JPH05163015A - Production of zeolite x type molded product - Google Patents

Production of zeolite x type molded product

Info

Publication number
JPH05163015A
JPH05163015A JP3349742A JP34974291A JPH05163015A JP H05163015 A JPH05163015 A JP H05163015A JP 3349742 A JP3349742 A JP 3349742A JP 34974291 A JP34974291 A JP 34974291A JP H05163015 A JPH05163015 A JP H05163015A
Authority
JP
Japan
Prior art keywords
type zeolite
molded product
silica
type
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3349742A
Other languages
Japanese (ja)
Other versions
JP3066430B2 (en
Inventor
Wataru Inaoka
亘 稲岡
Atsushi Harada
敦 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP3349742A priority Critical patent/JP3066430B2/en
Publication of JPH05163015A publication Critical patent/JPH05163015A/en
Application granted granted Critical
Publication of JP3066430B2 publication Critical patent/JP3066430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To provide a method for producing a zeolite X type molded product, capable of producing a highly pure low silica X type zeolite molded product, the synthesized low silica X type zeolite molded product being able to be used for an adsorptionseparating agent, etc., as a molded product having a large adsorption capacity as such or after exchanged with other ions such as Ca ions. CONSTITUTION:A method for producing an X type zeolite molded product is characterized by crystallizing a molded product containing X type zeolite powder having a silica/alumina ratio of <2.5, a kaolin type clay, sodium hydroxide and potassium hydroxide, when the X type zeolite molded product having a silica/alumina ratio of <2.5 is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結合剤含有量の少ない
シリカ/アルミナモル比の低いX型ゼオライト成形体の
製造方法に関するものである。更に詳しくは、著しく高
い吸着容量を有し、例えば窒素と酸素とを主成分とする
混合ガスから吸着分離法によって酸素を分離、濃縮する
などの目的で使用するのに適したシリカ/アルミナモル
比の低いX型ゼオライト成形体の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an X-type zeolite compact having a low binder / silica / alumina molar ratio. More specifically, it has a remarkably high adsorption capacity, for example, a silica / alumina molar ratio suitable for use for the purpose of separating and concentrating oxygen from a mixed gas containing nitrogen and oxygen as main components by an adsorption separation method. The present invention relates to a method for producing a low X-type zeolite compact.

【0002】[0002]

【従来の技術】通常、合成されたX型ゼオライトのシリ
カ/アルミナモル比は2.5であるが、合成時にNaO
Hに加えKOHを共存させることによって、そのシリカ
/アルミナモル比を2.0にまで下げることができる。
ゼオライトのシリカ/アルミナモル比を下げることは、
結晶中のアルミニウム原子の数が増加することであり、
従って、カチオンの数が増加することとなる。一般にゼ
オライトへの窒素、酸素などの分子の吸着は物理吸着と
呼ばれ、このカチオンの数が多いほどその吸着容量は増
加することとなる。ここでは、以下、シリカ/アルミナ
モル比が2.5より低いX型ゼオライトを低シリカX型
ゼオライトと呼ぶこととする。低シリカX型ゼオライト
の製造方法については、特開昭53−8400号公報、
特開昭61−222919号公報、特開昭64−561
12号公報などに記載されている。
2. Description of the Related Art Usually, a synthesized X-type zeolite has a silica / alumina molar ratio of 2.5.
The coexistence of KOH in addition to H can reduce the silica / alumina molar ratio to 2.0.
Lowering the silica / alumina molar ratio of the zeolite
Is to increase the number of aluminum atoms in the crystal,
Therefore, the number of cations will increase. Generally, the adsorption of molecules such as nitrogen and oxygen on zeolite is called physical adsorption, and the larger the number of cations, the larger the adsorption capacity. Hereafter, the X-type zeolite having a silica / alumina molar ratio of less than 2.5 will be referred to as a low-silica X-type zeolite. Regarding the method for producing the low silica X-type zeolite, JP-A-53-8400,
JP-A-61-2222919, JP-A-64-561
No. 12, for example.

