/or video cameras (e.g., 20 or more streams and/or cameras, 100 or more streams and/or cameras) at high data rates (e.g., 2 Mbps, 25 Mbps, and/or the like) in a relatively small area (e.g., a square kilometer) .
  • high data rates e.g., 2 Mbps, 25 Mbps, and/or the like
  • a relatively small area e.g., a square kilometer
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with configuring a scheduling request resource for an alarm mode, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • UE 120 may include means for transmitting, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the UE 120; means for receiving, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern; means for transmitting, to the base station, a scheduling request in the scheduling request resource; means for receiving, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode; and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • base station 110 may include means for receiving, from a UE, an indication of a data pattern for uplink data associated with an alarm mode of the UE;means for transmitting, to the UE, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern; means for receiving, from the UE, a scheduling request in the scheduling request resource; means for transmitting, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode; and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of using a buffer status report to allocate uplink resources for uplink data, in accordance with various aspects of the present disclosure.
  • the procedure shown in Fig. 3 may be used when the UE 120 is operating in a normal mode, as described in more detail below.
  • the normal mode may sometimes be referred to as a low throughput operating mode, a non-alarm mode, and/or the like.
  • the procedure shown in Fig. 3 utilizes a buffer status report (BSR) to obtain an uplink grant for uplink data.
  • BSR buffer status report
  • a UE 120 and a base station 110 may communicate with one another.
  • the UE 120 may detect that the UE 120 has uplink data for an uplink transmission.
  • the uplink data may be stored in a buffer (e.g., memory) of the UE 120.
  • an application executing on the UE 120 may generate uplink data for transmission, and the UE 120 may detect the uplink data and/or store the uplink data in the buffer (e.g., an uplink buffer) .
  • the UE 120 may transmit a scheduling request (SR) to the base station 110 based at least in part on detecting the uplink data in the buffer.
  • the SR may notify the base station 110 that the UE 120 has uplink data for transmission, and may trigger an uplink grant (e.g., an uplink grant for a BSR, as described below) .
  • the UE 120 may transmit the SR in uplink control information (UCI) .
  • the UE 120 may transmit the UCI in a physical uplink control channel (PUCCH) or in a physical uplink shared channel (PUSCH) .
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the base station 110 may transmit an uplink grant for a BSR to the UE 120 based at least in part on receiving the SR.
  • the uplink grant for the BSR may indicate a set of uplink resources (e.g., PUSCH resources) to be used by the UE 120 to transmit the BSR.
  • the base station 110 may transmit the uplink grant for the BSR in downlink control information (DCI) .
  • the base station 110 may transmit the DCI in a physical downlink control channel (PDCCH) .
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the UE 120 may transmit a BSR to the base station 110 based at least in part on receiving the uplink grant for the BSR.
  • the uplink grant may indicate a set of uplink resources (e.g., PUSCH resources) to be used by the UE 120 to transmit the BSR, and the UE 120 may transmit the BSR in the set of uplink resources.
  • the BSR may indicate an amount of uplink data that the UE 120 has stored in a buffer of the UE 120 (e.g., an amount of uplink data ready for transmission to the base station 110) .
  • the base station 110 may use the BSR to allocate an appropriate amount of uplink resources to the UE 120 for transmission of the uplink data.
  • the base station 110 may transmit an uplink grant for uplink data to the UE 120 based at least in part on receiving the BSR.
  • the uplink grant for the uplink data may indicate a set of uplink resources (e.g., PUSCH resources) to be used by the UE 120 to transmit the uplink data (e.g., stored in the buffer of the UE 120) .
  • the base station 110 may transmit the uplink grant for the uplink data in DCI.
  • the base station 110 may transmit the DCI in the PDCCH.
  • the base station 110 may determine the quantity of uplink resources to be indicated in the uplink grant for the uplink data based at least in part on the BSR. For example, the base station 110 may allocate a sufficient amount of uplink resources to allow the UE 120 to transmit the uplink data stored in the buffer of the UE 120 (e.g., without over-allocating resources to the UE 120) .
  • the UE 120 may transmit the uplink data (e.g., stored in the buffer of the UE 120) to the base station 110 based at least in part on receiving the uplink grant for the uplink data.
  • the uplink grant may indicate a set of uplink resources (e.g., PUSCH resources) to be used by the UE 120 to transmit the uplink data, and the UE 120 may transmit the uplink data in the set of uplink resources.
  • the procedure shown in Fig. 3 may be used to handle bursty data transmissions by the UE 120.
  • a UE 120 may transmit uplink data bursts according to a pattern (e.g., a data pattern) .
  • the UE 120 may be a video camera or another type of video capture device. This type of UE 120 may periodically transmit uplink data in a normal mode (e.g., a low throughput operating mode) , and may occasionally transmit bursts of uplink data in an alarm mode (e.g., a high throughput operating mode) .
  • a normal mode e.g., a low throughput operating mode
  • an alarm mode e.g., a high throughput operating mode
  • the UE 120 may capture and/or transmit low resolution video traffic to the base station 110 in a normal mode. If the UE 120 detects a triggering event, such as an alarm and/or suspicious activity (e.g., determined based at least in part on analyzing captured video, motion sensing, and/or the like) , then the UE 120 may enter an alarm mode. In the alarm mode, the UE 120 may capture and/or transmit high resolution video traffic to the base station 110. For this reason, the an alarm mode may sometimes be referred to as a high throughput operating mode or a high uplink throughput operating mode.
  • a triggering event such as an alarm and/or suspicious activity
  • the uplink data transmitted during the alarm mode may follow a predictable data pattern.
  • the uplink data may include data packets that are the output of video coding. These data packets may follow a periodic pattern, may arrive periodically with a fixed size, and/or the like.
  • the uplink data is a video stream encoded using a standard video codec (e.g., H. 264)
  • the uplink data may include intra-coded frames (I-frames) and predicted frames (P-frames) .
  • the quantity, position, and/or size of I-frames and P-frames may be fixed according to a data pattern.
  • the data pattern may depend on, for example, one or more video stream parameters such as a frame rate, a resolution, a quantization, and/or the like.
  • a video stream transmitted by a UE 120 to a base station 110 may be encoded with low resolution (e.g., 240p, 480p, and/or the like) in a normal mode (e.g., a low throughput operating mode) , and may be encoded with high resolution (e.g., 720p, 1080p, and/or the like) in an alarm mode (e.g., a high throughput operating mode) .
  • the UE 120 may transition from the normal mode to the alarm mode based at least in part on detecting a triggering event, such as motion detection in a video feed, detection of a suspicious person in a video feed, detection of a suspicious vehicle or object in a video feed, and/or the like.
  • the UE 120 may signal the data pattern to the base station 110, and may then forego transmission of a BSR to indicate the size of data in a buffer of the UE 120. In this way, signaling overhead associated with transmission of the BSR and transmission of an uplink grant to schedule the BSR may be reduced or eliminated. Furthermore, UE resources (e.g., memory resources, processing resources, battery power, and/or the like) and base station resources (e.g., memory resources, processing resources, and/or the like) associated with processing the BSR and/or the uplink grant to schedule the BSR may be conserved.
  • UE resources e.g., memory resources, processing resources, battery power, and/or the like
  • base station resources e.g., memory resources, processing resources, and/or the like
  • latency may be reduced by foregoing transmission of the BSR and the uplink grant that schedules the BSR, resulting in lower latency transmission of uplink data.
  • Some techniques and apparatuses described herein permit the BSR and the uplink grant that schedules the BSR to be eliminated for uplink data with a known data pattern, thereby conserving network resources (by reducing signaling overhead) , conserving UE resources, conserving base station resources, and reducing latency.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of configuring a scheduling request resource for an alarm mode of a UE, in accordance with various aspects of the present disclosure.
  • a UE 120 and a base station 110 may communicate with one another.
  • the UE 120 may transmit, to the base station 110, an indication of a data pattern for uplink data associated with a an alarm mode (e.g., a high throughput operating mode) of the UE 120.
  • the UE 120 may transmit the indication in a radio resource control (RRC) message, such as an uplink (UL) information transfer message, a UE capability transfer message, and/or the like.
