WO2021066411A1 - Catalyst for ammoxidation of propylene, preparation method therefor, and method for ammoxidation of propylene using same - Google Patents

Catalyst for ammoxidation of propylene, preparation method therefor, and method for ammoxidation of propylene using same Download PDF

Info

Publication number
WO2021066411A1
WO2021066411A1 PCT/KR2020/013099 KR2020013099W WO2021066411A1 WO 2021066411 A1 WO2021066411 A1 WO 2021066411A1 KR 2020013099 W KR2020013099 W KR 2020013099W WO 2021066411 A1 WO2021066411 A1 WO 2021066411A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
propylene
precursor
ammoxidation
preparing
Prior art date
Application number
PCT/KR2020/013099
Other languages
French (fr)
Korean (ko)
Inventor
김지연
강경연
최준선
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200124245A external-priority patent/KR102519507B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP20873318.8A priority Critical patent/EP3858483A4/en
Priority to JP2021523938A priority patent/JP7123259B2/en
Priority to CN202080006525.XA priority patent/CN113164930B/en
Priority to US17/291,558 priority patent/US20220001361A1/en
Publication of WO2021066411A1 publication Critical patent/WO2021066411A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/30Scanning electron microscopy; Transmission electron microscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/80Catalysts, in general, characterised by their form or physical properties characterised by their amorphous structures

Definitions

  • the present invention relates to a catalyst for ammoxidation of propylene, a method for preparing the same, and a method for ammoxidation of propylene using the same.
  • the ammoxidation process of propylene is based on a reduction reaction of reacting ammonia and propylene and a mechanism of reoxidation by oxygen, the conversion rate of the reactant (i.e., propylene), and the selectivity of the reaction product (i.e., acrylonitrile). And catalysts of various compositions to increase the yield have been studied.
  • the catalyst having the secondary particle structure inevitably has high crystallinity while going through the spray drying process during the manufacturing process.
  • a catalyst having high crystallinity may be easily cracked or crushed by a high temperature applied during the reaction, and Mo or the like may be eluted from the inside to the surface, thereby deteriorating catalyst performance.
  • the present invention is to provide a catalyst for ammoxidation of propylene that maintains a high level of catalytic activity while inhibiting Mo elution during ammoxidation reaction of propylene.
  • one embodiment of the present invention provides a catalyst for ammoxidation of propylene, exhibiting high activity against ammoxidation reaction of propylene, and having a high content of an amorphous phase.
  • the catalyst of the embodiment may exhibit high activity against the ammoxidation reaction of propylene and a high content of the amorphous phase, so that the catalytic activity may be maintained at a high level while Mo elution during the ammoxidation reaction of propylene is suppressed.
  • FIG. 1 schematically shows a catalyst prepared using a spray drying method.
  • first and second to be used hereinafter may be used to describe various elements, but the elements are not limited by the terms. The above terms are used only for the purpose of distinguishing one component from another component. For example, without departing from the scope of the present invention, a first element may be referred to as a second element, and similarly, a second element may be referred to as a first element.
  • the intensity ratio (A/B) of the first peak to the second peak is 1.5 or more
  • a catalyst for ammoxidation of propylene is provided:
  • a and B are different, and each independently is one or more elements of Ni, Mn, Co, Zn, Mg, Ca, and Ba,
  • C is one or more elements of Li, Na, K, Rb, and Cs,
  • D is one or more elements of Cr, W, B, Al, Ca, and V,
  • a to f, x, and y are the mole fractions of atoms or groups of atoms
  • a is 0.1 to 7
  • b is 0.1 to 7, provided that the sum of a and b is 0.1 to 7,
  • c is 0.1 to 10
  • d is 0.01 to 5
  • e is 0.1 to 10
  • f is 0 to 10
  • x is 11 to 14
  • y is a value that can be determined by the respective oxidation numbers of Mo, Bi, Fe, A, B, C, and D.
  • a catalyst for ammoxidation of propylene a catalyst having a secondary particle structure prepared through coprecipitation and spray drying of a metal precursor and a nano silica sol is known.
  • the catalyst having the secondary particle structure has a problem in that the metal oxide particles are evenly distributed inside and outside, but contain almost no pores, so that the adsorption amount of reactants per unit volume is small, and the reaction activity is low.
  • the catalyst having the secondary particle structure inevitably has high crystallinity while going through the spray drying process in the manufacturing process.
  • a catalyst having high crystallinity may be easily cracked or crushed by a high temperature applied during the reaction, and Mo or the like may be eluted from the inside to the surface, thereby deteriorating catalyst performance.
  • the catalyst of the embodiment has a high content of amorphous phosphorus phase while exhibiting high activity against the ammoxidation reaction of propylene, and thus the catalytic activity can be maintained at a high level while Mo elution is suppressed during the ammoxidation reaction of propylene. .
  • the amorphous phase exhibiting high activity against the ammoxidation reaction of propylene may be a complex oxide phase of molybdenum (Mo) and dissimilar metals, such as a CoMoO 4 phase.
  • the first peak of intensity B appears within the range of 2 ⁇ of 26.3 ⁇ 0.5°, and the intensity within the range of 2 ⁇ of 28.3 ⁇ 0.5°.
  • a second peak of B may appear.
  • the first peak may appear by a complex oxide phase of molybdenum (Mo) and a dissimilar metal, such as a CoMoO 4 phase.
  • the second peak may appear by a molybdenum (Mo) oxide phase, that is, a MoO 3 phase.
  • the complex oxide phase of molybdenum (Mo) and dissimilar metals exhibits activity against propylene ammoxidation, whereas the MoO 3 phase has no activity against propylene ammoxidation.
  • the catalyst of the secondary particle structure is prepared from a slurry in which a silica sol and a metal oxide precursor are heterogeneously mixed, the content of the MoO 3 phase, which is an inert phase, is relatively high, and the intensity ratio of the first peak to the second peak ( A/B) may be less than 1.5. Accordingly, Mo elution occurs during the ammoxidation reaction of propylene, and catalytic activity may decrease.
  • the catalyst of the embodiment has a relatively high content of the phase of the complex oxide of a dissimilar metal, which is an active phase, and an intensity ratio (A/B) of the first peak to the second peak is 1.5 or more, Specifically, it may be 2.0 or more, more specifically 2.5 or more, such as 3.0 or more.
  • the catalyst of the embodiment may be prepared using an impregnation method.
  • a transparent solution in a very uniform state is supported on silica, the metal components are well bonded to each other, and the probability of forming the MoO 3 phase alone is very low.
  • the dispersibility of active phases such as FeMoO 3 and Bi 2 MoO 6 as well as CoMoO 4 is greatly improved.
  • the XRD peak intensity tends to decrease when the dispersibility is improved, the XRD pattern is formed in a state in which the peak of CoMoO 4 is considerably developed because the amount of Mo and Co added for metal oxide formation in the above embodiment is large. Can be.
  • the catalyst of the exemplary embodiment may maintain a high level of catalytic activity while inhibiting Mo elution during ammoxidation reaction of propylene compared to the catalyst having the secondary particle structure.
  • a catalyst that does not contain heterogeneous metals other than Bi such as a catalyst containing only Mo and Bi as metal components, cannot form a complex oxide phase of molybdenum (Mo) and dissimilar metals, and thus XRD During the analysis, the first peak cannot appear.
  • the catalyst that does not contain heterogeneous metals other than Bi contains only the inert phase and crystalline MoO 3 phase, Mo elution occurs during the ammoxidation reaction of propylene, and catalytic activity may decrease.
  • the catalyst of the embodiment may provide an effective surface area capable of participating in the reaction as well as the external surface area, including a large number of bulky pores.
  • the catalyst of the embodiment may have a D50 particle diameter of 10 to 300 ⁇ m, include pores having a volume of 0.3 to 1.3 cm 3 /g, and have a BET specific surface area of 50 to 300 m 2 /g.
  • the BET specific surface area and the volume of pores provided by the catalyst of the embodiment are improved compared to the catalyst of the secondary particle structure, and thus, while converting propylene at a higher ratio, acrylonitrile with higher selectivity and yield Can be obtained.
  • the BET specific surface area of the catalyst including the same may increase.
  • the volume of pores included in the catalyst of the embodiment is too large, the content of the metal oxide is relatively reduced, and thus catalytic activity may decrease.
  • the catalyst of one embodiment has a lower limit of D50 particle size of 10 ⁇ m or more, 20 ⁇ m or more, 30 ⁇ m or more, or 45 ⁇ m or more, and an upper limit of 300 ⁇ m or less, 280 ⁇ m or less, 260 ⁇ m or less, 240 ⁇ m or less , 220 ⁇ m or less, or 200 ⁇ m or less.
  • the catalyst of one embodiment while having a pore volume of 0.3 cm 3 /g or more, 0.35 cm 3 /g or more, 0.4 cm 3 /g or more, 0.45 cm 3 /g or more, or 0.5 cm 3 /g or more, 1.3 It can be cm 3 /g or less, 1.2 cm 3 /g or less, 1.1 cm 3 /g or less, and 1.0 cm 3 /g or less.
  • the catalyst of the embodiment is 50 m 2 /g or more, 70 m 2 /g or more, 90 m 2 /g or more, 110 m 2 /g or more, or 120 m 2 /g, while 300 m 2 /g
  • it may have a BET specific surface area of 270 m 2 /g or less, 240 m 2 /g or less, 210 m 2 /g or less, or 180 m 2 /g or less.
  • the active sites of the catalyst having insufficient or excessively high density for ammoxidation of propylene are formed. Can be.
  • the metal oxide may be represented by the following Formula 1-1, and as a synergistic effect of the metal components contained therein, it may be advantageous to increase the active point for the ammoxidation reaction of propylene:
  • the composition and content of the metal oxide it can be measured using measuring equipment such as ICP (Inductively Coupled Plasma).
  • ICP Inductively Coupled Plasma
  • a generally known catalyst for ammoxidation of propylene is prepared through coprecipitation and spray drying, and is provided in a secondary particle structure in which metal oxide nanoparticles and silica nanoparticles are aggregated (FIG. 1).
  • the catalyst of the embodiment may be prepared by an impregnation method, and thus may be provided in a structure in which a metal oxide is supported on a silica carrier (FIG. 2).
  • a silica carrier may be immersed in a metal precursor solution prepared to satisfy a stoichiometric molar ratio of a desired metal oxide, and the metal precursor solution may be impregnated in the silica carrier.
  • the metal precursor remains on the pore walls of the silica carrier, and the metal precursor is oxidized in the firing process to form a film that continuously coats the pore walls of the silica carrier.
  • the catalyst of one embodiment prepared as described above may further include a silica carrier supporting the metal oxide.
  • the catalyst of the embodiment may include a silica carrier including second pores; An inner coating layer that continuously coats the walls of the second pores and includes a metal oxide represented by Chemical Formula 1; And first pores located inside the second pores and occupying an empty space excluding the inner coating layer.
  • the catalyst having the above structure may be more durable than a catalyst prepared with the same composition through coprecipitation and spray drying even if the classification process is not performed as a post-treatment after manufacture.
  • the portion capable of participating in the ammoxidation reaction of propylene is extended to not only the outer surface portion (i.e., the surface of the catalyst) but also the inner surface (pores). have.
  • the catalyst of the embodiment may have an egg-shell structure.
  • the silica carrier may include a non-porous core portion; And a porous shell portion positioned on the surface of the non-porous core and including second pores.
  • the porous shell includes a concave portion and a convex portion of a surface, and the concave portion has the second pores open to the surface of the porous shell. It may be formed.
  • the catalyst of the embodiment may include a coating layer that continuously coats the concave portions and the convex portions of the porous shell and includes a metal oxide represented by Chemical Formula 1; And first pores occupying an empty space excluding the coating layer in the concave portion of the silica carrier.
  • the catalyst structure of the embodiment can be confirmed through an electron microscope such as a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • Metal oxide weight ratio of silica carrier
  • the weight ratio of the metal oxide and the silica carrier is 10:90 to 15:95, specifically 20:80 to 50:50, such as 15:85 to 35 It can be set as :65 (metal oxide: silica carrier).
  • the catalyst of the embodiment may have high selectivity of acrylonitrile with high activity.
  • the weight ratio of the metal oxide and the silica carrier is to be measured directly, it can be measured using a measuring device such as ICP (Inductively Coupled Plasma).
  • ICP Inductively Coupled Plasma
  • Bi precursor A precursor of one or more elements of Ni, Mn, Co, Zn, Mg, Ca, and Ba different from the second precursor solution; And preparing a third precursor solution comprising a precursor of one or more elements of Li, Na, K, Rb, and Cs,
  • the manufacturing method of the above embodiment corresponds to the method of manufacturing the catalyst of the above embodiment by using an impregnation method.
  • the step of preparing the first precursor solution may be a step of dissolving the Mo precursor in water at 50 to 90° C. to prepare an aqueous solution including water and the Mo precursor.
  • an additive including citric acid, oxalic acid, or a mixture thereof may be used.
  • the additive functions as a strength modifier.
  • the additive makes the first precursor solution transparent, so that a mixture precursor in a completely dissolved state can be prepared.
  • the weight ratio of the molybdenum precursor and the additive may satisfy 1:0.1 to 1:1, specifically 1:0.2 to 1:0.7, and the solubility of the molybdenum precursor increases within this range. It can be, but is not limited thereto.
  • the step of preparing the second precursor solution may include, in water at 20 to 50° C., an Fe precursor; And it may be a step of dissolving a second precursor including one or more elements of Ni, Mn, Co, Zn, Mg, Ca, and Ba.
  • an aqueous solution including water, an Fe precursor, and a Co precursor may be prepared in consideration of the metal oxide composition that satisfies Chemical Formula 1-1.
  • the step of preparing the third precursor solution may include a Bi precursor in nitric acid at 20 to 50° C.; A precursor of one or more elements of Ni, Mn, Co, Zn, Mg, Ca, and Ba different from the second precursor solution; And it may be a step of dissolving a precursor of one or more elements of Li, Na, K, Rb, and Cs.
  • the type and amount of the precursor may be selected in consideration of the composition of the metal oxide in the final target catalyst.
  • a solution including nitric acid, a Bi precursor, a Ni precursor, and a K precursor may be prepared in consideration of the metal oxide composition that satisfies Formula 1-1.
  • the processes of preparing the first to third precursor solutions are each independent, and the order of preparation is not limited.
  • the mixing of the first to third precursor solutions includes mixing the second and third precursor solutions, and a mixture of the second and third precursor solutions It may include dropping into the first precursor solution.
  • the mixing ratio may be controlled so that the molar ratio of metals satisfies the stoichiometric molar ratio of Chemical Formula 1, specifically, Chemical Formula 1-1.
  • the silica carrier After preparing a mixture of the first to third precursor solutions, it may be supported on a silica carrier.
  • silica with a particle size of 10 to 200 ⁇ m, a pore size of 20 to 25 nm, a pore volume of 1 to 3 cm 3 /g according to the nitrogen adsorption method, and a BET specific surface area of 250 to 300 m 2 /g ( SiO 2 ) particles may be added to the mixture of the first to third precursor solutions and mixed, so that the mixture of the first to third precursor solutions is supported in the pores of the silica carrier.
  • the step of supporting the mixture of the first to third precursor solutions on the silica carrier includes first mixing the silica carrier and the first to third precursor solutions within a temperature range of 20 to 30°C. And secondary mixing the first mixture within a temperature range of 70 to 90°C, and the first and second mixing times may be independently set to 1 to 3 hours.
  • this is an example and is not particularly limited as long as it is a condition that allows the mixture of the first to third precursor solutions to be sufficiently supported on the silica carrier.
  • the silica carrier on which the mixture of the first to third precursor solutions is supported is dried for 5 to 12 hours in a temperature range of 100 to 120° C., and then calcined for 1 to 6 hours in a temperature range of 500 to 700° C. To finally obtain a catalyst.
  • drying and firing conditions are only examples, and a condition capable of sufficiently removing the solvent from the pores of the carrier and oxidizing the metal precursor is sufficient.
  • the structure of the catalyst thus formed is as described above.
  • a method for ammoxidation of propylene comprising reacting propylene and ammonia in the presence of the catalyst of the above-described embodiment in a reactor.
  • the catalyst of the embodiment has high activity and stability at high temperature, and is used for ammoxidation reaction of propylene to increase the conversion rate of propylene, selectivity and yield of acrylonitrile.
  • Mo precursor ((NH 4 ) 6 Mo 7 O 24 ) 4.24 g was dissolved in 85° C. water, and 3 g of oxalic acid or citric acid was added thereto to prepare a Mo precursor solution.
  • Bi precursor Bi(NO 3 ) 3 ⁇ 5H 2 O
  • Ni precursor Ni(NO 3 ) 2 ⁇ 6H 2 O
  • K precursor KNO 3
  • the Fe and Co precursor mixture solution and the Bi, Ni, and K precursor mixture solution are mixed while stirring, and then added dropwise to the Mo precursor solution to mix Mo, Bi, Fe, Ni, Co and K precursors. A solution was obtained.
  • the total amount of water is 45 g.
  • Silica SiO 2 with a particle size of 50-150 ⁇ m, a pore size of 10-25 nm, a pore volume of 1 to 3 cm 3 /g according to the nitrogen adsorption method, and a BET specific surface area of 500-600 m 2 /g) ) Particles were used as carriers.
  • the silica carrier (13)g was added, and the mixture was sequentially stirred at room temperature and 80°C for 2 hours, respectively, and the Mo, The mixed solution of Bi, Fe, Ni, Co, and K precursors was sufficiently supported.
  • the silica carrier carrying the Mo, Bi, Fe, Ni, Co, and K precursor mixture solution was recovered and dried in an oven at 110° C. for 12 hours, and then maintained at a temperature of 580° C. in a tubular kiln in a nitrogen atmosphere.
  • the catalyst of Example 1 was obtained on which 25% by weight of a metal oxide (however, the mole fraction of Mo in the metal oxide was 12) was supported.
  • the internal pressure of the reactor filled with the quartz fiber and the catalyst was maintained at atmospheric pressure (1 atm), and the internal temperature of the reactor was raised at a temperature increase rate of 5°C, while nitrogen and ammonia gas were flowed as a pretreatment process. Accordingly, the temperature inside the reactor reached 400° C., which is the temperature at which the ammoxidation reaction is possible, so that sufficient pretreatment was performed.
  • a precursor solution was prepared according to the composition shown in Table 1 below, and the silica carrier shown in Table 2 was used, but the rest were the same as in Example 1 to prepare each of the catalysts of Examples 2 to 4.
  • each catalyst of Examples 2 to 4 was used to perform the ammoxidation process of flophyllene, and the product was recovered, and analysis was performed in the same manner as in Example 1.
  • Bi precursor (Bi(NO 3 ) 3 ⁇ 5H 2 O) 69.4 g, Co precursor (Co(NO 3 ) 2 ⁇ 6H 2 O) 165 g, Fe precursor (Fe(NO 3 ) 2 ⁇ 9H 2 O) 115 g, and Ni precursor (Ni(NO 3 ) 2 ⁇ 6H 2 O) 10 g, K precursor (KNO 3 ) 10 g of nitric acid was added to a mixture of 17.5 g and heated to 50° C. to prepare solution B. .
  • the solutions A and B were mixed while stirring to obtain an aqueous slurry, and the mixed aqueous slurry of the solutions A and B was dried at 150° C. using a rotary nozzle spray dryer. The thus obtained solid dried product was calcined at 580° C. for 3 hours to obtain a catalyst of Comparative Example 1.
  • the catalyst of Comparative Example 1 was used instead of the catalyst of Example 1, and the ammoxidation process of flophyllene was performed in the same manner as in Example 1.
  • a precursor solution was prepared according to the composition shown in Table 1 below, and the silica carrier shown in Table 2 was used, but the rest were the same as in Example 1 to prepare a catalyst of Comparative Example 2.
  • Mo is (NH 4 ) 6 Mo 7 O 24
  • Bi is Bi(NO 3 ) 3 ⁇ 5H 2 O
  • Co is Co(NO 3 ) 2 ⁇ 6H 2 O
  • Fe is Fe( NO 3 ) 2 ⁇ 9H 2 O
  • Ni is Ni(NO 3 ) 2 ⁇ 6H 2 O
  • K is KNO 3 .
  • the omitted unit is g.
  • the input amount of the raw material in Table 1 is calculated in consideration of the target composition of Table 2, that is, the stoichiometric molar ratio of the final metal oxide and the content of the metal oxide. If you want to directly measure the metal oxide composition and content of Table 2, it can be measured using a measuring device such as ICP (Inductively Coupled Plasma, Inductively Coupled Plasma).
  • ICP Inductively Coupled Plasma, Inductively Coupled Plasma
  • Example 1 Each catalyst of Example 1 and Comparative Example 1 was analyzed according to the following analysis method:
  • Example 1 diffraction analysis (X-Ray Diffraction, XRD) using Cu K ⁇ X-ray was performed, and the analysis results are shown in FIG. 3. (Example 1) and Fig. 4 (Comparative Example 1) respectively.
  • BET specific surface area For each catalyst of Example 1 and Comparative Example 1, nitrogen gas under liquid nitrogen temperature (77 K) using a BET specific surface area measuring device (manufacturer: BEL Japan, device name: BELSORP-mino X) The specific surface area was evaluated from the adsorption amount, and the evaluation results are shown in Table 1.
  • Pore volume Using an apparatus according to ASTM D4641 (manufacturer: BEL Japan, device name: BELSORP-mino X), the pore volume in each catalyst of Example 1 and Comparative Example 1 was measured, and the measurement results are shown in Table 1. .
  • Catalyst structure It can be confirmed through an electron microscope such as a scanning electron microscope (SEM).
  • XRD peak intensity characteristics, pore volume, and BET specific surface area characteristics may be related to a method of preparing a catalyst.
  • the catalyst of Comparative Example 1 formed a relatively large number of crystalline phases through co-precipitation and spray drying processes, resulting in high crystallinity.
  • the catalyst of Comparative Example 1 has a secondary particle structure that hardly contains pores while undergoing co-precipitation and spray drying processes, and the effective surface area capable of participating in the reaction is limited to the external surface area.
  • the catalysts of Examples 1 to 4 have a structure including a large number of large pores while being prepared by an impregnation method, and an effective surface area capable of participating in the reaction has been expanded into pores.
  • the CoMoO 4 phase is an active phase for propylene ammoxidation, and the MoO 3 phase is an inactive phase. Accordingly, it can be seen that the higher the XRD peak intensity ratio (A/B), the lower the crystallinity and the lower the activity of the catalyst.
  • the catalyst of Comparative Example 1 has an XRD peak intensity ratio (A/B) of only 1.47, which is evaluated as having high crystallinity and low activity.
  • the catalysts of Examples 1 to 4 satisfies a range in which the XRD peak intensity ratio (A/B) is high, and thus it is evaluated to have low crystallinity and high activity.
  • the XRD peak intensity characteristics, pore volume, and BET specific surface area characteristics may be related to the composition of the metal oxide in the catalyst.
  • the catalysts of Examples 1 to 4 while being prepared by the impregnation method, under the influence of a metal oxide containing not only Mo and Bi but also a number of suitable metal components, in contrast to the peak due to the inactive phase MoO 3, the active phase (In particular, CoMoO 4 ) formed a wider peak area.
  • Each ammoxidation product of Examples 1 to 4 and Comparative Examples 1 and 2 was prepared using chromatography (Gas chromatography, manufacturer: Agilent, device name: GC6890N) equipped with FID (Flame Ionization Detector) and TCD (thermal conductivity detector). Analyzed.
  • FID products such as ethylene (ehthlene), hydrogen cyanide, acetaldehyde, acetonitrile, and acetonitrile were analyzed, and as TCD , NH 3 , O 2 , Gas products such as CO and CO 2 were analyzed to determine the number of moles of propylene reacted in Example 1 and Comparative Example 1 and the number of moles of ammoxidation product, respectively.
  • the catalyst of Comparative Example 1 was prepared through coprecipitation and spray drying, and as a result, the effective surface area (BET specific surface area) capable of participating in the reaction was limited to the outer surface portion, and the formation of CoMoO 4 , an active phase and amorphous, was suppressed.
  • the catalyst of Comparative Example 1 has low activity due to a narrow effective surface area and low active phase content, and may be easily cracked or broken due to high crystallinity.
  • the catalyst is cracked or broken due to high temperature during ammoxidation reaction of propylene, Mo or the like is eluted from the inside of the catalyst to the surface, and catalyst performance may be deteriorated.
  • the catalysts of Examples 1 to 4 as a result of being prepared by the impregnation method, have a large effective surface area (BET specific surface area) capable of participating in the reaction, and the formation of the active phase, CoMoO 4, is increased.
  • the catalysts of Examples 1 to 4 have high activity due to the large effective surface area and high active phase content, and may not be broken or broken even at high temperatures applied during the ammoxidation reaction of propylene.
  • a catalyst having a metal oxide composition satisfying the above-described Formula 1 and having a XRD main peak intensity ratio (A/B) of 1.5 or more can significantly improve the conversion of propylene and the yield of acrylonitrile during ammoxidation reaction It is evaluated as being.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a catalyst for ammoxidation of propylene, a method for preparing same, and a method for ammoxidation of propylene using same. In particular, an embodiment of the present invention provides a catalyst for ammoxidation of propylene exhibiting high activity in an ammoxidation reaction of propylene and also having a high amorphous phase content.