【0003】通常、X型ゼオライトを、吸着分離剤など
として工業的に利用する場合には、合成したX型ゼオラ
イト粉末に、結合剤として粘土等を添加し、ペレットあ
るいはビーズのような成形体にして使用される。添加さ
れる粘土の量は約25重量部であり、従って、ゼオライ
ト成形体の有する吸着容量は、ゼオライト粉末が有する
吸着容量に対し、粘土の添加分だけ減少してしまうこと
となる。その解決の為に、粘土をほとんど含有しない成
形体、即ち、バインダーレス成形体の製造方法がこれま
で提案されている。その中で、低シリカX型ゼオライト
成形体のバインダーレス化の方法については、特開昭6
1−222919号公報に記載されている。これは低シ
リカX型ゼオライト粉末を使用することなく、カオリン
を原料とする成形体をメタカオリンに転化した後、結晶
化することにより、低シリカX型ゼオライト成形体を製
造する方法である。その方法によると、高純度の低シリ
カX型ゼオライト成形体を得るためにには、多量の細孔
形成物質(有機物)をカオリンの成形体製造時に添加
し、加熱し、燃焼させて多孔質のメタカオリン成形体と
し、その後結晶化することが必要である。しかしながら
この方法では有機物の燃焼により極めて大きな発熱を伴
う結果、温度制御が難しく、成形体の細孔をうまく制御
することが極めて困難となり、それ故、高純度な低シリ
カX型ゼオライト成形体を得ることが難しい。
Usually, when X-type zeolite is industrially used as an adsorption / separation agent, clay or the like is added as a binder to the synthesized X-type zeolite powder to form a molded body such as pellets or beads. Used. The amount of clay to be added is about 25 parts by weight, so that the adsorption capacity of the zeolite compact is reduced by the amount of clay added to the adsorption capacity of the zeolite powder. In order to solve the problem, a method for producing a molded body containing almost no clay, that is, a binderless molded body has been proposed so far. Among them, Japanese Patent Application Laid-Open No. Sho 6-86 (1999) discloses a method for making a low-silica X-type zeolite molded product binderless.
No. 1-222219. This is a method for producing a low silica X-type zeolite compact by converting a compact made of kaolin as a raw material into metakaolin and then crystallizing it without using the low-silica X-type zeolite powder. According to the method, in order to obtain a high-purity low-silica X-type zeolite molded body, a large amount of a pore-forming substance (organic substance) is added at the time of manufacturing the kaolin molded body, and the mixture is heated and burned to make it porous. It is necessary to obtain a metakaolin molded product and then crystallize it. However, in this method, combustion of organic substances causes extremely large heat generation, and as a result, it is difficult to control the temperature and it is extremely difficult to control the pores of the molded product very well. Therefore, a highly purified low silica X-type zeolite molded product is obtained. Difficult to do.

【0004】[0004]

【発明が解決しようとする課題】本発明は以上の様な困
難を回避した低シリカX型ゼオライトを90重量%以上
含有するX型ゼオライト成形体を製造する方法を提供す
るものである。
SUMMARY OF THE INVENTION The present invention provides a method for producing an X-type zeolite compact containing 90% by weight or more of low silica X-type zeolite, which avoids the above difficulties.

【0005】[0005]

【課題を解決するための手段】本発明者らは、低シリカ
X型ゼオライト成形体の製造における各因子について鋭
意検討を行い本発明に至った。
Means for Solving the Problems The inventors of the present invention have made extensive studies on each factor in the production of a low-silica X-type zeolite molded product, and arrived at the present invention.

【0006】即ち、本発明の要旨は、低シリカX型ゼオ
ライト成形体を製造するに際し、シリカ/アルミナモル
比が2.5より低いX型ゼオライト粉末、カオリン型粘
土、水酸化ナトリウム及び水酸化カリウムを含む成形体
を結晶化することにより、A型ゼオライト等の不純物の
生成を抑制し、高純度な低シリカX型ゼオライト成形体
を製造する方法である。
That is, the gist of the present invention is to produce X-type zeolite powder having a silica / alumina molar ratio of less than 2.5, kaolin-type clay, sodium hydroxide and potassium hydroxide in producing a low-silica X-type zeolite compact. It is a method for producing a highly pure low silica X-type zeolite molded body by suppressing the generation of impurities such as A-type zeolite by crystallizing the molded body containing the same.

【0007】以下、本発明を説明する。The present invention will be described below.