  • RRC radio resource control
  • the data pattern may include, for example, a size of the uplink data (e.g., a payload size, a size in bits or bytes, a size of one or more transport blocks (TBs) of the uplink data, and/or the like) , a periodicity of the uplink data (e.g., in time) , a duration of transmission of the uplink data (e.g., a length of time occupied by one or more uplink transmissions) , and/or the like. Additionally, or alternatively, the data pattern may indicate a size of a burst (e.g., a number of bits or bytes) , a number of bursts, and/or the like.
  • the data pattern for the alarm mode may be associated with a higher data transfer rate, a larger data packet size, and/or the like as compared to a data pattern for a normal mode of the UE 120.
  • the data pattern may include a pattern (e.g., a first pattern) having a number of periodic and fixed size data packets (e.g., periodic data packets with a fixed size) .
  • the data pattern may indicate 30 frames per 0.5 seconds, with each frame having a size of about 100 kilobytes.
  • the data pattern may include a pattern (e.g., a second pattern) having a number of periodic data packets that include a first (e.g., initial) packet having a first (e.g., larger) size and remaining packets having a second (e.g., smaller) size.
  • a data pattern for 1080p resolution may include 30 frames per 0.5 seconds, with the first (e.g., initial) frame being an I-frame with a size of about 400 kilobytes and the remaining frames being P-frames with a size of about 40 kilobytes.
  • a data pattern for 480p resolution may include 30 frames per 0.5 seconds, with the first (e.g., initial) frame being an I-frame with a size of about 100 kilobytes and the remaining frames being P-frames with a size of about 10 kilobytes.
  • a data pattern for 240p resolution may include 30 frames per 0.5 seconds, with the first (e.g., initial) frame being an I-frame with a size of about 25 kilobytes and the remaining frames being P-frames with a size of about 2.5 kilobytes.
  • the base station 110 may transmit, to the UE 120, a configuration that indicates a scheduling request (SR) resource to be used for the alarm mode.
  • the base station 110 may transmit the configuration to the UE 120 based at least in part on receiving the indication of the data pattern.
  • the base station 110 may transmit the configuration in an RRC message.
  • the SR resource may include, for example, a time resource, a frequency resource, a spatial resource (e.g., a beam) , a sequence, and/or the like.
  • the SR resource may include a sequence to be transmitted in a time-frequency resource.
  • the SR resource configured for the alarm mode (sometimes referred to herein as a first SR resource) may be different from another SR resource configured for a normal mode (sometimes referred to herein as a second SR resource) , as described in more detail below in connection with Fig. 5.
  • the first SR resource is the same as the second SR resource, and the base station 110 may activate or deactivate the (same) SR resource for the alarm mode or the normal mode, as described in more detail below in connection with Fig. 6.
  • the UE 120 may detect a triggering event for the alarm mode.
  • the triggering event may be an event that causes the UE 120 to start transmitting uplink data at a higher data rate and/or with a larger packet size as compared to a normal mode.
  • the UE 120 may detect an alarm, may detect suspicious activity (e.g., in a video feed) , may detect motion in a video feed, may detect a suspicious person (e.g., in a video feed) , may detect a suspicious vehicle or object (e.g., in a video feed) , and/or the like.
  • Such detection may be performed by one or more components of the UE 120, or may be performed by another device that notifies the UE 120.
  • triggering events are contemplated, such as an audible trigger, an electronic trigger, a tactile trigger, and/or the like.
  • the UE 120 may transmit, to the base station 110, an SR in the SR resource configured for the alarm mode. In some aspects, the UE 120 may transmit the SR based at least in part on detecting the triggering event.
  • the base station 110 may transmit, to the UE 120, an uplink grant that indicates a set of uplink resources (e.g., PUSCH resources) to be used for the uplink data associated with the alarm mode.
  • the base station 110 may transmit the uplink grant for the uplink data based at least in part on receiving the SR in the SR resource configured for the alarm mode.
  • the base station 110 may transmit the uplink grant for the uplink data in response to the SR without first transmitting an uplink grant for a BSR, and without receiving a BSR from the UE 120.
  • the UE 120 may receive the uplink grant for the uplink data in response to the SR without first receiving an uplink grant for a BSR, and without transmitting a BSR to the base station 110.
  • the dynamic uplink resource assignment procedure for the alarm mode is a two-step procedure (e.g., transmission of an SR at 420 and transmission of an uplink grant for uplink data at 425)
  • the dynamic uplink resource assignment procedure for the normal mode as shown in Fig.
  • the UE 120 may transmit a BSR in response to the uplink grant received from the base station 110, which may trigger the base station 110 to send an additional uplink grant based at least in part on the BSR.
  • the UE 120 may transmit, to the base station 110, the uplink data associated with the data pattern for the alarm mode.
  • the UE 120 may transmit the uplink data in the set of uplink resources received in the uplink grant from the base station 110 (e.g., described above in connection with reference number 425) .
  • the UE 120 may transmit the uplink data according to the data pattern indicated to the base station (e.g., described above in connection with reference number 405) .
  • the uplink data may include a video stream, such as data packets of a video stream, frames of a video stream (e.g., I-frames, P-frames, and/or the like) , and/or the like.
  • the video stream may be encoded at a higher resolution than a video stream transmitted to the base station 110 while the UE 120 is operating in a normal mode.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
  • Fig. 5 is a diagram illustrating an example 500 of configuring a scheduling request resource for an alarm mode of a UE, in accordance with various aspects of the present disclosure.
  • the SR resource configured for the alarm mode may be different from another SR resource configured for a normal mode (sometimes referred to herein as a second SR resource) .
  • the base station 110 may configure the UE 120 with a first SR resource (e.g., for the alarm mode) and a second SR resource (e.g., for the normal mode) , as shown by reference number 505.
  • the base station 110 may transmit a configuration for the first SR resource and the second SR resource in the same message, such as an RRC message. This configuration may be transmitted in a similar manner as described above in connection with reference number 410 of Fig. 4.
  • the UE 120 may transmit an SR in the second SR resource (e.g., the SR resource for the normal mode, shown as SR resource A) .
  • transmission of an SR in the second SR resource may trigger the base station 110 to transmit an uplink grant for a BSR.
  • the UE 120 and the base station 110 may operate as described above in connection with Fig. 3 (e.g., using the four-step dynamic uplink resource assignment procedure) .
  • the UE 120 may transmit an SR in the first SR resource (e.g., the SR resource for the alarm mode, shown as SR resource B) .
  • transmission of an SR in the first SR resource may trigger the base station 110 to transmit an uplink grant for uplink data according to the data pattern indicated by the UE 120 to the base station 110.
  • the UE 120 and the base station 110 may operate as described above in connection with Fig. 4 (e.g., using the two-step dynamic uplink resource assignment procedure) .
  • the UE 120 when operating in the alarm mode, may have low throughput data to be transmitted (e.g., low priority data) .
  • the UE 120 may use the first SR resource to request uplink resources for transmission of high throughput data (e.g., a high resolution video feed) , and may use the second SR resource to request uplink resources for transmission of low throughput data.
  • some techniques and apparatuses described herein permit the BSR and the uplink grant that schedules the BSR to be eliminated for uplink data with a known data pattern, thereby conserving network resources (by reducing signaling overhead) , conserving UE resources, conserving base station resources, reducing latency, improving spectral efficiency, and permitting a larger number of UEs 120 to be supported by the base station 110.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
  • Fig. 6 is a diagram illustrating an example 600 of configuring a scheduling request resource for an alarm mode of a UE, in accordance with various aspects of the present disclosure.
  • the SR resource configured for the alarm mode (sometimes referred to herein as a first SR resource) may be the same as another SR resource configured for a normal mode (sometimes referred to herein as a second SR resource) .
  • the base station 110 may configure the UE 120 with a single SR resource to be used for both the alarm mode and the normal mode, as shown by reference number 605.
  • the base station 110 may transmit a configuration for the single SR resource in an RRC message. This configuration may be transmitted in a similar manner as described above in connection with reference number 410 of Fig. 4.
  • the UE 120 may indicate, to the base station 110, whether the UE 120 is operating in the normal mode or the alarm mode.
  • the base station 110 may respond to an SR received in the SR resource based at least in part on the indication. For example, if the UE 120 is operating in the normal mode, then the base station 110 may transmit an uplink grant for a BSR upon receiving an SR in the SR resource. Conversely, if the UE 120 is operating in the alarm mode, then the base station 110 may transmit an uplink grant for uplink data with an indicated data pattern upon receiving an SR in the SR resource.
  • the UE 120 may operate in the normal mode by default (e.g., unless the UE 120 signals otherwise to the base station 110) .
  • the UE 120 may transmit an SR in the SR resource.
  • this SR may trigger the four-step dynamic resource allocation procedure described above in connection with Fig. 3 (e.g., with the BSR) .
  • the UE 120 may indicate, to the base station 110, that the UE 120 is operating in the alarm mode (e.g., a high throughput operating mode) .
  • This indication may include an indication of a start of the data pattern indicated to the base station 110 as described above in connection with Fig. 4.
  • the base station 110 may transmit an indication that the SR resource has been activated for the alarm mode (e.g., the high throughput operating mode) .
  • this indication may include an acknowledgement (ACK) of the indication that the UE 120 is operating in the alarm mode.
  • ACK acknowledgement
  • the UE 120 may transmit an SR in the SR resource. As shown by reference number 635, this SR may trigger the two-step dynamic resource allocation procedure described above in connection with Fig. 4 (e.g., without the BSR) .
  • the UE 120 may indicate, to the base station 110, that the UE 120 is operating in the normal mode (e.g., a non-alarm mode or a low throughput operating mode) .
  • This indication may include an indication of an end of the data pattern indicated to the base station 110 as described above in connection with Fig. 4.
  • the base station 110 may transmit an indication that the SR resource has been deactivated for the alarm mode (e.g., the high throughput operating mode) .
  • this indication may include an ACK of the indication that the UE 120 is operating in the normal mode.
  • the UE 120 may transmit an SR in the SR resource. As shown by reference number 655, this SR may trigger the four-step dynamic resource allocation procedure described above in connection with Fig. 3 (e.g., with the BSR) .
  • some techniques and apparatuses described herein permit the BSR and the uplink grant that schedules the BSR to be eliminated for uplink data with a known data pattern, thereby conserving network resources (by reducing signaling overhead) , conserving UE resources, conserving base station resources, reducing latency, improving spectral efficiency, and permitting a larger number of UEs 120 to be supported by the base station 110. Furthermore, by using a single SR resource for both the alarm mode and the normal mode, fewer network resources need to be dedicated to SR resources.
  • Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 700 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with configuring a scheduling request resource for an alarm mode of a UE.
  • the UE e.g., UE 120 and/or the like
  • process 700 may include transmitting, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the UE (block 710) .
  • the UE e.g., using transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 700 may include receiving, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern (block 720) .
  • the UE e.g., using receive processor 258, controller/processor 280, memory 282, and/or the like
  • process 700 may include transmitting, to the base station, a scheduling request in the scheduling request resource (block 730) .
  • the UE e.g., using transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 700 may include receiving, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode (block 740) .
  • the UE e.g., using receive processor 258, controller/processor 280, memory 282, and/or the like
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 700 includes transmitting, to the base station, the uplink data associated with the data pattern for the alarm mode in the set of uplink resources.
  • the uplink grant is received in response to the scheduling request without reception of an uplink grant for a buffer status report and without transmission of the buffer status report.
  • the scheduling request is transmitted based at least in part on detecting an event that triggers the alarm mode.
  • the indication of the data pattern indicates at least one of a data size of the uplink data, a periodicity of the uplink data, a duration of transmission of the uplink data, or a combination thereof.
  • the data pattern includes at least one of: a first pattern having a number of periodic and fixed size data packets, or a second pattern having a number of periodic data packets that include a first packet having a first size and remaining packets having a second size.
  • the uplink data associated with the alarm mode has at least one of a higher data transfer rate or a larger data packet size than a normal mode of the UE.
  • the configuration further indicates another scheduling request resource, different from the scheduling request resource, to be used to trigger an uplink grant for a buffer status report.
  • transmission of a scheduling request in the scheduling request resource triggers: the uplink grant that indicates the set of uplink resources to be used for the uplink data when the UE is operating in the alarm mode, or an uplink grant for a buffer status report when the UE is operating in a normal mode.
  • process 700 includes indicating a start of the data pattern to the base station before transmitting the scheduling request in the scheduling request resource; receiving an indication that the scheduling request resource has been activated for the alarm mode; and transmitting the scheduling request in the scheduling request resource based at least in part on receiving the indication that the scheduling request resource has been activated, wherein transmission of the scheduling request triggers the uplink grant that indicates the set of uplink resources to be used for the uplink data associated with the alarm mode.
  • process 700 includes indicating an end of the data pattern to the base station after receiving the uplink grant that indicates the set of uplink resources to be used for the uplink data associated with the alarm mode; receiving an indication that the scheduling request resource has been deactivated for the alarm mode; and transmitting another scheduling request in the scheduling request resource based at least in part on receiving the indication that the scheduling request resource has been deactivated, wherein transmission of the other scheduling request triggers an uplink grant for a buffer status report.
  • the uplink data is a video stream
  • the alarm mode is triggered based at least in part on detecting a triggering event in the video stream.
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Example process 800 is an example where the base station (e.g., base station 110 and/or the like) performs operations associated with configuring a scheduling request resource for an alarm mode of a UE.
  • the base station e.g., base station 110 and/or the like
  • process 800 may include receiving, from a UE, an indication of a data pattern for uplink data associated with an alarm mode of the UE (block 810) .
  • the base station e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like
  • process 800 may include transmitting, to the UE, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern (block 820) .
  • the base station e.g., using transmit processor 220, controller/processor 240, memory 242, and/or the like
  • process 800 may include receiving, from the UE, a scheduling request in the scheduling request resource (block 830) .
  • the base station e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like
  • process 800 may include transmitting, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode (block 840) .
  • the base station e.g., using transmit processor 220, controller/processor 240, memory 242, and/or the like
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 800 includes receiving, from the UE, the uplink data associated with the data pattern for the alarm mode in the set of uplink resources.
  • the uplink grant is transmitted in response to the scheduling request without transmission of an uplink grant for a buffer status report and without reception of the buffer status report.
  • the indication of the data pattern indicates at least one of a data size of the uplink data, a periodicity of the uplink data, a duration of transmission of the uplink data, or a combination thereof.
  • the data pattern includes at least one of: a first pattern having a number of periodic and fixed size data packets, or a second pattern having a number of periodic data packets that include a first packet having a first size and remaining packets having a second size.
  • the uplink data associated with the alarm mode has at least one of a higher data transfer rate or a larger data packet size than a normal mode of the UE.
  • the configuration further indicates another scheduling request resource, different from the scheduling request resource, to be used to trigger an uplink grant for a buffer status report.
  • reception of a scheduling request in the scheduling request resource triggers: the uplink grant that indicates the set of uplink resources to be used for the uplink data when the UE is operating in the alarm mode, or an uplink grant for a buffer status report when the UE is operating in a normal mode.
  • process 800 includes receiving, from the UE, an indication of a start of the data pattern before reception of the scheduling request in the scheduling request resource; transmitting an indication that the scheduling request resource has been activated for the alarm mode; and receiving the scheduling request in the scheduling request resource based at least in part on transmitting the indication that the scheduling request resource has been activated, wherein reception of the scheduling request triggers the uplink grant that indicates the set of uplink resources to be used for the uplink data associated with the alarm mode.
  • process 800 includes receiving, from the UE, an indication of an end of the data pattern after transmitting the uplink grant that indicates the set of uplink resources to be used for the uplink data associated with the alarm mode; transmitting an indication that the scheduling request resource has been deactivated for the alarm mode; and receiving another scheduling request in the scheduling request resource based at least in part on transmitting the indication that the scheduling request resource has been deactivated, wherein reception of the other scheduling request triggers an uplink grant for a buffer status report.
  • the uplink data is a video stream.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the UE; receive, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern; transmit, to the base station, a scheduling request in the scheduling request resource; and receive, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode. Numerous other aspects are provided.

Description

CONFIGURING A SCHEDULING REQUEST RESOURCE FOR AN ALARM MODE OF A USER EQUIPMENT
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for configuring a scheduling request resource for an alarm mode of a user equipment.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the  LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a user equipment (UE) , may include transmitting, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the UE; receiving, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern; transmitting, to the base station, a scheduling request in the scheduling request resource; and receiving, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
In some aspects, a method of wireless communication, performed by a base station, may include receiving, from a UE, an indication of a data pattern for uplink data associated with an alarm mode of the UE; transmitting, to the UE, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern; receiving, from the UE, a scheduling request in the scheduling request resource; and transmitting, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
In some aspects, a UE for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to transmit, to a base station, an indication of a data  pattern for uplink data associated with an alarm mode of the UE; receive, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern; transmit, to the base station, a scheduling request in the scheduling request resource; and receive, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
In some aspects, a base station for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to receive, from a UE, an indication of a data pattern for uplink data associated with an alarm mode of the UE; transmit, to the UE, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern; receive, from the UE, a scheduling request in the scheduling request resource; and transmit, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to: transmit, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the UE; receive, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern; transmit, to the base station, a scheduling request in the scheduling request resource; and receive, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a base station, may cause the one or more processors to: receive, from a UE, an indication of a data pattern for uplink data associated with an alarm mode of the UE; transmit, to the UE, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern; receive, from the UE, a scheduling  request in the scheduling request resource; and transmit, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
In some aspects, an apparatus for wireless communication may include means for transmitting, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the apparatus; means for receiving, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern; means for transmitting, to the base station, a scheduling request in the scheduling request resource; and means for receiving, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
In some aspects, an apparatus for wireless communication may include means for receiving, from a UE, an indication of a data pattern for uplink data associated with an alarm mode of the UE; means for transmitting, to the UE, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern; means for receiving, from the UE, a scheduling request in the scheduling request resource; and means for transmitting, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be  better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of using a buffer status report to allocate uplink resources for uplink data, in accordance with various aspects of the present disclosure.
Figs. 4-6 are diagrams illustrating examples of configuring a scheduling request resource for an alarm mode of a UE, in accordance with various aspects of the present disclosure.
Fig. 7 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
Fig. 8 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so  that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico  BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
In some aspects, a UE may include a video camera or another type of video capture device. In some aspects, the wireless network may support a large number of video cameras via large capacity MTC services. Large capacity MTC services may be tailored for video for public services (e.g., city surveillance, vehicle traffic monitoring,  and/or the like) , video for factory services (e.g., fish farm monitoring, mining supervision, and/or the like) with low cost and high efficiency. Additionally, or alternatively, the wireless network may support Mbps everywhere services, which may include a large number of UEs and/or CPEs with fixed QoS uploading. For example, the wireless network may support a large number of video streams and/or video cameras (e.g., 20 or more streams and/or cameras, 100 or more streams and/or cameras) at high data rates (e.g., 2 Mbps, 25 Mbps, and/or the like) in a relatively small area (e.g., a square kilometer) .
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in  part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with configuring a scheduling request resource for an alarm mode, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, UE 120 may include means for transmitting, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the UE 120; means for receiving, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on  transmitting the indication of the data pattern; means for transmitting, to the base station, a scheduling request in the scheduling request resource; means for receiving, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode; and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, base station 110 may include means for receiving, from a UE, an indication of a data pattern for uplink data associated with an alarm mode of the UE;means for transmitting, to the UE, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern; means for receiving, from the UE, a scheduling request in the scheduling request resource; means for transmitting, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode; and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example 300 of using a buffer status report to allocate uplink resources for uplink data, in accordance with various aspects of the present disclosure. In some aspects, the procedure shown in Fig. 3 may be used when the UE 120 is operating in a normal mode, as described in more detail below. The normal mode may sometimes be referred to as a low throughput operating mode, a non-alarm mode, and/or the like. The procedure shown in Fig. 3 utilizes a buffer status report (BSR) to obtain an uplink grant for uplink data.
As shown in Fig. 3, a UE 120 and a base station 110 may communicate with one another. As shown by reference number 305, the UE 120 may detect that the UE 120 has uplink data for an uplink transmission. The uplink data may be stored in a buffer (e.g., memory) of the UE 120. In some aspects, an application executing on the  UE 120 may generate uplink data for transmission, and the UE 120 may detect the uplink data and/or store the uplink data in the buffer (e.g., an uplink buffer) .
As shown by reference number 310, the UE 120 may transmit a scheduling request (SR) to the base station 110 based at least in part on detecting the uplink data in the buffer. The SR may notify the base station 110 that the UE 120 has uplink data for transmission, and may trigger an uplink grant (e.g., an uplink grant for a BSR, as described below) . The UE 120 may transmit the SR in uplink control information (UCI) . The UE 120 may transmit the UCI in a physical uplink control channel (PUCCH) or in a physical uplink shared channel (PUSCH) .
As shown by reference number 315, the base station 110 may transmit an uplink grant for a BSR to the UE 120 based at least in part on receiving the SR. The uplink grant for the BSR may indicate a set of uplink resources (e.g., PUSCH resources) to be used by the UE 120 to transmit the BSR. The base station 110 may transmit the uplink grant for the BSR in downlink control information (DCI) . The base station 110 may transmit the DCI in a physical downlink control channel (PDCCH) .
As shown by reference number 320, the UE 120 may transmit a BSR to the base station 110 based at least in part on receiving the uplink grant for the BSR. For example, the uplink grant may indicate a set of uplink resources (e.g., PUSCH resources) to be used by the UE 120 to transmit the BSR, and the UE 120 may transmit the BSR in the set of uplink resources. The BSR may indicate an amount of uplink data that the UE 120 has stored in a buffer of the UE 120 (e.g., an amount of uplink data ready for transmission to the base station 110) . The base station 110 may use the BSR to allocate an appropriate amount of uplink resources to the UE 120 for transmission of the uplink data.
As shown by reference number 325, the base station 110 may transmit an uplink grant for uplink data to the UE 120 based at least in part on receiving the BSR. The uplink grant for the uplink data may indicate a set of uplink resources (e.g., PUSCH resources) to be used by the UE 120 to transmit the uplink data (e.g., stored in the buffer of the UE 120) . The base station 110 may transmit the uplink grant for the uplink data in DCI. The base station 110 may transmit the DCI in the PDCCH. The base station 110 may determine the quantity of uplink resources to be indicated in the uplink grant for the uplink data based at least in part on the BSR. For example, the base station 110 may allocate a sufficient amount of uplink resources to allow the UE 120 to transmit the  uplink data stored in the buffer of the UE 120 (e.g., without over-allocating resources to the UE 120) .
As shown by reference number 330, the UE 120 may transmit the uplink data (e.g., stored in the buffer of the UE 120) to the base station 110 based at least in part on receiving the uplink grant for the uplink data. For example, the uplink grant may indicate a set of uplink resources (e.g., PUSCH resources) to be used by the UE 120 to transmit the uplink data, and the UE 120 may transmit the uplink data in the set of uplink resources.
In some cases, the procedure shown in Fig. 3 may be used to handle bursty data transmissions by the UE 120. In a bursty data transmission, the amount of uplink data to be transmitted in a burst does not typically follow a pattern. However, in some cases, a UE 120 may transmit uplink data bursts according to a pattern (e.g., a data pattern) . As an example, the UE 120 may be a video camera or another type of video capture device. This type of UE 120 may periodically transmit uplink data in a normal mode (e.g., a low throughput operating mode) , and may occasionally transmit bursts of uplink data in an alarm mode (e.g., a high throughput operating mode) . For example, the UE 120 may capture and/or transmit low resolution video traffic to the base station 110 in a normal mode. If the UE 120 detects a triggering event, such as an alarm and/or suspicious activity (e.g., determined based at least in part on analyzing captured video, motion sensing, and/or the like) , then the UE 120 may enter an alarm mode. In the alarm mode, the UE 120 may capture and/or transmit high resolution video traffic to the base station 110. For this reason, the an alarm mode may sometimes be referred to as a high throughput operating mode or a high uplink throughput operating mode.
While an event that triggers the alarm mode may be unpredictable, the uplink data transmitted during the alarm mode may follow a predictable data pattern. For example, the uplink data may include data packets that are the output of video coding. These data packets may follow a periodic pattern, may arrive periodically with a fixed size, and/or the like. For example, if the uplink data is a video stream encoded using a standard video codec (e.g., H. 264) , the uplink data may include intra-coded frames (I-frames) and predicted frames (P-frames) . The quantity, position, and/or size of I-frames and P-frames may be fixed according to a data pattern. The data pattern may depend on, for example, one or more video stream parameters such as a frame rate, a resolution, a quantization, and/or the like.
In some cases, a video stream transmitted by a UE 120 to a base station 110 may be encoded with low resolution (e.g., 240p, 480p, and/or the like) in a normal mode (e.g., a low throughput operating mode) , and may be encoded with high resolution (e.g., 720p, 1080p, and/or the like) in an alarm mode (e.g., a high throughput operating mode) . The UE 120 may transition from the normal mode to the alarm mode based at least in part on detecting a triggering event, such as motion detection in a video feed, detection of a suspicious person in a video feed, detection of a suspicious vehicle or object in a video feed, and/or the like.
Because the data pattern of the video stream in the alarm mode may be consistent, the UE 120 may signal the data pattern to the base station 110, and may then forego transmission of a BSR to indicate the size of data in a buffer of the UE 120. In this way, signaling overhead associated with transmission of the BSR and transmission of an uplink grant to schedule the BSR may be reduced or eliminated. Furthermore, UE resources (e.g., memory resources, processing resources, battery power, and/or the like) and base station resources (e.g., memory resources, processing resources, and/or the like) associated with processing the BSR and/or the uplink grant to schedule the BSR may be conserved. Furthermore, latency may be reduced by foregoing transmission of the BSR and the uplink grant that schedules the BSR, resulting in lower latency transmission of uplink data. Some techniques and apparatuses described herein permit the BSR and the uplink grant that schedules the BSR to be eliminated for uplink data with a known data pattern, thereby conserving network resources (by reducing signaling overhead) , conserving UE resources, conserving base station resources, and reducing latency.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
Fig. 4 is a diagram illustrating an example 400 of configuring a scheduling request resource for an alarm mode of a UE, in accordance with various aspects of the present disclosure.
As shown in Fig. 4, a UE 120 and a base station 110 may communicate with one another. As shown by reference number 405, the UE 120 may transmit, to the base station 110, an indication of a data pattern for uplink data associated with a an alarm mode (e.g., a high throughput operating mode) of the UE 120. In some aspects, the UE 120 may transmit the indication in a radio resource control (RRC) message, such as an uplink (UL) information transfer message, a UE capability transfer message, and/or the  like. The data pattern may include, for example, a size of the uplink data (e.g., a payload size, a size in bits or bytes, a size of one or more transport blocks (TBs) of the uplink data, and/or the like) , a periodicity of the uplink data (e.g., in time) , a duration of transmission of the uplink data (e.g., a length of time occupied by one or more uplink transmissions) , and/or the like. Additionally, or alternatively, the data pattern may indicate a size of a burst (e.g., a number of bits or bytes) , a number of bursts, and/or the like. The data pattern for the alarm mode may be associated with a higher data transfer rate, a larger data packet size, and/or the like as compared to a data pattern for a normal mode of the UE 120.
In some aspects, the data pattern may include a pattern (e.g., a first pattern) having a number of periodic and fixed size data packets (e.g., periodic data packets with a fixed size) . For example, the data pattern may indicate 30 frames per 0.5 seconds, with each frame having a size of about 100 kilobytes. In some aspects, the data pattern may include a pattern (e.g., a second pattern) having a number of periodic data packets that include a first (e.g., initial) packet having a first (e.g., larger) size and remaining packets having a second (e.g., smaller) size. As an example, a data pattern for 1080p resolution may include 30 frames per 0.5 seconds, with the first (e.g., initial) frame being an I-frame with a size of about 400 kilobytes and the remaining frames being P-frames with a size of about 40 kilobytes. As another example, a data pattern for 480p resolution may include 30 frames per 0.5 seconds, with the first (e.g., initial) frame being an I-frame with a size of about 100 kilobytes and the remaining frames being P-frames with a size of about 10 kilobytes. As another example, a data pattern for 240p resolution may include 30 frames per 0.5 seconds, with the first (e.g., initial) frame being an I-frame with a size of about 25 kilobytes and the remaining frames being P-frames with a size of about 2.5 kilobytes.
As shown by reference number 410, the base station 110 may transmit, to the UE 120, a configuration that indicates a scheduling request (SR) resource to be used for the alarm mode. The base station 110 may transmit the configuration to the UE 120 based at least in part on receiving the indication of the data pattern. In some aspects, the base station 110 may transmit the configuration in an RRC message. The SR resource may include, for example, a time resource, a frequency resource, a spatial resource (e.g., a beam) , a sequence, and/or the like. For example, the SR resource may include a sequence to be transmitted in a time-frequency resource. In some aspects, the SR resource configured for the alarm mode (sometimes referred to herein as a first SR  resource) may be different from another SR resource configured for a normal mode (sometimes referred to herein as a second SR resource) , as described in more detail below in connection with Fig. 5. In some aspects, the first SR resource is the same as the second SR resource, and the base station 110 may activate or deactivate the (same) SR resource for the alarm mode or the normal mode, as described in more detail below in connection with Fig. 6.
As shown by reference number 415, the UE 120 may detect a triggering event for the alarm mode. The triggering event may be an event that causes the UE 120 to start transmitting uplink data at a higher data rate and/or with a larger packet size as compared to a normal mode. For example, the UE 120 may detect an alarm, may detect suspicious activity (e.g., in a video feed) , may detect motion in a video feed, may detect a suspicious person (e.g., in a video feed) , may detect a suspicious vehicle or object (e.g., in a video feed) , and/or the like. Such detection may be performed by one or more components of the UE 120, or may be performed by another device that notifies the UE 120. Although some aspects are described herein in connection with detecting a trigger event based at least in part on a video feed, other triggering events are contemplated, such as an audible trigger, an electronic trigger, a tactile trigger, and/or the like.
As shown by reference number 420, the UE 120 may transmit, to the base station 110, an SR in the SR resource configured for the alarm mode. In some aspects, the UE 120 may transmit the SR based at least in part on detecting the triggering event.
As shown by reference number 425, the base station 110 may transmit, to the UE 120, an uplink grant that indicates a set of uplink resources (e.g., PUSCH resources) to be used for the uplink data associated with the alarm mode. In some aspects, the base station 110 may transmit the uplink grant for the uplink data based at least in part on receiving the SR in the SR resource configured for the alarm mode.
As shown by reference number 430, the base station 110 may transmit the uplink grant for the uplink data in response to the SR without first transmitting an uplink grant for a BSR, and without receiving a BSR from the UE 120. Similarly, the UE 120 may receive the uplink grant for the uplink data in response to the SR without first receiving an uplink grant for a BSR, and without transmitting a BSR to the base station 110. Thus, the dynamic uplink resource assignment procedure for the alarm mode, as shown in Fig. 4, is a two-step procedure (e.g., transmission of an SR at 420 and transmission of an uplink grant for uplink data at 425) , while the dynamic uplink resource assignment procedure for the normal mode, as shown in Fig. 3, is a four-step  procedure (e.g., transmission of an SR at 310, transmission of an uplink grant for the BSR at 315, transmission of the BSR at 320, and transmission of the uplink grant for the uplink data at 325) . Thus, as described above, some techniques and apparatuses described herein permit the BSR and the uplink grant that schedules the BSR to be eliminated for uplink data with a known data pattern, thereby conserving network resources (by reducing signaling overhead) , conserving UE resources, conserving base station resources, reducing latency, improving spectral efficiency, and permitting a larger number of UEs 120 to be supported by the base station 110. However, in some aspects, if the UE 120 has uplink data stored in the buffer other than the uplink data associated with the indicated data pattern, then the UE 120 may transmit a BSR in response to the uplink grant received from the base station 110, which may trigger the base station 110 to send an additional uplink grant based at least in part on the BSR.
As shown by reference number 435, the UE 120 may transmit, to the base station 110, the uplink data associated with the data pattern for the alarm mode. For example, the UE 120 may transmit the uplink data in the set of uplink resources received in the uplink grant from the base station 110 (e.g., described above in connection with reference number 425) . The UE 120 may transmit the uplink data according to the data pattern indicated to the base station (e.g., described above in connection with reference number 405) . In some aspects, the uplink data may include a video stream, such as data packets of a video stream, frames of a video stream (e.g., I-frames, P-frames, and/or the like) , and/or the like. When the UE 120 is operating in the alarm mode, the video stream may be encoded at a higher resolution than a video stream transmitted to the base station 110 while the UE 120 is operating in a normal mode.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
Fig. 5 is a diagram illustrating an example 500 of configuring a scheduling request resource for an alarm mode of a UE, in accordance with various aspects of the present disclosure.
As described above in connection with Fig. 4, in some aspects, the SR resource configured for the alarm mode (sometimes referred to herein as a first SR resource) may be different from another SR resource configured for a normal mode (sometimes referred to herein as a second SR resource) . In this case, the base station 110 may configure the UE 120 with a first SR resource (e.g., for the alarm mode) and a second SR resource (e.g., for the normal mode) , as shown by reference number 505. In  some aspects, the base station 110 may transmit a configuration for the first SR resource and the second SR resource in the same message, such as an RRC message. This configuration may be transmitted in a similar manner as described above in connection with reference number 410 of Fig. 4.
As shown by reference number 510, when the UE 120 is operating in the normal mode and has uplink data stored in a buffer of the UE 120, the UE 120 may transmit an SR in the second SR resource (e.g., the SR resource for the normal mode, shown as SR resource A) . As further shown, transmission of an SR in the second SR resource may trigger the base station 110 to transmit an uplink grant for a BSR. In this case, the UE 120 and the base station 110 may operate as described above in connection with Fig. 3 (e.g., using the four-step dynamic uplink resource assignment procedure) .
As shown by reference number 515, when the UE 120 is operating in the alarm mode and has uplink data stored in a buffer of the UE 120, the UE 120 may transmit an SR in the first SR resource (e.g., the SR resource for the alarm mode, shown as SR resource B) . As further shown, transmission of an SR in the first SR resource may trigger the base station 110 to transmit an uplink grant for uplink data according to the data pattern indicated by the UE 120 to the base station 110. In this case, the UE 120 and the base station 110 may operate as described above in connection with Fig. 4 (e.g., using the two-step dynamic uplink resource assignment procedure) . In some aspects, when operating in the alarm mode, the UE 120 may have low throughput data to be transmitted (e.g., low priority data) . In this case, the UE 120 may use the first SR resource to request uplink resources for transmission of high throughput data (e.g., a high resolution video feed) , and may use the second SR resource to request uplink resources for transmission of low throughput data.
Thus, as described above, some techniques and apparatuses described herein permit the BSR and the uplink grant that schedules the BSR to be eliminated for uplink data with a known data pattern, thereby conserving network resources (by reducing signaling overhead) , conserving UE resources, conserving base station resources, reducing latency, improving spectral efficiency, and permitting a larger number of UEs 120 to be supported by the base station 110.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
Fig. 6 is a diagram illustrating an example 600 of configuring a scheduling request resource for an alarm mode of a UE, in accordance with various aspects of the present disclosure.
As described above in connection with Fig. 4, in some aspects, the SR resource configured for the alarm mode (sometimes referred to herein as a first SR resource) may be the same as another SR resource configured for a normal mode (sometimes referred to herein as a second SR resource) . In this case, the base station 110 may configure the UE 120 with a single SR resource to be used for both the alarm mode and the normal mode, as shown by reference number 605. In some aspects, the base station 110 may transmit a configuration for the single SR resource in an RRC message. This configuration may be transmitted in a similar manner as described above in connection with reference number 410 of Fig. 4.
In this case, the UE 120 may indicate, to the base station 110, whether the UE 120 is operating in the normal mode or the alarm mode. The base station 110 may respond to an SR received in the SR resource based at least in part on the indication. For example, if the UE 120 is operating in the normal mode, then the base station 110 may transmit an uplink grant for a BSR upon receiving an SR in the SR resource. Conversely, if the UE 120 is operating in the alarm mode, then the base station 110 may transmit an uplink grant for uplink data with an indicated data pattern upon receiving an SR in the SR resource.
In some aspects, the UE 120 may operate in the normal mode by default (e.g., unless the UE 120 signals otherwise to the base station 110) . For example, as shown by reference number 610, after being configured with the SR resource, the UE 120 may transmit an SR in the SR resource. As shown by reference number 615, this SR may trigger the four-step dynamic resource allocation procedure described above in connection with Fig. 3 (e.g., with the BSR) .
As shown by reference number 620, the UE 120 may indicate, to the base station 110, that the UE 120 is operating in the alarm mode (e.g., a high throughput operating mode) . This indication may include an indication of a start of the data pattern indicated to the base station 110 as described above in connection with Fig. 4. As shown by reference number 625, in some aspects, the base station 110 may transmit an indication that the SR resource has been activated for the alarm mode (e.g., the high throughput operating mode) . In some aspects, this indication may include an acknowledgement (ACK) of the indication that the UE 120 is operating in the alarm  mode. As shown by reference number 630, after transmitting the indication that the UE 120 is operating in the alarm mode and/or receiving the indication that the SR resource has been activated for the alarm mode, the UE 120 may transmit an SR in the SR resource. As shown by reference number 635, this SR may trigger the two-step dynamic resource allocation procedure described above in connection with Fig. 4 (e.g., without the BSR) .
As shown by reference number 640, the UE 120 may indicate, to the base station 110, that the UE 120 is operating in the normal mode (e.g., a non-alarm mode or a low throughput operating mode) . This indication may include an indication of an end of the data pattern indicated to the base station 110 as described above in connection with Fig. 4. As shown by reference number 645, in some aspects, the base station 110 may transmit an indication that the SR resource has been deactivated for the alarm mode (e.g., the high throughput operating mode) . In some aspects, this indication may include an ACK of the indication that the UE 120 is operating in the normal mode. As shown by reference number 650, after transmitting the indication that the UE 120 is operating in the normal mode and/or receiving the indication that the SR resource has been deactivated for the alarm mode, the UE 120 may transmit an SR in the SR resource. As shown by reference number 655, this SR may trigger the four-step dynamic resource allocation procedure described above in connection with Fig. 3 (e.g., with the BSR) .
Thus, as described above, some techniques and apparatuses described herein permit the BSR and the uplink grant that schedules the BSR to be eliminated for uplink data with a known data pattern, thereby conserving network resources (by reducing signaling overhead) , conserving UE resources, conserving base station resources, reducing latency, improving spectral efficiency, and permitting a larger number of UEs 120 to be supported by the base station 110. Furthermore, by using a single SR resource for both the alarm mode and the normal mode, fewer network resources need to be dedicated to SR resources.
As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 700 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with configuring a scheduling request resource for an alarm mode of a UE.
As shown in Fig. 7, in some aspects, process 700 may include transmitting, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the UE (block 710) . For example, the UE (e.g., using transmit processor 264, controller/processor 280, memory 282, and/or the like) may transmit, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the UE, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include receiving, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern (block 720) . For example, the UE (e.g., using receive processor 258, controller/processor 280, memory 282, and/or the like) may receive, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include transmitting, to the base station, a scheduling request in the scheduling request resource (block 730) . For example, the UE (e.g., using transmit processor 264, controller/processor 280, memory 282, and/or the like) may transmit, to the base station, a scheduling request in the scheduling request resource, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include receiving, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode (block 740) . For example, the UE (e.g., using receive processor 258, controller/processor 280, memory 282, and/or the like) may receive, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode, as described above.
Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, process 700 includes transmitting, to the base station, the uplink data associated with the data pattern for the alarm mode in the set of uplink resources.
In a second aspect, alone or in combination with the first aspect, the uplink grant is received in response to the scheduling request without reception of an uplink grant for a buffer status report and without transmission of the buffer status report.
In a third aspect, alone or in combination with one or more of the first and second aspects, the scheduling request is transmitted based at least in part on detecting an event that triggers the alarm mode.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the indication of the data pattern indicates at least one of a data size of the uplink data, a periodicity of the uplink data, a duration of transmission of the uplink data, or a combination thereof.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the data pattern includes at least one of: a first pattern having a number of periodic and fixed size data packets, or a second pattern having a number of periodic data packets that include a first packet having a first size and remaining packets having a second size.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the uplink data associated with the alarm mode has at least one of a higher data transfer rate or a larger data packet size than a normal mode of the UE.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the configuration further indicates another scheduling request resource, different from the scheduling request resource, to be used to trigger an uplink grant for a buffer status report.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, transmission of a scheduling request in the scheduling request resource triggers: the uplink grant that indicates the set of uplink resources to be used for the uplink data when the UE is operating in the alarm mode, or an uplink grant for a buffer status report when the UE is operating in a normal mode.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 700 includes indicating a start of the data pattern to the base station before transmitting the scheduling request in the scheduling request resource; receiving an indication that the scheduling request resource has been activated for the alarm mode; and transmitting the scheduling request in the scheduling request resource based at least in part on receiving the indication that the scheduling request resource has been activated, wherein transmission of the scheduling request triggers the  uplink grant that indicates the set of uplink resources to be used for the uplink data associated with the alarm mode.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, process 700 includes indicating an end of the data pattern to the base station after receiving the uplink grant that indicates the set of uplink resources to be used for the uplink data associated with the alarm mode; receiving an indication that the scheduling request resource has been deactivated for the alarm mode; and transmitting another scheduling request in the scheduling request resource based at least in part on receiving the indication that the scheduling request resource has been deactivated, wherein transmission of the other scheduling request triggers an uplink grant for a buffer status report.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the uplink data is a video stream, and the alarm mode is triggered based at least in part on detecting a triggering event in the video stream.
Although Fig. 7 shows example blocks of process 700, in some aspects, process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a base station, in accordance with various aspects of the present disclosure. Example process 800 is an example where the base station (e.g., base station 110 and/or the like) performs operations associated with configuring a scheduling request resource for an alarm mode of a UE.
As shown in Fig. 8, in some aspects, process 800 may include receiving, from a UE, an indication of a data pattern for uplink data associated with an alarm mode of the UE (block 810) . For example, the base station (e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like) may receive, from a UE, an indication of a data pattern for uplink data associated with an alarm mode of the UE, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include transmitting, to the UE, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern (block 820) . For example, the base station (e.g., using transmit processor 220, controller/processor 240, memory 242, and/or the like) may transmit, to the UE, a  configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include receiving, from the UE, a scheduling request in the scheduling request resource (block 830) . For example, the base station (e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like) may receive, from the UE, a scheduling request in the scheduling request resource, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include transmitting, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode (block 840) . For example, the base station (e.g., using transmit processor 220, controller/processor 240, memory 242, and/or the like) may transmit, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode, as described above.
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, process 800 includes receiving, from the UE, the uplink data associated with the data pattern for the alarm mode in the set of uplink resources.
In a second aspect, alone or in combination with the first aspect, the uplink grant is transmitted in response to the scheduling request without transmission of an uplink grant for a buffer status report and without reception of the buffer status report.
In a third aspect, alone or in combination with one or more of the first and second aspects, the indication of the data pattern indicates at least one of a data size of the uplink data, a periodicity of the uplink data, a duration of transmission of the uplink data, or a combination thereof.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the data pattern includes at least one of: a first pattern having a number of periodic and fixed size data packets, or a second pattern having a number of periodic data packets that include a first packet having a first size and remaining packets having a second size.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the uplink data associated with the alarm mode has at least one of a higher data transfer rate or a larger data packet size than a normal mode of the UE.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the configuration further indicates another scheduling request resource, different from the scheduling request resource, to be used to trigger an uplink grant for a buffer status report.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, reception of a scheduling request in the scheduling request resource triggers: the uplink grant that indicates the set of uplink resources to be used for the uplink data when the UE is operating in the alarm mode, or an uplink grant for a buffer status report when the UE is operating in a normal mode.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, process 800 includes receiving, from the UE, an indication of a start of the data pattern before reception of the scheduling request in the scheduling request resource; transmitting an indication that the scheduling request resource has been activated for the alarm mode; and receiving the scheduling request in the scheduling request resource based at least in part on transmitting the indication that the scheduling request resource has been activated, wherein reception of the scheduling request triggers the uplink grant that indicates the set of uplink resources to be used for the uplink data associated with the alarm mode.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 800 includes receiving, from the UE, an indication of an end of the data pattern after transmitting the uplink grant that indicates the set of uplink resources to be used for the uplink data associated with the alarm mode; transmitting an indication that the scheduling request resource has been deactivated for the alarm mode; and receiving another scheduling request in the scheduling request resource based at least in part on transmitting the indication that the scheduling request resource has been deactivated, wherein reception of the other scheduling request triggers an uplink grant for a buffer status report.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the uplink data is a video stream.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently  arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (29)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    transmitting, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the UE;
    receiving, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern;
    transmitting, to the base station, a scheduling request in the scheduling request resource; and
    receiving, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
  2. The method of claim 1, further comprising transmitting, to the base station, the uplink data associated with the data pattern for the alarm mode in the set of uplink resources.
  3. The method of claim 1, wherein the uplink grant is received in response to the scheduling request without reception of an uplink grant for a buffer status report and without transmission of the buffer status report.
  4. The method of claim 1, wherein the scheduling request is transmitted based at least in part on detecting an event that triggers the alarm mode.
  5. The method of claim 1, wherein the indication of the data pattern indicates at least one of a data size of the uplink data, a periodicity of the uplink data, a duration of transmission of the uplink data, or a combination thereof.
  6. The method of claim 1, wherein the data pattern includes at least one of:
    a first pattern having a number of periodic and fixed size data packets, or
    a second pattern having a number of periodic data packets that include a first packet having a first size and remaining packets having a second size.
  7. The method of claim 1, wherein the uplink data associated with the alarm mode has at least one of a higher data transfer rate or a larger data packet size than a normal mode of the UE.
  8. The method of claim 1, wherein the configuration further indicates another scheduling request resource, different from the scheduling request resource, to be used to trigger an uplink grant for a buffer status report.
  9. The method of claim 1, wherein transmission of a scheduling request in the scheduling request resource triggers:
    the uplink grant that indicates the set of uplink resources to be used for the uplink data when the UE is operating in the alarm mode, or
    an uplink grant for a buffer status report when the UE is operating in a normal mode.
  10. The method of claim 1, further comprising:
    indicating a start of the data pattern to the base station before transmitting the scheduling request in the scheduling request resource;
    receiving an indication that the scheduling request resource has been activated for the alarm mode; and
    transmitting the scheduling request in the scheduling request resource based at least in part on receiving the indication that the scheduling request resource has been activated, wherein transmission of the scheduling request triggers the uplink grant that indicates the set of uplink resources to be used for the uplink data associated with the alarm mode.
  11. The method of claim 10, further comprising:
    indicating an end of the data pattern to the base station after receiving the uplink grant that indicates the set of uplink resources to be used for the uplink data associated with the alarm mode;
    receiving an indication that the scheduling request resource has been deactivated for the alarm mode; and
    transmitting another scheduling request in the scheduling request resource based at least in part on receiving the indication that the scheduling request resource has been deactivated, wherein transmission of the other scheduling request triggers an uplink grant for a buffer status report.
  12. The method of claim 1, wherein the uplink data is a video stream, and the alarm mode is triggered based at least in part on detecting a triggering event in the video stream.
  13. A method of wireless communication performed by a base station, comprising:
    receiving, from a user equipment (UE) , an indication of a data pattern for uplink data associated with an alarm mode of the UE;
    transmitting, to the UE, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern;
    receiving, from the UE, a scheduling request in the scheduling request resource; and
    transmitting, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
  14. The method of claim 13, further comprising receiving, from the UE, the uplink data associated with the data pattern for the alarm mode in the set of uplink resources.
  15. The method of claim 13, wherein the uplink grant is transmitted in response to the scheduling request without transmission of an uplink grant for a buffer status report and without reception of the buffer status report.
  16. The method of claim 13, wherein the indication of the data pattern indicates at least one of a data size of the uplink data, a periodicity of the uplink data, a duration of transmission of the uplink data, or a combination thereof.
  17. The method of claim 13, wherein the data pattern includes at least one of:
    a first pattern having a number of periodic and fixed size data packets, or
    a second pattern having a number of periodic data packets that include a first packet having a first size and remaining packets having a second size.
  18. The method of claim 13, wherein the uplink data associated with the alarm mode has at least one of a higher data transfer rate or a larger data packet size than a normal mode of the UE.
  19. The method of claim 13, wherein the configuration further indicates another scheduling request resource, different from the scheduling request resource, to be used to trigger an uplink grant for a buffer status report.
  20. The method of claim 13, wherein reception of a scheduling request in the scheduling request resource triggers:
    the uplink grant that indicates the set of uplink resources to be used for the uplink data when the UE is operating in the alarm mode, or
    an uplink grant for a buffer status report when the UE is operating in a normal mode.
  21. The method of claim 13, further comprising:
    receiving, from the UE, an indication of a start of the data pattern before reception of the scheduling request in the scheduling request resource;
    transmitting an indication that the scheduling request resource has been activated for the alarm mode; and
    receiving the scheduling request in the scheduling request resource based at least in part on transmitting the indication that the scheduling request resource has been activated, wherein reception of the scheduling request triggers the uplink grant that indicates the set of uplink resources to be used for the uplink data associated with the alarm mode.
  22. The method of claim 21, further comprising:
    receiving, from the UE, an indication of an end of the data pattern after transmitting the uplink grant that indicates the set of uplink resources to be used for the uplink data associated with the alarm mode;
    transmitting an indication that the scheduling request resource has been deactivated for the alarm mode; and
    receiving another scheduling request in the scheduling request resource based at least in part on transmitting the indication that the scheduling request resource has been deactivated, wherein reception of the other scheduling request triggers an uplink grant for a buffer status report.
  23. The method of claim 13, wherein the uplink data is a video stream.
  24. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the UE;
    receive, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern;
    transmit, to the base station, a scheduling request in the scheduling request resource; and
    receive, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
  25. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive, from a user equipment (UE) , an indication of a data pattern for uplink data associated with an alarm mode of the UE;
    transmit, to the UE, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern;
    receive, from the UE, a scheduling request in the scheduling request resource; and
    transmit, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
  26. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the one or more processors to:
    transmit, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the UE;
    receive, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern;
    transmit, to the base station, a scheduling request in the scheduling request resource; and
    receive, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
  27. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the one or more processors to:
    receive, from a user equipment (UE) , an indication of a data pattern for uplink data associated with an alarm mode of the UE;
    transmit, to the UE, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern;
    receive, from the UE, a scheduling request in the scheduling request resource; and
    transmit, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
  28. An apparatus for wireless communication, comprising:
    means for transmitting, to a base station, an indication of a data pattern for uplink data associated with an alarm mode of the apparatus;
    means for receiving, from the base station, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on transmitting the indication of the data pattern;
    means for transmitting, to the base station, a scheduling request in the scheduling request resource; and
    means for receiving, from the base station and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
  29. An apparatus for wireless communication, comprising:
    means for receiving, from a user equipment (UE) , an indication of a data pattern for uplink data associated with an alarm mode of the UE;
    means for transmitting, to the UE, a configuration that indicates a scheduling request resource to be used for the alarm mode based at least in part on receiving the indication of the data pattern;
    means for receiving, from the UE, a scheduling request in the scheduling request resource; and
    means for transmitting, to the UE and based at least in part on the scheduling request, an uplink grant that indicates a set of uplink resources to be used for the uplink data associated with the alarm mode.
PCT/CN2019/110315 2019-10-10 2019-10-10 Configuring a scheduling request resource for an alarm mode of a user equipment WO2021068152A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/110315 WO2021068152A1 (en) 2019-10-10 2019-10-10 Configuring a scheduling request resource for an alarm mode of a user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/110315 WO2021068152A1 (en) 2019-10-10 2019-10-10 Configuring a scheduling request resource for an alarm mode of a user equipment

Publications (1)

Publication Number Publication Date
WO2021068152A1 true WO2021068152A1 (en) 2021-04-15

Family

ID=75436932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110315 WO2021068152A1 (en) 2019-10-10 2019-10-10 Configuring a scheduling request resource for an alarm mode of a user equipment

Country Status (1)

Country Link
WO (1) WO2021068152A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147431A2 (en) * 2009-06-19 2010-12-23 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving uplink bandwidth request information in wireless communication system
US20160007381A1 (en) * 2007-10-29 2016-01-07 Unwired Planet, Llc Method and arrangement in a telecommunications system
US20170019919A1 (en) * 2015-07-15 2017-01-19 Apple Inc. UE Triggering of Pre-Scheduled Uplink Grants Based on VoLTE Traffic
US20180270854A1 (en) * 2015-09-16 2018-09-20 Lg Electronics Inc. Method for transceiving data in wireless communication system and apparatus for same
WO2019058022A1 (en) * 2017-09-22 2019-03-28 Nokia Technologies Oy Enabling uplink transmission during downlink subframe based on preemption of data transmission in wireless network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160007381A1 (en) * 2007-10-29 2016-01-07 Unwired Planet, Llc Method and arrangement in a telecommunications system
WO2010147431A2 (en) * 2009-06-19 2010-12-23 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving uplink bandwidth request information in wireless communication system
US20170019919A1 (en) * 2015-07-15 2017-01-19 Apple Inc. UE Triggering of Pre-Scheduled Uplink Grants Based on VoLTE Traffic
US20180270854A1 (en) * 2015-09-16 2018-09-20 Lg Electronics Inc. Method for transceiving data in wireless communication system and apparatus for same
WO2019058022A1 (en) * 2017-09-22 2019-03-28 Nokia Technologies Oy Enabling uplink transmission during downlink subframe based on preemption of data transmission in wireless network

Similar Documents

Publication Publication Date Title
US11758580B2 (en) Channel access procedures for an unlicensed radio frequency spectrum band
WO2020150546A1 (en) Variable payload size for two-step random access
EP4104500A1 (en) Channel state information (csi) processing unit procedures for csi report pre-emption
WO2020263490A1 (en) Techniques for signaling a beam for periodic communications
KR20220050889A (en) Monitoring of control channels
KR20220024110A (en) Techniques for Transmitting Sidelink HARQ Feedback
WO2020167774A1 (en) Reduced monitoring state
EP3874889A1 (en) Congestion control and priority handling in device-to-device (d2d) communications
EP4258580A2 (en) Low-latency scheduling request configuration
EP3785386A1 (en) Non-orthogonal multiple access (noma)-based channel quality indicator (cqi) reporting
WO2021138864A1 (en) Uplink preemption for multi-slot uci multiplexing
WO2021035253A1 (en) Dynamic physical downlink control channel skipping indication
US20200146024A1 (en) Prioritization scheme for a decentralized channel access mechanism
WO2021031108A1 (en) Mobile-originated data over dedicated preconfigured uplink resource while in an idle mode or an inactive mode
WO2021138881A1 (en) Multi-slot transmission time interval based channel state information and uplink shared channel multiplexing
WO2021068152A1 (en) Configuring a scheduling request resource for an alarm mode of a user equipment
WO2021026570A1 (en) Sidelink closed-loop transmit power control command processing
US11646851B2 (en) Channel state information reporting prioritization
WO2023082210A1 (en) Physical uplink shared channel (pusch) repetitions after idle period in frame-based equipment (fbe)
WO2021207917A1 (en) Restoration of data connectivity after failure by rrc connection releases in non-standalone network
WO2021207964A1 (en) Intra-user equipment prioritization of transmissions
WO2022032467A1 (en) Quality of service event indication
AU2020308330A1 (en) Feedback message control
WO2021202578A1 (en) Intra-user equipment traffic prioritization on uplink with medium access control-physical (mac-phy) layer interaction
WO2020247766A1 (en) Signaling and medium access control options for preempted scheduling requests

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948635

Country of ref document: EP

Kind code of ref document: A1