Description

프로필렌의 암모산화용 촉매, 이의 제조 방법, 및 이를 이용한 프로필렌의 암모산화 방법Catalyst for ammoxidation of propylene, method for preparing the same, and method for ammoxidation of propylene using the same
관련 출원(들)과의 상호 인용Cross-reference with related application(s)
본 출원은 2019년 9월 30일자 한국 특허 출원 제10-2019-0121172호 및 2020년 9월 24일자 한국 특허 출원 제10-2020-0124245호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2019-0121172 filed September 30, 2019 and Korean Patent Application No. 10-2020-0124245 filed September 24, 2020. All contents disclosed in the literature are included as part of this specification.
본 발명은 프로필렌의 암모산화용 촉매, 이의 제조 방법, 및 이를 이용한 프로필렌의 암모산화 방법에 관한 것이다. The present invention relates to a catalyst for ammoxidation of propylene, a method for preparing the same, and a method for ammoxidation of propylene using the same.
프로필렌의 암모산화 공정은, 암모니아와 프로필렌을 반응시키는 환원 반응과 산소에 의해 재산화되는 매커니즘을 기반으로 하며, 그 반응물(즉, 프로필렌)의 전환율, 반응 생성물(즉, 아크릴로니트릴)의 선택도 및 수율을 높이기 위한 다양한 조성의 촉매가 연구되어 왔다.The ammoxidation process of propylene is based on a reduction reaction of reacting ammonia and propylene and a mechanism of reoxidation by oxygen, the conversion rate of the reactant (i.e., propylene), and the selectivity of the reaction product (i.e., acrylonitrile). And catalysts of various compositions to increase the yield have been studied.
구체적으로,Mo(몰리브덴)-Bi(비스무스) 산화물 촉매가 제시된 이래, 그 촉매 활성과 안정성을 높이기 위해 다양한 산화 상태를 가지는 금속이 첨가된 촉매들이 연구된 바 있다. 그 결과, 첨가된 금속 종류나 양에 따라, 아크릴로니트릴의 수율은 초기 연구 대비 향상된 편이다.Specifically, since the Mo(molybdenum)-Bi(bismuth) oxide catalyst was presented, catalysts to which metals having various oxidation states were added have been studied in order to increase the catalytic activity and stability. As a result, depending on the type or amount of metal added, the yield of acrylonitrile is improved compared to the initial study.
다만, 촉매 조성의 다양화에도 불구하고, 그 구조 및 물성에 대한 연구가 부족하여, 프로필렌의 암모산화 시 반응물(즉, 프로필렌)의 전환율과 반응 생성물(즉, 아크릴로니트릴)의 선택도를 현저하게 높이는 데에는 한계가 있었다.However, despite the diversification of the catalyst composition, studies on its structure and physical properties were insufficient, and thus the conversion rate of the reactant (i.e., propylene) and the selectivity of the reaction product (i.e., acrylonitrile) were remarkable during the ammoxidation of propylene. There was a limit to the height of it.
구체적으로, 목적하는 조성의 금속 전구체와 나노 실리카 졸을 공침시킨 뒤, 분무 건조하고 소성함으로써, 금속 산화물 입자와 실리카 입자가 집합된 2차 입자 구조의 촉매를 얻는 것이 일반적이다.Specifically, it is common to obtain a catalyst having a secondary particle structure in which metal oxide particles and silica particles are aggregated by co-precipitation of a metal precursor having a desired composition and a nano silica sol, followed by spray drying and firing.
그런데, 상기 2차 입자 구조의 촉매는, 그 제조 공정 중 분무건조 공정을 거치면서 필연적으로 높은 결정성을 가지게 된다. 이처럼 결정성이 높은 촉매는, 반응 중 가해지는 고온에 의해 쉽게 깨지거나 부서질 수 있고, 그 내부로부터 표면으로 Mo 등이 용출되어 촉매 성능이 열화될 수 있다.However, the catalyst having the secondary particle structure inevitably has high crystallinity while going through the spray drying process during the manufacturing process. As such, a catalyst having high crystallinity may be easily cracked or crushed by a high temperature applied during the reaction, and Mo or the like may be eluted from the inside to the surface, thereby deteriorating catalyst performance.
본 발명은, 프로필렌의 암모산화 반응 중 Mo 용출이 억제되면서도, 촉매 활성이 높은 수준으로 유지되는 프로필렌의 암모산화용 촉매를 제공하기 위한 것이다.The present invention is to provide a catalyst for ammoxidation of propylene that maintains a high level of catalytic activity while inhibiting Mo elution during ammoxidation reaction of propylene.
구체적으로, 본 발명의 일 구현예에서는, 프로필렌의 암모산화 반응에 대한 높은 활성을 나타내면서도 비정질인 상의 함량이 높은, 프로필렌의 암모산화용 촉매를 제공한다.Specifically, one embodiment of the present invention provides a catalyst for ammoxidation of propylene, exhibiting high activity against ammoxidation reaction of propylene, and having a high content of an amorphous phase.
상기 일 구현예의 촉매는, 프로필렌의 암모산화 반응에 대한 높은 활성을 나타내면서도 비정질인 상의 함량이 높아, 프로필렌의 암모산화 반응 중 Mo 용출이 억제되면서도 촉매 활성이 높은 수준으로 유지될 수 있다.The catalyst of the embodiment may exhibit high activity against the ammoxidation reaction of propylene and a high content of the amorphous phase, so that the catalytic activity may be maintained at a high level while Mo elution during the ammoxidation reaction of propylene is suppressed.
따라서, 상기 일 구현예의 촉매를 사용하면, 더 높은 비율로 프로필렌을 전환시키면서, 더 높은 수율로 아크릴로니트릴을 제조할 수 있다.Therefore, by using the catalyst of one embodiment, it is possible to convert propylene at a higher ratio and to produce acrylonitrile at a higher yield.
도 1은, 분무건조법을 이용하여 제조된 촉매를 모식적으로 도시한 것이다.1 schematically shows a catalyst prepared using a spray drying method.
도 2은, 상기 일 구현예에 따른 촉매를 모식적으로 도시한 것이다.2 schematically shows a catalyst according to the embodiment.
도 3은, 후술되는 일 실시예의 촉매에 대한 XRD 분석 결과를 나타낸 것이다.3 shows the results of XRD analysis of the catalyst of an example to be described later.
도 4는, 후술되는 일 비교예의 촉매에 대한 XRD 분석 결과를 나타낸 것이다.4 shows the results of XRD analysis of the catalyst of a comparative example to be described later.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In the present invention, various transformations can be applied and various embodiments may be provided, and specific embodiments will be illustrated and described in detail. However, this is not intended to limit the present invention to a specific embodiment, it should be understood to include all conversions, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the present invention, when it is determined that a detailed description of a related known technology may obscure the subject matter of the present invention, a detailed description thereof will be omitted.
또한, 이하에서 사용될 제 1, 제 2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다.In addition, terms including ordinal numbers such as first and second to be used hereinafter may be used to describe various elements, but the elements are not limited by the terms. The above terms are used only for the purpose of distinguishing one component from another component. For example, without departing from the scope of the present invention, a first element may be referred to as a second element, and similarly, a second element may be referred to as a first element.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서,"포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present application, terms such as "comprise" or "have" are intended to designate the presence of features, numbers, steps, actions, components, parts, or combinations thereof described in the specification, but one or more other features. It is to be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof, does not preclude the possibility of preliminary exclusion.
이하, 도면을 참조하여 상기 일 구현예의 프로필렌의 암모산화용 촉매를 상세히 설명하도록 한다.Hereinafter, a catalyst for ammoxidation of propylene according to the embodiment will be described in detail with reference to the drawings.
프로필렌의 암모산화용 촉매Catalyst for ammoxidation of propylene
본 발명의 일 구현예에서는, In one embodiment of the present invention,
하기 화학식 1로 표시되는 금속 산화물;을 포함하고Including a metal oxide represented by the following formula (1);
Cu Cα에 의한 X선 회절 분석 시, 2θ가 26.3±0.5°인 범위 내에서 강도가 A인 제1 피크가 나타나고,2θ가 28.3±0.5°인 범위 내에서 강도가 B인 제2 피크가 나타나며,In X-ray diffraction analysis by Cu Cα, a first peak with an intensity of A appears within the range of 2θ of 26.3±0.5°, and a second peak with an intensity of B within the range of 28.3±0.5°,
상기 제2 피크에 대한 상기 제1 피크의 강도 비(A/B)가 1.5 이상인,The intensity ratio (A/B) of the first peak to the second peak is 1.5 or more,
프로필렌의 암모산화용 촉매를 제공한다:A catalyst for ammoxidation of propylene is provided:
[화학식 1][Formula 1]
Figure PCTKR2020013099-appb-img-000001
Figure PCTKR2020013099-appb-img-000001
상기 화학식 1에서, In Formula 1,
A 및 B는 상이하고, 각각 독립적으로 Ni, Mn, Co, Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소이고,A and B are different, and each independently is one or more elements of Ni, Mn, Co, Zn, Mg, Ca, and Ba,
C는 Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소이고,C is one or more elements of Li, Na, K, Rb, and Cs,
D는 Cr, W, B, Al, Ca, 및 V 중 하나 이상의 원소이고,D is one or more elements of Cr, W, B, Al, Ca, and V,
상기 a 내지 f, x, 및 y는 원자 또는 원자단의 몰분율이며,Wherein a to f, x, and y are the mole fractions of atoms or groups of atoms,
a는 0.1 내지 7이고, b는 0.1 내지 7이고, 단 a 및 b의 합이 0.1 내지 7이고,a is 0.1 to 7, b is 0.1 to 7, provided that the sum of a and b is 0.1 to 7,
c는 0.1 내지 10 이고, d는 0.01 내지 5이고, e는 0.1 내지 10이며, f는 0 내지 10이고, c is 0.1 to 10, d is 0.01 to 5, e is 0.1 to 10, f is 0 to 10,
x는 11 내지 14이고, y는 상기 Mo, Bi, Fe, A, B, C, 및 D의 각 산화수에 의해 결정될 수 있는 값이다.x is 11 to 14, and y is a value that can be determined by the respective oxidation numbers of Mo, Bi, Fe, A, B, C, and D.
앞서 언급한 바와 같이, 프로필렌의 암모산화용 촉매로는, 금속 전구체와 나노 실리카 졸의 공침과 분무건조를 통해 제조된 2차 입자 구조의 촉매가 알려져 있다.As mentioned above, as a catalyst for ammoxidation of propylene, a catalyst having a secondary particle structure prepared through coprecipitation and spray drying of a metal precursor and a nano silica sol is known.
상기 2차 입자 구조의 촉매는, 내부 및 외부에 금속 산화물 입자가 골고루 분포된 대신 기공을 거의 포함하지 않아, 단위 부피 당 반응물의 흡착량이 적고, 반응 활성도가 낮은 문제가 있다.The catalyst having the secondary particle structure has a problem in that the metal oxide particles are evenly distributed inside and outside, but contain almost no pores, so that the adsorption amount of reactants per unit volume is small, and the reaction activity is low.
한편, 상기 2차 입자 구조의 촉매는, 그 제조 공정 중 분무건조 공정을 거치면서 필연적으로 높은 결정성을 가지게 된 것이다. 이처럼 결정성이 높은 촉매는, 반응 중 가해지는 고온에 의해 쉽게 깨지거나 부서질 수 있고, 그 내부로부터 표면으로 Mo 등이 용출되어 촉매 성능이 열화될 수 있다.On the other hand, the catalyst having the secondary particle structure inevitably has high crystallinity while going through the spray drying process in the manufacturing process. As such, a catalyst having high crystallinity may be easily cracked or crushed by a high temperature applied during the reaction, and Mo or the like may be eluted from the inside to the surface, thereby deteriorating catalyst performance.
그에 반면, 상기 일 구현예의 촉매는, 프로필렌의 암모산화 반응에 대한 높은 활성을 나타내면서도 비정질인 상의 함량이 높아, 프로필렌의 암모산화 반응 중 Mo 용출이 억제되면서도 촉매 활성이 높은 수준으로 유지될 수 있다.On the other hand, the catalyst of the embodiment has a high content of amorphous phosphorus phase while exhibiting high activity against the ammoxidation reaction of propylene, and thus the catalytic activity can be maintained at a high level while Mo elution is suppressed during the ammoxidation reaction of propylene. .
여기서, 상기 프로필렌의 암모산화 반응에 대한 높은 활성을 나타내면서도 비정질인 상은, 몰리브덴(Mo) 및 이종(異種) 금속의 복합 산화물 상, 예컨대 CoMoO 4 상일 수 있다.Here, the amorphous phase exhibiting high activity against the ammoxidation reaction of propylene may be a complex oxide phase of molybdenum (Mo) and dissimilar metals, such as a CoMoO 4 phase.
구체적으로, 상기 일 구현예의 촉매에 대한 X선 회절(XRD) 분석 시, 2θ가 26.3±0.5°인 범위 내에서 강도가 B인 제1 피크가 나타나고, 2θ가 28.3±0.5°인 범위 내에서 강도가 B인 제2 피크가 나타날 수 있다.Specifically, when X-ray diffraction (XRD) analysis of the catalyst of the embodiment, the first peak of intensity B appears within the range of 2θ of 26.3±0.5°, and the intensity within the range of 2θ of 28.3±0.5°. A second peak of B may appear.
여기서, 상기 제1 피크는 몰리브덴(Mo) 및 이종(異種) 금속의 복합 산화물 상, 예컨대 CoMoO 4 상에 의해 나타날 수 있다. 또한, 상기 제2 피크는 몰리브덴(Mo) 산화물 상, 즉 MoO 3 상에 의해 나타날 수 있다.Here, the first peak may appear by a complex oxide phase of molybdenum (Mo) and a dissimilar metal, such as a CoMoO 4 phase. In addition, the second peak may appear by a molybdenum (Mo) oxide phase, that is, a MoO 3 phase.
상기 몰리브덴(Mo) 및 이종(異種) 금속의 복합 산화물 상은 프로필렌 암모산화 반응에 대한 활성을 나타내는 반면, 상기 MoO 3상은 프로필렌 암모산화 반응에 대한 활성이 없다. The complex oxide phase of molybdenum (Mo) and dissimilar metals exhibits activity against propylene ammoxidation, whereas the MoO 3 phase has no activity against propylene ammoxidation.
상기 2차 입자 구조의 촉매는, 실리카 졸 및 금속 산화물 전구체가 불균일하게 혼합된 슬러리로부터 제조되어, 비활성 상인 MoO 3 상의 함량이 상대적으로 높고, 상기 제2 피크에 대한 상기 제1 피크의 강도 비(A/B)가 1.5 미만일 수 있다. 이에 따라, 프로필렌의 암모산화 반응 중 Mo 용출이 발생하고, 촉매 활성이 저하될 수 있다.The catalyst of the secondary particle structure is prepared from a slurry in which a silica sol and a metal oxide precursor are heterogeneously mixed, the content of the MoO 3 phase, which is an inert phase, is relatively high, and the intensity ratio of the first peak to the second peak ( A/B) may be less than 1.5. Accordingly, Mo elution occurs during the ammoxidation reaction of propylene, and catalytic activity may decrease.
그에 반면, 상기 일 구현예의 촉매는, 활성 상인 이종(異種) 금속의 복합 산화물의 상의 함량이 상대적으로 높고, 상기 제2 피크에 대한 상기 제1 피크의 강도 비(A/B)가 1.5 이상, 구체적으로 2.0 이상, 보다 구체적으로 2.5 이상, 예컨대 3.0 이상일 수 있다.On the other hand, the catalyst of the embodiment has a relatively high content of the phase of the complex oxide of a dissimilar metal, which is an active phase, and an intensity ratio (A/B) of the first peak to the second peak is 1.5 or more, Specifically, it may be 2.0 or more, more specifically 2.5 or more, such as 3.0 or more.
더 상세한 설명은 후술하겠지만, 상기 일 구현예의 촉매는, 함침법을 이용하여 제조될 수 있는다. 매우 균일한 상태의 투명 용액을 실리카에 담지하면, 금속 성분들끼리 잘 결합된 상태로 존재하여 MoO 3 상이 단독으로 형성될 확률이 매우 낮아진다. A more detailed description will be described later, but the catalyst of the embodiment may be prepared using an impregnation method. When a transparent solution in a very uniform state is supported on silica, the metal components are well bonded to each other, and the probability of forming the MoO 3 phase alone is very low.
특히, 담체 자체의 넓은 표면적을 활용하기 때문에, CoMoO 4뿐만 아니라, FeMoO 3, Bi 2MoO 6 등의 활성 상들의 분산성이 매우 향상된다. 분산성이 향상되면 XRD 피크 강도가 감소하는 경향이 있음에도 불구하고, 상기 일 구현예에서 금속 산화물 형성을 위해 첨가되는 Mo양과 Co양이 많기 때문에 CoMoO 4의 피크가 상당히 발달된 상태로 XRD 패턴이 형성될 수 있다. In particular, since the large surface area of the carrier itself is utilized, the dispersibility of active phases such as FeMoO 3 and Bi 2 MoO 6 as well as CoMoO 4 is greatly improved. Although the XRD peak intensity tends to decrease when the dispersibility is improved, the XRD pattern is formed in a state in which the peak of CoMoO 4 is considerably developed because the amount of Mo and Co added for metal oxide formation in the above embodiment is large. Can be.
이에, 상기 일 구현예의 촉매는, 상기 2차 입자 구조의 촉매에 대비하여, 프로필렌의 암모산화 반응 중 Mo 용출이 억제되면서도 촉매 활성이 높은 수준으로 유지될 수 있다.Accordingly, the catalyst of the exemplary embodiment may maintain a high level of catalytic activity while inhibiting Mo elution during ammoxidation reaction of propylene compared to the catalyst having the secondary particle structure.
한편, Bi 이외의 이종(異種) 금속을 포함하지 않는 촉매, 예컨대 금속 성분으로 Mo 및 Bi 만 포함하는 촉매는, 몰리브덴(Mo) 및 이종(異種) 금속의 복합 산화물 상이 형성될 수 없고, 이에 XRD 분석 시 상기 제1 피크가 나타날 수 없다.On the other hand, a catalyst that does not contain heterogeneous metals other than Bi, such as a catalyst containing only Mo and Bi as metal components, cannot form a complex oxide phase of molybdenum (Mo) and dissimilar metals, and thus XRD During the analysis, the first peak cannot appear.
다시 말해, Bi 이외의 이종(異種) 금속을 포함하지 않는 촉매는, 비활성 상이자 결정질인 MoO 3 상만 포함하므로, 프로필렌의 암모산화 반응 중 Mo 용출이 발생하고, 촉매 활성이 저하될 수 있다.In other words, since the catalyst that does not contain heterogeneous metals other than Bi contains only the inert phase and crystalline MoO 3 phase, Mo elution occurs during the ammoxidation reaction of propylene, and catalytic activity may decrease.
이하, 상기 일 구현예의 촉매를 상세히 설명한다.Hereinafter, the catalyst of the embodiment will be described in detail.
촉매의 D50 입경, 기공 부피 및 BET 비표면적D50 particle size, pore volume and BET specific surface area of catalyst
상기 일 구현예의 촉매는, 부피가 큰 다수의 기공을 포함하여, 외부 표면적뿐만 아니라 기공 또한 반응에 참여할 수 있는 유효 표면적을 제공할 수 있다.The catalyst of the embodiment may provide an effective surface area capable of participating in the reaction as well as the external surface area, including a large number of bulky pores.
구체적으로, 상기 일 구현예의 촉매는, D50 입경이 10 내지 300 ㎛이면서, 0.3 내지 1.3 cm 3/g 부피의 기공을 포함하고, 50 내지 300 m 2/g의 BET 비표면적을 가질 수 있다.Specifically, the catalyst of the embodiment may have a D50 particle diameter of 10 to 300 μm, include pores having a volume of 0.3 to 1.3 cm 3 /g, and have a BET specific surface area of 50 to 300 m 2 /g.
상기 일 구현예의 촉매가 제공하는 BET 비표면적, 기공의 부피는, 상기 2차 입자 구조의 촉매 대비 향상된 것이며, 이에 따라 더 높은 비율로 프로필렌을 전환시키면서, 더 높은 선택도 및 수율로 아크릴로니트릴을 수득할 수 있다.The BET specific surface area and the volume of pores provided by the catalyst of the embodiment are improved compared to the catalyst of the secondary particle structure, and thus, while converting propylene at a higher ratio, acrylonitrile with higher selectivity and yield Can be obtained.
상기 제시된 범위 내에서, 상기 일 구현예의 촉매에 포함된 기공 부피가 커질수록, 이를 포함하는 촉매의 BET 비표면적도 넓어질 수 있다. 다만, 상기 일 구현예의 촉매에 포함된 기공 부피가 지나치게 커질 때, 상기 금속 산화물의 함량이 상대적으로 감소하여 촉매 활성이 감소할 수 있다.Within the range presented above, as the pore volume included in the catalyst of the embodiment increases, the BET specific surface area of the catalyst including the same may increase. However, when the volume of pores included in the catalyst of the embodiment is too large, the content of the metal oxide is relatively reduced, and thus catalytic activity may decrease.
이에, 상기 일 구현예의 촉매로써 목적하는 특성을 종합적으로 고려하여, 그 BET 비표면적과 기공 부피 등을 제어할 수 있다. Accordingly, it is possible to control the BET specific surface area and pore volume, etc., by comprehensively considering the properties desired as the catalyst of the embodiment.
예컨대, 상기 일 구현예의 촉매는, D50 입경의 하한을 10 ㎛ 이상, 20 ㎛ 이상, 30 ㎛ 이상, 또는 45 ㎛ 이상으로 하면서, 상한을 300 ㎛ 이하, 280 ㎛ 이하, 260 ㎛ 이하, 240 ㎛ 이하, 220 ㎛ 이하, 또는 200 ㎛ 이하로 할 수 있다.For example, the catalyst of one embodiment has a lower limit of D50 particle size of 10 µm or more, 20 µm or more, 30 µm or more, or 45 µm or more, and an upper limit of 300 µm or less, 280 µm or less, 260 µm or less, 240 µm or less , 220 μm or less, or 200 μm or less.
또한, 상기 일 구현예의 촉매는, 기공 부피를 0.3 cm 3/g 이상, 0.35 cm 3/g 이상, 0.4 cm 3/g 이상, 0.45 cm 3/g 이상, 또는 0.5 cm 3/g 이상이면서, 1.3 cm 3/g 이하, 1.2 cm 3/g 이하, 1.1 cm 3/g 이하, 1.0 cm 3/g 이하로 할 수 있다.In addition, the catalyst of one embodiment, while having a pore volume of 0.3 cm 3 /g or more, 0.35 cm 3 /g or more, 0.4 cm 3 /g or more, 0.45 cm 3 /g or more, or 0.5 cm 3 /g or more, 1.3 It can be cm 3 /g or less, 1.2 cm 3 /g or less, 1.1 cm 3 /g or less, and 1.0 cm 3 /g or less.
또한, 상기 일 구현예의 촉매는, 50 m 2/g 이상, 70 m 2/g 이상, 90 m 2/g 이상, 110 m 2/g 이상, 또는 120 m 2/g 이면서, 300 m 2/g 이하, 270 m 2/g 이하, 240 m 2/g 이하, 210 m 2/g 이하, 또는 180 m 2/g 이하인 BET 비표면적을 가질 수 있다.In addition, the catalyst of the embodiment is 50 m 2 /g or more, 70 m 2 /g or more, 90 m 2 /g or more, 110 m 2 /g or more, or 120 m 2 /g, while 300 m 2 /g Hereinafter, it may have a BET specific surface area of 270 m 2 /g or less, 240 m 2 /g or less, 210 m 2 /g or less, or 180 m 2 /g or less.
금속 산화물Metal oxide
한편, 상기 일 구현예의 촉매와 동일한 구조를 가지더라도, 상기 금속 산화물을 구성하는 성분들의 종류와 함량이 상기 화학식 1을 만족하지 못한다면, 프로필렌의 암모산화에 부족하거나 지나치게 밀도가 높은 촉매의 활성점이 형성될 수 있다.On the other hand, even if it has the same structure as the catalyst of the embodiment, if the type and content of the components constituting the metal oxide do not satisfy the above formula (1), the active sites of the catalyst having insufficient or excessively high density for ammoxidation of propylene are formed. Can be.
이에, 상기 금속 산화물을 구성하는 종류와 함량은 상기 화학식 1을 만족하도록 할 필요가 있다. 예를 들어, 상기 금속 산화물은 하기 화학식 1-1로 표시되는 것일 수 있고, 이 에 포함된 금속 성분들의 시너지 효과로, 프로필렌의 암모산화 반응에 대한 활성점을 높이는 데 유리할 수 있다: Accordingly, it is necessary to satisfy the type and content of the metal oxide to satisfy the formula (1). For example, the metal oxide may be represented by the following Formula 1-1, and as a synergistic effect of the metal components contained therein, it may be advantageous to increase the active point for the ammoxidation reaction of propylene:
[화학식 1-1][Formula 1-1]
Figure PCTKR2020013099-appb-img-000002
Figure PCTKR2020013099-appb-img-000002
상기 화학식 1-1에서 x, a 내지 e 및 y의 정의는 전술한 바와 같다.In Formula 1-1, the definitions of x, a to e, and y are as described above.
상기 금속 산화물 조성 및 함량을 직접 측정하고자 한다면, ICP(Inductively Coupled Plasma, 유도결합플라즈마) 등의 측정 장비를 이용하여 측정 가능하다.If you want to directly measure the composition and content of the metal oxide, it can be measured using measuring equipment such as ICP (Inductively Coupled Plasma).
촉매의 구조Catalyst structure
앞서 언급한 바와 같이, 일반적으로 알려진 프로필렌의 암모산화용 촉매는, 공침과 분무건조를 통해 제조되어, 금속 산화물 나노입자와 실리카 나노입자가 집합된 2차 입자 구조로 제공된다(도 1). As mentioned above, a generally known catalyst for ammoxidation of propylene is prepared through coprecipitation and spray drying, and is provided in a secondary particle structure in which metal oxide nanoparticles and silica nanoparticles are aggregated (FIG. 1).
이는, 내부 및 외부에 금속 산화물 입자가 골고루 분포된 대신, 프로필렌의 암모산화 반응에 참여할 수 있는 부위가 외부 표면부(즉, 2차 입자의 표면)로 제한되고, 작은 표면적을 제공하므로, 프로필렌의 암모산화 반응 중 촉매 표면으로부터 탈착되는 암모니아의 양이 많다.This is because, instead of evenly distributed inside and outside of the metal oxide particles, a portion that can participate in the ammoxidation reaction of propylene is limited to the outer surface portion (i.e., the surface of the secondary particles), and provides a small surface area. The amount of ammonia desorbed from the catalyst surface during ammoxidation reaction is large.
그에 반면, 상기 일 구현예의 촉매는, 함침법으로 제조되어, 금속 산화물이 실리카 담체에 담지된 구조로 제공될 수 있다(도 2).On the other hand, the catalyst of the embodiment may be prepared by an impregnation method, and thus may be provided in a structure in which a metal oxide is supported on a silica carrier (FIG. 2).
예를 들어, 목적하는 금속 산화물의 화학양론적 몰비를 만족하도록 제조된 금속 전구체 용액에 실리카 담체를 담가, 상기 실리카 담체 내에 상기 금속 전구체 용액을 함침시킬 수 있다. For example, a silica carrier may be immersed in a metal precursor solution prepared to satisfy a stoichiometric molar ratio of a desired metal oxide, and the metal precursor solution may be impregnated in the silica carrier.
이후, 건조 공정을 통해 용매(즉, 물)를 제거하면, 실리카 담체의 기공벽에 금속 전구체가 잔존하게 되고, 소성 공정에서 금속 전구체가 산화되면서 실리카 담체 기공벽을 연속적으로 코팅하는 막을 형성할 수 있다.Thereafter, when the solvent (i.e., water) is removed through the drying process, the metal precursor remains on the pore walls of the silica carrier, and the metal precursor is oxidized in the firing process to form a film that continuously coats the pore walls of the silica carrier. have.
이처럼 제조된 일 구현예의 촉매는, 상기 금속 산화물을 담지하는 실리카 담체;를 더 포함할 수 있다.The catalyst of one embodiment prepared as described above may further include a silica carrier supporting the metal oxide.
이 경우, 상기 일 구현예의 촉매는, 제2 기공을 포함하는 실리카 담체; 상기 제2 기공의 벽면을 연속적으로 코팅하고, 상기 화학식 1로 표시되는 금속 산화물을 포함하는 내부 코팅층; 및 상기 제2 기공 내부에 위치하고, 상기 내부 코팅층을 제외한 빈 공간을 차지하는 제1 기공;을 포함하는 구조일 수 있다.In this case, the catalyst of the embodiment may include a silica carrier including second pores; An inner coating layer that continuously coats the walls of the second pores and includes a metal oxide represented by Chemical Formula 1; And first pores located inside the second pores and occupying an empty space excluding the inner coating layer.
상기 구조를 가지는 촉매는, 제조 후 후처리로써 분급 공정을 진행하지 않더라도, 공침과 분무건조를 통해 동일한 조성으로 제조된 촉매보다 내구성이 뛰어날 수 있다.The catalyst having the above structure may be more durable than a catalyst prepared with the same composition through coprecipitation and spray drying even if the classification process is not performed as a post-treatment after manufacture.
또한, 상기 실리카 담체의 내부 기공에 상기 금속 산화물을 골고루 담지하여 프로필렌의 암모산화 반응에 참여할 수 있는 부위가 외부 표면부(즉, 촉매의 표면)뿐만 아니라 그 내부 표면(기공)으로 확장되는 이점이 있다.In addition, by evenly supporting the metal oxide in the inner pores of the silica carrier, the portion capable of participating in the ammoxidation reaction of propylene is extended to not only the outer surface portion (i.e., the surface of the catalyst) but also the inner surface (pores). have.
구체적으로, 상기 일 구현예의 촉매는, 에그-쉘(egg-shell) 구조를 가질 수 있다.Specifically, the catalyst of the embodiment may have an egg-shell structure.
이를 위해, 상기 실리카 담체로는, 비다공성(非多孔性) 코어부; 및 상기 비다공성(非多孔性) 코어의 표면에 위치하고, 제2 기공을 포함하는, 다공성(多孔性) 쉘부;을 포함하는 것을 사용할 수 있다.To this end, the silica carrier may include a non-porous core portion; And a porous shell portion positioned on the surface of the non-porous core and including second pores.