【0008】本発明で、使用する低シリカX型ゼオライ
ト粉末は、特開昭53−8400号公報、特開昭64−
56112号公報などに記載されている方法で製造すれ
ばよい。例えば、特開昭53−8400号公報には、ナ
トリウム、カリウム、アルミネートおよびシリケートの
各イオンを含有する溶液を混合し、下記の組成 SiO/Al 1.3〜2.2 (NaO+KO)/SiO 2.0〜4.5 NaO/(NaO+KO) 0.6〜0.9 HO/(NaO+KO) 10〜35 混合物を得、約50℃の温度で結晶化が完了するまでの
十分な時間結晶化させることにより、低シリカX型ゼオ
ライト粉末を得る方法が開示されている。この低シリカ
X型ゼオライト粉末100重量部に対し、カオリン型粘
土を10〜50重量部、水酸化ナトリウム及び水酸化カ
リウム、さらに造粒助剤として有機系、無機系の添加剤
を加え、十分混合し混練する。得られた捏和物を通常の
押出し成形機で押出し成形する。捏和物に練り込む水酸
化ナトリウム及び水酸化カリウムの添加量は、成形体中
のカオリン型粘土に含まれるアルミニウム量に対し、モ
ル比で表わして、(NaO+KO)/Al
が0.2〜3.0となることが好ましい。この比が低す
ぎると結晶化が十分進行せず、高すぎるとA型ゼオライ
トなどの不純物が生成するからである。また、水酸化ナ
トリウムと水酸化カリウムの比は、モル比で表わして、
NaO/(NaO+KO)比が0.1〜0.9の
範囲に入ることが好ましい。練り込みを行わずに、必要
な水酸化ナトリウムと水酸化カリウムの全量を、熟成・
結晶化時に使用する水溶液中に添加した場合には、不純
物であるA型ゼオライト、ソーダライトなどが共生した
り、あるいは、添加したカオリン型粘土が低シリカX型
ゼオライトへとうまく転化せず、目標とする高純度に到
達しない。未焼成のカオリン型粘土を使用した場合に
は、成形体を600℃で焼成し、カオリン型粘土を反応
性に富むメタカオリンに転化する。この焼成した成形体
を、NaOHとKOH水溶液中において、40〜100
℃の温度で数時間〜数日間保持し、熟成・結晶化するこ
とによって、90重量%以上の低シリカX型ゼオライト
を含むゼオライト成形体が得られる。
The low silica X-type zeolite powder used in the present invention is disclosed in JP-A-53-8400 and JP-A-64-
It may be manufactured by the method described in Japanese Patent No. 56112. For example, in JP-A-53-8400, a solution containing each of ions of sodium, potassium, aluminate and silicate is mixed, and the following composition SiO 2 / Al 2 O 3 1.3 to 2.2 ( Na 2 O + K 2 O) / SiO 2 2.0-4.5 Na 2 O / (Na 2 O + K 2 O) 0.6-0.9 H 2 O / (Na 2 O + K 2 O) 10-35 Mixtures A method of obtaining a low-silica X-type zeolite powder by crystallization at a temperature of about 50 ° C. for a sufficient time until crystallization is disclosed is disclosed. To 100 parts by weight of this low silica X-type zeolite powder, 10 to 50 parts by weight of kaolin clay, sodium hydroxide and potassium hydroxide, and organic and inorganic additives as granulation aids are added and mixed well. Then knead. The kneaded material thus obtained is extruded by a usual extrusion molding machine. The addition amount of sodium hydroxide and potassium hydroxide kneaded into the kneaded product is expressed by a molar ratio with respect to the amount of aluminum contained in the kaolin-type clay in the molded body, and is (Na 2 O + K 2 O) / Al 2 O. It is preferable that the 3 ratio is 0.2 to 3.0. This is because if this ratio is too low, crystallization does not proceed sufficiently, and if it is too high, impurities such as A-type zeolite are generated. Also, the ratio of sodium hydroxide and potassium hydroxide is represented by the molar ratio,
The Na 2 O / (Na 2 O + K 2 O) ratio preferably falls within the range of 0.1 to 0.9. Aging the required amount of sodium hydroxide and potassium hydroxide without kneading.
When added to the aqueous solution used for crystallization, impurities such as A-type zeolite and sodalite coexist, or the added kaolin-type clay does not convert to low-silica X-type zeolite, And do not reach high purity. When uncalcined kaolin-type clay is used, the molded body is calcined at 600 ° C. to convert the kaolin-type clay into highly reactive metakaolin. The fired compact was placed in an aqueous solution of NaOH and KOH at 40 to 100%.
By holding at a temperature of ° C for several hours to several days and aging and crystallization, a zeolite compact containing 90 wt% or more of low silica X-type zeolite can be obtained.

【0009】[0009]

【発明の効果】本発明の方法によれば、高純度な低シリ
カX型ゼオライト成形体を製造することが可能である。
このようにして合成された低シリカX型ゼオライト成形
体は、そのままあるいはほかのイオン、例えば、Caで
イオン交換され、吸着容量の大きい成形体として吸着分
離剤などに使用することができる。
According to the method of the present invention, it is possible to produce a high-purity low silica X-type zeolite compact.
The low-silica X-type zeolite molded product thus synthesized can be used as it is or as a molded product having a large adsorption capacity after being ion-exchanged with other ions, for example, Ca, as an adsorption separator.

【0010】[0010]

【実施例】以下、実施例により本発明を具体的に説明す
る。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0011】実施例1 まず、シリカ/アルミナモル比2.0の低シリカX型ゼ
オライト粉末を以下の手順によって合成した。
Example 1 First, a low silica X-type zeolite powder having a silica / alumina molar ratio of 2.0 was synthesized by the following procedure.

【0012】水酸化アルミニウム1,040gを50w
t%水酸化ナトリウム水溶液1,335gに撹拌しなが
ら溶解し、溶液(a)を得た。5,000gの水に8
5.3wt%水酸化カリウム1,435gを溶解し、こ
の溶液を50wt%水酸化ナトリウム水溶液2,335
gと混合し、溶液(b)を得た。ケイ酸ナトリウム(N
O 9.6wt%、SiO 30.9wt%)
2,266gを添加し、冷却しながら5分間混合した。
ゲル化の後、36℃で2日間熟成し、続いて70℃で1
6時間結晶化した。得られた粉末を純水で十分に洗浄
し、100℃で一晩乾燥した。ドライ換算で1,410
gの粉末を得た。その化学組成は、モル比で表わして、
0.75NaO・0.25KO・Al・2.
0SiOであった。また、結晶中のKイオンを全てN
aイオン交換したNa型ゼオライトの格子定数をX線回
折からもとめた結果、25.02オングストロームであ
って、この値からもシリカ/アルミナモル比は2.00
と算出された。さらに、この低シリカX型ゼオライト粉
末の相対湿度80%に於ける水分吸着容量は、32.4
%であった。
50 w of aluminum hydroxide 1,040 g
It was dissolved in 1,335 g of a t% aqueous sodium hydroxide solution with stirring to obtain a solution (a). 8 in 5,000g of water
Dissolve 5.3 wt% potassium hydroxide (1,435 g), and use this solution as a 50 wt% sodium hydroxide aqueous solution (2,335).
It was mixed with g to obtain a solution (b). Sodium silicate (N
a 2 O 9.6 wt%, SiO 2 30.9 wt%)
2,266 g were added and mixed for 5 minutes with cooling.
After gelation, aged at 36 ° C for 2 days, then at 70 ° C for 1 day.
Crystallized for 6 hours. The obtained powder was thoroughly washed with pure water and dried at 100 ° C overnight. 1,410 in dry conversion
g of powder was obtained. Its chemical composition, expressed as a molar ratio,
0.75Na 2 O · 0.25K 2 O · Al 2 O 3 · 2.
It was 0 SiO 2 . In addition, all K ions in the crystal are N
As a result of finding the lattice constant of the a-ion-exchanged Na-type zeolite from X-ray diffraction, the result was 25.02 angstroms, and from this value, the silica / alumina molar ratio was 2.00.
Was calculated. Furthermore, the water adsorption capacity of this low silica X-type zeolite powder at a relative humidity of 80% is 32.4.
%Met.

【0013】この低シリカX型ゼオライト粉末222g
に、カオリン型粘土を56g、水酸化ナトリウム15
g、水酸化カリウム7g及び造粒助剤としてカルボキシ
メチルセルロースを8g添加し、また、押出し成形が可
能となるよう適当量の水を加えて、十分に混合・混練し
た。得られた捏和物を通常の押出し成形機で直径1.5
mmの太さで押出し成形した。この成形体を110℃で
乾燥後、600℃で2時間焼成し、カオリン型粘土をメ
タカオリンにした。冷却後、水に浸漬し、吸着された空
気などの気体をできる限り水と置換した後、水酸化ナト
リウム90g及び水酸化カリウム42gを含む水溶液8
00cc中に投入した。40℃で2日間、続いて90℃
で2日間放置して結晶化を行った。結晶化終了後、得ら
れた成形体と母液を分離して、成形体に付着した水酸化
ナトリウム及び水酸化カリウムなどを十分に水で洗浄し
た後に、110℃で乾燥した。X線回折によって結晶解
析を行った結果、X型ゼオライト以外の結晶相は全く認
められず、カオリン型粘土がX型ゼオライトに転移して
いることを確認した。また、一部をNa型にし、その格
子定数を測定したところ、25.03オングストローム
であり、算出されたシリカ/アルミナモル比は1.96
であった。また、このゼオライト成形体の相対湿度80
%に於ける水分吸着容量は、31.4%であり、X型ゼ
オライトの含有率は97%であった。
222 g of this low silica X-type zeolite powder
56g of kaolin clay and 15g of sodium hydroxide
g, 7 g of potassium hydroxide and 8 g of carboxymethyl cellulose as a granulation aid, and an appropriate amount of water was added so that extrusion molding was possible, and the mixture was sufficiently mixed and kneaded. The kneaded material obtained is then subjected to a diameter of 1.5 with an ordinary extruder.
It was extruded with a thickness of mm. The molded body was dried at 110 ° C. and then calcined at 600 ° C. for 2 hours to convert the kaolin-type clay into metakaolin. After cooling, it is immersed in water and the gas such as adsorbed air is replaced with water as much as possible, and then an aqueous solution containing 90 g of sodium hydroxide and 42 g of potassium hydroxide 8
It was thrown in to 00cc. 2 days at 40 ° C, then 90 ° C
It was left to stand for 2 days for crystallization. After completion of crystallization, the obtained molded product and mother liquor were separated, and sodium hydroxide, potassium hydroxide and the like adhering to the molded product were sufficiently washed with water, and then dried at 110 ° C. As a result of crystal analysis by X-ray diffraction, no crystalline phase other than the X-type zeolite was observed, and it was confirmed that the kaolin-type clay was transferred to the X-type zeolite. Further, when a part thereof was made Na-type and its lattice constant was measured, it was 25.03 angstrom, and the calculated silica / alumina molar ratio was 1.96.
Met. In addition, the relative humidity of this zeolite molded body is 80
The water adsorption capacity in% was 31.4%, and the content of the X-type zeolite was 97%.

【0014】実施例2 実施例1で使用した低シリカX型ゼオライト粉末139
gに、600℃で2時間焼成したカオリン型粘土を56
g、水酸化ナトリウム15g、水酸化カリウム7g及び
造粒助剤としてカルボキシメチルセルロースを6g添加
し、また、押出し成形が可能となるよう適当量の水を加
えて、十分に混合・混練し、捏和物を得た。その後は、
600℃で2時間の焼成を行わなかった以外は実施例1
と同一処理を行った。X線回折によって結晶解析を行っ
た結果、X型ゼオライト以外の結晶相は全く認められ
ず、Na型の格子定数は、25.02オングストローム
であり、算出されたシリカ/アルミナモル比は2.00
であった。また、このゼオライト成形体の相対湿度80
%に於ける水分吸着容量は、30.8%であり、X型ゼ
オライトの含有率は95%であった。
Example 2 Low silica X-type zeolite powder 139 used in Example 1
56 g of kaolin-type clay calcined at 600 ° C. for 2 hours
g, 15 g of sodium hydroxide, 7 g of potassium hydroxide and 6 g of carboxymethyl cellulose as a granulation aid, and an appropriate amount of water is added to enable extrusion molding, and the mixture is thoroughly mixed and kneaded and kneaded. I got a thing. After that,
Example 1 except that the baking was not performed at 600 ° C. for 2 hours.
The same process was performed. As a result of crystal analysis by X-ray diffraction, no crystal phase other than X-type zeolite was observed, the Na-type lattice constant was 25.02 Å, and the calculated silica / alumina molar ratio was 2.00.
Met. In addition, the relative humidity of this zeolite molded body is 80
The water adsorption capacity in% was 30.8%, and the content of the X-type zeolite was 95%.

【0015】実施例3 実施例1で使用した低シリカX型ゼオライト粉末222
gに、カオリン型粘土を56g、水酸化ナトリウム30
g、水酸化カリウム14g及び造粒助剤としてカルボキ
シメチルセルロースを5g添加し、また、押出し成形が
可能となるよう適当量の水を加えて、十分に混合・混練
した。得られた捏和物を実施例1と同様に成形、乾燥、
焼成処理を行った。冷却後、水に浸漬し、吸着された空
気などの気体をできる限り水と置換した後、水酸化ナト
リウム75g及び水酸化カリウム35gを含む水溶液8
00cc中に投入した。50℃で10日間放置して結晶
化を行った。結晶化終了後、得られた成形体と母液を分
離して、成形体に付着した水酸化ナトリウム及び水酸化
カリウムなどを十分に水で洗浄した後に、110℃で乾
燥した。X線回折によって結晶解析を行った結果、X型
ゼオライト以外の結晶相は全く認められず、Na型の格
子定数を測定したところ、25.01オングストローム
であり、算出されたシリカ/アルミナモル比は2.05
であった。また、このゼオライト成形体の相対湿度80
%に於ける水分吸着容量は、30.1%であり、X型ゼ
オライトの含有率は93%であった。
Example 3 Low silica X-type zeolite powder 222 used in Example 1
56 g of kaolin clay, 30 g of sodium hydroxide
g, 14 g of potassium hydroxide and 5 g of carboxymethyl cellulose as a granulation aid, and an appropriate amount of water was added to enable extrusion molding, and the mixture was sufficiently mixed and kneaded. The obtained kneaded product was molded, dried, and dried in the same manner as in Example 1.
A firing process was performed. After cooling, it is immersed in water to replace the adsorbed gas such as air with water as much as possible, and then an aqueous solution containing 75 g of sodium hydroxide and 35 g of potassium hydroxide 8
It was thrown in to 00cc. Crystallization was carried out by leaving it at 50 ° C. for 10 days. After completion of crystallization, the obtained molded product and mother liquor were separated, and sodium hydroxide, potassium hydroxide and the like adhering to the molded product were sufficiently washed with water, and then dried at 110 ° C. As a result of crystal analysis by X-ray diffraction, no crystal phase other than X-type zeolite was observed, and the Na-type lattice constant was measured to be 25.01 angstroms, and the calculated silica / alumina molar ratio was 2 .05
Met. In addition, the relative humidity of this zeolite molded body is 80
The water adsorption capacity in% was 30.1%, and the content of the X-type zeolite was 93%.

【0016】比較例1 実施例1で使用した、低シリカX型ゼオライト粉末22
2gに、カオリン型粘土を56g、及び造粒助剤として
カルボキシメチルセルロースを8g添加し、また、押出
し成形が可能となるよう適当量の水を加えて、十分に混
合・混練した。得られた捏和物を実施例1と同様に、成
形、乾燥、焼成処理を行った。冷却後、水に浸漬し、吸
着された空気などの気体をできる限り水と置換した後、
水酸化ナトリウム105g及び水酸化カリウム49gを
含む水溶液800cc中に投入した。40℃で2日間続
いて90℃で2日間放置して結晶化を行った。結晶化終
了後、得られた成形体と母液を分離して、成形体に付着
した水酸化ナトリウム及び水酸化カリウムなどを十分に
水で洗浄した後に、110℃で乾燥した。X線回折によ
って結晶解析を行った結果、X型ゼオライト以外に不純
物であるA型のピークが観測された。
Comparative Example 1 Low silica X-type zeolite powder 22 used in Example 1
To 2 g, 56 g of kaolin-type clay and 8 g of carboxymethyl cellulose as a granulation aid were added, and an appropriate amount of water was added so that extrusion molding was possible, and they were sufficiently mixed and kneaded. The obtained kneaded product was molded, dried and fired in the same manner as in Example 1. After cooling, after soaking in water and replacing the gas such as adsorbed air with water as much as possible,
It was put into 800 cc of an aqueous solution containing 105 g of sodium hydroxide and 49 g of potassium hydroxide. Crystallization was carried out by leaving the mixture at 40 ° C. for 2 days and then at 90 ° C. for 2 days. After completion of crystallization, the obtained molded product and mother liquor were separated, and sodium hydroxide, potassium hydroxide and the like adhering to the molded product were sufficiently washed with water, and then dried at 110 ° C. As a result of crystal analysis by X-ray diffraction, an A-type peak, which is an impurity, was observed in addition to the X-type zeolite.

【0017】比較例2 実施例1で使用した低シリカX型ゼオライト粉末555
gに、600℃で2時間焼成したカオリン型粘土を56
g、及び造粒助剤としてカルボキシメチルセルロースを
17g添加し、また、押出し成形が可能となるよう適当
量の水を加えて、十分に混合・混練し、捏和物を得た。
直径1.5mmの太さに成形し110℃で乾燥後、水に
浸漬し、吸着された空気などの気体をできる限り水と置
換した後、水酸化ナトリウム105g及び水酸化カリウ
ム49gを含む水溶液800cc中に投入した。50℃
で10日間放置して結晶化を行った。結晶化終了後、得
られた成形体と母液を分離して、成形体に付着した水酸
化ナトリウム及び水酸化カリウムなどを十分に水で洗浄
した後に、110℃で乾燥した。X線回折によって結晶
解析を行った結果、X型ゼオライト以外に不純物である
A型のピークが観測された。
Comparative Example 2 Low silica X-type zeolite powder 555 used in Example 1
56 g of kaolin-type clay calcined at 600 ° C. for 2 hours
g, and 17 g of carboxymethylcellulose as a granulation aid, and an appropriate amount of water was added to enable extrusion molding, and the mixture was sufficiently mixed and kneaded to obtain a kneaded product.
800 cc of an aqueous solution containing 105 g of sodium hydroxide and 49 g of potassium hydroxide after forming into a diameter of 1.5 mm, drying at 110 ° C., immersing in water, substituting adsorbed gas such as air with water as much as possible. I put it in. 50 ° C
It was left for 10 days to crystallize. After completion of crystallization, the obtained molded product and mother liquor were separated, and sodium hydroxide, potassium hydroxide and the like adhering to the molded product were sufficiently washed with water, and then dried at 110 ° C. As a result of crystal analysis by X-ray diffraction, an A-type peak, which is an impurity, was observed in addition to the X-type zeolite.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シリカ/アルミナモル比が2.5より低い
X型ゼオライト成形体を製造するに際し、シリカ/アル
ミナモル比が2.5より低いX型ゼオライト粉末、カオ
リン型粘土、水酸化ナトリウム及び水酸化カリウムを含
む成形体を結晶化することを特徴とするX型ゼオライト
成形体の製造方法。
1. When producing an X-type zeolite compact having a silica / alumina molar ratio of less than 2.5, an X-type zeolite powder having a silica / alumina molar ratio of less than 2.5, kaolin clay, sodium hydroxide and hydroxide. A method for producing an X-type zeolite molded body, which comprises crystallizing a molded body containing potassium.
JP3349742A 1991-12-10 1991-12-10 Method for producing zeolite X-shaped compact Expired - Fee Related JP3066430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3349742A JP3066430B2 (en) 1991-12-10 1991-12-10 Method for producing zeolite X-shaped compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3349742A JP3066430B2 (en) 1991-12-10 1991-12-10 Method for producing zeolite X-shaped compact

Publications (2)

Publication Number Publication Date
JPH05163015A true JPH05163015A (en) 1993-06-29
JP3066430B2 JP3066430B2 (en) 2000-07-17

Family

ID=18405797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3349742A Expired - Fee Related JP3066430B2 (en) 1991-12-10 1991-12-10 Method for producing zeolite X-shaped compact

Country Status (1)

Country Link
JP (1) JP3066430B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0893157A1 (en) * 1997-07-22 1999-01-27 Ceca S.A. Bounded zeolitic adsorbent, method for its production and its use for the non cryogenic separation of process gases
FR2766475A1 (en) * 1997-07-22 1999-01-29 Ceca Sa PROCESS FOR OBTAINING GRANULAR BODIES IN LSX ZEOLITE WITH LOW RATE OF INERT BINDER
EP1103525A1 (en) * 1999-11-25 2001-05-30 Tosoh Corporation High purity, low silica X-type zeolite binderless shaped product and gas separation method employing it
JP2002003208A (en) * 2000-04-20 2002-01-09 Tosoh Corp Method for refining hydrogen gas
JP2002505942A (en) * 1998-03-09 2002-02-26 スサ・エス・アー Method for removing carbon dioxide from gas streams using zeolite adsorbents
US6514317B2 (en) 2000-04-20 2003-02-04 Tosoh Corporation Method for purifying hydrogen-based gas mixture
US6537348B1 (en) 2000-04-04 2003-03-25 Tosoh Corporation Method of adsorptive separation of carbon dioxide
US6649556B2 (en) 2000-07-07 2003-11-18 Ceca, S.A. Process for the preparation of agglomerated zeolites X and LSX exchanged with lithium
US6806219B2 (en) 2000-01-04 2004-10-19 Ceca, S.A. Exchanged zeolites X, in particular exchanged with lithium, their process of preparation and their use as adsorbents of nitrogen in the separation of the gases of the air
US6884918B1 (en) 1999-02-22 2005-04-26 Ceca S.A. Agglomerated zeolitic adsorbents, method for obtaining same uses thereof
EP1967254A1 (en) * 2007-02-21 2008-09-10 Tosoh Corporation Agent for rendering halogen-containing gas harmless, and method of rendering halogen-containing gas harmless using same
JP2011514839A (en) * 2008-03-03 2011-05-12 ヒェミーヴェルク バット ケーストリッツ ゲーエム ベーハー Adsorbent granular material and method for producing the same
JP2011526901A (en) * 2008-06-30 2011-10-20 ユーオーピー エルエルシー Binder-free adsorbents and their use in adsorptive separation of para-xylene
JP2012167006A (en) * 1997-08-21 2012-09-06 Ceca Sa Aggrlomerated zeolite-based adsorbent, method for producing the same, and method for adsorbing p-xylene from aromatic c8 fraction
US8431764B2 (en) 2011-04-13 2013-04-30 Uop Llc Para-xylene-separation with aluminosilicate X-type zeolite compositions with low LTA-type zeolite
US8530367B2 (en) 2006-07-19 2013-09-10 Ceca S.A. Agglomerated zeolitic adsorbents, their method of preparation and their uses
US8603433B2 (en) 2011-04-13 2013-12-10 Uop Llc Aluminosilicate X-type zeolite compositions with low LTA-type zeolite
US8603434B2 (en) 2011-04-13 2013-12-10 Uop Llc Binder-converted aluminosilicate X-type zeolite compositions with low LTA-type zeolite
JP2014516305A (en) * 2011-03-31 2014-07-10 ユーオーピー エルエルシー Binderless zeolite adsorbent, method for producing binderless zeolite adsorbent, and adsorption separation method using binderless zeolite adsorbent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2925366B1 (en) * 2007-12-20 2011-05-27 Ceca Sa AGGLOMERATED ZEOLITIC ADSORBENTS, PROCESS FOR THEIR PREPARATION AND USES THEREOF

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652626B1 (en) 1997-07-22 2003-11-25 Ceca, S.A. Agglomerated adsorbent, process for the production thereof and use thereof for the non-cryogenic separation of industrial gases
FR2766476A1 (en) * 1997-07-22 1999-01-29 Ceca Sa IMPROVED ZEOLITIC ADSORBENT FOR THE SEPARATION OF AIR GASES AND PROCESS FOR OBTAINING SAME
FR2766475A1 (en) * 1997-07-22 1999-01-29 Ceca Sa PROCESS FOR OBTAINING GRANULAR BODIES IN LSX ZEOLITE WITH LOW RATE OF INERT BINDER
WO1999005063A1 (en) * 1997-07-22 1999-02-04 Ceca S.A. Method for obtaining lsx zeolite granular agglomerates with low inert binding material ratio
JP2001501166A (en) * 1997-07-22 2001-01-30 スサ・エス・アー Method for obtaining LSX zeolite granular agglomerates with low inert binder material ratio
US6264881B1 (en) 1997-07-22 2001-07-24 Ceca S.A. Method for obtaining LSX zeolite bodies
JP2009013058A (en) * 1997-07-22 2009-01-22 Ceca Sa Agglomerated zeolite adsorbent, process for the production thereof and use thereof for non-cryogenic separation of industrial gas
EP0893157A1 (en) * 1997-07-22 1999-01-27 Ceca S.A. Bounded zeolitic adsorbent, method for its production and its use for the non cryogenic separation of process gases
JP2008230965A (en) * 1997-07-22 2008-10-02 Ceca Sa Method for obtaining lsx zeolite granular agglomerate with low inert binding material ratio
KR100538963B1 (en) * 1997-07-22 2006-02-28 세까 소시에떼아노님 Improved agglomerated adsorbent, process for the production thereof and use thereof for the non-cryogenic separation of industrial gases
JP2012167006A (en) * 1997-08-21 2012-09-06 Ceca Sa Aggrlomerated zeolite-based adsorbent, method for producing the same, and method for adsorbing p-xylene from aromatic c8 fraction
JP2002505942A (en) * 1998-03-09 2002-02-26 スサ・エス・アー Method for removing carbon dioxide from gas streams using zeolite adsorbents
JP2012143757A (en) * 1999-02-22 2012-08-02 Ceca Sa Agglomerated zeolitic adsorbent, production method of the adsorbent and use of the adsorbent
US6884918B1 (en) 1999-02-22 2005-04-26 Ceca S.A. Agglomerated zeolitic adsorbents, method for obtaining same uses thereof
US7452840B2 (en) 1999-02-22 2008-11-18 Institut Francais Du Petrole Agglomerated zeolitic adsorbents, their process of preparation and their uses
US6478854B1 (en) 1999-11-25 2002-11-12 Tosoh Corporation High purity, low silica X-type zeolite binderless shaped product and gas separation method employing it
EP1103525A1 (en) * 1999-11-25 2001-05-30 Tosoh Corporation High purity, low silica X-type zeolite binderless shaped product and gas separation method employing it
US6806219B2 (en) 2000-01-04 2004-10-19 Ceca, S.A. Exchanged zeolites X, in particular exchanged with lithium, their process of preparation and their use as adsorbents of nitrogen in the separation of the gases of the air
US6537348B1 (en) 2000-04-04 2003-03-25 Tosoh Corporation Method of adsorptive separation of carbon dioxide
US6514317B2 (en) 2000-04-20 2003-02-04 Tosoh Corporation Method for purifying hydrogen-based gas mixture
JP2002003208A (en) * 2000-04-20 2002-01-09 Tosoh Corp Method for refining hydrogen gas
JP4686889B2 (en) * 2000-04-20 2011-05-25 東ソー株式会社 Method for purifying hydrogen gas
US6649556B2 (en) 2000-07-07 2003-11-18 Ceca, S.A. Process for the preparation of agglomerated zeolites X and LSX exchanged with lithium
US8530367B2 (en) 2006-07-19 2013-09-10 Ceca S.A. Agglomerated zeolitic adsorbents, their method of preparation and their uses
EP1967254A1 (en) * 2007-02-21 2008-09-10 Tosoh Corporation Agent for rendering halogen-containing gas harmless, and method of rendering halogen-containing gas harmless using same
US8282900B2 (en) 2007-02-21 2012-10-09 Tosoh Corporation Agent for rendering halogen-containing gas harmless, and method of rendering halogen-containing gas harmless using same
JP2011514839A (en) * 2008-03-03 2011-05-12 ヒェミーヴェルク バット ケーストリッツ ゲーエム ベーハー Adsorbent granular material and method for producing the same
US9682361B2 (en) 2008-03-03 2017-06-20 Chemiewerk Bad Kostritz Gmbh Adsorbent granulate and method for the manufacture thereof
JP2011526901A (en) * 2008-06-30 2011-10-20 ユーオーピー エルエルシー Binder-free adsorbents and their use in adsorptive separation of para-xylene
JP2014516305A (en) * 2011-03-31 2014-07-10 ユーオーピー エルエルシー Binderless zeolite adsorbent, method for producing binderless zeolite adsorbent, and adsorption separation method using binderless zeolite adsorbent
US8431764B2 (en) 2011-04-13 2013-04-30 Uop Llc Para-xylene-separation with aluminosilicate X-type zeolite compositions with low LTA-type zeolite
US8603433B2 (en) 2011-04-13 2013-12-10 Uop Llc Aluminosilicate X-type zeolite compositions with low LTA-type zeolite
US8603434B2 (en) 2011-04-13 2013-12-10 Uop Llc Binder-converted aluminosilicate X-type zeolite compositions with low LTA-type zeolite
JP2014519462A (en) * 2011-04-13 2014-08-14 ユーオーピー エルエルシー Aluminosilicate X type zeolite composition with low LTA type zeolite

Also Published As

Publication number Publication date
JP3066430B2 (en) 2000-07-17

Similar Documents

Publication Publication Date Title
JP3066430B2 (en) Method for producing zeolite X-shaped compact
JP4195516B2 (en) Method for obtaining LSX zeolite granular agglomerates with a low ratio of inert binder
US9688541B2 (en) Beta zeolite and method for producing same
EP0980339B1 (en) Ets-14 crystalline titanium silicate molecular sieves, manufacture and use thereof
TWI797384B (en) Rho zeolites and method of making the same
JP2782744B2 (en) Method for producing binderless zeolite molded body
JPH06183725A (en) Binderless x-type zeolite formed body and production thereof
JPS5939715A (en) High silica mordenite and its manufacture
JPS6346007B2 (en)
JPH04198011A (en) Production of molded article of binderless x type zeolite
JPH03295805A (en) X-type zeolite molded body and its production
JPH06183727A (en) Cax type zeolite molding and its production
JPH1053410A (en) Production of low-silica x-type zeolite
JPH03295802A (en) High-strength a-type zeolite molded body and its production
JP4470003B2 (en) High silica mordenite and its synthesis method
KR102474955B1 (en) Method for synthesizing high-crystalline CHA zeolite by addition of organic acid
JPH1053409A (en) Production of low-silica x-type zeolite
JPH03146414A (en) Production of porous binderless 3a-type zeolite formed body
JPH10101326A (en) Zeolite bead formed body having low wearing property and its production
JPH0513695B2 (en)
CN111099626A (en) Synthetic method of ITQ-43 molecular sieve and ITQ-43 molecular sieve synthesized by same
JPS58135123A (en) Synthesis of zeolite
JPH06183726A (en) Caa type zeolite molding and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees