WO2021066432A1 - Economical method for producing zeolite catalyst having improved reaction activity and hydrothermal stability by controlling aluminum content and distribution - Google Patents

Economical method for producing zeolite catalyst having improved reaction activity and hydrothermal stability by controlling aluminum content and distribution Download PDF

Info

Publication number
WO2021066432A1
WO2021066432A1 PCT/KR2020/013154 KR2020013154W WO2021066432A1 WO 2021066432 A1 WO2021066432 A1 WO 2021066432A1 KR 2020013154 W KR2020013154 W KR 2020013154W WO 2021066432 A1 WO2021066432 A1 WO 2021066432A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
water
catalyst
hydrothermal
mother liquor
Prior art date
Application number
PCT/KR2020/013154
Other languages
French (fr)
Korean (ko)
Inventor
조성준
박순희
이관영
Original Assignee
전남대학교산학협력단
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단, 고려대학교 산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2021066432A1 publication Critical patent/WO2021066432A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange

Definitions

  • the present invention relates to a method for producing a zeolite catalyst, and more specifically, to a method for producing an economical zeolite catalyst in which reaction activity and hydrothermal stability are improved by controlling aluminum content and distribution.
  • Zeolite is a porous material having a unique shape or size of pores and regular channels, and is widely used as an adsorbent, separating agent, and detergent support.
  • the acidity can be widely controlled by controlling the ratio of silicon and aluminum atoms in the zeolite skeleton, it is used as a catalyst in various fields including the petrochemical industry.
  • Zeolite is synthesized through a hydrothermal synthesis method that heats a synthetic mother liquor prepared by dissolving silica and alumina raw materials, structure-inducing substances, and complexing substances, etc., which are skeleton components, in water.
  • the present invention was conceived to solve the above problems, and an object of the present invention is to improve reaction activity and hydrothermal stability by controlling the aluminum content and distribution of the zeolite catalyst, and to increase the zeolite production efficiency to obtain economical effects at the same time. It is to provide a method for producing a zeolite catalyst.
  • the purpose of improving the zeolite synthesis method is to provide a method capable of controlling the Si/Al molar ratio, particle size, shape, etc. of the generated zeolite by controlling the aluminum content and distribution in the zeolite skeleton.
  • the present invention is to provide a method for producing a zeolite catalyst with improved reaction activity and hydrothermal stability that can secure economic and environmental effects at the same time by greatly reducing the amount of water used in the hydrothermal synthesis of zeolite.
  • the present invention comprises the steps of preparing a synthetic mother liquor by dissolving a zeolite precursor, a structure-inducing material, and a complexing material in water; Filtering the synthetic mother liquor to obtain a filtered solid from which water has been removed; It provides a zeolite synthesis method comprising a; step of synthesizing zeolite by hydrothermal reaction of the filtered solid.
  • the water content of the filtered solid is less than 50%, and 50 to 80% of water is removed from the synthetic mother liquor.
  • the hydrothermal reaction is carried out by placing the filtered solid in a sealed high-pressure cooker and rotating at a temperature of 50 to 200°C at 0 to 60 rpm, and the temperature and the number of rotations can be adjusted according to the type of zeolite to be synthesized.
  • the zeolite precursor may be a synthetic or natural zeolite of USY, FAU, or BEA type, and a solid form of kaolin or fly ash, but is not limited thereto, but is not limited to sodium silicate in a liquid state, It is possible to use a mixture of sodium aluminate, aluminum oxide or aluminum alkoxide with coroidal silica, fumed silica or tetraortho silicate.
  • the water filtered from the synthetic mother liquor is reused for the next preparation of the synthetic mother liquor to reduce the amount of alkaline wastewater generated.
  • the structure-inducing material uses an organic compound containing quaternary ammonium ions, and in some cases, an inorganic base or other types of organic compounds may be used.
  • the present invention comprises the steps of preparing a reaction solution by dissolving a structure-inducing substance and a complexing substance in water; Impregnating the reaction solution into a zeolite precursor to prepare an impregnated solid; It further provides a zeolite synthesis method comprising a; step of synthesizing zeolite by hydrothermal reaction of the impregnated solid.
  • the impregnation of the reaction solution is performed by incipient wetness impregnation.
  • incipient wetness impregnation for example, when USY zeolite is used as a precursor, it is possible to synthesize if it is more than 11 g of water per 10 g of USY zeolite.
  • ultrasonic treatment is performed at 40° C. for 1 to 2 hours for even dispersion of the reaction solution, followed by aging at room temperature for 0 to 12 hours.
  • the zeolite precursor is a synthetic or natural zeolite of USY, FAU or BEA type, or a solid form of kaolin or fly ash, etc. may be used.
  • zeolite seeds may be included in the impregnated solid.
  • pure zeolite without impurities can be obtained and the time required for hydrothermal reaction can be shortened, which is more economical.
  • the present invention further provides a zeolite catalyst manufacturing method in which hydrogen or alkali metal, alkaline earth metal, transition metal, noble metal, etc. are ion-exchanged or impregnated with the zeolite synthesized by the above zeolite synthesis method.
  • zeolites such as CHA, AEI, AFX, ERI, LTA, MFI, BEA, FAU, MEL, and MOR can be synthesized through the present invention and can be prepared as a catalyst.
  • the present invention has the following excellent effects.
  • the zeolite when the zeolite is hydrothermally synthesized by preparing a filtered solid or an impregnated solid, it is possible to control the Si/Al molar ratio and particle size of the generated zeolite, thereby producing a zeolite catalyst with improved reaction activity and hydrothermal stability. have.
  • FIG. 1 is a flowchart of a zeolite synthesis method according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a zeolite synthesis method according to another embodiment of the present invention.
  • FIG. 3 is a graph showing the XRD pattern and nitrogen adsorption isotherms of CHA zeolites according to Examples 1, 2, and Comparative Example 1 of the present invention.
  • Example 7 is a graph showing the SCR reaction activity before and after 750° C. hydrothermal treatment of Cu/CHA catalysts according to Examples 1, 2, and Comparative Example 1 of the present invention.
  • Example 8 is an XRD pattern and a nitrogen adsorption isotherm after 900° C. hydrothermal treatment of Cu/CHA catalysts according to Example 1 and Comparative Example 1 of the present invention.
  • FIG. 13 is a graph showing the SCR reaction activity of Cu/AEI catalysts according to Examples 3, 4, and 2 of the present invention before and after hydrothermal treatment at 750°C.
  • FIG. 14 is a graph showing the XRD pattern and nitrogen adsorption isotherms of AFX zeolites according to Examples 5, 6, and 3 of the present invention.
  • 15 is an electron microscope photograph of AFX zeolite according to Examples 5, 6, and 3 of the present invention.
  • 16 is an XRD pattern of Cu/AFX catalysts according to Examples 5, 6, and 3 of the present invention before and after hydrothermal treatment at 750°C.
  • FIG. 1 is a flowchart of a zeolite synthesis method according to an embodiment of the present invention.
  • a zeolite precursor, a composition inducing material, and a complexing material are dissolved in sufficient water to prepare a synthetic mother liquor (S1000).
  • the zeolite precursor is a raw material of silica and alumina, and synthetic or natural zeolite of USY, FAU or BEA type, and kaolin or fly ash in solid form may be used.
  • Sodium silicate, coroidal silica, fumed silica, or tetraortho silicate may be mixed with sodium aluminate, aluminum oxide or aluminum alkoxide.
  • an organic compound including quaternary ammonium ions may be mainly used depending on the type of zeolite, but inorganic bases or other types of organic compounds may be used in some cases. .
  • the complexing material may be an alkali hydroxide solution containing sodium hydroxide.
  • the synthetic mother liquor is added to a filtering device to remove water, and then filtered solids are obtained (S1100).
  • the filtered water can be reused to make a synthetic mother liquor, and in this case, the amount of alkaline wastewater generated can be reduced.
  • the filtered solid is hydrothermally reacted to synthesize zeolite (S1200).
  • the hydrothermal reaction is carried out by placing the filtered solid in a sealed high-pressure cooker and rotating at a temperature of 50 to 200°C at 0 to 60 rpm, and the temperature and rotation speed can be adjusted according to the type of zeolite to be synthesized.
  • FIG. 2 is a flowchart of a zeolite synthesis method according to another embodiment of the present invention.
  • the zeolite synthesis method according to another embodiment of the present invention is different from the one embodiment of the present invention in synthesizing zeolite from impregnated solids rather than from filtration solids.
  • a reaction solution is prepared by dissolving the structure-inducing substance and the complexing substance in water (S2000).
  • reaction solution is impregnated with the zeolite precursor to prepare an impregnated solid (S2100).
  • the impregnation is performed by incipient wetness impregnation, in which the amount of the solution is added to the extent that the zeolite precursor starts to get wet (incipient wetness).
  • incipient wetness for example, when USY zeolite is used as a precursor, USY zeolite Synthesis is possible if it is more than 11g of water per 10g.
  • the zeolite precursor is substantially the same as the zeolite precursor of one embodiment of the present invention, detailed descriptions will be omitted.
  • reaction solution in the impregnated solid is subjected to ultrasonic treatment at 40° C. for 1 to 2 hours, and then aged at room temperature for 0 to 12 hours.
  • zeolite seeds can be added to the impregnated solid, and in this case, pure zeolite without impurities can be obtained and the time required for hydrothermal reaction can be shortened, which is more economical.
  • the impregnated solid is subjected to a hydrothermal reaction to synthesize zeolite (S2200).
  • zeolites such as CHA, AEI, AFX, ERI, LTA, MFI, BEA, FAU, MEL, MOR, etc. can be synthesized, and hydrogen or alkali metal, alkaline earth metal, transition A zeolite catalyst can be prepared by ion-exchanging or impregnating metals, precious metals, and the like.
  • the synthetic mother liquor was aged at room temperature for 6 hours and then separated into 18 g of filtered solid and 93 g of filtrate using a vacuum filter to remove 84% of the liquid reactant.
  • the separated filtered solid was subjected to hydrothermal reaction for 4 days while rotating at 140° C. at 40 rpm to synthesize 7.4 g of CHA zeolite.
  • CHA zeolite was synthesized by hydrothermal reaction in the original state of the synthetic mother liquor having a composition of 1.0 SiO 2 : 0.3 SDA: 0.3 NaOH: 23 H 2 O without removing water.
  • the synthesized CHA zeolite was fired for 6 hours while flowing air in a kiln heated to 550°C, and Na + ions were removed through NH 4 + ion exchange.
  • NH 4 -form CHA was further ion-exchanged for Cu to prepare a Cu/CHA catalyst, and catalytic activity was investigated through SCR reaction.
  • hydrothermal stability of the prepared catalyst it was subjected to hydrothermal treatment for 12 hours while flowing air containing 10% water in a Cu/CHA catalyst layer heated to 750° C. at 100 ml/min.
  • the catalyst in which Cu was ion-exchanged was prepared in the same manner as in Example 1, and hydrothermal treatment at 750°C was also performed in the same manner.
  • Table 1 summarizes the amount of reactants, the amount of the product, and the properties of the generated zeolite when synthesizing CHA zeolite through filtered solids and impregnated solids.
  • Example 3 shows the XRD pattern and nitrogen adsorption isotherms of the CHA zeolite synthesized through Examples 1 and 2, and Comparative Example 1.
  • Comparative Example 1 using an excess of water or Example 1 and Example 2 in which the amount of water was significantly reduced showed the X-ray diffraction pattern of CHA as reported in the literature.
  • CHA zeolite having a very large surface area and pore volume was synthesized due to the well-developed micropores.
  • Example 4 shows an electron microscope (SEM) picture of the CHA zeolite. Regardless of the synthesis method in which the water content is different, cubic-shaped particles having a uniform size were obtained, and the size was also very similar to 0.5 ⁇ m. However, the Si/Al molar ratio of CHA generated according to the synthesis method was slightly different. Comparative Example 1 produced CHA having a high silica content with a Si/Al molar ratio of 12.1, but Example 1 and Example 2 produced CHA having a higher Al content of 10.9 and 11.6, respectively.
  • Table 2 summarizes the characteristics of the Cu/CHA catalyst before and after 750°C hydrothermal treatment.
  • Example 7 shows the results of investigation of the SCR reaction activity before and after 750° C. hydrothermal treatment of the Cu/CHA catalyst.
  • the catalysts prepared from Examples 1 and 2 have better low-temperature activity at 150°C than in Comparative Example 1, but are somewhat less active at high temperatures of 450°C or higher.
  • Example 1 exhibited excellent activity in the entire temperature range because the high-temperature activity was rather improved.
  • FIG. 8 shows the XRD pattern and nitrogen adsorption isotherms of the Cu/CHA catalysts prepared from Example 1 and Comparative Example 1 of the present invention after hydrothermal treatment at 900°C. It can be seen that the Cu/CHA prepared from Example 1 maintains the CHA crystal structure and micropores well even after hydrothermal treatment at 900°C.
  • Example 1 of the present invention even though more than 80% of water was removed during the zeolite synthesis process, CHA zeolite having excellent crystallinity was produced, and the hydrothermal stability was also very excellent. Therefore, the method of synthesizing zeolite by preparing a filtered solid is not only an economical synthesis method capable of increasing reactor efficiency, but also an effective method of preparing a zeolite catalyst capable of improving catalyst performance and hydrothermal stability.
  • a synthetic mother liquor containing SiO 2 : 0.2 SDA: 0.25 NaOH: 15 H 2 O was prepared.
  • the synthetic mother liquor was aged at room temperature for 12 hours and then separated into 22 g of solid and 40 g of filtrate using a vacuum filtration device to reduce the amount of reactant to 1/3.
  • the separated filtered solid was rotated at 160° C.
  • AEI zeolite was synthesized by hydrothermal reaction in the original state without removing water from the prepared synthetic mother liquor.
  • the catalyst in which Cu was ion-exchanged was prepared in the same manner as in Example 1, and hydrothermal treatment at 750°C was also performed in the same manner.
  • the catalyst in which Cu was ion-exchanged was prepared in the same manner as in Example 1, and hydrothermal treatment at 750°C was also performed in the same manner.
  • Table 3 summarizes the amount of reactant and product, and properties of the generated zeolite when synthesizing AEI zeolite through filtered solids and impregnated solids.
  • Example 10 shows an electron microscope (SEM) photograph of the AEI zeolite. All uniform cubic-shaped particles were obtained, but the size showed a large difference depending on the synthesis method. Comparative Example 2 in which a synthetic mother liquor was prepared using an excess of water and Example 3 in which the liquid phase was removed by filtration showed a particle size of about 1 to 1.5 ⁇ m, but Example 4 through an impregnated solid using a small amount of water was 0.2 to The particle size was greatly reduced to 0.5 ⁇ m. As a result of elemental analysis by EDX attached to the SEM, the Si/Al molar ratio was different depending on the synthesis method. In the case of Example 3 using the filtered solid material, the Si/Al molar ratio was 7.0, and the Al content was the highest, and in Example 4, the Si/Al molar ratio was 11.5, which was much higher in the silica content.
  • SEM electron microscope
  • Table 4 summarizes the properties before and after hydrothermal treatment of the Cu/AEI catalyst.
  • Example 13 shows the results of investigation of the SCR reaction activity before and after 750° C. hydrothermal treatment of the Cu/AEI catalyst. Even after hydrothermal treatment at 750°C, the catalytic activity was well maintained.In particular, the catalyst of Example 4 prepared from zeolite synthesized through impregnated solids, unlike other catalysts, showed 60% activity at a low temperature of 150°C even after hydrothermal treatment at 750°C. Hydrothermal stability was excellent enough to appear close.
  • the catalyst in which Cu was ion-exchanged was prepared in the same manner as in Example 1, and hydrothermal treatment at 750°C was also performed in the same manner.
  • AFX zeolite After washing and drying, 4.5 g of AFX zeolite was recovered. In the case of impregnated solids, the amount of water used can be reduced to 11 g, and AFX having a uniform particle size was reproducibly generated without aging after sonication.
  • the catalyst in which Cu was ion-exchanged was prepared in the same manner as in Example 1, and hydrothermal treatment at 750°C was also performed in the same manner.
  • Table 5 summarizes the amount of reactants, the amount of the product, and the properties of the generated zeolite when synthesizing AFX zeolite through filtered solids and impregnated solids.
  • Example 15 shows an electron microscope (SEM) picture of the AFX zeolite.
  • SEM electron microscope
  • AFX zeolite having a high silica content with a Si/Al molar ratio of 5.0 or more by a general hydrothermal synthesis method, but in Example 5 of the present invention, the Si/Al molar ratio is 6.5, and in Example 6, the Si/Al molar ratio is 7.8. AFX with high content was synthesized.
  • Fig. 17 shows nitrogen adsorption isotherms before and after 750°C hydrothermal treatment of the Cu/AFX catalyst.
  • the surface area was rather increased after hydrothermal treatment at 750°C, whereas the catalyst of Comparative Example 3 prepared by the conventional hydrothermal synthesis method decreased the surface area by about 20%, and thus prepared according to the present invention. It shows that the hydrothermal stability of the catalyst is better.
  • Table 6 summarizes the properties before and after the hydrothermal treatment of the Cu/AFX catalyst.
  • the present invention can be used industrially to prepare a zeolite catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The present invention relates to a method for producing a zeolite catalyst, and provides a zeolite preparation method wherein in the synthesis of zeolite, a filtration solid prepared by removing water from a synthetic stock solution using excessive water or an impregnation solid prepared by reducing the use amount of water from the start is subjected to a hydrothermal reaction, and thus zeolite having excellent crystallinity without impurities can be synthesized, and in such a case, the amounts of reactants are drastically reduced, leading to improvements in reactor efficiency and energy consumption and a reduction in amount of wastewater generated. Provided is also a method for producing a zeolite catalyst, wherein the zeolite synthesized by the present invention is changed in view of physicochemical properties including a Si/Al molar ratio, a particle size, and the like, and therefore, a catalyst produced using the zeolite can obtain the effects of improving reaction activity, hydrothermal stability, and the like.

Description

알루미늄 함량 및 분포를 조절하여 반응 활성과 수열 안정성을 향상시킨 경제적인 제올라이트 촉매 제조 방법An economical zeolite catalyst manufacturing method with improved reaction activity and hydrothermal stability by controlling aluminum content and distribution
본 발명은 제올라이트 촉매 제조 방법에 관한 것으로, 보다 구체적으로는 알루미늄 함량 및 분포를 조절하여 반응 활성과 수열 안정성을 향상시킨 경제적인 제올라이트 촉매의 제조 방법에 관한 것이다.The present invention relates to a method for producing a zeolite catalyst, and more specifically, to a method for producing an economical zeolite catalyst in which reaction activity and hydrothermal stability are improved by controlling aluminum content and distribution.
제올라이트는 독특한 모양이나 크기의 세공과 규칙적인 채널을 가지고 있는 다공성 물질로, 흡착제나 분리제, 세제 지지체 등으로 널리 사용되고 있다. 또한 제올라이트 골격의 실리콘과 알루미늄 원자의 비를 조절하여 산성도를 폭넓게 조절할 수 있어, 석유화학공업을 비롯한 다양한 분야에서 촉매로 활용되고 있다.Zeolite is a porous material having a unique shape or size of pores and regular channels, and is widely used as an adsorbent, separating agent, and detergent support. In addition, since the acidity can be widely controlled by controlling the ratio of silicon and aluminum atoms in the zeolite skeleton, it is used as a catalyst in various fields including the petrochemical industry.
제올라이트는 골격 구성 물질인 실리카와 알루미나 원료, 구조유도물질, 착물화물질 등을 물에 용해시켜 제조한 합성모액을 가열하는 수열 합성 방법을 통해 합성한다.Zeolite is synthesized through a hydrothermal synthesis method that heats a synthetic mother liquor prepared by dissolving silica and alumina raw materials, structure-inducing substances, and complexing substances, etc., which are skeleton components, in water.
일반적인 수열 합성 방법에서는 과량의 물을 사용하여 합성모액을 제조하기 때문에 혼합이 용이하고, 균일한 상태에서 반응하므로 재현성이 우수하지만, 물의 가열에 필요한 에너지 소모량이 크고 폐수 발생량이 많아진다는 단점이 있다. In a general hydrothermal synthesis method, since a synthetic mother liquor is prepared using an excess of water, mixing is easy, and since it reacts in a uniform state, reproducibility is excellent.
따라서 제올라이트 제조가격과 환경적인 측면에서는 물의 사용을 줄여 경제적 또는 환경적 부담을 줄이는 연구가 필요하다. Therefore, in terms of zeolite manufacturing cost and environmental aspects, research is needed to reduce the economic or environmental burden by reducing the use of water.
그러나 합성모액 제조 시 물의 사용량을 줄이면 원료의 균일한 혼합이 어려워 합성 재현성이 낮아진다. 또한, 물의 양에 따라 생성되는 제올라이트의 종류에도 제한이 있으므로 합성모액을 농축하는 것은 쉽지 않다. However, if the amount of water is reduced when preparing the synthetic mother liquor, it is difficult to uniformly mix the raw materials and the synthesis reproducibility is lowered. In addition, it is not easy to concentrate the synthetic mother liquor because the type of zeolite produced is limited depending on the amount of water.
따라서 수열 합성 시 물의 사용을 줄여 경제적, 환경적 효과는 높이되, 생성되는 제올라이트의 결정성과 순도 등 그 특성은 유지되는 합성 방법이 필요하다.Therefore, there is a need for a synthetic method in which properties such as crystallinity and purity of the generated zeolite are maintained while increasing the economic and environmental effects by reducing the use of water during hydrothermal synthesis.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로 본 발명의 목적은 제올라이트 촉매의 알루미늄 함량과 분포를 조절하여 반응 활성 및 수열 안정성을 향상시키고, 제올라이트 생산 효율을 높여 경제적인 효과도 동시에 얻을 수 있는 제올라이트 촉매 제조 방법을 제공하는 데 있다. The present invention was conceived to solve the above problems, and an object of the present invention is to improve reaction activity and hydrothermal stability by controlling the aluminum content and distribution of the zeolite catalyst, and to increase the zeolite production efficiency to obtain economical effects at the same time. It is to provide a method for producing a zeolite catalyst.
구체적으로는 제올라이트 합성 방법을 개선하여 제올라이트 골격 내 알루미늄 함량과 분포를 조절하여 생성되는 제올라이트의 Si/Al 몰비 및 입자 크기, 모양 등을 조절할 수 있는 방법을 제공하는 데 있다.Specifically, the purpose of improving the zeolite synthesis method is to provide a method capable of controlling the Si/Al molar ratio, particle size, shape, etc. of the generated zeolite by controlling the aluminum content and distribution in the zeolite skeleton.
또한 본 발명은 제올라이트 수열합성에 사용되는 물의 양을 크게 줄여 경제적, 환경적 효과를 동시에 확보할 수 있는 반응 활성과 수열 안정성이 향상된 제올라이트 촉매 제조 방법을 제공하는 데 있다.In addition, the present invention is to provide a method for producing a zeolite catalyst with improved reaction activity and hydrothermal stability that can secure economic and environmental effects at the same time by greatly reducing the amount of water used in the hydrothermal synthesis of zeolite.
상기의 목적을 달성하기 위하여 본 발명은 제올라이트 전구체, 구조유도물질 및 착물화물질을 물에 용해하여 합성모액을 제조하는 단계; 상기 합성모액을 여과하여 물을 제거된 여과 고형물을 얻는 단계; 상기 여과 고형물을 수열반응시켜 제올라이트를 합성하는 단계;를 포함하는 것을 특징으로 하는 제올라이트 합성 방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of preparing a synthetic mother liquor by dissolving a zeolite precursor, a structure-inducing material, and a complexing material in water; Filtering the synthetic mother liquor to obtain a filtered solid from which water has been removed; It provides a zeolite synthesis method comprising a; step of synthesizing zeolite by hydrothermal reaction of the filtered solid.
바람직한 실시예에 있어서, 상기 여과 고형물의 함수율은 50% 미만으로 상기 합성모액에서 물이 50 내지 80% 제거된다.In a preferred embodiment, the water content of the filtered solid is less than 50%, and 50 to 80% of water is removed from the synthetic mother liquor.
바람직한 실시예에 있어서, 상기 수열반응은 밀폐된 고압솥에 상기 여과 고형물을 넣고 50 내지 200℃ 온도에서 0 내지 60rpm으로 회전시키며 수행되며, 합성되는 제올라이트 종류에 따라 온도와 회전수를 조절할 수 있다.In a preferred embodiment, the hydrothermal reaction is carried out by placing the filtered solid in a sealed high-pressure cooker and rotating at a temperature of 50 to 200°C at 0 to 60 rpm, and the temperature and the number of rotations can be adjusted according to the type of zeolite to be synthesized.
바람직한 실시예에 있어서, 상기 제올라이트 전구체는 USY, FAU 또는 BEA type의 합성 또는 천연 제올라이트, 고형물 형태의 카올린(kaolin) 또는 플라이애시(fly ash)를 사용할 수 있으나 이에 국한되지 않고 액체 상태의 나트륨 실리케이트, 코로이달 실리카, 퓸드 실리카 또는 테트라오르쏘 실리케이트에 나트륨 알루미네이트, 알루미늄 산화물 또는 알루미늄 알콕사이드를 혼합하여 사용이 가능하다.In a preferred embodiment, the zeolite precursor may be a synthetic or natural zeolite of USY, FAU, or BEA type, and a solid form of kaolin or fly ash, but is not limited thereto, but is not limited to sodium silicate in a liquid state, It is possible to use a mixture of sodium aluminate, aluminum oxide or aluminum alkoxide with coroidal silica, fumed silica or tetraortho silicate.
바람직한 실시예에 있어서, 상기 합성모액에서 여과된 물은 다음 합성모액 제조에 재사용되어 알카리성 폐수의 발생량을 줄일 수 있다.In a preferred embodiment, the water filtered from the synthetic mother liquor is reused for the next preparation of the synthetic mother liquor to reduce the amount of alkaline wastewater generated.
바람직한 실시예에 있어서, 상기 구조유도물질은 4차 암모늄 이온을 포함한 유기 화합물을 이용하며 경우에 따라 무기 염기나 다른 종류의 유기 화합물도 사용이 가능하다.In a preferred embodiment, the structure-inducing material uses an organic compound containing quaternary ammonium ions, and in some cases, an inorganic base or other types of organic compounds may be used.
또한, 본 발명은 구조유도물질 및 착물화물질을 물에 용해하여 반응용액을 제조하는 단계; 상기 반응용액을 제올라이트 전구체에 함침하여 함침 고형물을 제조하는 단계; 상기 함침 고형물을 수열반응시켜 제올라이트를 합성하는 단계;를 포함하는 것을 특징으로 하는 제올라이트 합성 방법을 더 제공한다.In addition, the present invention comprises the steps of preparing a reaction solution by dissolving a structure-inducing substance and a complexing substance in water; Impregnating the reaction solution into a zeolite precursor to prepare an impregnated solid; It further provides a zeolite synthesis method comprising a; step of synthesizing zeolite by hydrothermal reaction of the impregnated solid.
바람직한 실시예에 있어서, 상기 반응용액의 함침은 젖음법(incipient wetness impregnation)에 의해 수행되며, 예를 들어, USY 제올라이트를 전구체로 이용하는 경우 USY 제올라이트 10g 당 물 11g 이상이면 합성이 가능하다.In a preferred embodiment, the impregnation of the reaction solution is performed by incipient wetness impregnation.For example, when USY zeolite is used as a precursor, it is possible to synthesize if it is more than 11 g of water per 10 g of USY zeolite.
바람직한 실시예에 있어서, 상기 함침 고형물을 수열반응시키기 전에 반응용액의 고른 분산을 위해 40℃에서 1 내지 2시간 초음파 처리 후, 상온에서 0 내지 12시간 동안 에이징한다.In a preferred embodiment, before the impregnated solid is subjected to hydrothermal reaction, ultrasonic treatment is performed at 40° C. for 1 to 2 hours for even dispersion of the reaction solution, followed by aging at room temperature for 0 to 12 hours.
바람직한 실시예에 있어서, 상기 제올라이트 전구체는 USY, FAU 또는 BEA type의 합성 또는 천연 제올라이트이거나, 고형물 형태의 카올린(kaolin) 또는 플라이애시(fly ash) 등이 사용 가능하다.In a preferred embodiment, the zeolite precursor is a synthetic or natural zeolite of USY, FAU or BEA type, or a solid form of kaolin or fly ash, etc. may be used.
바람직한 실시예에 있어서, 상기 함침 고형물에는 제올라이트 seed가 포함될 수 있다. 이 경우 불순물이 섞이지 않은 순수한 제올라이트를 얻을 수 있고 수열반응에 필요한 시간도 단축시킬 수 있어 더욱 경제적이다.In a preferred embodiment, zeolite seeds may be included in the impregnated solid. In this case, pure zeolite without impurities can be obtained and the time required for hydrothermal reaction can be shortened, which is more economical.
또한, 본 발명은 상기 제올라이트 합성방법으로 합성된 제올라이트에 수소 또는 알칼리금속, 알칼리토금속, 전이금속, 귀금속 등을 이온교환하거나 함침하여 촉매를 제조하는 제올라이트 촉매 제조 방법을 더 제공한다.In addition, the present invention further provides a zeolite catalyst manufacturing method in which hydrogen or alkali metal, alkaline earth metal, transition metal, noble metal, etc. are ion-exchanged or impregnated with the zeolite synthesized by the above zeolite synthesis method.
또한, 본 발명을 통해 CHA, AEI, AFX, ERI, LTA, MFI, BEA, FAU, MEL, MOR 등의 제올라이트를 합성할 수 있으며 촉매로 제조할 수 있다.In addition, zeolites such as CHA, AEI, AFX, ERI, LTA, MFI, BEA, FAU, MEL, and MOR can be synthesized through the present invention and can be prepared as a catalyst.
본 발명은 다음과 같은 우수한 효과를 가진다.The present invention has the following excellent effects.
본 발명에 의하면, 여과 고형물 또는 함침 고형물을 제조하여 제올라이트를 수열 합성하면, 생성되는 제올라이트의 Si/Al 몰비 및 입자 크기 등을 조절할 수 있어, 반응 활성 및 수열 안정성 등이 향상된 제올라이트 촉매를 제조할 수 있다.According to the present invention, when the zeolite is hydrothermally synthesized by preparing a filtered solid or an impregnated solid, it is possible to control the Si/Al molar ratio and particle size of the generated zeolite, thereby producing a zeolite catalyst with improved reaction activity and hydrothermal stability. have.
또한, 제올라이트 합성모액의 대부분을 차지하는 물을 대폭 줄여 수열 합성함으로써 경제적이면서도 친환경적인 효과를 동시에 얻을 수 있다. In addition, by significantly reducing water, which occupies most of the zeolite synthetic mother liquor, hydrothermal synthesis, economical and eco-friendly effects can be obtained at the same time.
도 1은 본 발명의 일 실시형태에 따른 제올라이트 합성방법의 흐름도이다.1 is a flowchart of a zeolite synthesis method according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시형태에 따른 제올라이트 합성방법의 흐름도이다.2 is a flowchart of a zeolite synthesis method according to another embodiment of the present invention.
도 3은 본 발명의 실시예 1, 실시예 2 및 비교예 1에 따른 CHA 제올라이트의 XRD 패턴과 질소 흡착등온선을 나타낸 그래프이다.3 is a graph showing the XRD pattern and nitrogen adsorption isotherms of CHA zeolites according to Examples 1, 2, and Comparative Example 1 of the present invention.
도 4는 본 발명의 실시예 1, 실시예 2 및 비교예 1에 따른 CHA 제올라이트의 전자현미경 사진이다.4 is an electron microscope photograph of CHA zeolite according to Examples 1, 2 and Comparative Example 1 of the present invention.
도 5는 본 발명의 실시예 1, 실시예 2 및 비교예 1에 따른 Cu/CHA 촉매의 750℃ 수열 처리 전과 후의 XRD 패턴이다.5 is an XRD pattern before and after hydrothermal treatment at 750° C. of Cu/CHA catalysts according to Examples 1, 2, and Comparative Example 1 of the present invention.
도 6은 본 발명의 실시예 1, 실시예 2 및 비교예 1에 따른 Cu/CHA 촉매의 750℃ 수열 처리 전과 후의 질소 흡착등온선이다.6 is a nitrogen adsorption isotherm before and after 750° C. hydrothermal treatment of Cu/CHA catalysts according to Examples 1, 2, and Comparative Example 1 of the present invention.
도 7은 본 발명의 실시예 1, 실시예 2 및 비교예 1에 따른 Cu/CHA 촉매의 750℃ 수열 처리 전과 후의 SCR 반응 활성을 나타낸 그래프이다.7 is a graph showing the SCR reaction activity before and after 750° C. hydrothermal treatment of Cu/CHA catalysts according to Examples 1, 2, and Comparative Example 1 of the present invention.
도 8은 본 발명의 실시예 1과 비교예 1에 따른 Cu/CHA 촉매의 900 ℃ 수열 처리 후의 XRD 패턴과 질소 흡착등온선이다.8 is an XRD pattern and a nitrogen adsorption isotherm after 900° C. hydrothermal treatment of Cu/CHA catalysts according to Example 1 and Comparative Example 1 of the present invention.
도 9는 본 발명의 실시예 3, 실시예 4 및 비교예 2에 따른 AEI 제올라이트의 XRD 패턴과 질소 흡착등온선을 나타낸 그래프이다.9 is a graph showing the XRD pattern and nitrogen adsorption isotherms of AEI zeolite according to Examples 3, 4 and Comparative Example 2 of the present invention.
도 10은 본 발명의 실시예 3, 실시예 4 및 비교예 2에 따른 AEI 제올라이트의 전자현미경 사진이다.10 is an electron microscope photograph of AEI zeolite according to Examples 3, 4 and Comparative Example 2 of the present invention.
도 11은 본 발명의 실시예 3, 실시예 4 및 비교예 2에 따른 Cu/AEI 촉매의 750℃ 수열 처리 전과 후의 XRD 패턴이다.11 is an XRD pattern of Cu/AEI catalysts according to Examples 3, 4, and 2 of the present invention before and after hydrothermal treatment at 750°C.
도 12는 본 발명의 실시예 3, 실시예 4 및 비교예 2에 따른 Cu/AEI 촉매의 750℃ 수열 처리 전과 후의 질소 흡착등온선이다.12 is a nitrogen adsorption isotherm before and after 750° C. hydrothermal treatment of Cu/AEI catalysts according to Examples 3, 4 and Comparative Example 2 of the present invention.
도 13은 본 발명의 실시예 3, 실시예 4 및 비교예 2에 따른 Cu/AEI 촉매의 750℃ 수열 처리 전과 후의 SCR 반응 활성을 나타낸 그래프이다.13 is a graph showing the SCR reaction activity of Cu/AEI catalysts according to Examples 3, 4, and 2 of the present invention before and after hydrothermal treatment at 750°C.
도 14는 본 발명의 실시예 5, 실시예 6 및 비교예 3에 따른 AFX 제올라이트의 XRD 패턴과 질소 흡착등온선을 나타낸 그래프이다.14 is a graph showing the XRD pattern and nitrogen adsorption isotherms of AFX zeolites according to Examples 5, 6, and 3 of the present invention.
도 15는 본 발명의 실시예 5, 실시예 6 및 비교예 3에 따른 AFX 제올라이트의 전자현미경 사진이다.15 is an electron microscope photograph of AFX zeolite according to Examples 5, 6, and 3 of the present invention.
도 16은 본 발명의 실시예 5, 실시예 6 및 비교예 3에 따른 Cu/AFX 촉매의 750 ℃ 수열 처리 전과 후의 XRD 패턴이다.16 is an XRD pattern of Cu/AFX catalysts according to Examples 5, 6, and 3 of the present invention before and after hydrothermal treatment at 750°C.
도 17은 본 발명의 실시예 5, 실시예 6 및 비교예 3에 따른 Cu/AFX 촉매의 750 ℃ 수열 처리 전과 후의 질소 흡착등온선이다.17 is a nitrogen adsorption isotherm before and after 750° C. hydrothermal treatment of Cu/AFX catalysts according to Examples 5, 6, and 3 of the present invention.
도 18은 본 발명의 실시예 5, 실시예 6 및 비교예 3에 따른 Cu/AFX 촉매의 750 ℃ 수열 처리 전과 후의 SCR 반응 활성을 나타낸 그래프이다.18 is a graph showing the SCR reaction activity of Cu/AFX catalysts according to Examples 5, 6, and 3 of the present invention before and after hydrothermal treatment at 750°C.
본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.As for terms used in the present invention, general terms that are currently widely used are selected, but in certain cases, some terms are arbitrarily selected by the applicant. In this case, the meanings described or used in the detailed description of the invention are considered rather than the names of simple terms. Therefore, the meaning should be grasped.
이하, 첨부한 도면에 도시된 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, with reference to the preferred embodiments shown in the accompanying drawings will be described in detail the technical configuration of the present invention.
그러나 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 명세서 전체에 걸쳐 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. The same reference numerals denote the same elements throughout the specification.
도 1은 본 발명의 일 실시형태에 따른 제올라이트 합성방법의 흐름도이다.1 is a flowchart of a zeolite synthesis method according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시형태에 따른 제올라이트 합성방법은 먼저, 제올라이트 전구체, 구도유도물질 및 착물화 물질을 충분한 물에 용해하여 합성모액을 제조한다(S1000).Referring to FIG. 1, in the zeolite synthesis method according to an embodiment of the present invention, first, a zeolite precursor, a composition inducing material, and a complexing material are dissolved in sufficient water to prepare a synthetic mother liquor (S1000).
또한, 상기 제올라이트 전구체는 실리카와 알루미나의 원료이며, USY, FAU 또는 BEA type의 합성 또는 천연 제올라이트, 고형물 형태의 카올린(kaolin) 또는 플라이애시(fly ash)를 사용할 수 있으나 이에 국한되지 않고 액체 상태의 나트륨 실리케이트, 코로이달 실리카, 퓸드 실리카 또는 테트라오르쏘 실리케이트에 나트륨 알루미네이트, 알루미늄 산화물 또는 알루미늄 알콕사이드를 혼합하여 사용이 가능하다.In addition, the zeolite precursor is a raw material of silica and alumina, and synthetic or natural zeolite of USY, FAU or BEA type, and kaolin or fly ash in solid form may be used. Sodium silicate, coroidal silica, fumed silica, or tetraortho silicate may be mixed with sodium aluminate, aluminum oxide or aluminum alkoxide.
또한, 상기 구도유도물질(SDA:Structure directing agent)은 목적하는 제올라이트의 종류에 따라 4차 암모늄 이온을 포함한 유기 화합물을 주로 이용할 수 있으나 경우에 따라 무기 염기나 다른 종류의 유기 화합물도 사용이 가능하다.In addition, as the structure directing agent (SDA), an organic compound including quaternary ammonium ions may be mainly used depending on the type of zeolite, but inorganic bases or other types of organic compounds may be used in some cases. .
또한, 상기 착물화 물질은 수산화나트륨을 포함한 수산화 알칼리 용액일 수 있다.In addition, the complexing material may be an alkali hydroxide solution containing sodium hydroxide.
다음, 상기 합성모액을 여과 장치에 투입하여 물을 제거한 후 여과 고형물을 얻는다(S1100).Next, the synthetic mother liquor is added to a filtering device to remove water, and then filtered solids are obtained (S1100).
또한, 상기 합성모액에서 물이 50 내지 80% 제거되며 상기 여과 고형물의 함수율은 50% 미만이 된다.In addition, 50 to 80% of water is removed from the synthetic mother liquor, and the water content of the filtered solid is less than 50%.
이때 여과된 물은 합성모액을 만드는데 재사용될 수 있으며, 이 경우 알카리성 폐수의 발생량을 줄일 수 있다.At this time, the filtered water can be reused to make a synthetic mother liquor, and in this case, the amount of alkaline wastewater generated can be reduced.
다음, 상기 여과 고형물을 수열반응시켜 제올라이트를 합성한다(S1200).Next, the filtered solid is hydrothermally reacted to synthesize zeolite (S1200).
또한, 상기 수열반응은 밀폐된 고압솥에 상기 여과 고형물을 넣고 50 내지 200℃ 온도에서 0 내지 60rpm으로 회전시키며 수행되며, 합성되는 제올라이트 종류에 따라 온도와 회전수를 조절할 수 있다.In addition, the hydrothermal reaction is carried out by placing the filtered solid in a sealed high-pressure cooker and rotating at a temperature of 50 to 200°C at 0 to 60 rpm, and the temperature and rotation speed can be adjusted according to the type of zeolite to be synthesized.
도 2는 본 발명의 다른 실시형태에 따른 제올라이트 합성방법의 흐름도이다.2 is a flowchart of a zeolite synthesis method according to another embodiment of the present invention.
도 2를 참조하면, 본 발명의 다른 실시형태에 따른 제올라이트 합성방법은 본 발명의 일 실시형태와 비교하여 여과 고형물로부터 제올라이트를 합성하는 것이 아닌 함침 고형물로부터 제올라이트를 합성하는데 차이가 있다.Referring to FIG. 2, the zeolite synthesis method according to another embodiment of the present invention is different from the one embodiment of the present invention in synthesizing zeolite from impregnated solids rather than from filtration solids.
먼저, 구조유도물질 및 착물화물질을 물에 용해하여 반응용액을 제조한다(S2000).First, a reaction solution is prepared by dissolving the structure-inducing substance and the complexing substance in water (S2000).
여기서 상기 구조유도물질과 상기 착물화물질은 본 발명의 일 실시형태의 구조유도물질 및 착물화물질과 실질적으로 동일하므로 자세한 설명은 생략한다.Here, since the structure-inducing material and the complexing material are substantially the same as those of the structure-inducing material and the complexing material of the embodiment of the present invention, detailed descriptions will be omitted.
다음, 상기 반응용액을 제올라이트 전구체에 함침하여 함침 고형물을 제조한다(S2100).Next, the reaction solution is impregnated with the zeolite precursor to prepare an impregnated solid (S2100).
또한, 상기 함침은 용액의 사용량을 상기 제올라이트 전구체가 젖기 시작(incipient wetness)할 정도로 투입하여 함침하는 젖음법(incipient wetness impregnation)에 의해 수행되며, 예를 들어, USY 제올라이트를 전구체로 이용하는 경우 USY 제올라이트 10g 당 물 11g 이상이면 합성이 가능하다.In addition, the impregnation is performed by incipient wetness impregnation, in which the amount of the solution is added to the extent that the zeolite precursor starts to get wet (incipient wetness).For example, when USY zeolite is used as a precursor, USY zeolite Synthesis is possible if it is more than 11g of water per 10g.
또한, 상기 제올라이트 전구체는 본 발명의 일 실시형태의 제올라이트 전구체와 실질적으로 동일하므로 자세한 설명은 생략한다.In addition, since the zeolite precursor is substantially the same as the zeolite precursor of one embodiment of the present invention, detailed descriptions will be omitted.
다음, 상기 함침 고형물에 반응용액을 고루 분산시키기 위해 40℃에서 1 내지 2시간 초음파 처리 후, 상온에서 0 내지 12시간 동안 에이징한다.Next, in order to evenly disperse the reaction solution in the impregnated solid, it is subjected to ultrasonic treatment at 40° C. for 1 to 2 hours, and then aged at room temperature for 0 to 12 hours.
또한, 경우에 따라서 상기 함침 고형물에 제올라이트 seed를 투입할 수 있으며, 이 경우 불순물이 섞이지 않은 순수한 제올라이트를 얻을 수 있고 수열반응에 필요한 시간도 단축시킬 수 있어 더욱 경제적이다.In addition, in some cases, zeolite seeds can be added to the impregnated solid, and in this case, pure zeolite without impurities can be obtained and the time required for hydrothermal reaction can be shortened, which is more economical.
다음, 상기 함침 고형물을 수열반응시켜 제올라이트를 합성한다(S2200).Next, the impregnated solid is subjected to a hydrothermal reaction to synthesize zeolite (S2200).
또한, 본 발명의 실시형태들을 통해 CHA, AEI, AFX, ERI, LTA, MFI, BEA, FAU, MEL, MOR 등의 제올라이트를 합성할 수 있으며, 합성된 제올라이트에 수소 또는 알칼리금속, 알칼리토금속, 전이금속, 귀금속 등을 이온교환하거나 함침하여 제올라이트 촉매를 제조할 수 있다.In addition, through the embodiments of the present invention, zeolites such as CHA, AEI, AFX, ERI, LTA, MFI, BEA, FAU, MEL, MOR, etc. can be synthesized, and hydrogen or alkali metal, alkaline earth metal, transition A zeolite catalyst can be prepared by ion-exchanging or impregnating metals, precious metals, and the like.
이하에서는 본 발명의 이해를 돕기 위하여 바림직한 실시예와 비교예를 제시한다. 다만, 하기의 실시예들은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실시예에 국한되는 것은 아니다.Hereinafter, preferred examples and comparative examples are presented to aid in understanding of the present invention. However, the following examples are only intended to aid understanding of the present invention, and the present invention is not limited to the following examples.
[실시예 1: CHA 제올라이트 합성-여과 고형물][Example 1: CHA Zeolite Synthesis-Filtrated Solid]
과량의 물 90g에 실리카와 알루미나의 원료인 USY 제올라이트(Si/Al=15) 10g, 구조유도물질인 benzyltrimethylammonium chloride 9.3g, 착물화물질인 NaOH 2.1g을 혼합하여 조성이 1.0 SiO 2 : 0.3 SDA : 0.3 NaOH : 30 H 2O인 합성모액을 제조하였다. In 90 g of excess water, 10 g of USY zeolite (Si/Al=15), a raw material for silica and alumina, 9.3 g of benzyltrimethylammonium chloride, and 2.1 g of NaOH, a complexing material, are mixed with a composition of 1.0 SiO 2 : 0.3 SDA: A synthetic mother liquor containing 0.3 NaOH: 30 H 2 O was prepared.
합성모액은 실온에서 6시간 에이징한 후 감압여과장치를 이용하여 18g의 여과 고형물과 93g의 여과액으로 분리하여 84%의 액상 반응물을 제거하였다. The synthetic mother liquor was aged at room temperature for 6 hours and then separated into 18 g of filtered solid and 93 g of filtrate using a vacuum filter to remove 84% of the liquid reactant.
분리된 여과 고형물은 140℃에서 40rpm으로 회전시키며 4일간 수열반응시켜, 7.4g의 CHA 제올라이트를 합성하였다.The separated filtered solid was subjected to hydrothermal reaction for 4 days while rotating at 140° C. at 40 rpm to synthesize 7.4 g of CHA zeolite.
비교를 위하여 비교예 1에서는 조성이 1.0 SiO 2 : 0.3 SDA : 0.3 NaOH : 23 H 2O인 합성모액의 물을 제거하지 않은 원래 상태로 수열반응시켜 CHA 제올라이트를 합성하였다.For comparison, in Comparative Example 1, CHA zeolite was synthesized by hydrothermal reaction in the original state of the synthetic mother liquor having a composition of 1.0 SiO 2 : 0.3 SDA: 0.3 NaOH: 23 H 2 O without removing water.
합성한 CHA 제올라이트는 550℃로 가열된 소성로에서 공기를 흘리며 6시간 동안 소성하였으며, NH 4 + 이온교환을 통하여 Na + 이온을 제거하였다. NH 4-form CHA는 추가로 Cu를 이온 교환하여 Cu/CHA 촉매를 제조하였으며, SCR 반응을 통하여 촉매활성을 조사하였다. 또한, 제조된 촉매의 수열 안정성을 테스트하기 위하여, 750℃로 가열된 Cu/CHA 촉매층에 10%의 물을 함유한 공기를 100ml/min으로 흘리면서 12시간 동안 수열 처리하였다.The synthesized CHA zeolite was fired for 6 hours while flowing air in a kiln heated to 550°C, and Na + ions were removed through NH 4 + ion exchange. NH 4 -form CHA was further ion-exchanged for Cu to prepare a Cu/CHA catalyst, and catalytic activity was investigated through SCR reaction. In addition, in order to test the hydrothermal stability of the prepared catalyst, it was subjected to hydrothermal treatment for 12 hours while flowing air containing 10% water in a Cu/CHA catalyst layer heated to 750° C. at 100 ml/min.
[실시예 2: CHA 제올라이트 합성-함침 고형물][Example 2: CHA zeolite synthesis-impregnated solids]
물 16g에 benzyltrimethylammonium hydroxide 3.5g과 NaOH 0.8g을 용해시킨 후, USY 제올라이트(Si/Al=15) 10g에 함침시켰다. 이때 반응물의 조성은 1.0 SiO 2 : 0.13 SDA : 0.13 NaOH : 5.3 H 2O이었다. 반응 물질의 균일한 혼합을 위하여 40℃에서 1시간 동안 초음파 처리한 후 상온에서 12시간 에이징하였고, 이후 140℃에서 40 rpm으로 회전시키며 4일간 수열반응시켰다. 세척과 건조 후 7.2g의 CHA 제올라이트를 회수하였다. 함침 고형물의 경우 물 사용량은 11g까지 줄일 수 있으며, 초음파 처리 후 에이징을 하지 않아도 균일한 입자 크기를 갖는 CHA 제올라이트가 재현성 있게 생성되었다.After dissolving 3.5 g of benzyltrimethylammonium hydroxide and 0.8 g of NaOH in 16 g of water, 10 g of USY zeolite (Si/Al=15) was impregnated. At this time, the composition of the reactant was 1.0 SiO 2 : 0.13 SDA: 0.13 NaOH: 5.3 H 2 O. For homogeneous mixing of the reactants, ultrasonic treatment was performed at 40° C. for 1 hour and then aged at room temperature for 12 hours, and then hydrothermal reaction was performed for 4 days while rotating at 140° C. at 40 rpm. After washing and drying, 7.2 g of CHA zeolite was recovered. In the case of impregnated solids, the amount of water used can be reduced to 11 g, and CHA zeolite having a uniform particle size was reproducibly produced without aging after sonication.
Cu가 이온교환된 촉매는 실시예 1과 동일한 방법으로 제조하였으며, 750℃ 수열 처리 역시 같은 방법으로 수행하였다.The catalyst in which Cu was ion-exchanged was prepared in the same manner as in Example 1, and hydrothermal treatment at 750°C was also performed in the same manner.
표 1에는 여과 고형물과 함침 고형물을 통해 CHA 제올라이트를 합성할 시 반응물의 양과 생성물의 양, 그리고 생성된 제올라이트의 특성을 정리하였다.Table 1 summarizes the amount of reactants, the amount of the product, and the properties of the generated zeolite when synthesizing CHA zeolite through filtered solids and impregnated solids.
반응물(g)Reactant (g) 생성물(g)Product (g) 표면적(m 2/g)Surface area (m 2 /g) 세공 부피(cm 3/g)Pore volume (cm 3 /g) Si/AlSi/Al
실리카Silica 총량Total amount 실리카10g 기준Based on 10g silica 반응물10g 기준Based on 10 g of reactant
비교예1Comparative Example 1 1010 8989 7.97.9 0.90.9 579579 0.290.29 12.112.1
실시예1Example 1 1010 1818 7.47.4 4.14.1 601601 0.330.33 10.910.9
실시예2Example 2 1010 3030 7.27.2 2.42.4 602602 0.310.31 11.611.6
도 3에는 실시예 1과 실시예 2, 비교예 1을 통하여 합성한 CHA 제올라이트의 XRD 패턴과 질소 흡착등온선을 보였다. 과량의 물을 사용한 비교예 1이나 물의 양을 대폭 줄인 실시예 1과 실시예 2 모두 문헌에 보고된 바와 같은 CHA의 X-선 회절 패턴을 보였다. 또한, 미세 세공이 잘 발달되어 표면적과 세공 부피가 매우 큰 CHA 제올라이트가 합성되었다.3 shows the XRD pattern and nitrogen adsorption isotherms of the CHA zeolite synthesized through Examples 1 and 2, and Comparative Example 1. Both Comparative Example 1 using an excess of water or Example 1 and Example 2 in which the amount of water was significantly reduced showed the X-ray diffraction pattern of CHA as reported in the literature. In addition, CHA zeolite having a very large surface area and pore volume was synthesized due to the well-developed micropores.
도 4에는 CHA 제올라이트의 전자현미경(SEM) 사진을 보였다. 물의 함량이 상이한 합성 방법과 무관하게 모두 균일한 크기를 갖는 큐빅 모양의 입자가 얻어졌으며, 그 크기 또한 0.5μm로 매우 비슷하였다. 그러나 합성 방법에 따라 생성되는 CHA의 Si/Al 몰비는 조금 달랐다. 비교예 1은 Si/Al 몰비가 12.1인 실리카 함량이 높은 CHA가 생성되었지만, 실시예 1과 실시예 2는 이보다는 Al 함량이 높은 10.9와 11.6인 CHA가 각각 생성되었다.4 shows an electron microscope (SEM) picture of the CHA zeolite. Regardless of the synthesis method in which the water content is different, cubic-shaped particles having a uniform size were obtained, and the size was also very similar to 0.5 μm. However, the Si/Al molar ratio of CHA generated according to the synthesis method was slightly different. Comparative Example 1 produced CHA having a high silica content with a Si/Al molar ratio of 12.1, but Example 1 and Example 2 produced CHA having a higher Al content of 10.9 and 11.6, respectively.
도 5에는 Cu/CHA 촉매의 750℃ 수열 처리 전과 후의 XRD 패턴을 보였다. 촉매 제조 방법에 상관없이 수열처리 전과 후의 X-선 회절 패턴 변화가 거의 없어, Cu/CHA 촉매의 수열 안정성이 매우 우수함을 보여준다.5 shows the XRD patterns before and after 750° C. hydrothermal treatment of the Cu/CHA catalyst. Regardless of the catalyst preparation method, there is almost no change in the X-ray diffraction pattern before and after the hydrothermal treatment, showing that the hydrothermal stability of the Cu/CHA catalyst is very excellent.
도 6에는 Cu/CHA 촉매의 750℃ 수열 처리 전과 후의 질소 흡착등온선을 보였다. XRD 결과와 마찬가지로 수열처리로 인한 미세세공의 변화는 전혀 관찰되지 않았다. 6 shows nitrogen adsorption isotherms before and after 750° C. hydrothermal treatment of the Cu/CHA catalyst. Like the XRD results, no change in micropore due to hydrothermal treatment was observed.
표 2에는 Cu/CHA 촉매의 750℃ 수열 처리 전과 후의 특성을 정리하였다.Table 2 summarizes the characteristics of the Cu/CHA catalyst before and after 750°C hydrothermal treatment.
Si/AlSi/Al Cu 함량(wt%)Cu content (wt%) 표면적(m 2/g)Surface area (m 2 /g) 세공부피(cm 3/g)Pore volume (cm 3 /g)
수열처리 전Before hydrothermal treatment 수열처리 후After hydrothermal treatment 수열처리 전Before hydrothermal treatment 수열처리 후After hydrothermal treatment
비교예1Comparative Example 1 13.513.5 2.12.1 584584 584584 0.290.29 0.310.31
실시예1Example 1 10.910.9 2.72.7 537537 545545 0.270.27 0.290.29
실시예2Example 2 11.611.6 2.52.5 548548 576576 0.300.30 0.320.32
도 7에는 Cu/CHA 촉매의 750℃ 수열 처리 전과 후의 SCR 반응 활성을 조사한 결과를 보였다. 실시예 1과 실시예 2로부터 제조된 촉매는 비교예 1보다 150℃의 저온 활성은 더 우수하지만, 450℃ 이상의 고온에서는 다소 활성이 떨어진다. 그러나 750℃ 수열 처리 후 실시예 1은 고온 활성이 오히려 향상되어 전체 온도 영역에서 우수한 활성을 보였다.7 shows the results of investigation of the SCR reaction activity before and after 750° C. hydrothermal treatment of the Cu/CHA catalyst. The catalysts prepared from Examples 1 and 2 have better low-temperature activity at 150°C than in Comparative Example 1, but are somewhat less active at high temperatures of 450°C or higher. However, after hydrothermal treatment at 750°C, Example 1 exhibited excellent activity in the entire temperature range because the high-temperature activity was rather improved.
도 8에는 본 발명의 실시예 1과 비교예 1로부터 제조된 Cu/CHA 촉매의 900℃ 수열 처리 후의 XRD 패턴과 질소 흡착등온선을 보였다. 실시예 1로부터 제조된 Cu/CHA는 900℃ 수열 처리 후에도 CHA 결정 구조와 미세세공이 잘 유지되고 있음을 확인할 수 있다.FIG. 8 shows the XRD pattern and nitrogen adsorption isotherms of the Cu/CHA catalysts prepared from Example 1 and Comparative Example 1 of the present invention after hydrothermal treatment at 900°C. It can be seen that the Cu/CHA prepared from Example 1 maintains the CHA crystal structure and micropores well even after hydrothermal treatment at 900°C.
본 발명의 실시예 1에 따르면 제올라이트 합성 과정에서 80% 이상의 물을 제거하였음에도 불구하고 결정성이 우수한 CHA 제올라이트가 생성되었으며, 수열 안정성도 매우 우수하였다. 따라서 여과 고형물을 제조하여 제올라이트를 합성하는 방법은 반응기 효율을 높일 수 있는 경제적인 합성 방법일 뿐만 아니라 촉매의 성능과 수열 안정성도 향상시킬 수 있는 효과적인 제올라이트 촉매 제조 방법이다.According to Example 1 of the present invention, even though more than 80% of water was removed during the zeolite synthesis process, CHA zeolite having excellent crystallinity was produced, and the hydrothermal stability was also very excellent. Therefore, the method of synthesizing zeolite by preparing a filtered solid is not only an economical synthesis method capable of increasing reactor efficiency, but also an effective method of preparing a zeolite catalyst capable of improving catalyst performance and hydrothermal stability.
[실시예 3: AEI 제올라이트 합성-여과 고형물][Example 3: Synthesis of AEI Zeolite-Filtrated Solids]
과량의 물 45g에 실리카와 알루미나의 원료인 USY 제올라이트(Si/Al=15) 10g, 구조유도물질인 N, N-dimethyl-3,5-dimethylpiperidium hydroxide 5.3g, NaOH 1.7g을 혼합하여 조성이 1.0 SiO 2 : 0.2 SDA : 0.25 NaOH : 15 H 2O인 합성모액을 제조하였다. 합성모액은 실온에서 12시간 에이징한 후 감압여과장치를 이용하여 고형물 22g과 여과액 40g으로 분리하여 반응물의 양을 1/3로 줄였다. 분리된 여과 고형물은 160℃에서 40rpm으로 회전시키며 4일간 수열반응시켰다. 합성이 완료된 후 생성된 제올라이트는 세척 후 90℃에서 12시간 이상 건조하였으며, 최종 얻어진 제올라이트 무게는 4.4g이었다. 비교를 위하여 비교예 2에서는 제조된 합성모액의 물을 제거하지 않은 원래 상태로 수열반응시켜 AEI 제올라이트를 합성하였다.The composition is 1.0 by mixing 45 g of excess water with 10 g of USY zeolite (Si/Al=15), a raw material for silica and alumina, 5.3 g of N , N -dimethyl-3,5-dimethylpiperidium hydroxide, and 1.7 g of NaOH, which are structural inducing materials. A synthetic mother liquor containing SiO 2 : 0.2 SDA: 0.25 NaOH: 15 H 2 O was prepared. The synthetic mother liquor was aged at room temperature for 12 hours and then separated into 22 g of solid and 40 g of filtrate using a vacuum filtration device to reduce the amount of reactant to 1/3. The separated filtered solid was rotated at 160° C. at 40 rpm and subjected to hydrothermal reaction for 4 days. After the synthesis was completed, the generated zeolite was washed and dried at 90° C. for 12 hours or more, and the final weight of the zeolite was 4.4 g. For comparison, in Comparative Example 2, AEI zeolite was synthesized by hydrothermal reaction in the original state without removing water from the prepared synthetic mother liquor.
Cu가 이온교환된 촉매는 실시예 1과 동일한 방법으로 제조하였으며, 750℃ 수열 처리 역시 같은 방법으로 수행하였다.The catalyst in which Cu was ion-exchanged was prepared in the same manner as in Example 1, and hydrothermal treatment at 750°C was also performed in the same manner.
[실시예 4: AEI 제올라이트 합성-함침 고형물][Example 4: AEI zeolite synthesis-impregnated solids]
물 19g에 N, N-dimethyl-3,5-dimethylpiperidium hydroxide 5.3g과 NaOH 1.7g을 용해시킨 후, USY 제올라이트(Si/Al=15) 10g에 함침시켰다. 반응 물질의 균일한 혼합을 위하여 40℃에서 1시간 동안 초음파 처리한 후 상온에서 12시간 에이징하였고, 이후 160℃에서 40 rpm으로 회전시키며 4일간 수열반응시켰다. 세척과 건조 후 얻어진 제올라이트 무게는 6.7g이었다. 함침 고형물을 제조하는 경우 물 사용량을 11g까지 줄일 수 있었으며, 초음파 처리 후 에이징을 하지 않아도 균일한 입자 크기를 갖는 AEI가 재현성 있게 생성되므로 합성 시간을 단축할 수 있다.After dissolving 5.3 g of N , N -dimethyl-3,5-dimethylpiperidium hydroxide and 1.7 g of NaOH in 19 g of water, it was impregnated with 10 g of USY zeolite (Si/Al=15). For homogeneous mixing of the reactants, the reaction mixture was subjected to ultrasonic treatment at 40° C. for 1 hour and then aged at room temperature for 12 hours, and then rotated at 160° C. at 40 rpm for 4 days hydrothermal reaction. The zeolite weight obtained after washing and drying was 6.7 g. In the case of preparing the impregnated solid, the amount of water used could be reduced to 11 g, and since AEI having a uniform particle size is reproducibly generated without aging after sonication, the synthesis time can be shortened.
Cu가 이온교환된 촉매는 실시예 1과 동일한 방법으로 제조하였으며, 750℃ 수열 처리 역시 같은 방법으로 수행하였다.The catalyst in which Cu was ion-exchanged was prepared in the same manner as in Example 1, and hydrothermal treatment at 750°C was also performed in the same manner.
표 3에는 여과 고형물과 함침 고형물을 통해 AEI 제올라이트를 합성할 시 반응물의 양과 생성물의 양, 그리고 생성된 제올라이트의 특성을 정리하였다.Table 3 summarizes the amount of reactant and product, and properties of the generated zeolite when synthesizing AEI zeolite through filtered solids and impregnated solids.
반응물(g)Reactant (g) 생성물(g)Product (g) 표면적(m 2/g)Surface area (m 2 /g) 세공 부피(cm 3/g)Pore volume (cm 3 /g) Si/AlSi/Al
실리카Silica 총량Total amount 실리카10g 기준Based on 10g silica 반응물10g 기준Based on 10 g of reactant
비교예2Comparative Example 2 1010 6262 5.25.2 0.80.8 584584 0.280.28 10.610.6
실시예3Example 3 1010 2222 4.44.4 2.02.0 567567 0.280.28 7.07.0
실시예4Example 4 1010 3636 6.76.7 1.91.9 601601 0.300.30 11.511.5
도 9에는 실시예 3과 실시예 4, 비교예 2를 통하여 합성한 AEI 제올라이트의 XRD 패턴과 질소 흡착등온선을 보였다. 과량의 물을 사용한 비교예 2나 물의 양을 대폭 줄인 실시예 3과 실시예 4 모두 문헌에 보고된 바와 같은 AEI의 X-선 회절 패턴을 보였다. 또한, 미세 세공이 잘 발달되어 표면적과 세공 부피가 매우 큰 AEI 제올라이트가 합성되었다.9 shows the XRD pattern and nitrogen adsorption isotherms of AEI zeolite synthesized through Example 3, Example 4, and Comparative Example 2. Both Comparative Example 2 using an excess of water and Example 3 and Example 4, in which the amount of water was significantly reduced, showed an X-ray diffraction pattern of AEI as reported in the literature. In addition, AEI zeolite having a very large surface area and pore volume was synthesized due to the well-developed micropores.
도 10에는 AEI 제올라이트의 전자현미경(SEM) 사진을 보였다. 모두 균일한 큐빅모양의 입자가 얻어졌지만, 그 크기는 합성 방법에 따라 큰 차이를 보였다. 과량의 물을 사용하여 합성모액을 제조한 비교예 2와 여과하여 액상을 제거한 실시예 3은 1 내지 1.5μm 정도의 입자 크기를 보이지만, 소량의 물을 사용한 함침 고형물을 통한 실시예 4는 0.2 내지 0.5μm로 입자 크기가 크게 감소하였다. SEM에 부착된 EDX로 원소 분석한 결과 Si/Al 몰비는 합성 방법에 따라 달랐다. 여과 고형물을 이용한 실시예 3의 경우 Si/Al 몰비가 7.0으로 Al 함량이 가장 많았으며, 실시예 4는 Si/Al 몰비가 11.5로 이보다는 실리카 함량이 훨씬 높았다.10 shows an electron microscope (SEM) photograph of the AEI zeolite. All uniform cubic-shaped particles were obtained, but the size showed a large difference depending on the synthesis method. Comparative Example 2 in which a synthetic mother liquor was prepared using an excess of water and Example 3 in which the liquid phase was removed by filtration showed a particle size of about 1 to 1.5 μm, but Example 4 through an impregnated solid using a small amount of water was 0.2 to The particle size was greatly reduced to 0.5 μm. As a result of elemental analysis by EDX attached to the SEM, the Si/Al molar ratio was different depending on the synthesis method. In the case of Example 3 using the filtered solid material, the Si/Al molar ratio was 7.0, and the Al content was the highest, and in Example 4, the Si/Al molar ratio was 11.5, which was much higher in the silica content.
도 11에는 본 발명을 통하여 합성한 Cu/AEI 촉매의 750℃ 수열 처리 전과 후의 XRD 패턴을 보였다. 촉매 제조 방법에 상관없이 모든 Cu/AEI 촉매는 750℃ 수열 처리 전과 후의 XRD 회절 패턴에 큰 차이를 보이지 않아, 수열처리로 인한 구조 붕괴는 진행되지 않았음을 알 수 있다.11 shows the XRD patterns before and after 750° C. hydrothermal treatment of the Cu/AEI catalyst synthesized through the present invention. Regardless of the catalyst preparation method, all Cu/AEI catalysts did not show a significant difference in the XRD diffraction pattern before and after 750°C hydrothermal treatment, indicating that structural collapse due to hydrothermal treatment did not proceed.
도 12에는 Cu/AEI 촉매의 750℃ 수열 처리 전과 후의 질소 흡착등온선을 보였다. 750℃ 수열 처리 후 미세세공의 감소로 표면적이 다소 감소하는 비교예 2와 달리 실시예 3과 실시예 4의 경우에는 오히려 표면적이 증가하여, 본 발명으로 제조한 촉매의 수열 안정성이 향상되었음을 보여준다.12 shows nitrogen adsorption isotherms before and after 750° C. hydrothermal treatment of the Cu/AEI catalyst. Unlike Comparative Example 2, in which the surface area slightly decreased due to a decrease in micropore after 750°C hydrothermal treatment, in the case of Examples 3 and 4, the surface area was rather increased, indicating that the hydrothermal stability of the catalyst prepared according to the present invention was improved.
표 4에는 Cu/AEI 촉매의 수열 처리 전과 후의 특성을 정리하였다.Table 4 summarizes the properties before and after hydrothermal treatment of the Cu/AEI catalyst.
Si/AlSi/Al Cu 함량(wt%)Cu content (wt%) 표면적(m 2/g)Surface area (m 2 /g) 세공부피(cm 3/g)Pore volume (cm 3 /g)
수열처리 전Before hydrothermal treatment 수열처리 후After hydrothermal treatment 수열처리 전Before hydrothermal treatment 수열처리 후After hydrothermal treatment
비교예2Comparative Example 2 10.610.6 1.81.8 601601 535535 0.300.30 0.280.28
실시예3Example 3 7.07.0 3.13.1 481481 501501 0.250.25 0.250.25
실시예4Example 4 11.511.5 2.72.7 556556 571571 0.290.29 0.300.30
도 13에는 Cu/AEI 촉매의 750℃ 수열 처리 전과 후의 SCR 반응 활성을 조사한 결과를 보였다. 750℃로 수열처리하여도 촉매 활성을 잘 유지하고 있었으며, 특히 함침 고형물을 통해 합성한 제올라이트로부터 제조한 실시예 4의 촉매는 다른 촉매들과 달리 750℃ 수열처리 후에도 150℃ 저온의 활성이 60% 가까이 나타날 정도로 수열 안정성이 우수하였다.13 shows the results of investigation of the SCR reaction activity before and after 750° C. hydrothermal treatment of the Cu/AEI catalyst. Even after hydrothermal treatment at 750°C, the catalytic activity was well maintained.In particular, the catalyst of Example 4 prepared from zeolite synthesized through impregnated solids, unlike other catalysts, showed 60% activity at a low temperature of 150°C even after hydrothermal treatment at 750°C. Hydrothermal stability was excellent enough to appear close.
[실시예 5: AFX 제올라이트 합성-여과 고형물][Example 5: AFX Zeolite Synthesis-Filtrated Solids]
과량의 물 45g에 실리카와 알루미나의 원료인 USY 제올라이트(Si/Al=15) 10 g, 구조유도물질인 1,1′-(hexane-1,6-diyl)bis(1-methyl-pyrrolidin-1-ium) hydroxide 9.6g, NaOH 1.7g을 혼합하여 조성이 1.0 SiO 2 : 0.2 SDA : 0.25 NaOH : 15 H 2O인 합성모액을 제조하였다. 합성모액은 실온에서 12시간 에이징한 후 감압여과장치를 이용하여 고형물 26g과 여과액 40g으로 분리하여 반응물의 양을 1/3로 줄였다. 분리된 여과 고형물은 회수하여 170℃에서 60rpm으로 회전시키며 4일간 수열반응시켰다. 세척과 건조 후 얻어진 제올라이트 무게는 3.1g이었다. 비교를 위하여 비교예 3에서는 물 50g에 실리카와 알루미나의 원료인 USY 제올라이트(Si/Al=15) 10g, 구조유도물질인 1,1′-(hexane-1,6-diyl)bis(1-methyl-pyrrolidin-1-ium) bromide 20.7g, NaOH 4.0g을 혼합하여 조성이 1.0 SiO 2 : 0.3 SDA : 0.6 NaOH : 16.7 H 2O인 합성모액을 수열반응시켜 AFX 제올라이트를 합성하였다.In 45 g of excess water, 10 g of USY zeolite (Si/Al=15), a raw material for silica and alumina, 1,1′-(hexane-1,6-diyl)bis(1-methyl-pyrrolidin-1), a structure-inducing material -ium) hydroxide 9.6g and NaOH 1.7g were mixed to prepare a synthetic mother liquor having a composition of 1.0 SiO 2 : 0.2 SDA: 0.25 NaOH: 15 H 2 O. The synthetic mother liquor was aged at room temperature for 12 hours and then separated into 26 g of solid and 40 g of filtrate using a vacuum filtration device to reduce the amount of reactant to 1/3. The separated filtered solid was recovered, rotated at 170° C. at 60 rpm, and subjected to hydrothermal reaction for 4 days. The zeolite weight obtained after washing and drying was 3.1 g. For comparison, in Comparative Example 3, in 50 g of water, 10 g of USY zeolite (Si/Al=15) as a raw material for silica and alumina, and 1,1′-(hexane-1,6-diyl)bis(1-methyl) as a structural inducing material -pyrrolidin-1-ium) bromide 20.7g and NaOH 4.0g were mixed to synthesize a synthetic mother liquor having a composition of 1.0 SiO 2 : 0.3 SDA: 0.6 NaOH: 16.7 H 2 O by hydrothermal reaction to synthesize AFX zeolite.
Cu가 이온교환된 촉매는 실시예 1과 동일한 방법으로 제조하였으며, 750℃ 수열 처리 역시 같은 방법으로 수행하였다.The catalyst in which Cu was ion-exchanged was prepared in the same manner as in Example 1, and hydrothermal treatment at 750°C was also performed in the same manner.
[실시예 6: AFX 제올라이트 합성-함침 고형물][Example 6: AFX zeolite synthesis-impregnated solids]
물 22g에 1,1′-(pentane-1,5-diyl)bis(1-methyl-pyrrolidin-1-ium) hydroxide 7.8g과 NaOH 1.7g을 용해시킨 후, USY 제올라이트(Si/Al=15) 10g에 함침시켰다. 이때 반응물의 조성은 1.0 SiO 2 : 0.17 SDA : 0.26 NaOH : 7.5 H 2O이었다. 반응 물질의 균일한 혼합을 위하여 40℃에서 1시간 동안 초음파 처리한 후 상온에서 12시간 에이징하였고, 이후 170℃에서 60rpm으로 회전시키며 4일간 수열반응시켰다. 세척과 건조 후 4.5g의 AFX 제올라이트를 회수하였다. 함침 고형물의 경우 물 사용량은 11g까지 줄일 수 있으며, 초음파 처리 후 에이징을 하지 않아도 균일한 입자 크기를 갖는 AFX가 재현성 있게 생성되었다.After dissolving 7.8 g of 1,1′-(pentane-1,5-diyl)bis(1-methyl-pyrrolidin-1-ium) hydroxide and 1.7 g of NaOH in 22 g of water, USY zeolite (Si/Al=15) Impregnated in 10 g. At this time, the composition of the reactant was 1.0 SiO 2 : 0.17 SDA: 0.26 NaOH: 7.5 H 2 O. For homogeneous mixing of the reactants, ultrasonic treatment was performed at 40° C. for 1 hour and then aged at room temperature for 12 hours, followed by hydrothermal reaction for 4 days while rotating at 170° C. at 60 rpm. After washing and drying, 4.5 g of AFX zeolite was recovered. In the case of impregnated solids, the amount of water used can be reduced to 11 g, and AFX having a uniform particle size was reproducibly generated without aging after sonication.
Cu가 이온교환된 촉매는 실시예 1과 동일한 방법으로 제조하였으며, 750℃ 수열 처리 역시 같은 방법으로 수행하였다.The catalyst in which Cu was ion-exchanged was prepared in the same manner as in Example 1, and hydrothermal treatment at 750°C was also performed in the same manner.
표 5에는 여과 고형물과 함침 고형물을 통해 AFX 제올라이트를 합성할 시 반응물의 양과 생성물의 양, 그리고 생성된 제올라이트의 특성을 정리하였다.Table 5 summarizes the amount of reactants, the amount of the product, and the properties of the generated zeolite when synthesizing AFX zeolite through filtered solids and impregnated solids.
반응물(g)Reactant (g) 생성물(g)Product (g) 표면적(m 2/g)Surface area (m 2 /g) 세공 부피(cm 3/g)Pore volume (cm 3 /g) Si/AlSi/Al
실리카Silica 총량Total amount 실리카10g 기준Based on 10g silica 반응물10g 기준Based on 10 g of reactant
비교예3Comparative Example 3 1010 8585 2.92.9 0.30.3 598598 0.290.29 4.84.8
실시예5Example 5 1010 2626 3.13.1 1.21.2 600600 0.300.30 6.56.5
실시예6Example 6 1010 4242 4.54.5 1.11.1 599599 0.310.31 7.87.8
도 14에는 실시예 5와 실시예 6, 비교예 3을 통하여 합성한 AFX 제올라이트의 XRD 패턴과 질소 흡착등온선을 보였다. 합성 방법에 무관하게 모두 문헌에 보고된 바와 동일한 AFX의 X-선 회절 패턴을 보였다. 또한, 미세 세공이 잘 발달되어 표면적과 세공 부피가 매우 큰 AFX 제올라이트가 생성되었다.14 shows the XRD patterns and nitrogen adsorption isotherms of the AFX zeolite synthesized through Examples 5 and 6 and Comparative Example 3. Regardless of the synthesis method, all showed the same X-ray diffraction pattern of AFX as reported in the literature. In addition, fine pores were well developed, resulting in AFX zeolite having a very large surface area and pore volume.
도 15에는 AFX 제올라이트의 전자현미경(SEM) 사진을 보였다. 합성 방법에 따라 입자 모양과 크기에 큰 차이를 보였다. 비교예 3은 약 1.4μm 크기의 육각형 입자가 얻어졌으며, 여과 고형물을 통해 합성한 실시예 5는 0.6 × 0.8μm의 타원형 입자가, 함침 고형물을 통하여 합성한 실시예 6은 0.3 × 0.4μm의 타원형이지만 크기가 매우 작은 입자가 생성되었다. 일반적인 수열합성 방법으로는 Si/Al 몰비가 5.0 이상인 실리카 함량이 높은 AFX 제올라이트를 합성하기 어렵지만, 본 발명의 실시예 5에서는 Si/Al 몰비가 6.5, 실시예 6에서는 Si/Al 몰비가 7.8로 실리카 함량이 높은 AFX를 합성하였다.15 shows an electron microscope (SEM) picture of the AFX zeolite. There was a big difference in particle shape and size according to the synthesis method. In Comparative Example 3, hexagonal particles having a size of about 1.4 μm were obtained, Example 5 synthesized through filtered solids had an elliptical particle of 0.6 × 0.8 μm, and Example 6 synthesized through impregnated solids had an elliptical shape of 0.3 × 0.4 μm However, very small particles were produced. It is difficult to synthesize AFX zeolite having a high silica content with a Si/Al molar ratio of 5.0 or more by a general hydrothermal synthesis method, but in Example 5 of the present invention, the Si/Al molar ratio is 6.5, and in Example 6, the Si/Al molar ratio is 7.8. AFX with high content was synthesized.
도 16에는 Cu/AFX 촉매의 750℃ 수열 처리 전과 후의 XRD 패턴을 보였다. 비교예 3으로부터 제조된 촉매는 수열 처리 후 X-선 회절 패턴의 세기가 다소 감소하여, 수열 처리로 인해 결정 구조 일부가 붕괴되었음을 보여준다. 이에 비해 본 발명을 통한 실시예 5와 실시예 6으로부터 제조된 촉매는 수열 처리 후에도 XRD 회절 패턴에 큰 차이를 보이지 않아, 결정 구조가 잘 유지되고 있음을 알 수 있다.16 shows the XRD patterns before and after the 750° C. hydrothermal treatment of the Cu/AFX catalyst. The catalyst prepared from Comparative Example 3 slightly decreased the intensity of the X-ray diffraction pattern after hydrothermal treatment, showing that part of the crystal structure was collapsed due to hydrothermal treatment. In contrast, the catalysts prepared from Examples 5 and 6 through the present invention did not show a significant difference in the XRD diffraction pattern even after hydrothermal treatment, so it can be seen that the crystal structure is well maintained.
도 17에는 Cu/AFX 촉매의 750℃ 수열 처리 전과 후의 질소 흡착등온선을 보였다. 실시예 5와 실시예 6으로부터 제조한 촉매의 경우 750℃ 수열 처리 후 오히려 표면적이 증가한 반면, 종래의 수열합성 방법으로 제조한 비교예 3 촉매는 표면적이 20%가량 감소하여, 본 발명으로 제조한 촉매의 수열 안정성이 더 우수함을 보여준다.Fig. 17 shows nitrogen adsorption isotherms before and after 750°C hydrothermal treatment of the Cu/AFX catalyst. In the case of the catalysts prepared from Examples 5 and 6, the surface area was rather increased after hydrothermal treatment at 750°C, whereas the catalyst of Comparative Example 3 prepared by the conventional hydrothermal synthesis method decreased the surface area by about 20%, and thus prepared according to the present invention. It shows that the hydrothermal stability of the catalyst is better.
표 6에는 Cu/AFX 촉매의 수열 처리 전과 후의 특성을 정리하였다.Table 6 summarizes the properties before and after the hydrothermal treatment of the Cu/AFX catalyst.
Si/AlSi/Al Cu 함량(wt%)Cu content (wt%) 표면적(m 2/g)Surface area (m 2 /g) 세공부피(cm 3/g)Pore volume (cm 3 /g)
수열처리 전Before hydrothermal treatment 수열처리 후After hydrothermal treatment 수열처리 전Before hydrothermal treatment 수열처리 후After hydrothermal treatment
비교예3Comparative Example 3 4.84.8 2.72.7 562562 455455 0.300.30 0.250.25
실시예5Example 5 6.56.5 3.93.9 520520 535535 0.290.29 0.290.29
실시예6Example 6 7.87.8 4.04.0 492492 509509 0.310.31 0.330.33
도 18에는 Cu/AFX 촉매의 750℃ 수열 처리 전과 후의 SCR 반응 활성을 조사한 결과를 보였다. 실시예 5와 실시예 6으로부터 제조된 촉매는 비교예 3과 달리 수열 처리 전과 후 모두 200 내지 500℃ 온도 범위에서 80% 이상의 높은 NOx 제거율을 보여, 반응 활성과 수열 안정성이 모두 향상되었음을 보여준다.18 shows the results of investigation of the SCR reaction activity before and after 750° C. hydrothermal treatment of the Cu/AFX catalyst. Unlike Comparative Example 3, the catalysts prepared from Examples 5 and 6 showed a high NOx removal rate of 80% or more in a temperature range of 200 to 500°C both before and after hydrothermal treatment, showing that both reaction activity and hydrothermal stability were improved.
이상에서 살펴본 바와 같이 본 발명은 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.As described above, the present invention has been illustrated and described with reference to preferred embodiments, but is not limited to the above-described embodiments, and within the scope of the spirit of the present invention, those of ordinary skill in the art to which the present invention pertains. Various changes and modifications will be possible.
본 발명은 제올라이트 촉매 제조에 산업상 이용이 가능하다.The present invention can be used industrially to prepare a zeolite catalyst.

Claims (7)

  1. 제올라이트 전구체, 구조유도물질 및 착물화물질을 물에 용해하여 합성모액을 제조하는 단계;Dissolving a zeolite precursor, a structure-inducing material, and a complexing material in water to prepare a synthetic mother liquor;
    상기 합성모액을 여과하여 물을 제거된 여과 고형물을 얻는 단계; 및Filtering the synthetic mother liquor to obtain a filtered solid from which water has been removed; And
    상기 여과 고형물을 수열반응시켜 제올라이트를 합성하는 단계;를 포함하는 것을 특징으로 하는 제올라이트 합성 방법.A method for synthesizing zeolite comprising: synthesizing zeolite by hydrothermal reaction of the filtered solid material.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 여과 고형물의 함수율은 50% 미만인 것을 특징으로 하는 제올라이트 합성 방법.Zeolite synthesis method, characterized in that the water content of the filtered solid is less than 50%.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 수열반응은 밀폐된 고압솥에 상기 여과 고형물을 넣고 50 내지 200℃ 온도에서 0 내지 60rpm으로 회전시키며 수행되는 것을 특징으로 하는 제올라이트 합성 방법.The hydrothermal reaction is carried out by placing the filtered solid in a sealed high-pressure cooker and rotating at a temperature of 50 to 200°C at 0 to 60 rpm.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 제올라이트 전구체는 USY, FAU 또는 BEA type의 합성 또는 천연 제올라이트이거나, 고형물 형태의 카올린(kaolin) 또는 플라이애시(fly ash) 이거나, 액체 상태의 나트륨 실리케이트, 코로이달 실리카, 퓸드 실리카 또는 테트라오르쏘 실리케이트에 나트륨 알루미네이트, 알루미늄 산화물 또는 알루미늄 알콕사이드를 혼합하여 제작되는 것을 특징으로 하는 제올라이트 합성 방법.The zeolite precursor is a synthetic or natural zeolite of USY, FAU or BEA type, kaolin or fly ash in solid form, sodium silicate in liquid state, coroidal silica, fumed silica or tetraortho silicate Zeolite synthesis method, characterized in that produced by mixing sodium aluminate, aluminum oxide or aluminum alkoxide.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 합성모액에서 여과된 물은 다음 합성모액 제조에 재사용되는 것을 특징으로 하는 제올라이트 합성 방법.The zeolite synthesis method, characterized in that the water filtered from the synthetic mother liquor is reused for the next preparation of the synthetic mother liquor.
  6. 제 1 항에 있어서The method of claim 1
    상기 구조유도물질은 4차 암모늄 이온을 포함한 유기 화합물인 것을 특징으로 하는 제올라이트 합성 방법.The structure-inducing material is a zeolite synthesis method, characterized in that the organic compound containing quaternary ammonium ions.
  7. 제 1 항 내지 제 6 항 중, 어느 한 항의 방법으로 합성된 제올라이트에 수소 또는 알칼리금속, 알칼리토금속, 전이금속, 귀금속을 이온교환하거나 함침하여 제올라이트 촉매를 제조하는 제올라이트 촉매 제조 방법.A zeolite catalyst manufacturing method for preparing a zeolite catalyst by ion-exchanging or impregnating hydrogen, alkali metal, alkaline earth metal, transition metal, and noble metal in the zeolite synthesized by the method of any one of claims 1 to 6.
PCT/KR2020/013154 2019-10-04 2020-09-25 Economical method for producing zeolite catalyst having improved reaction activity and hydrothermal stability by controlling aluminum content and distribution WO2021066432A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0123160 2019-10-04
KR1020190123160A KR20210040650A (en) 2019-10-04 2019-10-04 Economical Zeolite Catalyst Preparation Method with Improved Catalytic Activity and Hydrothermal Stability by Controlling Aluminum Content and Distribution

Publications (1)

Publication Number Publication Date
WO2021066432A1 true WO2021066432A1 (en) 2021-04-08

Family

ID=75338314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013154 WO2021066432A1 (en) 2019-10-04 2020-09-25 Economical method for producing zeolite catalyst having improved reaction activity and hydrothermal stability by controlling aluminum content and distribution

Country Status (2)

Country Link
KR (1) KR20210040650A (en)
WO (1) WO2021066432A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160027346A (en) * 2014-08-28 2016-03-10 전남대학교산학협력단 Method for manufacturing zeolite eco-friendly
KR101624238B1 (en) * 2014-12-30 2016-05-25 국방과학연구소 Manufacturing method of zsm-5 zeolite catalyst structure directing for improving endothermic reaction of liquid fuel
KR20180069731A (en) * 2016-12-14 2018-06-25 서강대학교산학협력단 MFI zeolite with hierarchical structure having micropores and mesopores, a preparation method thereof, and catalytic use thereof
KR20180121147A (en) * 2017-04-28 2018-11-07 성균관대학교산학협력단 Zeolite-based compound having high crystalline, method of forming the zeolite-based compound, and method forming methyl acetate using the zeolite-based compound
KR101940410B1 (en) * 2017-08-14 2019-01-21 전남대학교산학협력단 Method for preparation of transition metal ion-exchanged zeolite with improved hydrothermal stability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160027346A (en) * 2014-08-28 2016-03-10 전남대학교산학협력단 Method for manufacturing zeolite eco-friendly
KR101624238B1 (en) * 2014-12-30 2016-05-25 국방과학연구소 Manufacturing method of zsm-5 zeolite catalyst structure directing for improving endothermic reaction of liquid fuel
KR20180069731A (en) * 2016-12-14 2018-06-25 서강대학교산학협력단 MFI zeolite with hierarchical structure having micropores and mesopores, a preparation method thereof, and catalytic use thereof
KR20180121147A (en) * 2017-04-28 2018-11-07 성균관대학교산학협력단 Zeolite-based compound having high crystalline, method of forming the zeolite-based compound, and method forming methyl acetate using the zeolite-based compound
KR101940410B1 (en) * 2017-08-14 2019-01-21 전남대학교산학협력단 Method for preparation of transition metal ion-exchanged zeolite with improved hydrothermal stability

Also Published As

Publication number Publication date
KR20210040650A (en) 2021-04-14

Similar Documents

Publication Publication Date Title
WO2011049333A2 (en) Method of preparing zsm-5 zeolite using nanocrystalline zsm-5 seeds
WO2021040455A1 (en) Novel aluminum-based metal-organic framework having three dimensional porous structure and comprising at least two types of ligands, preparation method therefor, and use thereof
WO2018110860A1 (en) Method for preparing zeolite using benzyl group-bearing structure directing agent, and zeolite prepared therefrom
TWI657047B (en) Full-twist molecular sieve and synthesis method thereof
WO2016108434A1 (en) Zeolite pst-20, preparation method therefor, and method for selectively separating carbon dioxide by using same
WO2016085177A1 (en) Chabazite zeolite separator having pore size controlled using chemical vapor deposition, and method for manufacturing same
WO2018110998A2 (en) Mfi zeolite with microporous and mesoporous hierarchical structure, preparation method therefor, and catalytic use thereof
US10501328B2 (en) Method for producing beta zeolite
JPH05163015A (en) Production of zeolite x type molded product
WO2016126133A1 (en) High-density bundle-type carbon nanotubes and preparation method therefor
WO2021066432A1 (en) Economical method for producing zeolite catalyst having improved reaction activity and hydrothermal stability by controlling aluminum content and distribution
WO2019035628A1 (en) Method for producing zeolite having controlled aluminum content by adjusting composition of synthesis mother liquor
CN110950351A (en) X zeolite molecular sieve and preparation method thereof
CN108117089B (en) Chabazite molecular sieve and application thereof
WO2020060274A1 (en) Hierarchical zeolites and preparation method therefor
CN109574034B (en) Method for quickly synthesizing superfine ERI type molecular sieve under assistance of ultrasonic waves
CN115028176B (en) ZSM-5 molecular sieve with ultrahigh sinusoidal pore exposure ratio and preparation method thereof
WO2022055172A1 (en) Method for preparing cha zeolite and cha zeolite of large particle prepared therefrom
CN107602105B (en) Preparation method of zeolite molecular sieve membrane on surface of support body containing mullite phase
WO2013100734A1 (en) Production method of zeolite film in which one axis is completely vertically oriented, using steam under synthetic gel-free condition
Kim Li^+-and H^+-Exchanged Low-Silica X Zeolite as Selective Nitrogen Adsorbent for Air Separation
WO2017090825A1 (en) Diamine-zeolite composite and method for preparing same
CN112125318B (en) Method for preparing MFI zeolite based on imidazolyl ionic liquid
CN112279264B (en) Two-dimensional layered zeolite molecular sieve membrane with high separation stability and preparation method and application thereof
WO2021015335A1 (en) Aluminosilicate structure body having novel structure and skein-shaped morphology, method for preparing same, and hplc column filled with same as static bed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871702

Country of ref document: EP

Kind code of ref document: A1