보다 구체적으로, 상기 다공성(多孔性) 쉘은 표면의 요부(凹部) 및 철부(凸部)를 포함하고, 상기 요부(凹部)는 상기 제2 기공이 상기 다공성(多孔性) 쉘의 표면으로 열려서 형성된 것일 수 있다.More specifically, the porous shell includes a concave portion and a convex portion of a surface, and the concave portion has the second pores open to the surface of the porous shell. It may be formed.
이에 따라, 상기 일 구현예의 촉매는, 상기 다공성(多孔性) 쉘의 요부 및 철부를 연속적으로 코팅하고, 상기 화학식 1로 표시되는 금속 산화물을 포함하는 코팅층; 및 상기 실리카 담체의 요부에, 상기 코팅층을 제외한 빈 공간을 차지하는 제1 기공;을 포함하는 구조를 가질 수 있다.Accordingly, the catalyst of the embodiment may include a coating layer that continuously coats the concave portions and the convex portions of the porous shell and includes a metal oxide represented by Chemical Formula 1; And first pores occupying an empty space excluding the coating layer in the concave portion of the silica carrier.
상기 일 구현예의 촉매 구조는 주사 전자 현미경(Scanning Electron Microscope, SEM) 등 전자 현미경을 통해 확인할 수 있다.The catalyst structure of the embodiment can be confirmed through an electron microscope such as a scanning electron microscope (SEM).
금속 산화물:실리카 담체의 중량비Metal oxide: weight ratio of silica carrier
상기 일 구현예의 촉매는, 상기 실리카 담체를 더 포함할 때, 상기 금속 산화물 및 상기 실리카 담체의 중량비를 10:90 내지 15:95, 구체적으로 20:80 내지 50:50, 예컨대 15:85 내지 35:65(금속 산화물:실리카 담체)로 할 수 있다.When the catalyst of one embodiment further includes the silica carrier, the weight ratio of the metal oxide and the silica carrier is 10:90 to 15:95, specifically 20:80 to 50:50, such as 15:85 to 35 It can be set as :65 (metal oxide: silica carrier).
이 범위 내에서, 상기 일 구현예의 촉매는 높은 활성도와 함께 높은 아크릴로 니트릴의 선택도를 가질 수 있다.Within this range, the catalyst of the embodiment may have high selectivity of acrylonitrile with high activity.
상기 금속 산화물 및 상기 실리카 담체의 중량비를 직접 측정하고자 한다면, ICP(Inductively Coupled Plasma, 유도결합플라즈마) 등의 측정 장비를 이용하여 측정 가능하다.If the weight ratio of the metal oxide and the silica carrier is to be measured directly, it can be measured using a measuring device such as ICP (Inductively Coupled Plasma).
프로필렌의 암모산화용 촉매의 제조 방법Method for producing a catalyst for ammoxidation of propylene
본 발명의 다른 일 구현예에서는, Mo 전구체를 포함하는 제1 전구체 용액을 제조하는 단계,In another embodiment of the present invention, preparing a first precursor solution containing a Mo precursor,
Fe 전구체; 및 Ni, Mn, Co, Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소의 전구체를 포함하는 제2 전구체 용액을 제조하는 단계, Fe precursor; And preparing a second precursor solution comprising a precursor of one or more elements of Ni, Mn, Co, Zn, Mg, Ca, and Ba,
Bi 전구체; 상기 제2 전구체 용액과는 상이한 Ni, Mn, Co, Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소의 전구체; 및 Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소의 전구체를 포함하는 제3 전구체 용액을 제조하는 단계,Bi precursor; A precursor of one or more elements of Ni, Mn, Co, Zn, Mg, Ca, and Ba different from the second precursor solution; And preparing a third precursor solution comprising a precursor of one or more elements of Li, Na, K, Rb, and Cs,
금속의 몰비가 하기 화학식 1의 화학양론적 몰비를 만족하도록 하여, 상기 제1 내지 제3 전구체 용액을 혼합하는 단계, Mixing the first to third precursor solutions so that the molar ratio of the metal satisfies the stoichiometric molar ratio of Formula 1 below,
실리카 담체에, 상기 제1 내지 제3 전구체 용액의 혼합물에 담지시키는 단계,Supporting a mixture of the first to third precursor solutions on a silica carrier,
상기 제1 내지 제3 전구체 용액의 혼합물이 담지된 실리카 담체를 건조시키는 단계, 그리고 Drying the silica carrier on which the mixture of the first to third precursor solutions is supported, and
상기 건조된 물질을 소성하는 단계를 포함하는 방법을 제공한다:There is provided a method comprising the step of firing the dried material:
[화학식 1][Formula 1]
Figure PCTKR2020013099-appb-img-000003
Figure PCTKR2020013099-appb-img-000003
상기 화학식 1에서 x, a 내지 e 및 y의 정의는 전술한 바와 같다.In Formula 1, the definitions of x, a to e, and y are as described above.
상기 일 구현예의 제조 방법은, 함침법을 이용하여 전술한 일 구현예의 촉매를 제조하는 방법에 해당된다. The manufacturing method of the above embodiment corresponds to the method of manufacturing the catalyst of the above embodiment by using an impregnation method.
이하, 전술한 내용과 중복되는 설명은 생략하고, 상기 일 구현예의 제조 방법을 단계별로 설명한다.Hereinafter, descriptions overlapping with those described above will be omitted, and the manufacturing method of the embodiment will be described step by step.
제1 전구체 수용액의 제조 공정Manufacturing process of the first aqueous precursor solution
상기 제1 전구체 용액을 제조하는 단계는, 50 내지 90 ℃의 물에 Mo 전구체를 용해시켜, 물 및 Mo 전구체를 포함하는 수용액을 제조하는 단계일 수 있다.The step of preparing the first precursor solution may be a step of dissolving the Mo precursor in water at 50 to 90° C. to prepare an aqueous solution including water and the Mo precursor.
상기 제1 전구체 수용액을 제조하는 단계에서, 구연산, 옥살산, 또는 이들의 혼합물을 포함하는 첨가제가 사용될 수 있다.In the step of preparing the first aqueous precursor solution, an additive including citric acid, oxalic acid, or a mixture thereof may be used.
공침과 분무건조를 이용하는 촉매 제조 공정에서는, 상기 첨가제가 강도 조절제로 기능한다. 그러나, 상기 일 구현예에서는, 상기 첨가제가 상기 제1 전구체 용액을 투명하게 하여, 완전히 용해된 상태의 혼합물 전구체를 제조할 수 있게 한다.In the catalyst manufacturing process using coprecipitation and spray drying, the additive functions as a strength modifier. However, in the above embodiment, the additive makes the first precursor solution transparent, so that a mixture precursor in a completely dissolved state can be prepared.
상기 첨가제의 첨가 시, 상기 몰리브덴 전구체 및 상기 첨가제의 중량비는, 1 :0.1 내지 1:1, 구체적으로 1:0.2 내지 1:0.7를 만족하도록 할 수 있고, 이 범위 내에서 몰리브덴 전구체의 용해도가 증가할 수 있으나 이에 제한되는 것은 아니다.When the additive is added, the weight ratio of the molybdenum precursor and the additive may satisfy 1:0.1 to 1:1, specifically 1:0.2 to 1:0.7, and the solubility of the molybdenum precursor increases within this range. It can be, but is not limited thereto.
제2 전구체 용액의 제조 공정Manufacturing process of the second precursor solution
상기 제2 전구체 용액을 제조하는 단계는, 20 내지 50 ℃의 물에, Fe 전구체; 및 Ni, Mn, Co, Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소를 포함하는 제2 전구체를 용해시키는 단계일 수 있다. 선택적으로, D 전구체(D= Cr, W, B, Al, Ca, 및 V 중 하나 이상의 원소)를 더 포함하는 전구체를 더 용해시킬 수 있다.The step of preparing the second precursor solution may include, in water at 20 to 50° C., an Fe precursor; And it may be a step of dissolving a second precursor including one or more elements of Ni, Mn, Co, Zn, Mg, Ca, and Ba. Optionally, a precursor further comprising a D precursor (D = one or more elements of Cr, W, B, Al, Ca, and V) may be further dissolved.
여기서, 최종적으로 목적하는 촉매 내 금속 산화물 조성을 고려하여 전구체의 종류와 배합량를 선택할 수 있다.Here, it is possible to select the type and amount of the precursor in consideration of the composition of the metal oxide in the final catalyst.
예컨대, 전술한 화학식 1-1을 만족하는 금속 산화물 조성을 고려하여 물, Fe 전구체 및 Co 전구체를 포함하는 수용액을 제조할 수 있다.For example, an aqueous solution including water, an Fe precursor, and a Co precursor may be prepared in consideration of the metal oxide composition that satisfies Chemical Formula 1-1.
제3 전구체 용액의 제조 공정Manufacturing process of the third precursor solution
상기 제3 전구체 용액을 제조하는 단계는, 20 내지 50 ℃의 질산에, Bi 전구체; 상기 제2 전구체 용액과는 상이한 Ni, Mn, Co, Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소의 전구체; 및 Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소의 전구체를 용해시키는 단계일 수 있다.The step of preparing the third precursor solution may include a Bi precursor in nitric acid at 20 to 50° C.; A precursor of one or more elements of Ni, Mn, Co, Zn, Mg, Ca, and Ba different from the second precursor solution; And it may be a step of dissolving a precursor of one or more elements of Li, Na, K, Rb, and Cs.
여기서도, 최종적으로 목적하는 촉매 내 금속 산화물 조성을 고려하여 전구체의 종류와 배합량를 선택할 수 있다.Also here, the type and amount of the precursor may be selected in consideration of the composition of the metal oxide in the final target catalyst.
예컨대, 전술한 화학식 1-1을 만족하는 금속 산화물 조성을 고려하여 질산, Bi 전구체, Ni 전구체 및 K 전구체를 포함하는 용액을 제조할 수 있다.For example, a solution including nitric acid, a Bi precursor, a Ni precursor, and a K precursor may be prepared in consideration of the metal oxide composition that satisfies Formula 1-1.
전구체 용액의 혼합 공정Precursor solution mixing process
상기 제1 내지 제3 전구체 용액을 제조하는 공정은 각각 독립적이고, 제조 순서가 제한되는 것은 아니다.The processes of preparing the first to third precursor solutions are each independent, and the order of preparation is not limited.
다만, 상기 각 금속의 특성을 고려하여, 상기 제1 내지 제3 전구체 용액을 혼합하는 단계는, 상기 제2 및 제3 전구체 용액을 혼합하는 단계, 그리고 상기 제2 및 제3 전구체 용액의 혼합물을 상기 제1 전구체 용액에 적하하는 단계를 포함하도록 할 수 있다.However, in consideration of the characteristics of each metal, the mixing of the first to third precursor solutions includes mixing the second and third precursor solutions, and a mixture of the second and third precursor solutions It may include dropping into the first precursor solution.
또한, 상기 제1 내지 제3 전구체 용액의 혼합 시, 금속의 몰비가 상기 화학식 1, 구체적으로 상기 화학식 1-1의 화학양론적 몰비를 만족하도록, 혼합비를 제어할 수 있다.In addition, when the first to third precursor solutions are mixed, the mixing ratio may be controlled so that the molar ratio of metals satisfies the stoichiometric molar ratio of Chemical Formula 1, specifically, Chemical Formula 1-1.
전구체 혼합 용액의 담지 공정Precursor mixed solution loading process
상기 제1 내지 내지 제3 전구체 용액의 혼합물을 제조한 후, 이를 실리카 담체에 담지시킬 수 있다.After preparing a mixture of the first to third precursor solutions, it may be supported on a silica carrier.
여기서, 입자 크기가 10~200 ㎛이고, 기공 크기가 20~25 ㎚이고, 질소 흡착법에 따른 기공 부피가 1~3 cm 3/g이며, BET 비표면적이 250~300 m 2/g인 실리카(SiO 2) 입자를 상기 제1 내지 내지 제3 전구체 용액의 혼합물에 투입하고 혼합하여, 상기 실리카 담체의 기공에 상기 제1 내지 내지 제3 전구체 용액의 혼합물이 담지되도록 할 수 있다.Here, silica with a particle size of 10 to 200 μm, a pore size of 20 to 25 nm, a pore volume of 1 to 3 cm 3 /g according to the nitrogen adsorption method, and a BET specific surface area of 250 to 300 m 2 /g ( SiO 2 ) particles may be added to the mixture of the first to third precursor solutions and mixed, so that the mixture of the first to third precursor solutions is supported in the pores of the silica carrier.
구체적으로, 상기 실리카 담체에 상기 제1 내지 제3 전구체 용액의 혼합물을 담지시키는 단계는, 상기 실리카 담체 및 상기 제1 내지 제3 전구체 용액을 20 내지 30℃의 온도 범위 내에서 1차 혼합하는 단계 및 상기 1차 혼합물을 70 내지 90℃의 온도 범위 내에서 2차 혼합하는 단계를 포함하도록 하면서, 상기 1차 및 2차 혼합 시간을 각각 독립적으로 1 내지 3 시간으로 할 수 있다.Specifically, the step of supporting the mixture of the first to third precursor solutions on the silica carrier includes first mixing the silica carrier and the first to third precursor solutions within a temperature range of 20 to 30°C. And secondary mixing the first mixture within a temperature range of 70 to 90°C, and the first and second mixing times may be independently set to 1 to 3 hours.
다만, 이는 예시이며, 실리카 담체에 상기 제1 내지 제3 전구체 용액의 혼합물이 충분히 담지될 수 있게 하는 조건이라면 특별히 한정되지 않는다.However, this is an example and is not particularly limited as long as it is a condition that allows the mixture of the first to third precursor solutions to be sufficiently supported on the silica carrier.
건조 및 소성 공정Drying and firing process
이후, 상기 제1 내지 제3 전구체 용액의 혼합물이 담지된 실리카 담체를 100 내지 120 ℃의 온도 범위 내에서 5 내지 12 시간 동안 건조한 뒤, 500 내지 700 ℃의 온도 범위 내에서 1 내지 6 시간 동안 소성시켜, 최종적으로 촉매를 수득할 수 있다.Thereafter, the silica carrier on which the mixture of the first to third precursor solutions is supported is dried for 5 to 12 hours in a temperature range of 100 to 120° C., and then calcined for 1 to 6 hours in a temperature range of 500 to 700° C. To finally obtain a catalyst.
다만, 상기 건조 및 소성의 각 조건은 예시일 뿐이며, 상기 담체의 기공으로부터 용매를 충분히 제거하고, 금속 전구체를 산화시킬 수 있는 조건이라면 충분하다. However, the drying and firing conditions are only examples, and a condition capable of sufficiently removing the solvent from the pores of the carrier and oxidizing the metal precursor is sufficient.
이에 따라 형성되는 촉매의 구조는 전술한 바와 같다.The structure of the catalyst thus formed is as described above.
프로필렌의 암모산화 방법Propylene ammoxidation method
본 발명의 또 다른 일 구현예에서는, 반응기 내에서, 전술한 일 구현예의 촉매 존재 하에 프로필렌 및 암모니아를 반응시키는 단계를 포함하는, 프로필렌의 암모산화 방법을 제공한다.In another embodiment of the present invention, there is provided a method for ammoxidation of propylene, comprising reacting propylene and ammonia in the presence of the catalyst of the above-described embodiment in a reactor.
상기 일 구현예의 촉매는, 높은 활성도와 함께 고온 안정성을 가지며, 프로필렌의 암모산화 반응에 이용되어 프로필렌의 전환율, 아크릴로니트릴의 선택도 및 수율을 높일 수 있다.The catalyst of the embodiment has high activity and stability at high temperature, and is used for ammoxidation reaction of propylene to increase the conversion rate of propylene, selectivity and yield of acrylonitrile.
상기 일 구현예의 촉매 이외의 사항들에 대해서는, 당업계에 일반적으로 알려진 사항을 참고할 수 있어, 더 이상의 상세한 설명을 생략한다.For matters other than the catalyst of the embodiment, it is possible to refer to matters generally known in the art, and a detailed description thereof will be omitted.
이하, 본 발명의 구현예를 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 발명의 구현예를 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. Hereinafter, embodiments of the present invention will be described in more detail in the following examples. However, the following examples are merely illustrative of embodiments of the invention, and the contents of the present invention are not limited by the following examples.
실시예 1Example 1
(1) 전구체 용액의 제조 공정(1) Manufacturing process of precursor solution
85 ℃의 물에 Mo 전구체((NH 4) 6Mo 7O 24) 4.24 g을 용해시키고, 여기에 옥살산(Oyalic acid) 또는 구연산(Citric acid)을 3 g 첨가하여, Mo 전구체 용액을 제조하였다.Mo precursor ((NH 4 ) 6 Mo 7 O 24 ) 4.24 g was dissolved in 85° C. water, and 3 g of oxalic acid or citric acid was added thereto to prepare a Mo precursor solution.
이와 독립적으로, 상온의 물 에 Fe 전구체(Fe(NO 3) 2·9H 2O) 2.5 g 및 Co 전구체(Co(NO 3) 2·6H 2O) 3.5 g을 용해시켜, Fe 및 Co의 전구체 혼합 용액을 제조하였다.Independently, by dissolving 2.5 g of Fe precursor (Fe(NO 3 ) 2 ·9H 2 O) and 3.5 g of Co precursor (Co(NO 3 ) 2 ·6H 2 O) in water at room temperature, the precursor of Fe and Co A mixed solution was prepared.
또한 독립적으로, Bi 전구체(Bi(NO 3) 3·5H 2O) 1.46 g, Ni 전구체(Ni(NO 3) 2·6H 2O) 0.58 g, 및 K 전구체(KNO 3) 0.2 g의 혼합물에 질산 2 g을 첨가하여, Bi, Ni, 및 K 전구체 혼합 용액을 제조하였다.Also independently, in a mixture of Bi precursor (Bi(NO 3 ) 3 ·5H 2 O) 1.46 g, Ni precursor (Ni(NO 3 ) 2 ·6H 2 O) 0.58 g, and K precursor (KNO 3) 0.2 g By adding 2 g of nitric acid, a mixed solution of Bi, Ni, and K precursors was prepared.
상기 Fe 및 Co 전구체 혼합 용액 및 상기 Bi, Ni, 및 K 전구체 혼합 용액을 교반하면서 혼합한 뒤, 이를 상기 Mo 전구체 용액에 적하(dropwise)하여, Mo, Bi, Fe, Ni, Co 및 K 전구체 혼합 용액을 수득하였다.The Fe and Co precursor mixture solution and the Bi, Ni, and K precursor mixture solution are mixed while stirring, and then added dropwise to the Mo precursor solution to mix Mo, Bi, Fe, Ni, Co and K precursors. A solution was obtained.
상기 전구체 혼합 용액에서, 물의 총량은 45 g이다. In the precursor mixture solution, the total amount of water is 45 g.
(2) 실리카 담체 내 전구체 용액의 담지 공정 (함침법 이용)(2) Supporting process of precursor solution in silica carrier (using impregnation method)
입자 크기가 50-150 ㎛이고, 기공 크기가 10-25 ㎚이고, 질소 흡착법에 따른 기공 부피가 1~3 cm 3/g이며, BET 비표면적이 500-600 m 2/g인 실리카(SiO 2) 입자를 담체로 사용하였다.Silica (SiO 2 with a particle size of 50-150 ㎛, a pore size of 10-25 ㎚, a pore volume of 1 to 3 cm 3 /g according to the nitrogen adsorption method, and a BET specific surface area of 500-600 m 2 /g) ) Particles were used as carriers.
상기 Mo, Bi, Fe, Ni, Co 및 K 전구체 혼합 용액에 상기 실리카 담체 (13)g를 투입하고, 상온 및 80 ℃에서 순차적으로 각각 2시간 동안 교반하여, 상기 실리카 담체의 기공에 상기 Mo, Bi, Fe, Ni, Co 및 K 전구체 혼합 용액이 충분히 담지되도록 하였다.Into the Mo, Bi, Fe, Ni, Co, and K precursor mixed solution, the silica carrier (13)g was added, and the mixture was sequentially stirred at room temperature and 80°C for 2 hours, respectively, and the Mo, The mixed solution of Bi, Fe, Ni, Co, and K precursors was sufficiently supported.
(3) 실리카 담체 내 금속 산화물이 담지된 촉매의 제조 공정(3) Manufacturing process of a catalyst supporting a metal oxide in a silica carrier
이후, 상기 Mo, Bi, Fe, Ni, Co 및 K 전구체 혼합 용액이 담지된 실리카 담체를 회수하여 110 ℃ 오븐에서 12 시간 동안 건조시킨 뒤, 질소 분위기의 관형 소성로에서 580 ℃의 온도를 유지하면서 6 시간 동안 열처리하여, 25 중량%의 금속 산화물(단, 금속 산화물 내 Mo의 몰분율은 12)이 담지된 실시예 1의 촉매를 수득하였다.Thereafter, the silica carrier carrying the Mo, Bi, Fe, Ni, Co, and K precursor mixture solution was recovered and dried in an oven at 110° C. for 12 hours, and then maintained at a temperature of 580° C. in a tubular kiln in a nitrogen atmosphere. By heat treatment for a period of time, the catalyst of Example 1 was obtained on which 25% by weight of a metal oxide (however, the mole fraction of Mo in the metal oxide was 12) was supported.
(4) 플로필렌의 암모산화 공정(4) Process of ammoxidation of flophyllene
촉매의 활성화를 위하여 석영 섬유(Quartz wool) 0.05 g가 충진된 반응기 내에 실시예 1의 촉매 0.2 g을 반응기 내에 충진시켰다.In order to activate the catalyst, 0.2 g of the catalyst of Example 1 was charged into the reactor filled with 0.05 g of quartz fiber.
이처럼 석영 섬유와 촉매가 충진된 반응기의 내부 압력은 상압 (1atm)으로 유지시키고, 5 ℃의 승온 속도로 반응기 내부 온도를 승온시키면서, 전처리 공정으로써 질소와 암모니아 가스를 흘려주었다. 이에 따라 반응기 내부 온도가 암모산화 반응이 가능한 온도인 400 ℃에 도달하도록 하여, 충분한 전처리가 이루어지도록 하였다. As described above, the internal pressure of the reactor filled with the quartz fiber and the catalyst was maintained at atmospheric pressure (1 atm), and the internal temperature of the reactor was raised at a temperature increase rate of 5°C, while nitrogen and ammonia gas were flowed as a pretreatment process. Accordingly, the temperature inside the reactor reached 400° C., which is the temperature at which the ammoxidation reaction is possible, so that sufficient pretreatment was performed.
이처럼 전처리가 완료된 반응기에, 반응물인 프로필렌 및 암모니아와 함께 공기(air)를 공급하며, 프로필렌의 암모산화 공정을 수행하였다. 이때, 반응물의 공급량은 프로필렌:암모니아:공기=1:1.1:2=1.5~1:4:3의 부피비가 되도록 구성하면서, 프로필렌, 암모니아, 및 공기의 총 중량공간속도(WHSV: weight hourly space velocity)는 1 h -1이 되도록 하였다. In the reactor where the pretreatment was completed, air was supplied together with propylene and ammonia as reactants, and the ammoxidation process of propylene was performed. At this time, the supply amount of the reactant is composed to be a volume ratio of propylene: ammonia: air = 1:1.1:2 = 1.5 to 1:4:3, and the total weight hourly space velocity (WHSV) of propylene, ammonia, and air. ) Was set to be 1 h -1.
상기 암모산화 반응 종료 후 그 생성물을 회수하고, 아크릴로니트릴이 잘 생성되었는지 확인하기 위해 다양한 장비를 사용하여 분석하였다.After completion of the ammoxidation reaction, the product was recovered and analyzed using various equipment to confirm whether acrylonitrile was well produced.
그 분석 방법, 분석 결과 등에 대해서는, 후술되는 실험예에서 상세히 기술한다. The analysis method, analysis result, etc. will be described in detail in the experimental examples described later.
실시예 2 내지 4Examples 2 to 4
(1) 촉매의 제조 공정 (함침법 이용)(1) catalyst manufacturing process (using the impregnation method)
하기 표 1에 기재된 조성에 따라 전구체 용액을 제조하고, 하기 표 2에 기재된 실리카 담체를 사용하되, 나머지는 실시예 1과 동일하게 하여 실시예 2 내지 4의 각 촉매를 제조하였다.A precursor solution was prepared according to the composition shown in Table 1 below, and the silica carrier shown in Table 2 was used, but the rest were the same as in Example 1 to prepare each of the catalysts of Examples 2 to 4.
(2) 플로필렌의 암모산화 공정(2) Process of ammoxidation of flophyllene
또한, 실시예 1의 촉매 대신 실시예 2 내지 4의 각 촉매를 사용하여 플로필렌의 암모산화 공정을 수행한 뒤 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다.In addition, instead of the catalyst of Example 1, each catalyst of Examples 2 to 4 was used to perform the ammoxidation process of flophyllene, and the product was recovered, and analysis was performed in the same manner as in Example 1.
비교예 1Comparative Example 1
(1) 촉매의 제조 공정 (공침 후 분무건조 이용)(1) Catalyst manufacturing process (using spray drying after coprecipitation)
우선, 85 ℃의 물 200 g에 Mo 전구체(Ammonium Molybdate) 200 g을 용해시키고, 여기에 실리카졸 270 g을 첨가하여 교반한 뒤, 약 50 ℃로 가열하여 용액 A를 제조하였다.First, 200 g of Mo precursor (Ammonium Molybdate) was dissolved in 200 g of water at 85° C., 270 g of silica sol was added thereto, stirred, and heated to about 50° C. to prepare Solution A.
이와 독립적으로, Bi 전구체(Bi(NO 3) 3·5H 2O) 69.4 g, Co 전구체(Co(NO 3) 2·6H 2O) 165 g, Fe 전구체(Fe(NO 3) 2·9H 2O) 115 g, 및 Ni 전구체(Ni(NO 3) 2·6H 2O) 10 g, K 전구체(KNO 3) 17.5 g 의 혼합물에 질산 10 g을 첨가하여 50 ℃로 가열하여 용액 B를 제조하였다.Independently, Bi precursor (Bi(NO 3 ) 3 ·5H 2 O) 69.4 g, Co precursor (Co(NO 3 ) 2 ·6H 2 O) 165 g, Fe precursor (Fe(NO 3 ) 2 ·9H 2 O) 115 g, and Ni precursor (Ni(NO 3 ) 2 ·6H 2 O) 10 g, K precursor (KNO 3 ) 10 g of nitric acid was added to a mixture of 17.5 g and heated to 50° C. to prepare solution B. .
상기 용액 A와 B를 교반하면서 혼합하여 수성 슬러리를 얻고, 회전노즐형 스프레이 건조기를 사용하여 상기 용액 A 및 B의 혼합 수성 슬러리를 150 ℃에서 건조하였다. 이에 따라 얻어진 고체상의 건조체를 580 ℃에서 3시간 동안 소성시켜, 비교예 1의 촉매를 최종 수득하였다.The solutions A and B were mixed while stirring to obtain an aqueous slurry, and the mixed aqueous slurry of the solutions A and B was dried at 150° C. using a rotary nozzle spray dryer. The thus obtained solid dried product was calcined at 580° C. for 3 hours to obtain a catalyst of Comparative Example 1.
(2) 플로필렌의 암모산화 공정(2) Process of ammoxidation of flophyllene
실시예 1의 촉매 대신 상기 비교예 1의 촉매를 사용하고, 나머지는 실시예 1과 동일하게 하여 플로필렌의 암모산화 공정을 수행하였다.The catalyst of Comparative Example 1 was used instead of the catalyst of Example 1, and the ammoxidation process of flophyllene was performed in the same manner as in Example 1.
비교예 1의 암모산화 반응 종료 후 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다. After completion of the ammoxidation reaction of Comparative Example 1, the product was recovered and analyzed in the same manner as in Example 1.
비교예 2Comparative Example 2
(1) 촉매의 제조 공정 (함침법 이용)(1) catalyst manufacturing process (using the impregnation method)
하기 표 1에 기재된 조성에 따라 전구체 용액을 제조하고, 하기 표 2에 기재된 실리카 담체를 사용하되, 나머지는 실시예 1과 동일하게 하여 비교예 2의 촉매를 제조하였다.A precursor solution was prepared according to the composition shown in Table 1 below, and the silica carrier shown in Table 2 was used, but the rest were the same as in Example 1 to prepare a catalyst of Comparative Example 2.
(2) 플로필렌의 암모산화 공정(2) Process of ammoxidation of flophyllene
또한, 실시예 1의 촉매 대신 비교예 2의 촉매를 사용하여 플로필렌의 암모산화 공정을 수행한 뒤 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다.In addition, after performing the ammoxidation process of flophyllene using the catalyst of Comparative Example 2 instead of the catalyst of Example 1, the product was recovered, and analysis was performed in the same manner as in Example 1.
Figure PCTKR2020013099-appb-img-000004
Figure PCTKR2020013099-appb-img-000004
상기 표 1에서, Mo는 (NH 4) 6Mo 7O 24이고, Bi는 Bi(NO 3) 3·5H 2O이고, Co는 Co(NO 3) 2·6H 2O 이고, Fe는 Fe(NO 3) 2·9H 2O이고, Ni는 Ni(NO 3) 2·6H 2O이고, K는 KNO 3이다. 또한, 생략된 단위는 g이다.In Table 1, Mo is (NH 4 ) 6 Mo 7 O 24 , Bi is Bi(NO 3 ) 3 ·5H 2 O, Co is Co(NO 3 ) 2 ·6H 2 O, and Fe is Fe( NO 3 ) 2 ·9H 2 O, Ni is Ni(NO 3 ) 2 ·6H 2 O, and K is KNO 3 . Also, the omitted unit is g.
한편, 상기 표 1의 원료 투입량은 하기 표 2의 목적 조성, 즉 최종 금속 산화물의 화학양론적 몰비 및 금속 산화물의 함량을 고려하여 계산한 것이다. 하기 표 2의 금속 산화물 조성 및 함량을 직접 측정하고자 한다면, ICP(Inductively Coupled Plasma, 유도결합플라즈마) 등의 측정 장비를 이용하여 측정 가능하다.Meanwhile, the input amount of the raw material in Table 1 is calculated in consideration of the target composition of Table 2, that is, the stoichiometric molar ratio of the final metal oxide and the content of the metal oxide. If you want to directly measure the metal oxide composition and content of Table 2, it can be measured using a measuring device such as ICP (Inductively Coupled Plasma, Inductively Coupled Plasma).
Figure PCTKR2020013099-appb-img-000005
Figure PCTKR2020013099-appb-img-000005
실험예 1: 촉매 분석Experimental Example 1: Catalyst Analysis
다음과 같은 분석법에 따라, 실시예 1 및 비교예 1의 각 촉매를 분석하였다:Each catalyst of Example 1 and Comparative Example 1 was analyzed according to the following analysis method:
XRD 주요 피크 강도비: 실시예 1 및 비교예 1의 각 촉매에 대해, Cu Kα X선(X-ray)을 이용한 회절 분석(X-Ray Diffraction, XRD)을 진행한 뒤 그 분석 결과를 도 3(실시예 1), 및 도 4(비교예 1)에 각각 나타내었다. XRD main peak intensity ratio : For each catalyst of Example 1 and Comparative Example 1, diffraction analysis (X-Ray Diffraction, XRD) using Cu Kα X-ray was performed, and the analysis results are shown in FIG. 3. (Example 1) and Fig. 4 (Comparative Example 1) respectively.
도 3(실시예 1) 및 도 4(비교예 1)에서 공통적으로, 26.3±0.5 °및 28.3±0.5 °에서 주요 피크(main peaks)가 나타난다. 26.3±0.5 °에서 나타나는 피크 강도를 A라 하고, 28.3±0.5 °에서 나타나는 피크 강도를 B라 하며, 각 촉매에 대한 A/B의 피크 강도비를 계산하고, 그 계산값을 표 1에 나타내었다.In common in FIGS. 3 (Example 1) and 4 (Comparative Example 1), main peaks appear at 26.3±0.5° and 28.3±0.5°. The peak intensity at 26.3±0.5° is referred to as A, and the peak intensity at 28.3±0.5° is referred to as B, and the peak intensity ratio of A/B for each catalyst was calculated, and the calculated values are shown in Table 1. .
BET 비표면적: 실시예 1 및 비교예 1의 각 촉매에 대해, BET 비표면적 측정 기기(제조사: BEL Japan, 기기명: BELSORP-mino X)를 이용하여, 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 비표면적을 평가하고 그 평가 결과를 표 1에 나타내었다. BET specific surface area : For each catalyst of Example 1 and Comparative Example 1, nitrogen gas under liquid nitrogen temperature (77 K) using a BET specific surface area measuring device (manufacturer: BEL Japan, device name: BELSORP-mino X) The specific surface area was evaluated from the adsorption amount, and the evaluation results are shown in Table 1.
기공 부피: ASTM D4641에 따르는 장치(제조사: BEL Japan, 기기명: BELSORP-mino X)를 이용하여, 실시예 1 및 비교예 1의 각 촉매 내 기공 부피를 측정하고 그 측정 결과를 표 1에 나타내었다. Pore volume : Using an apparatus according to ASTM D4641 (manufacturer: BEL Japan, device name: BELSORP-mino X), the pore volume in each catalyst of Example 1 and Comparative Example 1 was measured, and the measurement results are shown in Table 1. .
촉매 구조: 주사 전자 현미경(Scanning Electron Microscope, SEM) 등 전자 현미경을 통해 확인할 수 있다. Catalyst structure : It can be confirmed through an electron microscope such as a scanning electron microscope (SEM).
Figure PCTKR2020013099-appb-img-000006
Figure PCTKR2020013099-appb-img-000006
1) 실시예 1 내지 4 및 비교예 1의 비교실시예 1 내지 4 및 비교예 1에서, XRD 피크 강도 특성과, 기공 부피 및 BET 비표면적 특성은, 촉매의 제조방법과 관계될 수 있다.1) In Examples 1 to 4 and Comparative Examples 1 to 4 and 1 of Comparative Example 1, XRD peak intensity characteristics, pore volume, and BET specific surface area characteristics may be related to a method of preparing a catalyst.
구체적으로, 비교예 1의 촉매는, 공침 및 분무건조 공정을 거치면서 결정질 상이 상대적으로 많이 형성되어, 높은 결정성을 가지게 된 것이다.Specifically, the catalyst of Comparative Example 1 formed a relatively large number of crystalline phases through co-precipitation and spray drying processes, resulting in high crystallinity.
또한, 비교예 1의 촉매는, 공침 및 분무건조 공정을 거치면서 기공을 거의 포함하지 않는 2차 입자 구조를 가지게 되고, 반응에 참여할 수 있는 유효 표면적이 외부 표면적으로 제한된 것이다.In addition, the catalyst of Comparative Example 1 has a secondary particle structure that hardly contains pores while undergoing co-precipitation and spray drying processes, and the effective surface area capable of participating in the reaction is limited to the external surface area.
그에 반면, 실시예 1 내지 4의 촉매는, 함침법에 의해 제조되면서 비정질 상이 상대적으로 많이 형성되어, 낮은 결정성을 가지게 된 것이다.On the other hand, in the catalysts of Examples 1 to 4, relatively large amounts of amorphous phases were formed while being prepared by the impregnation method, resulting in low crystallinity.
또한, 실시예 1 내지 4의 촉매는, 함침법에 의해 제조되면서 다수의 큰 기공을 포함하는 구조가 되고, 반응에 참여할 수 있는 유효 표면적이 기공으로 확장된 것이다.In addition, the catalysts of Examples 1 to 4 have a structure including a large number of large pores while being prepared by an impregnation method, and an effective surface area capable of participating in the reaction has been expanded into pores.
실제로, 실시예 1 내지 4 및 비교예 1의 촉매에 대한 X선 회절(XRD) 분석 시, CoMoO 4 상에 의해 2θ가 26.3±0.5 °인 범위 내에서 강도가 B인 제1 피크가 나타나고, MoO 3 상에 의해 2θ가 28.3±0.5 °인 범위 내에서 강도가 B인 제2 피크가 나타났다.In fact, upon X-ray diffraction (XRD) analysis of the catalysts of Examples 1 to 4 and Comparative Example 1, the first peak of intensity B appears within the range of 2θ of 26.3±0.5° by the CoMoO 4 phase, and MoO The second peak of intensity B appeared within the range of 2θ of 28.3±0.5° by three phases.
상기 CoMoO 4 상은 프로필렌 암모산화 반응에 대한 활성 상이고, 상기 MoO 3 상은 비활성 상이다. 이에, XRD 피크 강도비(A/B)가 높을수록 촉매의 결정성이 낮고 활성이 낮다고 볼 수 있다.The CoMoO 4 phase is an active phase for propylene ammoxidation, and the MoO 3 phase is an inactive phase. Accordingly, it can be seen that the higher the XRD peak intensity ratio (A/B), the lower the crystallinity and the lower the activity of the catalyst.
이와 같은 맥락에서, 비교예 1의 촉매는 XRD 피크 강도비(A/B)가 1.47에 불과하여, 결정성이 높고 활성은 낮은 것으로 평가된다. 그에 반면, 실시예 1 내지 4의 촉매는 XRD 피크 강도비(A/B)가 높은 범위를 만족하여, 결정성이 낮고 활성은 높은 것으로 평가된다.In this context, the catalyst of Comparative Example 1 has an XRD peak intensity ratio (A/B) of only 1.47, which is evaluated as having high crystallinity and low activity. On the other hand, the catalysts of Examples 1 to 4 satisfies a range in which the XRD peak intensity ratio (A/B) is high, and thus it is evaluated to have low crystallinity and high activity.
또한, 비교예 1에 대비하여, 실시예 1 내지 4의 촉매에 포함된 기공 부피가 크며, 더 넓은 BET 비표면적을 가지는 것으로 확인되었다.In addition, compared to Comparative Example 1, it was confirmed that the pore volume contained in the catalysts of Examples 1 to 4 was large, and had a wider BET specific surface area.
2) 실시예 1 내지 4 및 비교예 2의 비교2) Comparison of Examples 1 to 4 and Comparative Example 2
한편, 실시예 1 내지 4 및 비교예 1에서, XRD 피크 강도 특성과, 기공 부피 및 BET 비표면적 특성은, 촉매 내 금속 산화물 조성과 관계될 수 있다.Meanwhile, in Examples 1 to 4 and Comparative Example 1, the XRD peak intensity characteristics, pore volume, and BET specific surface area characteristics may be related to the composition of the metal oxide in the catalyst.
구체적으로, 비교예 2의 촉매는 함침법으로 제조되었음에도 불구하고, Mo 및 Bi만 포함하는 금속 산화물의 영향으로, 비활성 상인 MoO 3에 의한 피크만 형성되고, 활성 상에 의한 피크는 형성되지 않았다. Specifically, although the catalyst of Comparative Example 2 was prepared by the impregnation method, only a peak due to MoO 3 as an inactive phase was formed, and no peak due to an active phase was formed due to the influence of a metal oxide containing only Mo and Bi.
그에 반면, 실시예 1 내지 4의 촉매는, 함침법으로 제조되면서, Mo 및 Bi 뿐만 아니라 다수의 적절한 금속 성분을 포함하는 금속 산화물의 영향으로, 비활성 상인 MoO 3에 의한 피크에 대비하여, 활성 상(특히, CoMoO 4)에 의한 피크 면적이 더 넢게 형성되었다. On the other hand, the catalysts of Examples 1 to 4, while being prepared by the impregnation method, under the influence of a metal oxide containing not only Mo and Bi but also a number of suitable metal components, in contrast to the peak due to the inactive phase MoO 3, the active phase (In particular, CoMoO 4 ) formed a wider peak area.
또한, 실시예 1 내지 4의 촉매는 활성 상이자 결정질 상인 CoMoO 4에 의해 실리카 담체의 기공 벽면이 균일하게 코팅되어 적절한 기공 부피 및 BET 비표면적이 확보된 것으로 평가된다.In addition, it was evaluated that the catalysts of Examples 1 to 4 were uniformly coated on the pore walls of the silica carrier by CoMoO 4, an active phase and a crystalline phase, thereby securing an appropriate pore volume and a BET specific surface area.
실험예 2: 암모산화 생성물 분석Experimental Example 2: Analysis of ammoxidation product
FID(Flame Ionization Detector)와 TCD(Thermal conductivity detector)가 장착된 크로마토그래피(Gas chromatography, 제조사: Agilent, 기기명: GC6890N)를 사용하여 실시예 1 내지 4 및 비교예 1 및 2의 각 암모산화 생성물을 분석하였다. Each ammoxidation product of Examples 1 to 4 and Comparative Examples 1 and 2 was prepared using chromatography (Gas chromatography, manufacturer: Agilent, device name: GC6890N) equipped with FID (Flame Ionization Detector) and TCD (thermal conductivity detector). Analyzed.
구체적으로, FID로는 에틸렌(ehthlene), 사이안화수소(hydrogen cyanide), 아세트알데하이드(Acetaldehyde), 아세토니트릴(Acetonitrile), 아세토니트릴(Acrylonitrile) 등의 생성물을 분석하였으며, TCD로는 NH 3, O 2, CO, CO 2 등의 가스 생성물을 분석하여, 실시예 1 및 비교예 1에서 각각 반응한 프로필렌의 몰수와 암모산화 생성물의 몰수를 구하였다.Specifically, as FID, products such as ethylene (ehthlene), hydrogen cyanide, acetaldehyde, acetonitrile, and acetonitrile were analyzed, and as TCD , NH 3 , O 2 , Gas products such as CO and CO 2 were analyzed to determine the number of moles of propylene reacted in Example 1 and Comparative Example 1 and the number of moles of ammoxidation product, respectively.
이에 따른 분석 결과와 더불어 공급된 프로필렌의 몰수를 하기 1, 2, 및 3에 대입하여, 프로필렌의 전환율, 프로필렌의 암모산화 반응 생성물인 아크릴로니트릴의 선택도 및 수율을 계산하고, 그 계산값을 표 2에 기재하였다.By substituting the number of moles of propylene supplied in addition to the analysis results according to the following 1, 2, and 3, the conversion of propylene, the selectivity and yield of acrylonitrile, a product of the ammoxidation of propylene, are calculated, It is described in Table 2.
[식 1][Equation 1]
Figure PCTKR2020013099-appb-img-000007
Figure PCTKR2020013099-appb-img-000007
[식 2][Equation 2]
Figure PCTKR2020013099-appb-img-000008
Figure PCTKR2020013099-appb-img-000008
[식 3][Equation 3]
Figure PCTKR2020013099-appb-img-000009
Figure PCTKR2020013099-appb-img-000009
Figure PCTKR2020013099-appb-img-000010
Figure PCTKR2020013099-appb-img-000010
비교예 1의 촉매는, 공침과 분무 건조를 통해 제조된 결과, 반응에 참여할 수 있는 유효 표면적(BET 비표면적)이 외부 표면부로 제한되고, 활성 상이자 비정질인 CoMoO 4의 형성이 억제된 것이다.The catalyst of Comparative Example 1 was prepared through coprecipitation and spray drying, and as a result, the effective surface area (BET specific surface area) capable of participating in the reaction was limited to the outer surface portion, and the formation of CoMoO 4 , an active phase and amorphous, was suppressed.
이에, 비교예 1의 촉매는, 좁은 유효 표면적 및 낮은 활성 상 함량에 기인하여 활성이 낮고, 높은 결정성에 기인하여 쉽게 깨지거나 부서질 수 있다. 특히, 프로필렌의 암모산화 반응 중 고온에 의해 촉매가 깨지거나 부서지는 경우, 촉매 내부로부터 표면으로 Mo 등이 용출되고, 촉매 성능이 열화될 수 있다.Accordingly, the catalyst of Comparative Example 1 has low activity due to a narrow effective surface area and low active phase content, and may be easily cracked or broken due to high crystallinity. In particular, when the catalyst is cracked or broken due to high temperature during ammoxidation reaction of propylene, Mo or the like is eluted from the inside of the catalyst to the surface, and catalyst performance may be deteriorated.
실제로, 비교예 1의 촉매를 사용한 반응 시, 프로필렌의 전환율은 56.5 %, 아크릴로니트릴의 수율은 33.7 %에 불과한 것으로 확인된다.In fact, in the reaction using the catalyst of Comparative Example 1, it was confirmed that the conversion rate of propylene was 56.5%, and the yield of acrylonitrile was only 33.7%.
한편, 비교예 2의 촉매는, 함침법으로 제조되었음에도 불구하고, 금속 성분으로 Mo 및 Bi만 포함하는 금속 산화물의 영향으로, 반응에 참여할 수 있는 유효 활성상들 특히 활성 상(CoMoO 4)이 형성될 수 없다.Meanwhile, although the catalyst of Comparative Example 2 was prepared by the impregnation method, effective active phases capable of participating in the reaction, especially active phase (CoMoO 4 ), were formed under the influence of metal oxides containing only Mo and Bi as metal components. Can't be
실제로, 비교예 2의 촉매를 사용한 반응 시, 비교예 1보다도 프로필렌의 전환율과 아크릴로니트릴의 수율이 낮은 것으로 확인된다.In fact, in the reaction using the catalyst of Comparative Example 2, it was confirmed that the conversion rate of propylene and the yield of acrylonitrile were lower than that of Comparative Example 1.
그에 반면, 실시예 1 내지 4의 촉매는, 함침법으로 제조된 결과, 반응에 참여할 수 있는 넓은 유효 표면적(BET 비표면적)을 가지며, 활성 상인 CoMoO 4의 형성이 증가된 것이다. On the other hand, the catalysts of Examples 1 to 4, as a result of being prepared by the impregnation method, have a large effective surface area (BET specific surface area) capable of participating in the reaction, and the formation of the active phase, CoMoO 4, is increased.
이에, 실시예 1 내지 4의 촉매는, 넓은 유효 표면적 및 높은 활성 상 함량에 기인하여 활성이 높고, 프로필렌의 암모산화 반응 중 가해지는 고온에도 깨지거나 부서지지 않을 수 있다.Accordingly, the catalysts of Examples 1 to 4 have high activity due to the large effective surface area and high active phase content, and may not be broken or broken even at high temperatures applied during the ammoxidation reaction of propylene.
실제로, 실시예 1 내지 4의 촉매를 사용한 반응 시, 프로필렌의 전환율은 70 % 이상, 아크릴로니트릴의 수율은 60 % 이상으로 높게 나타났다.In fact, during the reaction using the catalysts of Examples 1 to 4, the conversion rate of propylene was found to be as high as 70% or more, and the yield of acrylonitrile was as high as 60% or more.
종합적으로, 금속 산화물 조성이 전술한 화학식 1을 만족하면서 XRD 주요 피크 강도비(A/B)가 1.5 이상인 촉매는, 프로필렌의 암모산화 반응 시 프로필렌의 전환율 및 아크릴로니트릴의 수율을 현저히 개선할 수 있는 것으로 평가된다.Overall, a catalyst having a metal oxide composition satisfying the above-described Formula 1 and having a XRD main peak intensity ratio (A/B) of 1.5 or more can significantly improve the conversion of propylene and the yield of acrylonitrile during ammoxidation reaction It is evaluated as being.

Claims (20)

  1. 하기 화학식 1로 표시되는 금속 산화물;을 포함하고Including a metal oxide represented by the following formula (1);
    Cu Cα에 의한 X선 회절 분석 시, 2θ가 26.3±0.5 °인 범위 내에서 강도가 A인 제1 피크가 나타나고, 2θ가 28.3±0.5 °인 범위 내에서 강도가 B인 제2 피크가 나타나며,In X-ray diffraction analysis by Cu Cα, a first peak with an intensity of A appears within a range of 2θ of 26.3±0.5°, and a second peak of intensity B within a range of 28.3±0.5°
    상기 제2 피크에 대한 상기 제1 피크의 강도 비(A/B)가 1.5 이상인,The intensity ratio (A/B) of the first peak to the second peak is 1.5 or more,
    프로필렌의 암모산화용 촉매:Catalyst for ammoxidation of propylene:
    [화학식 1][Formula 1]
    Figure PCTKR2020013099-appb-img-000011
    Figure PCTKR2020013099-appb-img-000011
    상기 화학식 1에서, In Formula 1,
    A 및 B는 상이하고, 각각 독립적으로 Ni, Mn, Co, Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소이고,A and B are different, and each independently is one or more elements of Ni, Mn, Co, Zn, Mg, Ca, and Ba,
    C는 Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소이고,C is one or more elements of Li, Na, K, Rb, and Cs,
    D는 Cr, W, B, Al, Ca, 및 V 중 하나 이상의 원소이고,D is one or more elements of Cr, W, B, Al, Ca, and V,
    상기 a 내지 f, x, 및 y는 원자 또는 원자단의 몰분율이며,Wherein a to f, x, and y are the mole fractions of atoms or groups of atoms,
    a는 0.1 내지 7이고, b는 0.1 내지 7이고, 단 a 및 b의 합이 0.1 내지 7이고,a is 0.1 to 7, b is 0.1 to 7, provided that the sum of a and b is 0.1 to 7,
    c는 0.1 내지 10 이고, d는 0.01 내지 5이고, e는 0.1 내지 10이며, f는 0 내지 10이고, c is 0.1 to 10, d is 0.01 to 5, e is 0.1 to 10, f is 0 to 10,
    x는 11 내지 14이고, y는 상기 Mo, Bi, Fe, A, B, C, 및 D의 각 산화수에 의해 결정될 수 있는 값이다.x is 11 to 14, and y is a value that can be determined by the respective oxidation numbers of Mo, Bi, Fe, A, B, C, and D.
  2. 제1항에 있어서,The method of claim 1,
    상기 촉매는,The catalyst,
    Cu Cα에 의한 X선 회절 분석 시, 상기 제2 피크에 대한 상기 제1 피크의 강도 비(A/B)가 3.0 이상인,In X-ray diffraction analysis by Cu Cα, the intensity ratio (A/B) of the first peak to the second peak is 3.0 or more,
    프로필렌의 암모산화용 촉매.Catalyst for ammoxidation of propylene.
  3. 제1항에 있어서,The method of claim 1,
    상기 촉매의 BET 비표면적은, The BET specific surface area of the catalyst is,
    50 내지 300 m 2/g인 것인, That is 50 to 300 m 2 /g,
    프로필렌의 암모산화용 촉매.Catalyst for ammoxidation of propylene.
  4. 제1항에 있어서,The method of claim 1,
    상기 촉매 내 기공 부피는,The pore volume in the catalyst is,
    0.3 내지 1.3 cm 3/g 인 것인,That is from 0.3 to 1.3 cm 3 /g,
    프로필렌의 암모산화용 촉매.Catalyst for ammoxidation of propylene.
  5. 제1항에 있어서,The method of claim 1,
    상기 금속 산화물은, The metal oxide,
    하기 화학식 1-1로 표시되는 것인,It is represented by the following formula 1-1,
    프로필렌의 암모산화용 촉매:Catalyst for ammoxidation of propylene:
    [화학식 1-1][Formula 1-1]
    Figure PCTKR2020013099-appb-img-000012
    Figure PCTKR2020013099-appb-img-000012
    상기 화학식 1-1에서,In Formula 1-1,
    x, a 내지 e 및 y의 정의는 제1항과 같다.The definitions of x, a to e and y are the same as in claim 1.
  6. 제1항에 있어서,The method of claim 1,
    상기 촉매는,The catalyst,
    상기 금속 산화물을 담지하는 실리카 담체;를 더 포함하는 것인,It further comprises a silica carrier supporting the metal oxide;
    프로필렌의 암모산화용 촉매.Catalyst for ammoxidation of propylene.
  7. 제6항에 있어서,The method of claim 6,
    상기 금속 산화물 및 상기 실리카 담체의 중량비가 15:85 내지 35:65인 것인, The weight ratio of the metal oxide and the silica carrier is 15:85 to 35:65,
    프로필렌의 암모산화용 촉매.Catalyst for ammoxidation of propylene.
  8. Mo 전구체를 포함하는 제1 전구체 용액을 제조하는 단계,Preparing a first precursor solution containing a Mo precursor,
    Fe 전구체; 및 Ni, Mn, Co, Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소를 포함하는 제2 전구체 용액을 제조하는 단계, Fe precursor; And preparing a second precursor solution containing at least one element of Ni, Mn, Co, Zn, Mg, Ca, and Ba,
    Bi 전구체; 상기 제2 전구체 용액과는 상이한 Ni, Mn, Co, Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소의 전구체; 및 Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소의 전구체를 포함하는 제3 전구체 용액을 제조하는 단계,Bi precursor; A precursor of one or more elements of Ni, Mn, Co, Zn, Mg, Ca, and Ba different from the second precursor solution; And preparing a third precursor solution comprising a precursor of one or more elements of Li, Na, K, Rb, and Cs,
    금속의 몰비가 하기 화학식 1의 화학양론적 몰비를 만족하도록 하여, 상기 제1 내지 제3 전구체 용액을 혼합하는 단계, Mixing the first to third precursor solutions so that the molar ratio of the metal satisfies the stoichiometric molar ratio of Formula 1 below,
    실리카 담체에, 상기 제1 내지 제3 전구체 용액의 혼합물에 담지시키는 단계,Supporting a mixture of the first to third precursor solutions on a silica carrier,
    상기 제1 내지 제3 전구체 용액의 혼합물이 담지된 실리카 담체를 건조시키는 단계, 그리고 Drying the silica carrier on which the mixture of the first to third precursor solutions is supported, and
    상기 건조된 물질을 소성하는 단계를 포함하는, Comprising the step of firing the dried material,
    프로필렌의 암모산화용 촉매의 제조 방법:Method for producing a catalyst for ammoxidation of propylene:
    [화학식 1][Formula 1]
    Figure PCTKR2020013099-appb-img-000013
    Figure PCTKR2020013099-appb-img-000013
    상기 화학식 1에서, In Formula 1,
    A 및 B는 상이하고, 각각 독립적으로 Ni, Mn, Co, Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소이고,A and B are different, and each independently is one or more elements of Ni, Mn, Co, Zn, Mg, Ca, and Ba,
    C는 Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소이고,C is one or more elements of Li, Na, K, Rb, and Cs,
    D는 Cr, W, B, Al, Ca, 및 V 중 하나 이상의 원소이고,D is one or more elements of Cr, W, B, Al, Ca, and V,
    상기 a 내지 f, x, 및 y는 원자 또는 원자단의 몰분율이며,Wherein a to f, x, and y are the mole fractions of atoms or groups of atoms,
    a는 0.1 내지 7이고, b는 0.1 내지 7이고, 단 a 및 b의 합이 0.1 내지 7이고,a is 0.1 to 7, b is 0.1 to 7, provided that the sum of a and b is 0.1 to 7,
    c는 0.1 내지 10 이고, d는 0.01 내지 5이고, e는 0.1 내지 10이며, f는 0 내지 10이고, c is 0.1 to 10, d is 0.01 to 5, e is 0.1 to 10, f is 0 to 10,
    x는 11 내지 14이고, y는 상기 Mo, Bi, Fe, A, B, C, 및 D의 각 산화수에 의해 결정될 수 있는 값이다.x is 11 to 14, and y is a value that can be determined by the respective oxidation numbers of Mo, Bi, Fe, A, B, C, and D.
  9. 제8항에 있어서,The method of claim 8,
    상기 제1 전구체 용액을 제조하는 단계에서,In the step of preparing the first precursor solution,
    구연산, 옥살산 또는 이들의 혼합물을 첨가제로 첨가하는 것인,To add citric acid, oxalic acid or a mixture thereof as an additive,
    프로필렌의 암모산화용 촉매의 제조 방법.Method for producing a catalyst for ammoxidation of propylene.
  10. 제8항에 있어서,The method of claim 8,
    상기 제1 전구체 용액을 제조하는 단계는,The step of preparing the first precursor solution,
    50 내지 90 ℃에서 수행되는 것인,That is carried out at 50 to 90 °C,
    프로필렌의 암모산화용 촉매의 제조 방법.Method for producing a catalyst for ammoxidation of propylene.
  11. 제8항에 있어서,The method of claim 8,
    상기 제2 전구체 용액을 제조하는 단계는,The step of preparing the second precursor solution,
    물, Fe 전구체 및 Co 전구체를 포함하는 수용액을 제조하는 단계인, In the step of preparing an aqueous solution containing water, an Fe precursor and a Co precursor,
    프로필렌의 암모산화용 촉매의 제조 방법.Method for producing a catalyst for ammoxidation of propylene.
  12. 제8항에 있어서,The method of claim 8,
    상기 제3 전구체 용액을 제조하는 단계는,The step of preparing the third precursor solution,
    질산, Bi 전구체, Ni 전구체 및 K 전구체를 포함하는 용액을 제조하는 단계인, In the step of preparing a solution containing nitric acid, a Bi precursor, a Ni precursor, and a K precursor,
    프로필렌의 암모산화용 촉매의 제조 방법.Method for producing a catalyst for ammoxidation of propylene.
  13. 제8항에 있어서,The method of claim 8,
    상기 제2 전구체 용액을 제조하는 단계 및 상기 제2 전구체 용액을 제조하는 단계는, 각각 독립적으로,The step of preparing the second precursor solution and the step of preparing the second precursor solution, each independently,
    20 내지 50 ℃에서 수행되는 것인,Which is carried out at 20 to 50 °C,
    프로필렌의 암모산화용 촉매의 제조 방법.Method for producing a catalyst for ammoxidation of propylene.
  14. 제8항에 있어서,The method of claim 8,
    상기 제1 내지 제3 전구체 용액을 혼합하는 단계는,Mixing the first to third precursor solutions,
    상기 제2 및 제3 전구체 용액을 혼합하는 단계, 그리고Mixing the second and third precursor solutions, and
    상기 제2 및 제3 전구체 용액의 혼합물을 상기 제1 전구체 용액에 적하하는 단계를 포함하는 것인,Including the step of dropping the mixture of the second and third precursor solution to the first precursor solution,
    프로필렌의 암모산화용 촉매의 제조 방법.Method for producing a catalyst for ammoxidation of propylene.
  15. 제8항에 있어서,The method of claim 8,
    상기 제1 내지 제3 전구체 용액의 혼합물을 상기 실리카 담체에 담지시키는 단계는,The step of supporting the mixture of the first to third precursor solutions on the silica carrier,
    상기 실리카 담체 및 상기 제1 내지 제3 전구체 용액을 20 내지 30 ℃의 온도 범위 내에서 1차 혼합하는 단계, 및 First mixing the silica carrier and the first to third precursor solutions within a temperature range of 20 to 30 °C, and
    상기 1차 혼합물을 70 내지 90 ℃의 온도 범위 내에서 2차 혼합하는 단계를 포함하는 것인,Including the step of secondary mixing the first mixture within a temperature range of 70 to 90 ℃,
    프로필렌의 암모산화용 촉매의 제조 방법.Method for producing a catalyst for ammoxidation of propylene.
  16. 제8항에 있어서,The method of claim 8,
    상기 1차 및 2차 혼합은, 각각 독립적으로,The first and second mixing, each independently,
    1 내지 3 시간 동안 수행되는 것인,Which is carried out for 1 to 3 hours,
    프로필렌의 암모산화용 촉매의 제조 방법.Method for producing a catalyst for ammoxidation of propylene.
  17. 제8항에 있어서,The method of claim 8,
    상기 제1 내지 제3 전구체 용액의 혼합물이 담지된 실리카 담체를 건조시키는 단계는,Drying the silica carrier on which the mixture of the first to third precursor solutions is supported,
    100 내지 120 ℃의 온도 범위 내에서 수행되는 것인,To be carried out within a temperature range of 100 to 120 ℃,
    프로필렌의 암모산화용 촉매의 제조 방법.Method for producing a catalyst for ammoxidation of propylene.
  18. 제8항에 있어서,The method of claim 8,
    상기 제1 내지 제3 전구체 용액의 혼합물이 담지된 실리카 담체를 건조시키는 단계는,Drying the silica carrier on which the mixture of the first to third precursor solutions is supported,
    5 내지 12 시간 동안 수행되는 것인,Which is carried out for 5 to 12 hours,
    프로필렌의 암모산화용 촉매의 제조 방법.Method for producing a catalyst for ammoxidation of propylene.
  19. 제8항에 있어서,The method of claim 8,
    상기 건조된 물질을 소성하는 단계는, The step of firing the dried material,
    500 내지 700 ℃의 온도 범위 내에서 수행되는 것인,It is to be carried out within a temperature range of 500 to 700 ℃,
    프로필렌의 암모산화용 촉매의 제조 방법.Method for producing a catalyst for ammoxidation of propylene.
  20. 반응기 내에서, 제1항의 촉매 존재 하에 프로필렌 및 암모니아를 반응시키는 단계를 포함하는,In the reactor, comprising the step of reacting propylene and ammonia in the presence of the catalyst of claim 1,
    프로필렌의 암모산화 방법.Method for ammoxidation of propylene.
PCT/KR2020/013099 2019-09-30 2020-09-25 Catalyst for ammoxidation of propylene, preparation method therefor, and method for ammoxidation of propylene using same WO2021066411A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20873318.8A EP3858483A4 (en) 2019-09-30 2020-09-25 Catalyst for ammoxidation of propylene, preparation method therefor, and method for ammoxidation of propylene using same
JP2021523938A JP7123259B2 (en) 2019-09-30 2020-09-25 Catalyst for ammoxidation of propylene, method for producing the same, and method for ammoxidation of propylene using the same
CN202080006525.XA CN113164930B (en) 2019-09-30 2020-09-25 Ammonia oxidation catalyst for propylene, process for producing the catalyst, and ammonia oxidation method using the catalyst
US17/291,558 US20220001361A1 (en) 2019-09-30 2020-09-25 Ammoxidation catalyst for propylene, manufacturing method of the same catalyst, ammoxidation method using the same catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190121172 2019-09-30
KR10-2019-0121172 2019-09-30
KR10-2020-0124245 2020-09-24
KR1020200124245A KR102519507B1 (en) 2019-09-30 2020-09-24 Ammoyidation catalyst for propylene, manufacturing method of the same catalyst, and ammoyidation methode using the same catalyst

Publications (1)

Publication Number Publication Date
WO2021066411A1 true WO2021066411A1 (en) 2021-04-08

Family

ID=75336552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013099 WO2021066411A1 (en) 2019-09-30 2020-09-25 Catalyst for ammoxidation of propylene, preparation method therefor, and method for ammoxidation of propylene using same

Country Status (1)

Country Link
WO (1) WO2021066411A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100687671B1 (en) * 2003-03-05 2007-03-02 아사히 가세이 케미칼즈 가부시키가이샤 Particulate Porous Ammoxidation Catalyst
US20100076208A1 (en) * 2006-11-17 2010-03-25 Dhingra Sandeep S Hydro-oxidation process using a catalyst prepared from a gold cluster complex
US20110092757A1 (en) * 2008-08-06 2011-04-21 Kenji Akagishi Zeolite-containing catalyst and method for producing the same, and method for producing propylene
WO2011119203A1 (en) * 2010-03-23 2011-09-29 Ineos Usa Llc High efficiency ammoxidation process and mixed metal oxide catalysts
KR20150046224A (en) * 2012-09-28 2015-04-29 아사히 가세이 케미칼즈 가부시키가이샤 Oxide catalyst, method for producing same, and method for producing unsaturated aldehyde, diolefin or unsaturated nitrile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100687671B1 (en) * 2003-03-05 2007-03-02 아사히 가세이 케미칼즈 가부시키가이샤 Particulate Porous Ammoxidation Catalyst
US20100076208A1 (en) * 2006-11-17 2010-03-25 Dhingra Sandeep S Hydro-oxidation process using a catalyst prepared from a gold cluster complex
US20110092757A1 (en) * 2008-08-06 2011-04-21 Kenji Akagishi Zeolite-containing catalyst and method for producing the same, and method for producing propylene
WO2011119203A1 (en) * 2010-03-23 2011-09-29 Ineos Usa Llc High efficiency ammoxidation process and mixed metal oxide catalysts
KR20150046224A (en) * 2012-09-28 2015-04-29 아사히 가세이 케미칼즈 가부시키가이샤 Oxide catalyst, method for producing same, and method for producing unsaturated aldehyde, diolefin or unsaturated nitrile

Similar Documents

Publication Publication Date Title
WO2013105779A1 (en) Carbon nanotubes and method for manufacturing same
WO2013105784A1 (en) Carbon nanotubes and method for manufacturing same
WO2014051271A1 (en) Catalyst composition for the synthesis of multi-walled carbon nanotube
WO2018124782A1 (en) Catalyst for preparing olefins, and method for preparing olefins through continuous reaction-regeneration by using same
WO2018088815A1 (en) Olefin metathesis reaction catalyst and preparation method therefor
WO2016006883A1 (en) High-performance polyoxometalate catalyst and preparation method thereof
WO2014182018A1 (en) Mesoporous mixed oxide catalyst, method for preparing same and method for synthesizing 1,3-butadiene using same
WO2020091418A1 (en) Cobalt-based monoatomic dehydrogenation catalyst and method for preparing olefin corresponding to paraffin from paraffin by using same
WO2018074652A1 (en) Catalyst and continuous process for mass production of multi-walled carbon nanotube
WO2017126776A1 (en) Apparatus for manufacturing carbon nanotube pellets
WO2019107884A1 (en) Catalyst system for oxidative dehydrogenation reaction, reactor for butadiene production including same, and method for preparing 1,3-butadiene
WO2016032284A1 (en) Preparation method for rod-shaped molybdenum oxide and preparation method for molybdenum oxide composite
WO2017126777A1 (en) Carbon nanotube pellets and method for manufacturing same
WO2021066411A1 (en) Catalyst for ammoxidation of propylene, preparation method therefor, and method for ammoxidation of propylene using same
WO2022149854A1 (en) Area-selective method for forming thin film by using nuclear growth retardation
WO2020101234A1 (en) Method for preparing 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol from 5-hydroxymethylfurfural
WO2020022725A1 (en) Method for preparing carbon nanotubes
WO2018139776A1 (en) Ferrite catalyst for oxidative dehydrogenation reaction, method for preparing same, and method for preparing butadiene by using same
WO2021066409A1 (en) Catalyst for ammoxidation of propylene, method for preparing same, and method for ammoxidation of propylene by using same
WO2017003059A1 (en) Successive reacting-regenerating and olefin preparing method
WO2021066410A1 (en) Catalyst for ammoxidation of propylene, method for preparing same, and method for ammoxidation of propylene using same
WO2019245157A1 (en) Catalyst for preparing light olefin, preparation method therefor, and method for preparing light olefin by using same
WO2017126775A1 (en) Carbon nanotube pellets and method for manufacturing same
WO2018088736A1 (en) Catalyst for preparing dimethyl ether from synthetic gas and method for producing same
WO2018182102A1 (en) Metal selenide-supported catalyst, preparation method therefor, and urethane preparation method using same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021523938

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020873318

Country of ref document: EP

Effective date: 20210430

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE