WO2021066004A1 - Cardiac output measurement device - Google Patents

Cardiac output measurement device Download PDF

Info

Publication number
WO2021066004A1
WO2021066004A1 PCT/JP2020/037133 JP2020037133W WO2021066004A1 WO 2021066004 A1 WO2021066004 A1 WO 2021066004A1 JP 2020037133 W JP2020037133 W JP 2020037133W WO 2021066004 A1 WO2021066004 A1 WO 2021066004A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
cardiac output
frequency
respiratory
microwave
Prior art date
Application number
PCT/JP2020/037133
Other languages
French (fr)
Japanese (ja)
Inventor
圭 本田
信一郎 須田
筱薇 呂
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2021551371A priority Critical patent/JPWO2021066004A1/ja
Publication of WO2021066004A1 publication Critical patent/WO2021066004A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/029Measuring or recording blood output from the heart, e.g. minute volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing

Definitions

  • the present invention relates to a cardiac output measuring device capable of accurately measuring both the cardiac output and the respiratory state of a subject.
  • An object of the present invention is to provide a cardiac output measuring device capable of accurately measuring both the cardiac output and the respiratory state of a subject.
  • the cardiac output measuring device of the present invention for achieving the above object has a first measuring means, a second measuring means, and a calculating means.
  • the first measuring means measures the waveform of microwaves that have passed through the living body.
  • the second measuring means measures the waveform of the living body during respiration or the waveform during apnea.
  • the calculation means calculates the waveform of the living body during respiration and the waveform for obtaining the heart rate output of the living body from the waveform of the microwave using the waveform during respiration or the waveform during apnea.
  • FIG. 1 It is a figure which provides the operation description of the positioning apparatus of FIG. It is an operation flowchart for calculating the cardiac output by the cardiac output measuring device of this embodiment. It is a figure which shows the waveform (respiratory component waveform + apnea component waveform) of the microwave measured by the heart rate waveform measuring unit. It is a figure which provides the explanation of the method which the frequency calculation part calculates the frequency of the respiratory component waveform. It is a figure which provides the explanation of the method which the frequency calculation part calculates the frequency of the apnea component waveform. It is a figure which shows an example of the heartbeat waveform after molding (the waveform which obtains the cardiac output) used by the cardiac output calculation part for calculating the cardiac output.
  • FIG. 1 is a block diagram of the cardiac output measuring device of the present embodiment.
  • FIG. 2A is a diagram showing a microwave waveform measured by the heartbeat waveform measuring unit.
  • the cardiac output measuring device 100 includes a control unit 110, a transmitting unit 122, a receiving unit 128, a measurement start switch 140, a notification unit 152, a display unit 154, and an input unit 160. Further, a transmitting antenna 124, a receiving antenna 126, and a positioning device 200 are connected to the cardiac output measuring device 100.
  • the control unit 110 uses the waveform of the microwave transmitted through the chest of the subject (living body) received by the receiving unit 128 to obtain the cardiac output of the subject, in other words, the heart of the subject. Calculate the amount of blood (liters / minute) pumped from the left ventricle per unit time.
  • the blood absorbs the microwaves, so the diastole, when blood flows into the heart, is more pronounced than the systole, when blood is drained from the heart.
  • the waveform is attenuated.
  • Cardiac output can be calculated from the amplitude of the microwave waveform that is attenuated by changes in blood.
  • This microwave cardiac output measurement has the advantage that the cardiac output can be measured non-invasively and non-invasively, and that the device can be miniaturized.
  • the measuring device is non-invasive and small in size for heart failure medical treatment, follow-up after heart surgery, verification of medication effect for heart disease, etc., and it is possible to measure cardiac output anytime, anywhere, any number of times. It is important to be. Therefore, it is very important to accurately calculate the attenuation of the microwave waveform so that the cardiac output can be calculated accurately.
  • the control unit 110 removes the influence of the subject's respiration and accurately calculates the amount of attenuation of the microwave waveform.
  • the control unit 110 includes various components for accurately calculating the attenuation amount of the microwave waveform, which will be described later.
  • the control unit 110 uses the waveform of the microwave transmitted through the chest of the subject (living body) received by the receiving unit 128 to determine the respiratory state of the subject, in other words, per unit time of the subject. Calculate the number of breaths performed (times / minute).
  • the microwaves When microwaves pass through the lungs of a subject, the microwaves are absorbed by the tissues and blood of the lungs, the air taken into the lungs, and the liquid components that have exuded into the alveoli. Since the amount of air taken into the lungs and the amount of circulating blood in the lungs change with breathing, the amount of microwaves absorbed changes depending on the respiratory state (inhaling and exhaling). Therefore, for example, the respiratory rate can be calculated from the frequency of the microwave waveform as an index showing the respiratory state of the subject.
  • the control unit 110 removes the influence of the apnea component such as the heartbeat of the subject, and accurately calculates the amount of change and the frequency derived from the respiration of the microwave waveform.
  • the control unit 110 includes various components for accurately calculating the amount of change and the frequency derived from the respiration of the microwave waveform, which will be described later.
  • the positioning device 200 and the drive unit 119 include various components for accurately positioning the transmitting antenna 124 and the receiving antenna 126 at appropriate positions, which will be described later.
  • Cardiac output is one of the best indicators of the ejection status of the heart, and the severity of heart failure itself, the degree of recovery after exacerbation, the estimation of the maximum dose of drugs such as diuretics, and discharge from the hospital. It can be used to judge the pros and cons of.
  • Respiratory rate is one of the best indicators of the signs and symptoms of exacerbation of heart failure, and is characterized by difficulty in breathing during exacerbation and normal breathing during recovery. It is also a vital that changes compensatory when cardiac function and general condition deteriorate. Therefore, it is very important in heart failure medical care to be able to accurately measure both cardiac output and respiratory rate.
  • the transmission unit 122 receives an instruction from the control unit 110 and transmits a signal for irradiating a microwave of a predetermined frequency from the transmission antenna 124.
  • the frequency of the microwave it is preferable to set the frequency at which the waveform for obtaining the cardiac output and the respiratory rate can be obtained most clearly.
  • microwaves having a frequency of 0.4 GHz to 1.00 GHz are used.
  • the receiving unit 128 amplifies the microwave signal received by the receiving antenna 126.
  • the subject's chest is located between the transmitting antenna 124 and the receiving antenna 126.
  • the transmitting antenna 124 is arranged on either the back side or the chest side of the subject, and the receiving antenna 126 is arranged on the chest side or the back side of the subject, facing the transmitting antenna 124.
  • the transmitting antenna 124 and the receiving antenna 126 may be arranged in close contact with the body surface of the subject, or may be arranged at a certain distance from the body surface of the subject.
  • the transmitting antenna 124 and the receiving antenna 126 are arranged at a certain distance from the body surface of the subject, and the phase positions of the transmitting antenna 124 and the receiving antenna 126 with respect to the subject are adjusted by the positioning device 200. Will be done.
  • the receiving antenna 126 receives a microwave having a received waveform as shown in FIG. 2A, for example, which is irradiated from the transmitting antenna 124 and transmitted through the chest of the subject.
  • the subject is exposed to microwaves while breathing. Therefore, in the received waveform of the microwave in FIG. 2A, the respiratory component waveform including the respiratory information obtained when the subject is breathing (when the chest is up and down) and the pure heartbeat It contains both waveforms and the waveform of the apneic component that contains only the information of.
  • the measurement start switch 140 is configured so that a user such as a medical worker such as a doctor or a nurse can instruct the start of measurement of cardiac output and respiratory rate.
  • the specific mode of the measurement start switch 140 is not particularly limited as long as it is a switch that can be switched on and off. For example, a toggle type or button type mechanical switch or an electronic switch displayed on the display screen can be mentioned.
  • the notification unit 152 notifies a message indicating the start of measurement or the end of measurement.
  • the notification unit 152 may notify a message indicating the start of measurement or the end of measurement by sound or light, or may display characters on the screen to notify the notification.
  • the display unit 154 displays various waveforms calculated by the control unit 110, and the calculated cardiac output and respiratory rate.
  • the display unit 154 is a display using a liquid crystal or an organic EL.
  • the input unit 160 allows a user such as a medical worker to input information about the subject (sex, age, name, height, weight, etc. of the subject) to the control unit 110 and input measurement contents. It is configured as follows.
  • the input unit 160 can be configured by any one of pointing devices such as a push button, a keyboard, and a mouse, or a combination thereof in whole or in part.
  • the input unit 160 is provided in the cardiac output measuring device 100, but the cardiac output measuring device 100 may be externally attached.
  • the external terminal 170 is configured to be able to communicate with the cardiac output measuring device 100 via the communication unit 118.
  • the external terminal 170 is composed of a known tablet, personal computer, or the like.
  • the control unit 110 includes a heart rate waveform measurement unit 112, a respiratory rate calculation unit 114, a frequency calculation unit 115, a cardiac output calculation unit 116, a storage unit 117, a communication unit 118, and a drive unit 119.
  • the heart rate waveform measurement unit 112, the respiratory rate calculation unit 114, the frequency calculation unit 115, the cardiac output calculation unit 116, and the drive unit 119 are configured in the processor 111.
  • FIG. 2A is a diagram showing a microwave waveform measured by the heart rate waveform measuring unit 112.
  • the heart rate waveform measuring unit 112 functions as a measuring means for measuring the waveform of the microwave transmitted through the subject.
  • the heartbeat waveform measuring unit 112 is composed of a composite waveform of a respiratory component waveform including respiratory information and an apnea component waveform including heartbeat information, as shown in FIG. 2A, from microwaves transmitted through the subject. Measure the waveform of the microwave.
  • the frequency of the respiratory component waveform is lower than that of the apnea component waveform
  • the overall shape of the synthetic waveform is obtained from the respiratory component waveform
  • the apnea component waveform appears as fine irregularities.
  • the main component of the apnea component waveform includes a change in the microwave waveform due to the inflow and outflow of blood into the heart due to the beating of the heart.
  • the heart rate waveform measuring unit 112 measures the received waveform of the microwave as shown in FIG. 2A amplified by the receiving unit 128.
  • This microwave waveform includes the respiratory component waveform when the subject is breathing and the apnea component waveform when not breathing, but strictly speaking, the respiratory component waveform also includes the apnea component waveform. It has been.
  • FIG. 2B is a diagram showing a waveform after filtering to match the frequency of the respiratory component waveform.
  • FIG. 2C is a diagram showing a heartbeat waveform after filtering to match the frequency of the apnea component waveform.
  • the frequency calculation unit 115 and the cardiac output calculation unit 116 function as calculation means for calculating the waveform for obtaining the cardiac output by numerically analyzing the waveform of the microwave.
  • the frequency calculation unit 115 calculates the frequencies of the respiration component waveform and the apnea component waveform of the microwave reception waveform as shown in FIG. 2A, which are measured by the heart rate waveform measurement unit 112.
  • the respiratory rate calculation unit 114 and the frequency calculation unit 115 calculate the frequency of the respiratory component waveform, that is, the respiratory rate from the number of inflection points of the respiratory component waveform appearing within a unit time in the received microwave waveform.
  • the frequency calculation unit 115 is caused by the frequency of the apnea component waveform, that is, the change in the waveform of the microwave due to the inflow and discharge of blood into the heart, depending on the number of bending points of the apnea component waveform appearing within a unit time. Calculate the frequency of the heartbeat.
  • the method of calculating the frequency of the respiratory component waveform and the apnea component waveform performed by the frequency calculation unit 115 will be described in detail later.
  • the cardiac output calculation unit 116 forms a heartbeat waveform using the frequencies of the respiratory component waveform and the aspiratory component waveform in the microwave waveform calculated by the frequency calculation unit 115, and the cardiac output as shown in FIG. 2C. Calculate the cardiac output from the waveform for which the amount is calculated. A general known method is used to calculate the cardiac output.
  • the cardiac output calculation unit 116 generates a filter that matches the frequency of the respiratory component waveform included in the heartbeat waveform when forming the heartbeat waveform as shown in FIGS. 2B and 2C. The specific method of generating the filter will be described later.
  • the heartbeat waveform is formed by applying a filter matching the frequency of the respiratory component waveform generated by the heart rate output calculation unit 116 to the microwave waveform as shown in FIG.
  • the respiratory waveform component as shown in FIG. 2B is formed.
  • a heartbeat waveform is obtained in which is removed to some extent.
  • the cardiac output calculation unit 116 generates a filter that matches the frequency of the apnea component waveform, that is, the frequency of the waveform component caused by the beating of the heart, when forming the heartbeat waveform. The specific method of generating the filter will be described later.
  • a filter suitable for the microwave reception waveform as shown in FIG. 2A, the heartbeat waveform as shown in FIG. 2B, and the frequency of the waveform component caused by the heartbeat generated by the cardiac output calculation unit 116 is applied. Call.
  • the cardiac output calculation unit 116 calculates the amount of blood delivered by the subject's heart per unit time, that is, the cardiac output from the waveform for obtaining the cardiac output in FIG. 2C.
  • the cardiac output can be calculated from any of the amplitude changes in FIGS. 2B and 2C. Further, it is better to use the heartbeat waveform as shown in FIG. 2C, which is filtered by both the filter that matches the frequency of the respiratory component waveform and the filter that matches the frequency of the apnea component waveform (heartbeat). It can be calculated accurately.
  • a filter that matches the frequency of the respiratory component waveform (heartbeat) is applied, but a filter that matches the frequency of the heartbeat is used.
  • a filter suitable for the frequency of respiration may be applied.
  • filtering that matches the frequency of the respiratory component waveform and the apnea component waveform Filtering may be performed to match the frequency of (heartbeat).
  • the storage unit 117 calculates a filter coefficient for generating a filter that matches the frequency of the respiratory component waveform included in the microwave reception waveform and a filter that matches the frequency of the aspiratory component waveform included in the microwave reception waveform.
  • Each of the respiratory rate calculation unit 114 and the cardiac output calculation unit 116 stores in the storage unit 117 a filter that matches the frequency of the respiration waveform and the frequency of the apnea component waveform as shown in FIG. 2A. Generated from the filter coefficient calculation formula and the filter. Examples of the filter include a digital filter such as a low-pass filter or a band-pass filter.
  • the heart rate output calculation unit 116 uses the frequencies of the apnea component waveform and the waveform during respiration calculated by the frequency calculation unit 115 to use the filter coefficient calculation formula and filter stored in the storage unit 117. It is used to generate a filter that matches the frequency of the waveform during respiration and a filter that matches the frequency of the apneic component waveform contained in the heartbeat waveform.
  • the respiratory rate calculation unit 114 uses the frequency of the respiratory waveform calculated by the frequency calculation unit 115, and uses the filter coefficient calculation formula or filter stored in the storage unit 117 to generate the respiratory waveform. Generate a filter that matches the frequency of.
  • An acceleration sensor 130 attached to the body surface of the subject is connected to the heart rate waveform measuring unit 112.
  • the accelerometer 130 is used to acquire the frequency of the waveform during respiration, that is, the respiration rate, independently of the respiration rate calculation unit 114.
  • the acceleration sensor 130 is attached to the chest of the subject and detects the vertical movement of the chest of the subject when the subject is breathing as a positional displacement.
  • FIG. 2D when the waveform is rising, the subject is inhaling, when it is falling, the subject is exhaling, and near the top and valley of the waveform are being examined. It is when the person is holding his breath.
  • the waveforms when the subject is inhaling and exhaling are the waveforms during breathing, and the waveforms when the subject is holding his breath are the waveforms during apnea.
  • the acceleration sensor 130 is illustrated as a means for detecting the vertical movement of the chest of the subject as a position displacement, but if the position displacement can be detected, the position is determined from the pressure of, for example, a pressure sensor.
  • a ranging sensor such as a sensor that detects displacement or a laser sensor that detects displacement from a distance may be used.
  • the configuration is such that when the waveform is descending, the subject is inhaling, and when the waveform is rising, the subject is exhaling. Good.
  • the respiratory rate calculation unit 114 and the accelerometer 130 are used independently to acquire the frequency (respiratory rate) of the waveform during respiration, and the acquisition results are used cooperatively. That is, of the respective acquisition results, the result that can be measured stably may be preferentially used, or the respiration finally obtained by using the other acquisition result in the analysis process of one acquisition result. You may want to improve the accuracy of the numbers. Further, the average value of each acquisition result may be used as the final acquisition result.
  • the respiratory rate calculation unit 114 not only the respiratory rate calculation unit 114 but also the acceleration sensor 130 is provided because of the following circumstances.
  • the subject takes various breaths such as shallow breathing, deep breathing, slow breathing, fast breathing, regular breathing, and irregular breathing depending on the measurement environment and condition.
  • the waveform component derived from the heartbeat mixed in the respiratory waveform may also differ greatly depending on the condition.
  • the generally used waveform forming method is based on the premise that the waveform to be formed is almost the same waveform without being affected by the environment or the like.
  • the frequency of the subject's respiration and heartbeat usually changes greatly depending on the environment and condition.
  • the respiratory rate calculation unit 114 not only the respiratory rate calculation unit 114 but also the acceleration sensor 130 is provided because of the following circumstances. Accurately calculating cardiac output is more difficult than accurately calculating respiratory rate. For example, when the received microwave waveform as shown in FIG. 2A is obtained, the amplitude intensity of the respiratory component waveform and the apnea component waveform including the heartbeat information is compared, and the respiratory component waveform is larger and detected. Cheap. In addition, when calculating the respiratory rate, it is sufficient to know the frequency of the respiratory component waveform, so if the amplitude is clearly obtained, the respiratory rate should be calculated even if the waveform shape has a slight increase or decrease in amplitude intensity. Is possible.
  • the amplitude intensity itself directly affects the calculation result, so that the amplitude intensity needs to be stable in the waveform shape derived from the heartbeat.
  • the primary goal is to install an antenna, but if the optimal installation positions for the respiratory component waveform and heartbeat component waveform are different, priority is given to cardiac output measurement, which makes it difficult to calculate accurate values.
  • the antenna will be installed in a place where the heartbeat component waveform can be accurately observed.
  • the acceleration sensor 130 is provided for the purpose of supplementing the respiratory rate measurement by the respiratory rate calculation unit 114.
  • the drive unit 119 has both a respiration component waveform including respiration information and an apnea component waveform including respiration information in the microwave reception waveform measured by the heart rate waveform measurement unit 112.
  • the positioning device 200 is driven so that the amplitude of the waveform for obtaining the cardiac output as shown in FIG. 2C calculated by the cardiac output calculation unit 116 is maximized, and the transmitting antenna is transmitted.
  • the relative positions of 124 and the receiving antenna 126 are changed. Then, the relative positions of the transmitting antenna 124 and the receiving antenna 126 are finely adjusted so that the respiratory component waveform can be observed more clearly at that position.
  • the drive unit 119 drives the positioning device 200 so that the amplitude of the apnea component waveform as shown in FIG. 2A is maximized instead of the amplitude of the waveform for obtaining the cardiac output as shown in FIG. 2C. You may.
  • the above is the configuration of the cardiac output measuring device 100. Next, before explaining the operation of the cardiac output measuring device 100, the configuration and operation of the positioning device 200 will be described.
  • FIG. 3 is a perspective view of the positioning device of the present embodiment.
  • FIG. 4 is a side view of the positioning device of FIG.
  • FIG. 5 is a front view of the positioning device of FIG.
  • the positioning device 200 has a moving portion 121 that can move between the head and abdomen of the subject P along the body of the subject P in the Y direction shown in the drawing, and a moving portion 121 that moves the body of the subject P to the moving portion 121. It has a sleeper 127 that can move in the X and Z directions that are orthogonal to the moving direction.
  • the moving portion 121 includes a housing 123 having a C-shape so as to surround a part of the body of the subject P, and a driving mechanism 125 for moving the housing 123.
  • a receiving antenna 126 for receiving microwaves is attached to the upper side of the housing 123, and a transmitting antenna 124 for irradiating microwaves is attached to the lower side thereof.
  • the housing 123 is positioned so that the transmitting antenna 124 and the receiving antenna 126 sandwich the chest of the subject P.
  • the sleeper 127 is movably installed on the pedestal 129 installed on the floor.
  • the sleeper 127 positions the subject P so that the transmitting antenna 124 and the receiving antenna 126 sandwich the chest of the subject P.
  • the sleeper 127 is moved by the drive mechanism 125 in the same manner as the housing 123.
  • Inside the drive mechanism 125 a motor, a rack mechanism, and the like for moving each of the housing 123 and the sleeper 127 are provided.
  • the motor of the drive mechanism 125 operates according to a command from the drive unit 119 of the control unit 110 of the cardiac output measuring device 100.
  • the housing 123 and the sleeper 127 are moved respectively, but in addition to this, for example, the housing 123 is fixed and only the sleeper 127 is moved in the X, Y, and Z directions.
  • the sleeper 127 may be fixed and only the housing 123 may be moved in the X, Y, and Z directions.
  • the sleeper 127 may be configured not to be parallel to the ground. Instead, it may be equipped with an angle adjusting mechanism that can be fixed in a state of having an angle.
  • the drive unit 119 may be equipped with a mechanism for adjusting the angle of the housing 123 so that the sleeper 127 and the transmitting antenna 124 are parallel to each other.
  • the sleeper 127 when the sleeper 127 is parallel to the ground, even if the subject P experiences symptoms or discomfort during the measurement, there is no problem in the heart such as cardiac output.
  • the relevant index can be measured. For example, in the case of acute exacerbation of heart failure, it becomes possible to measure the subject P without causing respiratory distress. In addition, accurate measurement is possible even for the subject P whose position is restricted due to contracture or spasticity of the surgical site or body.
  • FIG. 6 is an operation flowchart of the positioning device of FIG. The description of this operation flowchart will be described with reference to FIG. 7. Note that FIG. 7 is a diagram provided for explaining the operation of the positioning device of FIG.
  • the subject P is laid down on the sleeper 127, the subject P is prevented from moving, and the sleeper 127 is moved in the X and Z directions by the drive mechanism 125 to adjust the rough position of the subject P.
  • the housing 123 is moved in the Y direction by the drive mechanism 125 to move the transmitting antenna 124 and the receiving antenna 126 so that the positions of the transmitting antenna 124 and the receiving antenna 126 sandwich the heart of the subject P. (S10).
  • the transmitting antenna 124 irradiates the subject P with microwaves (S11).
  • the receiving antenna 126 receives the microwave transmitted through the subject P (S12).
  • the heartbeat waveform measuring unit 112 shown in FIG. 1 measures the received waveform of the microwave as shown in FIG. 2A received by the receiving antenna 126 via the receiving unit 128. Since the heartbeat waveform includes a respiratory component waveform when the subject P is breathing and an aspirating component waveform when the subject P is not breathing, the heartbeat waveform measuring unit 112 determines the amplitude of the aspirating component waveform. Measure (S13).
  • the heart rate waveform measuring unit 112 determines whether or not the amplitude of the apnea component waveform is the maximum (S14). Whether or not the amplitude of the apnea component waveform is maximum is determined by whether or not the amplitude exceeds a preset threshold value, or the position where the amplitude of the apnea component waveform is maximum is determined while moving the housing 123. Do it by looking for it.
  • the respiratory rate calculation unit 114 and the acceleration sensor 130 determine whether the respiratory rate can be calculated (S15).
  • the criterion it is conceivable to set a threshold value for the reproducibility of the respiratory rate within a certain period of time. If the respiratory rate is measurable (S15: YES), the processing of positioning the housing 123 is completed, and if the amplitude is not the maximum (S15: NO), the value of the count N is incremented by 1 (S16).
  • the positions of the transmitting antenna 124 and the receiving antenna 126 are set to the installation positions obtained in S14.
  • the accelerometer 130 indicates that the respiratory rate is a reference value.
  • the respiratory rate measurement result is displayed on the display unit 154.
  • the housing 123 in other words, the transmitting antenna 124 and the receiving antenna 126 are positioned.
  • the above is the configuration and operation of the positioning device 200. Next, the operation of the cardiac output measuring device 100 will be described.
  • FIG. 9 is an operation flowchart for the cardiac output measuring device 100 of the present embodiment to calculate the cardiac output and the respiratory rate.
  • the operation flowchart will be described with reference to FIGS. 9A to 9D.
  • FIG. 9A is a diagram showing a microwave waveform (respiratory component waveform + apnea component waveform) measured by the heart rate waveform measuring unit.
  • FIG. 9B is a diagram provided by the frequency calculation unit for explaining a method of calculating the frequency of the respiratory component waveform.
  • FIG. 9C is a diagram provided by the frequency calculation unit for explaining a method of calculating the frequency of the apnea component waveform.
  • FIG. 9D is a diagram showing an example of a cardiac output waveform after molding (a waveform for obtaining a cardiac output) used by the cardiac output calculation unit to calculate the cardiac output.
  • the control unit 110 instructs the transmission unit 122 to output microwaves, the transmission unit 122 outputs microwaves from the transmission antenna 124, and the microwaves are output to the chest of the subject. (S100).
  • the microwave transmitted through the chest of the subject is received by the receiving antenna 126 (S101), and the received microwave is amplified by the receiving unit 128 and input to the heart rate waveform measuring unit 112.
  • the heart rate waveform measuring unit 112 measures the microwave waveform in which the respiratory component waveform and the apnea component waveform are mixed as shown in FIG. 9A from the input microwave (S102). This is because the subject measures the heartbeat waveform while breathing.
  • the frequency calculation unit 115 calculates the frequency of the respiratory component waveform among the microwave waveforms as shown in FIG. 9A measured by the heart rate waveform measurement unit 112 (S103).
  • the frequency of this respiratory component waveform is used as the measurement result of the respiratory rate.
  • the frequency of the respiratory component waveform is calculated from the number of inflection points of the respiratory component waveform that appear within a unit time. Specifically, the frequency is calculated as follows.
  • a general method of finding the unevenness and the inflection point of the graph may be used.
  • the time point at which the inflection point is reached (the time point at ta8 where x8 is measured in FIG. 4B) may be obtained from the positive, zero, and negative changes of the double differentiation of the approximate expression of the curve.
  • the frequency can be obtained by converting the time required for observing this inflection point into a value per unit time.
  • the frequency calculation unit 115 stores the frequency of the respiratory component waveform calculated as described above in the storage unit 117 (S104).
  • the frequency calculation unit 115 calculates the frequency of the apnea component waveform among the microwave waveforms as shown in FIG. 9A measured by the heart rate waveform measurement unit 112 (S105).
  • the frequency of the apnea component waveform is obtained from the number of bending points of the apnea component waveform that appear within a unit time by the same method as when calculating the frequency of the respiratory waveform component. Specifically, it is performed as follows.
  • the frequency calculation unit 115 stores the frequency of the apnea component waveform calculated as described above in the storage unit 117 (S106).
  • the cardiac output calculation unit 116 generated a filter matching the frequency of the respiratory component waveform using the frequency of the respiratory component waveform stored in the step of S104, and applied the generated filter to remove the respiratory component. Shape the waveform (S107).
  • the cardiac output calculation unit 116 generated a filter matching the frequency of the apnea component waveform (heartbeat) using the frequency of the apnea component waveform stored in the step of S106, and generated the filter.
  • a waveform is formed by applying a filter to extract the heartbeat more (S108).
  • the microwave waveform of FIG. 9A is formed into a heartbeat waveform as shown in FIG. 9D.
  • the cardiac output calculation unit 116 calculates the cardiac output of the subject's heart from the molded cardiac output (waveform for obtaining the cardiac output) shown in FIG. 9D (S109).
  • the control unit 110 causes the display unit 154 to display the calculated cardiac output and respiratory rate (S110).
  • the frequency of the respiratory component waveform is calculated from the microwave waveform as shown in FIG. 9A (S103), the frequency of the apnea component waveform is calculated (S105), and the waveform for obtaining the heart rate output is formed (S105).
  • the series of steps (S103 to S108) up to S108) can also be performed as follows.
  • a wide bandpass filter or lowpass filter is applied to the microwave waveform as shown in FIG. 9A.
  • fine irregularities derived from the apnea component waveform are removed from the microwave waveform as shown in FIG. 9A, and a waveform as if it is composed of only the respiratory component waveform can be obtained.
  • the frequency of the respiratory component waveform is calculated by using a method of calculating the frequency of the waveform based on the number of times the voltage crosses a certain threshold value per unit time (S103).
  • the frequency calculation unit 115 stores the frequency of the respiratory component waveform calculated as described above in the storage unit 117 (S104).
  • the cardiac output calculation unit 116 generated a filter matching the frequency of the respiratory component waveform using the frequency of the respiratory component waveform stored in the step of S104, and applied the generated filter to remove the respiratory component. Shape the waveform (S107).
  • the frequency of the apnea component waveform is calculated by using the waveform obtained in step S107 excluding the respiratory component and using a method of calculating the frequency of the waveform by the number of times the voltage crosses a certain threshold per unit time. (S105). Then, the frequency calculation unit 115 stores the frequency of the apnea component waveform calculated in this way in the storage unit 117 (S106). The cardiac output calculation unit 116 uses the frequency of the apnea component waveform stored in the step of S106 to generate a filter that matches the frequency of the apnea component waveform, and the generated filter is obtained in S107. By applying to the waveform excluding the respiratory component, a waveform for obtaining the cardiac output, which is a more extracted heartbeat, is formed (S108).
  • the cardiac output measuring device 100 measures the cardiac output and the respiratory rate.
  • the cardiac output and the respiratory rate are displayed on the display unit 154, but the cardiac output and the respiratory rate are stored in the storage unit 117 or on the external terminal 170 via the communication unit 118. You may send it.
  • the stroke amount calculated from one waveform amplitude intensity may be displayed.
  • the frequency of the heartbeat may be displayed as the heart rate.
  • the body surface area may be calculated from the input information such as the height and weight of the subject, and the cardiac output may be divided by the body surface area to be displayed as a cardiac index.
  • the stroke volume it may be calculated from one waveform amplitude intensity, but by calculating the cardiac output from the heart rate waveform having a plurality of amplitudes and dividing the value by the heart rate. It may be calculated.
  • the present invention is described as a device for measuring cardiac output in the specification, regarding the amount of blood pumped from the heart, not only the cardiac output but also the stroke amount once and the cardiac index are used. Etc., and since these indexes can be converted to each other, these are not particularly limited in the present invention.
  • both the cardiac output of the subject and the respiratory state can be accurately measured.
  • the embodiment of the cardiac output measuring device of the present invention has been described above.
  • the technical idea of the cardiac output measuring device of the present invention is not limited to the embodiments exemplified above.
  • the technical idea of the present invention may be embodied in an embodiment other than the embodiments illustrated above.
  • an electromagnetic wave having a frequency of 0.4 GHz to 1.00 GHz is used.
  • the definition of microwaves is not due to the difference in definitions such as the definition of an electromagnetic wave having a frequency of 300 MHz to 300 GHz and the definition of an electromagnetic wave having a frequency of 3 GHz to 30 GHz.
  • cardiac output measuring device 110 control unit, 111 processor, 112 Heart rate waveform measuring unit, 114 Respiratory rate calculation unit, 115 Frequency calculation unit, 116 Cardiac output calculation unit, 117 Memory, 118 Communication Department, 119 drive unit, 121 Moving part, 122 transmitter, 123 housing, 124 transmitting antenna, 125 drive mechanism, 126 receiving antenna, 127 sleeper, 128 receiver, 129 pedestal, 130 accelerometer, 140 Measurement start switch, 152 Notification unit, 154 display section, 160 input section, 170 external terminal, 200 positioning device, h heart, P subject.

Abstract

[Problem] To enable accurate measurement of both the cardiac output and the breathing state of a subject. [Solution] The present invention has a cardiac waveform measurement unit 112 that measures the waveform of microwaves passing through an organism, a breathing number calculation unit 114 that measures the waveform when the organism is breathing or the waveform when the organism is not breathing, and a cardiac output calculation unit 116 that uses the waveform during breathing or the waveform during not breathing to calculate a waveform for obtaining the cardiac output of the organism and the waveform when the organism is breathing from the waveform of the microwaves.

Description

心拍出量測定装置Cardiac output measuring device
 本発明は、被検者の心拍出量と、呼吸状態との双方を正確に測定できる心拍出量測定装置に関する。 The present invention relates to a cardiac output measuring device capable of accurately measuring both the cardiac output and the respiratory state of a subject.
 被検者の心臓が正常に機能しているか否かを知るためには、心臓からどれくらいの量の血液が送り出されているのかを示す心拍出量を測定することが重要である。 In order to know whether the subject's heart is functioning normally, it is important to measure the cardiac output, which indicates how much blood is being pumped from the heart.
 心不全の検査、心臓の手術後の経過観察、心臓病の投薬効果の検証などは、心拍出量を測定することによって行なうことができる。心拍出量を測定するための装置としては、たとえば、特許文献1および特許文献2に示すように、様々なものがある。 Examination of heart failure, follow-up after heart surgery, verification of medication effect of heart disease, etc. can be performed by measuring cardiac output. As a device for measuring cardiac output, for example, as shown in Patent Document 1 and Patent Document 2, there are various devices.
特開2016-202516号公報Japanese Unexamined Patent Publication No. 2016-20516 国際公開2018/194093号International Publication 2018/194093
 しかし、心拍出量の測定は、通常は被検者が呼吸をしている状態で行なわれるので、正確な心拍出量の測定には、呼吸の影響が無視できない。また、心拍出量の測定時、マイクロ波を照射するアンテナ、被検者を透過したマイクロ波を受信するアンテナ、および被検者の心臓のそれぞれの相対位置が適切でないと、正確に心拍出量が測定できない。また、被験者の様態をより正確に把握するためには、心拍出量と呼吸状態との双方を評価することが重要であるが、前記のように、心拍出量と呼吸の信号は混在しやすいため、呼吸状態を正確に測定することも難しく、ましてや心拍出量と呼吸状態の双方を正確に測定することはできない。 However, since the measurement of cardiac output is usually performed while the subject is breathing, the effect of respiration cannot be ignored for accurate measurement of cardiac output. Also, when measuring cardiac output, if the relative positions of the antenna that irradiates the microwave, the antenna that receives the microwave that has passed through the subject, and the subject's heart are not appropriate, the heartbeat will be accurate. The output cannot be measured. In addition, in order to grasp the condition of the subject more accurately, it is important to evaluate both the cardiac output and the respiratory state, but as described above, the cardiac output and the respiratory signal are mixed. Because it is easy to do, it is difficult to accurately measure the respiratory status, much less both cardiac output and respiratory status.
 本発明は、被検者の心拍出量と呼吸状態との双方を正確に測定できる心拍出量測定装置の提供を目的とする。 An object of the present invention is to provide a cardiac output measuring device capable of accurately measuring both the cardiac output and the respiratory state of a subject.
 上記目的を達成するための本発明の心拍出量測定装置は、第1測定手段、第2測定手段、および算出手段を有する。 The cardiac output measuring device of the present invention for achieving the above object has a first measuring means, a second measuring means, and a calculating means.
 第1測定手段は、生体を透過したマイクロ波の波形を測定する。第2測定手段は、生体の呼吸時の波形または無呼吸時の波形を測定する。算出手段は、呼吸時の波形または無呼吸時の波形を用いてマイクロ波の波形から生体の呼吸時の波形および生体の心拍出量を求める波形を算出する。 The first measuring means measures the waveform of microwaves that have passed through the living body. The second measuring means measures the waveform of the living body during respiration or the waveform during apnea. The calculation means calculates the waveform of the living body during respiration and the waveform for obtaining the heart rate output of the living body from the waveform of the microwave using the waveform during respiration or the waveform during apnea.
 本発明によれば、被検者の心拍出量と呼吸状態の双方を正確に測定できるため、より適切な診療指標を得ることができる。 According to the present invention, since both the cardiac output and the respiratory state of the subject can be accurately measured, a more appropriate medical index can be obtained.
本実施形態の心拍出量測定装置のブロック図である。It is a block diagram of the cardiac output measuring device of this embodiment. 心拍波形測定部により測定されたマイクロ波の波形を示す図である。It is a figure which shows the waveform of the microwave measured by the heart rate waveform measuring part. 呼吸時の波形の周波数に適合するフィルタをかけた後の波形を示す図である。It is a figure which shows the waveform after applying the filter which matches the frequency of the waveform at the time of respiration. 無呼吸成分波形の周波数に適合するフィルタをかけた後の心拍波形を示す図である。It is a figure which shows the heartbeat waveform after applying the filter which matches the frequency of the apnea component waveform. 呼吸数算出部により測定された呼吸時または無呼吸時の波形を示す図である。It is a figure which shows the waveform at the time of breathing or apnea measured by the respiratory rate calculation part. 本実施形態の位置決め装置の斜視図である。It is a perspective view of the positioning apparatus of this embodiment. 図3の位置決め装置の側面図である。It is a side view of the positioning device of FIG. 図3の位置決め装置の正面図である。It is a front view of the positioning device of FIG. 図3の位置決め装置の動作フローチャートである。It is an operation flowchart of the positioning device of FIG. 図3の位置決め装置の動作説明に供する図である。It is a figure which provides the operation description of the positioning apparatus of FIG. 本実施形態の心拍出量測定装置が心拍出量を算出するための動作フローチャートである。It is an operation flowchart for calculating the cardiac output by the cardiac output measuring device of this embodiment. 心拍波形測定部により測定されたマイクロ波の波形(呼吸成分波形+無呼吸成分波形)を示す図である。It is a figure which shows the waveform (respiratory component waveform + apnea component waveform) of the microwave measured by the heart rate waveform measuring unit. 周波数算出部が呼吸成分波形の周波数を算出する手法の説明に供する図である。It is a figure which provides the explanation of the method which the frequency calculation part calculates the frequency of the respiratory component waveform. 周波数算出部が無呼吸成分波形の周波数を算出する手法の説明に供する図である。It is a figure which provides the explanation of the method which the frequency calculation part calculates the frequency of the apnea component waveform. 心拍出量算出部が心拍出量を算出するために用いる成形後の心拍波形(心拍出量を求める波形)の一例を示す図である。It is a figure which shows an example of the heartbeat waveform after molding (the waveform which obtains the cardiac output) used by the cardiac output calculation part for calculating the cardiac output.
 以下に、本発明の心拍出量測定装置の実施形態を説明する。 An embodiment of the cardiac output measuring device of the present invention will be described below.
 (心拍出量測定装置の構成)
 図1は、本実施形態の心拍出量測定装置のブロック図である。図2Aは、心拍波形測定部により測定されたマイクロ波の波形を示す図である。心拍出量測定装置100は、制御部110、送信部122、受信部128、測定開始スイッチ140、報知部152、表示部154、入力部160を有する。また、心拍出量測定装置100には、送信アンテナ124、受信アンテナ126、位置決め装置200が接続される。
(Configuration of cardiac output measuring device)
FIG. 1 is a block diagram of the cardiac output measuring device of the present embodiment. FIG. 2A is a diagram showing a microwave waveform measured by the heartbeat waveform measuring unit. The cardiac output measuring device 100 includes a control unit 110, a transmitting unit 122, a receiving unit 128, a measurement start switch 140, a notification unit 152, a display unit 154, and an input unit 160. Further, a transmitting antenna 124, a receiving antenna 126, and a positioning device 200 are connected to the cardiac output measuring device 100.
 制御部110は、受信部128が受信した、被検者(生体)の胸部を透過したマイクロ波の波形を用いて、被検者の心拍出量、換言すれば、被検者の心臓の左心室から単位時間当たりに送出される血液の量(リットル/分)を算出する。 The control unit 110 uses the waveform of the microwave transmitted through the chest of the subject (living body) received by the receiving unit 128 to obtain the cardiac output of the subject, in other words, the heart of the subject. Calculate the amount of blood (liters / minute) pumped from the left ventricle per unit time.
 被検者の心臓をマイクロ波が透過する場合、血液にマイクロ波が吸収されるため、心臓に血液が流入される拡張期の方が心臓から血液が排出される収縮期よりも、マイクロ波の波形は減衰する。血液の変化によって減衰するマイクロ波の波形の振幅から心拍出量が算出できる。このマイクロ波による心拍出量計測には、非侵襲的ならびに非観血的に心拍出量計測が実施できるという利点と、装置を小型化できるという利点がある。心不全診療や心臓手術後の経過観察、心疾患の投薬効果の検証などを行なう上では、計測装置が非侵襲的でかつ小型であり、いつでも、どこでも、何度でも心拍出量を計測可能であることが重要である。そのため、マイクロ波の波形の減衰量を正確に算出して心拍出量を正確に算出可能とすることは非常に重要である。 When microwaves pass through the subject's heart, the blood absorbs the microwaves, so the diastole, when blood flows into the heart, is more pronounced than the systole, when blood is drained from the heart. The waveform is attenuated. Cardiac output can be calculated from the amplitude of the microwave waveform that is attenuated by changes in blood. This microwave cardiac output measurement has the advantage that the cardiac output can be measured non-invasively and non-invasively, and that the device can be miniaturized. The measuring device is non-invasive and small in size for heart failure medical treatment, follow-up after heart surgery, verification of medication effect for heart disease, etc., and it is possible to measure cardiac output anytime, anywhere, any number of times. It is important to be. Therefore, it is very important to accurately calculate the attenuation of the microwave waveform so that the cardiac output can be calculated accurately.
 被検者の心拍出量を測定するときには、被検者の心臓をめがけてマイクロ波を照射することになるので、人体を透過したマイクロ波の波形は被検者の呼吸変化と心拍出量変化がそれぞれ含まれるため、心拍出量の計算は呼吸による影響を無視できない。被検者は測定環境や容態によって、浅い呼吸、深い呼吸、遅い呼吸、速い呼吸、規則的な呼吸、不規則的な呼吸など、様々な呼吸をする。胸の体表面に設置した送信アンテナと受信アンテナとの相対位置は呼吸の度に変化するので、呼吸はマイクロ波の波形の減衰量の正確な算出の妨げとなる。また、マイクロ波は肺によっても吸収されるため、呼吸により肺の容量が変化することも、マイクロ波の波形の減衰量の正確な算出の妨げとなる。制御部110は、被検者の呼吸の影響を取り除き、マイクロ波の波形の減衰量を正確に算出する。制御部110は、マイクロ波の波形の減衰量を正確に算出するための様々な構成要素を備えるが、これについては後述する。 When measuring the cardiac output of a subject, microwaves are emitted toward the subject's heart, so the waveform of the microwave that has passed through the human body is the respiratory change and cardiac output of the subject. Since each volume change is included, the cardiac output calculation cannot ignore the effects of respiration. The subject takes various breaths such as shallow breathing, deep breathing, slow breathing, fast breathing, regular breathing, and irregular breathing depending on the measurement environment and condition. Since the relative position of the transmitting antenna and the receiving antenna installed on the body surface of the chest changes with each respiration, respiration hinders the accurate calculation of the attenuation of the microwave waveform. In addition, since microwaves are also absorbed by the lungs, changes in lung capacity due to respiration also hinder the accurate calculation of the attenuation of the microwave waveform. The control unit 110 removes the influence of the subject's respiration and accurately calculates the amount of attenuation of the microwave waveform. The control unit 110 includes various components for accurately calculating the attenuation amount of the microwave waveform, which will be described later.
 制御部110は、受信部128が受信した、被検者(生体)の胸部を透過したマイクロ波の波形を用いて、被検者の呼吸状態、換言すれば、被検者の単位時間当たりに実施された呼吸数(回/分)を算出する。 The control unit 110 uses the waveform of the microwave transmitted through the chest of the subject (living body) received by the receiving unit 128 to determine the respiratory state of the subject, in other words, per unit time of the subject. Calculate the number of breaths performed (times / minute).
 被検者の肺をマイクロ波が透過する場合、肺の組織や血液、肺に取り込まれた空気、肺胞内へ滲み出した液体成分等によってマイクロ波が吸収される。これら肺に取り込まれた空気量や肺の循環血液量は呼吸によって変化するため、マイクロ波の吸収量が呼吸状態(息を吸ったり、吐いたりすること)によって変化する。そのため、マイクロ波の波形の周波数から、被検者の呼吸状態を表す指標として、例えば呼吸数を算出できる。 When microwaves pass through the lungs of a subject, the microwaves are absorbed by the tissues and blood of the lungs, the air taken into the lungs, and the liquid components that have exuded into the alveoli. Since the amount of air taken into the lungs and the amount of circulating blood in the lungs change with breathing, the amount of microwaves absorbed changes depending on the respiratory state (inhaling and exhaling). Therefore, for example, the respiratory rate can be calculated from the frequency of the microwave waveform as an index showing the respiratory state of the subject.
 マイクロ波を用いて呼吸数を計測しようとした際に、呼吸によって、生体内部でのマイクロ波の透過経路と肺組織との位置関係や、体表外面に設置された送信アンテナと受信アンテナとの位置関係が変化することによっても、マイクロ波の波形パターンや振幅強度は変化する。また、肺と心臓とは近くに位置するため、呼吸由来の波形変化に心拍動由来の波形変化が混在することとなる。そのため、マイクロ波の波形変化から呼吸状態を正確に算出することは難しい。制御部110は、被検者の心拍動等の無呼吸成分の影響を取り除き、マイクロ波の波形の呼吸に由来する変化量や周波数を正確に算出する。制御部110は、マイクロ波の波形の呼吸に由来する変化量や周波数を正確に算出するための様々な構成要素を備えるが、これについては後述する。 When trying to measure the respiratory rate using microwaves, the positional relationship between the transmission path of microwaves inside the living body and lung tissue, and the transmitting antenna and receiving antenna installed on the outer surface of the body surface are caused by breathing. The waveform pattern and amplitude intensity of microwaves also change as the positional relationship changes. In addition, since the lungs and the heart are located close to each other, the waveform changes derived from respiration are mixed with the waveform changes derived from heartbeat. Therefore, it is difficult to accurately calculate the respiratory state from the change in the waveform of the microwave. The control unit 110 removes the influence of the apnea component such as the heartbeat of the subject, and accurately calculates the amount of change and the frequency derived from the respiration of the microwave waveform. The control unit 110 includes various components for accurately calculating the amount of change and the frequency derived from the respiration of the microwave waveform, which will be described later.
 心臓と肺とは近い位置に存在するため、マイクロ波の波形変化によって心拍出量と呼吸状態の双方を正確に測定しようとする場合、心拍動由来の波形変化と、呼吸由来の波形変化とが合成された波形変化を観測することとなる。この際、心拍動成分と呼吸成分の双方を良好な信号対雑音比で取得しようとする場合、送信アンテナ124および受信アンテナ126を適切な場所に位置合わせする必要がある。位置決め装置200や駆動部119は、送信アンテナ124および受信アンテナ126を、適切な場所に正確に位置決めするための様々な構成要素を備えるが、これについては後述する。 Since the heart and lungs are located close to each other, when trying to accurately measure both the heart rate output and the respiratory state by changing the waveform of the microwave, the waveform change derived from the heartbeat and the waveform change derived from the respiration Will be observed for the combined waveform change. At this time, in order to acquire both the heartbeat component and the respiratory component with a good signal-to-noise ratio, it is necessary to align the transmitting antenna 124 and the receiving antenna 126 at appropriate positions. The positioning device 200 and the drive unit 119 include various components for accurately positioning the transmitting antenna 124 and the receiving antenna 126 at appropriate positions, which will be described later.
 特に心不全診療では、心拍出量と呼吸数との双方を把握することが重要である。心拍出量は心臓の駆出状態を最もよく表す指標の1つであり、心不全自体の重症度や、増悪後の回復の度合い、利尿剤をはじめとする薬物の上限投与量の推察、退院の是非等の判断に用いることができる。また呼吸数は、心不全の増悪兆候や症状を最もよく表す指標の1つであり、増悪時には呼吸が困難となり、快方時には呼吸が通常通りに行えるようになるという特徴がある。また、心機能や全身状態が低下した際に、代償的に変化するバイタルでもある。そのため、心拍出量と呼吸数の双方を正確に計測可能とすることは、心不全診療においてとても重要である。 Especially in heart failure medical care, it is important to understand both cardiac output and respiratory rate. Cardiac output is one of the best indicators of the ejection status of the heart, and the severity of heart failure itself, the degree of recovery after exacerbation, the estimation of the maximum dose of drugs such as diuretics, and discharge from the hospital. It can be used to judge the pros and cons of. Respiratory rate is one of the best indicators of the signs and symptoms of exacerbation of heart failure, and is characterized by difficulty in breathing during exacerbation and normal breathing during recovery. It is also a vital that changes compensatory when cardiac function and general condition deteriorate. Therefore, it is very important in heart failure medical care to be able to accurately measure both cardiac output and respiratory rate.
 送信部122は、制御部110からの指示を受けて、送信アンテナ124から所定の周波数のマイクロ波を照射させるための信号を送信する。マイクロ波の周波数としては、心拍出量や呼吸数を求める波形が最も鮮明に得られる周波数を設定することが好ましい。本実施形態では、0.4GHz~1.00GHzの周波数のマイクロ波を用いている。 The transmission unit 122 receives an instruction from the control unit 110 and transmits a signal for irradiating a microwave of a predetermined frequency from the transmission antenna 124. As the frequency of the microwave, it is preferable to set the frequency at which the waveform for obtaining the cardiac output and the respiratory rate can be obtained most clearly. In this embodiment, microwaves having a frequency of 0.4 GHz to 1.00 GHz are used.
 受信部128は、受信アンテナ126によって受信されたマイクロ波の信号を増幅する。送信アンテナ124と受信アンテナ126との間には、被検者の胸部が位置される。送信アンテナ124は被検者の背中側か胸側のいずれかに配置され、受信アンテナ126は被検者の胸側か背中側の、送信アンテナ124に対向した場所に配置される。送信アンテナ124と受信アンテナ126とは被検者の体表面に密着させて配置しても良いし、被検者の体表面から一定の距離離して配置しても良い。本実施形態では、送信アンテナ124と受信アンテナ126は被検者の体表面から一定の距離離して配置され、送信アンテナ124と受信アンテナ126の被検者に対する相体位置は、位置決め装置200によって調整される。受信アンテナ126は、送信アンテナ124から照射され被検者の胸部を透過した、たとえば図2Aに示すような受信波形のマイクロ波を受信する。被検者は呼吸をしながらマイクロ波の照射を受ける。したがって、図2Aのマイクロ波の受信波形では、被検者が呼吸をしている時(胸部が上下している時)に得られる呼吸の情報を含む呼吸成分波形と、純粋に心臓の拍動の情報のみを含む無呼吸成分の波形との双方の波形を含んでいる。 The receiving unit 128 amplifies the microwave signal received by the receiving antenna 126. The subject's chest is located between the transmitting antenna 124 and the receiving antenna 126. The transmitting antenna 124 is arranged on either the back side or the chest side of the subject, and the receiving antenna 126 is arranged on the chest side or the back side of the subject, facing the transmitting antenna 124. The transmitting antenna 124 and the receiving antenna 126 may be arranged in close contact with the body surface of the subject, or may be arranged at a certain distance from the body surface of the subject. In the present embodiment, the transmitting antenna 124 and the receiving antenna 126 are arranged at a certain distance from the body surface of the subject, and the phase positions of the transmitting antenna 124 and the receiving antenna 126 with respect to the subject are adjusted by the positioning device 200. Will be done. The receiving antenna 126 receives a microwave having a received waveform as shown in FIG. 2A, for example, which is irradiated from the transmitting antenna 124 and transmitted through the chest of the subject. The subject is exposed to microwaves while breathing. Therefore, in the received waveform of the microwave in FIG. 2A, the respiratory component waveform including the respiratory information obtained when the subject is breathing (when the chest is up and down) and the pure heartbeat It contains both waveforms and the waveform of the apneic component that contains only the information of.
 測定開始スイッチ140は、医師、看護師という医療従事者などの使用者によって心拍出量ならびに呼吸数の測定の開始を指示できるように構成されている。測定開始スイッチ140は、オンオフの切り替えができるようなスイッチであれば具体的な態様は特に限定されない。たとえばトグルタイプやボタン式の機械的なスイッチまたは表示画面内に表示させた電子的なスイッチを挙げることができる。 The measurement start switch 140 is configured so that a user such as a medical worker such as a doctor or a nurse can instruct the start of measurement of cardiac output and respiratory rate. The specific mode of the measurement start switch 140 is not particularly limited as long as it is a switch that can be switched on and off. For example, a toggle type or button type mechanical switch or an electronic switch displayed on the display screen can be mentioned.
 報知部152は、測定の開始や測定の終了を示すメッセージを報知する。報知部152は、測定の開始や測定の終了を示すメッセージを、音や光で報知させても良いし、画面上に文字を表示させて報知させるようにしても良い。 The notification unit 152 notifies a message indicating the start of measurement or the end of measurement. The notification unit 152 may notify a message indicating the start of measurement or the end of measurement by sound or light, or may display characters on the screen to notify the notification.
 表示部154は、制御部110によって算出された各種の波形、および算出した心拍出量や呼吸数を表示する。表示部154は、液晶または有機ELを用いたディスプレイである。 The display unit 154 displays various waveforms calculated by the control unit 110, and the calculated cardiac output and respiratory rate. The display unit 154 is a display using a liquid crystal or an organic EL.
 入力部160は、医療従事者などの使用者が制御部110に対し、被検者に関する情報(被検者の性別、年齢、氏名、身長、体重など)の入力、および測定内容の入力ができるように構成されている。入力部160は、押しボタン、キーボード、マウスなどのポインティングデバイスのいずれか一つ又はこれらの全部又は部分的な組み合わせによって構成できる。本実施形態では、入力部160を心拍出量測定装置100に設けているが、心拍出量測定装置100の外付けとしても良い。 The input unit 160 allows a user such as a medical worker to input information about the subject (sex, age, name, height, weight, etc. of the subject) to the control unit 110 and input measurement contents. It is configured as follows. The input unit 160 can be configured by any one of pointing devices such as a push button, a keyboard, and a mouse, or a combination thereof in whole or in part. In the present embodiment, the input unit 160 is provided in the cardiac output measuring device 100, but the cardiac output measuring device 100 may be externally attached.
 外部端末170は、通信部118を介して心拍出量測定装置100との通信ができるように構成されている。外部端末170は、公知のタブレット、パーソナルコンピュータなどによって構成される。 The external terminal 170 is configured to be able to communicate with the cardiac output measuring device 100 via the communication unit 118. The external terminal 170 is composed of a known tablet, personal computer, or the like.
 制御部110は、心拍波形測定部112、呼吸数算出部114、周波数算出部115、心拍出量算出部116、記憶部117、通信部118、駆動部119を有する。心拍波形測定部112、呼吸数算出部114、周波数算出部115、心拍出量算出部116、駆動部119は、プロセッサ111内に構成される。 The control unit 110 includes a heart rate waveform measurement unit 112, a respiratory rate calculation unit 114, a frequency calculation unit 115, a cardiac output calculation unit 116, a storage unit 117, a communication unit 118, and a drive unit 119. The heart rate waveform measurement unit 112, the respiratory rate calculation unit 114, the frequency calculation unit 115, the cardiac output calculation unit 116, and the drive unit 119 are configured in the processor 111.
 図2Aは心拍波形測定部112により測定されたマイクロ波の波形を示す図である。心拍波形測定部112は、被検者を透過したマイクロ波の波形を測定する測定手段として機能する。 FIG. 2A is a diagram showing a microwave waveform measured by the heart rate waveform measuring unit 112. The heart rate waveform measuring unit 112 functions as a measuring means for measuring the waveform of the microwave transmitted through the subject.
 心拍波形測定部112は、被検者を透過したマイクロ波から、図2Aに示すような、呼吸の情報を含む呼吸成分波形と、心拍動の情報を含む無呼吸成分波形との合成波形からなるマイクロ波の波形を測定する。図2Aの例では、呼吸成分波形の方が無呼吸成分波形よりも周波数が低く、呼吸成分波形によって合成波形の全体形状が得られ、無呼吸成分波形が細かい凹凸として表れている。図2Aの例では、この無呼吸成分波形の主成分として、心臓の拍動による心臓への血液の流入や排出によるマイクロ波の波形変化が含まれる。心拍波形測定部112は、受信部128によって増幅された図2Aに示すようなマイクロ波の受信波形を測定する。このマイクロ波波形には、被検者が呼吸している時の呼吸成分波形と呼吸していない時の無呼吸成分波形を含むが、厳密には、呼吸成分波形にも無呼吸成分波形が含まれている。 The heartbeat waveform measuring unit 112 is composed of a composite waveform of a respiratory component waveform including respiratory information and an apnea component waveform including heartbeat information, as shown in FIG. 2A, from microwaves transmitted through the subject. Measure the waveform of the microwave. In the example of FIG. 2A, the frequency of the respiratory component waveform is lower than that of the apnea component waveform, the overall shape of the synthetic waveform is obtained from the respiratory component waveform, and the apnea component waveform appears as fine irregularities. In the example of FIG. 2A, the main component of the apnea component waveform includes a change in the microwave waveform due to the inflow and outflow of blood into the heart due to the beating of the heart. The heart rate waveform measuring unit 112 measures the received waveform of the microwave as shown in FIG. 2A amplified by the receiving unit 128. This microwave waveform includes the respiratory component waveform when the subject is breathing and the apnea component waveform when not breathing, but strictly speaking, the respiratory component waveform also includes the apnea component waveform. It has been.
 図2Bは呼吸成分波形の周波数に適合するフィルタをかけた後の波形を示す図である。図2Cは、無呼吸成分波形の周波数に適合するフィルタをかけた後の心拍波形を示す図である。周波数算出部115および心拍出量算出部116は、マイクロ波の波形を数値解析することにより心拍出量を求める波形を算出する算出手段として機能する。 FIG. 2B is a diagram showing a waveform after filtering to match the frequency of the respiratory component waveform. FIG. 2C is a diagram showing a heartbeat waveform after filtering to match the frequency of the apnea component waveform. The frequency calculation unit 115 and the cardiac output calculation unit 116 function as calculation means for calculating the waveform for obtaining the cardiac output by numerically analyzing the waveform of the microwave.
 周波数算出部115は、心拍波形測定部112によって測定された、図2Aに示すようなマイクロ波の受信波形の呼吸成分波形および無呼吸成分波形の周波数を算出する。呼吸数算出部114および周波数算出部115は、マイクロ波の受信波形における単位時間内に現れる呼吸成分波形の変曲点の数により呼吸成分波形の周波数、すなわち呼吸数を算出する。また、周波数算出部115は、単位時間内に現れる無呼吸成分波形の変曲点の数により、無呼吸成分波形の周波数、すなわち心臓への血液の流入や排出によるマイクロ波の波形変化に起因する心臓の拍動の周波数を算出する。周波数算出部115によって行われる呼吸成分波形および無呼吸成分波形の周波数の算出の手法については、後で詳しく説明する。 The frequency calculation unit 115 calculates the frequencies of the respiration component waveform and the apnea component waveform of the microwave reception waveform as shown in FIG. 2A, which are measured by the heart rate waveform measurement unit 112. The respiratory rate calculation unit 114 and the frequency calculation unit 115 calculate the frequency of the respiratory component waveform, that is, the respiratory rate from the number of inflection points of the respiratory component waveform appearing within a unit time in the received microwave waveform. Further, the frequency calculation unit 115 is caused by the frequency of the apnea component waveform, that is, the change in the waveform of the microwave due to the inflow and discharge of blood into the heart, depending on the number of bending points of the apnea component waveform appearing within a unit time. Calculate the frequency of the heartbeat. The method of calculating the frequency of the respiratory component waveform and the apnea component waveform performed by the frequency calculation unit 115 will be described in detail later.
 心拍出量算出部116は、周波数算出部115によって算出された、マイクロ波波形における呼吸成分波形および無呼吸成分波形の周波数を用いて心拍波形を成形し、図2Cに示すような心拍出量を求める波形から心拍出量を算出する。なお、心拍出量の算出は、一般的な公知の手法を用いる。心拍出量算出部116は、図2B、図2Cに示すような心拍波形を成形するに当たり、心拍波形に含まれる呼吸成分波形の周波数に適合するフィルタを生成する。フィルタの生成の具体的な手法については後述する。図2Aに示すようなマイクロ波波形に、心拍出量算出部116が生成した呼吸成分波形の周波数に適合するフィルタをかけて、心拍波形を成形すると、図2Bに示すような、呼吸波形成分がある程度取り除かれたような心拍波形が得られる。また、心拍出量算出部116は心拍波形を成形するに当たり、無呼吸成分波形の周波数、すなわち、心臓の拍動に起因する波形成分の周波数に適合するフィルタを生成する。フィルタの生成の具体的な手法については後述する。図2Aに示すようなマイクロ波の受信波形や、図2Bに示すような心拍波形に、さらに心拍出量算出部116が生成した心臓の拍動に起因する波形成分の周波数に適合するフィルタをかける。その結果、図2Cに示すような心拍出量を求める波形、具体的には、心拍出量を求めるための振幅が正確に再現された波形が得られる。心拍出量算出部116は、図2Cの心拍出量を求める波形から被検者の心臓が単位時間当たりに送出する血液の量、すなわち心拍出量を算出する。心拍出量の算出は、図2Bおよび図2Cのいずれの振幅変化からも算出することができる。また、呼吸成分波形の周波数に適合するフィルタと、無呼吸成分波形(心拍動)の周波数に適合するフィルタとの、双方のフィルタをかけた、図2Cに示すような心拍波形を用いるほうが、より正確に算出することができる。なお、本実施例では呼吸成分波形の周波数に適合するフィルタをかけた後、無呼吸成分波形(心拍動)の周波数に適合するフィルタをかける構成としたが、心拍動の周波数に適合するフィルタをかけた後に、呼吸の周波数に適合するフィルタをかける構成としてもよい。また、呼吸数算出時や心拍出量算出時に、生体由来のノイズを除去するための一般的な高周波数フィルタをかけた後に、呼吸成分波形の周波数に適合するフィルタ処理や、無呼吸成分波形(心拍動)の周波数に適合するフィルタ処理を行うこととしてもよい。 The cardiac output calculation unit 116 forms a heartbeat waveform using the frequencies of the respiratory component waveform and the aspiratory component waveform in the microwave waveform calculated by the frequency calculation unit 115, and the cardiac output as shown in FIG. 2C. Calculate the cardiac output from the waveform for which the amount is calculated. A general known method is used to calculate the cardiac output. The cardiac output calculation unit 116 generates a filter that matches the frequency of the respiratory component waveform included in the heartbeat waveform when forming the heartbeat waveform as shown in FIGS. 2B and 2C. The specific method of generating the filter will be described later. When the heartbeat waveform is formed by applying a filter matching the frequency of the respiratory component waveform generated by the heart rate output calculation unit 116 to the microwave waveform as shown in FIG. 2A, the respiratory waveform component as shown in FIG. 2B is formed. A heartbeat waveform is obtained in which is removed to some extent. In addition, the cardiac output calculation unit 116 generates a filter that matches the frequency of the apnea component waveform, that is, the frequency of the waveform component caused by the beating of the heart, when forming the heartbeat waveform. The specific method of generating the filter will be described later. A filter suitable for the microwave reception waveform as shown in FIG. 2A, the heartbeat waveform as shown in FIG. 2B, and the frequency of the waveform component caused by the heartbeat generated by the cardiac output calculation unit 116 is applied. Call. As a result, a waveform for obtaining the cardiac output as shown in FIG. 2C, specifically, a waveform in which the amplitude for obtaining the cardiac output is accurately reproduced can be obtained. The cardiac output calculation unit 116 calculates the amount of blood delivered by the subject's heart per unit time, that is, the cardiac output from the waveform for obtaining the cardiac output in FIG. 2C. The cardiac output can be calculated from any of the amplitude changes in FIGS. 2B and 2C. Further, it is better to use the heartbeat waveform as shown in FIG. 2C, which is filtered by both the filter that matches the frequency of the respiratory component waveform and the filter that matches the frequency of the apnea component waveform (heartbeat). It can be calculated accurately. In this embodiment, after applying a filter that matches the frequency of the respiratory component waveform, a filter that matches the frequency of the apnea component waveform (heartbeat) is applied, but a filter that matches the frequency of the heartbeat is used. After applying, a filter suitable for the frequency of respiration may be applied. In addition, when calculating the respiratory rate and heart rate output, after applying a general high frequency filter to remove noise originating from the living body, filtering that matches the frequency of the respiratory component waveform and the apnea component waveform Filtering may be performed to match the frequency of (heartbeat).
 記憶部117は、マイクロ波の受信波形に含まれる呼吸成分波形の周波数に適合するフィルタ、およびマイクロ波の受信波形に含まれる無呼吸成分波形の周波数に適合するフィルタを生成するためのフィルタ係数算出式やフィルタを記憶する。呼吸数算出部114および心拍出量算出部116は、図2Aに示すような呼吸時の波形の周波数、および無呼吸成分波形の周波数に適合するフィルタを記憶部117に記憶されているそれぞれのフィルタ係数算出式およびフィルタから生成する。フィルタとしては、ローパスフィルタまたはバンドパスフィルタなどのデジタルフィルタが挙げられる。 The storage unit 117 calculates a filter coefficient for generating a filter that matches the frequency of the respiratory component waveform included in the microwave reception waveform and a filter that matches the frequency of the aspiratory component waveform included in the microwave reception waveform. Memorize expressions and filters. Each of the respiratory rate calculation unit 114 and the cardiac output calculation unit 116 stores in the storage unit 117 a filter that matches the frequency of the respiration waveform and the frequency of the apnea component waveform as shown in FIG. 2A. Generated from the filter coefficient calculation formula and the filter. Examples of the filter include a digital filter such as a low-pass filter or a band-pass filter.
 したがって、心拍出量算出部116は、周波数算出部115によって算出された、無呼吸成分波形および呼吸時の波形の周波数を用いて、記憶部117に記憶されているフィルタ係数算出式やフィルタを用いて、呼吸時の波形の周波数に適合するフィルタおよび心拍波形に含まれる無呼吸成分波形の周波数に適合するフィルタを生成する。 Therefore, the heart rate output calculation unit 116 uses the frequencies of the apnea component waveform and the waveform during respiration calculated by the frequency calculation unit 115 to use the filter coefficient calculation formula and filter stored in the storage unit 117. It is used to generate a filter that matches the frequency of the waveform during respiration and a filter that matches the frequency of the apneic component waveform contained in the heartbeat waveform.
 したがって、呼吸数算出部114は、周波数算出部115によって算出された、呼吸時の波形の周波数を用いて、記憶部117に記憶されているフィルタ係数算出式やフィルタを用いて、呼吸時の波形の周波数に適合するフィルタを生成する。 Therefore, the respiratory rate calculation unit 114 uses the frequency of the respiratory waveform calculated by the frequency calculation unit 115, and uses the filter coefficient calculation formula or filter stored in the storage unit 117 to generate the respiratory waveform. Generate a filter that matches the frequency of.
 心拍波形測定部112には、被検者の体表面に取り付けた加速度センサ130が接続される。加速度センサ130は、呼吸数算出部114とは独立に、呼吸時の波形の周波数、すなわち呼吸数を取得するために用いられる。加速度センサ130は、被検者の胸部に取り付けられ、被検者が呼吸をしている時の被検者の胸部の上下動を位置変位として検出する。図2Dにおいて、波形が上昇している時は被検者が息を吸っている時、下降している時は被検者が息を吐いている時、波形の頂上付近と谷付近は被検者の息が止まっている時である。被検者が息を吸っている時と吐いている時の波形が呼吸時の波形であり、被検者の息が止まっている時の波形が無呼吸時の波形である。なお、本実施形態では被検者の胸部の上下動を位置変位として検出する手段として加速度センサ130を例示しているが、位置変位を検出できるものであれば、たとえば圧力センサなどの圧力から位置変位を検出するセンサ、距離から位置変位を検出するレーザーセンサなどの測距センサを用いても良い。また、加速度センサを用いる場合に、波形が下降している時は被検者が息を吸っている時、上昇している時は被検者が息を吐いている時、となる構成としてもよい。 An acceleration sensor 130 attached to the body surface of the subject is connected to the heart rate waveform measuring unit 112. The accelerometer 130 is used to acquire the frequency of the waveform during respiration, that is, the respiration rate, independently of the respiration rate calculation unit 114. The acceleration sensor 130 is attached to the chest of the subject and detects the vertical movement of the chest of the subject when the subject is breathing as a positional displacement. In FIG. 2D, when the waveform is rising, the subject is inhaling, when it is falling, the subject is exhaling, and near the top and valley of the waveform are being examined. It is when the person is holding his breath. The waveforms when the subject is inhaling and exhaling are the waveforms during breathing, and the waveforms when the subject is holding his breath are the waveforms during apnea. In the present embodiment, the acceleration sensor 130 is illustrated as a means for detecting the vertical movement of the chest of the subject as a position displacement, but if the position displacement can be detected, the position is determined from the pressure of, for example, a pressure sensor. A ranging sensor such as a sensor that detects displacement or a laser sensor that detects displacement from a distance may be used. In addition, when using an accelerometer, the configuration is such that when the waveform is descending, the subject is inhaling, and when the waveform is rising, the subject is exhaling. Good.
 呼吸数算出部114と、加速度センサ130とは、それぞれ独立に、呼吸時の波形の周波数(呼吸数)を取得するために用いられるが、その取得結果は、協同的に用いられる。すなわち、それぞれの取得結果のうち、安定して計測できた結果を優先的に用いても良いし、一方の取得結果の解析過程にもう一方の取得結果を用いることで、最終的に得られる呼吸数の精度を高めることとしてもよい。また、それぞれの取得結果の平均値を、最終的な取得結果としてもよい。 The respiratory rate calculation unit 114 and the accelerometer 130 are used independently to acquire the frequency (respiratory rate) of the waveform during respiration, and the acquisition results are used cooperatively. That is, of the respective acquisition results, the result that can be measured stably may be preferentially used, or the respiration finally obtained by using the other acquisition result in the analysis process of one acquisition result. You may want to improve the accuracy of the numbers. Further, the average value of each acquisition result may be used as the final acquisition result.
 このように、呼吸数を算出する方法として、呼吸数算出部114だけでなく、加速度センサ130も設けているのは、次のような事情があるからである。被検者は測定環境や容態によって、浅い呼吸、深い呼吸、遅い呼吸、速い呼吸、規則的な呼吸、不規則的な呼吸など、様々な呼吸をする。また、呼吸の波形に混在する心拍動由来の波形成分も容態によって大きく異なることがある。一般的に用いられている波形成形の手法は、波形成形の対象となる波形が環境などの影響を受けずに、ほぼ同じような波形であることが前提となっている。ところが、被検者の呼吸や心拍の周波数は、環境や容態などによって大きく変化することが普通である。このように、周波数やパターンが大きく変化する可能性のある波形から、呼吸数を正確に求めるためには、呼吸数算出部114だけでなく、加速度センサ130も設けることが必要になる。 In this way, as a method of calculating the respiratory rate, not only the respiratory rate calculation unit 114 but also the acceleration sensor 130 is provided because of the following circumstances. The subject takes various breaths such as shallow breathing, deep breathing, slow breathing, fast breathing, regular breathing, and irregular breathing depending on the measurement environment and condition. In addition, the waveform component derived from the heartbeat mixed in the respiratory waveform may also differ greatly depending on the condition. The generally used waveform forming method is based on the premise that the waveform to be formed is almost the same waveform without being affected by the environment or the like. However, the frequency of the subject's respiration and heartbeat usually changes greatly depending on the environment and condition. As described above, in order to accurately obtain the respiratory rate from the waveform in which the frequency and the pattern may change significantly, it is necessary to provide not only the respiratory rate calculation unit 114 but also the acceleration sensor 130.
 呼吸数を算出する方法として、呼吸数算出部114だけでなく、加速度センサ130も設けている理由としては、次のような事情もある。呼吸数を正確に算出することと比較して、心拍出量を正確に算出することの方が困難である。例えば、図2Aの様なマイクロ波の受信波形が得られた場合、呼吸成分波形と、心拍動の情報を含む無呼吸成分波形の振幅強度を比較すると、呼吸成分波形の方が大きく、検出しやすい。また、呼吸数を求める場合は呼吸成分波形の周波数が分ればよいので、振幅が明確に得られていれば、振幅強度が多少増減している波形形状だとしても、呼吸数を算出することが可能である。一方、心拍出量の算出では、振幅強度自体が計算結果に直接影響するため、心拍動由来の波形形状では振幅強度が安定している必要がある。このような、呼吸数と心拍出量の算出難易度の違いに鑑み、送信アンテナ124と受信アンテナ126を位置決めする際に、呼吸成分波形と心拍動成分波形の双方が明確に観測できる場所にアンテナを設置することを第一目標とするが、呼吸成分波形と心拍動成分波形の、それぞれにとって最適な設置位置が異なる場合、正確な値の算出が難しい心拍出量計測に優先的に、心拍動成分波形を正確に観測できる場所にアンテナを設置することとなる。このような状況においても正確に呼吸数を算出するために、呼吸数算出部114による呼吸数計測を補う目的で、加速度センサ130を設けている。 As a method of calculating the respiratory rate, not only the respiratory rate calculation unit 114 but also the acceleration sensor 130 is provided because of the following circumstances. Accurately calculating cardiac output is more difficult than accurately calculating respiratory rate. For example, when the received microwave waveform as shown in FIG. 2A is obtained, the amplitude intensity of the respiratory component waveform and the apnea component waveform including the heartbeat information is compared, and the respiratory component waveform is larger and detected. Cheap. In addition, when calculating the respiratory rate, it is sufficient to know the frequency of the respiratory component waveform, so if the amplitude is clearly obtained, the respiratory rate should be calculated even if the waveform shape has a slight increase or decrease in amplitude intensity. Is possible. On the other hand, in the calculation of cardiac output, the amplitude intensity itself directly affects the calculation result, so that the amplitude intensity needs to be stable in the waveform shape derived from the heartbeat. In view of the difference in the difficulty of calculating the respiratory rate and the cardiac output, when positioning the transmitting antenna 124 and the receiving antenna 126, a place where both the respiratory component waveform and the cardiac output waveform can be clearly observed. The primary goal is to install an antenna, but if the optimal installation positions for the respiratory component waveform and heartbeat component waveform are different, priority is given to cardiac output measurement, which makes it difficult to calculate accurate values. The antenna will be installed in a place where the heartbeat component waveform can be accurately observed. In order to accurately calculate the respiratory rate even in such a situation, the acceleration sensor 130 is provided for the purpose of supplementing the respiratory rate measurement by the respiratory rate calculation unit 114.
 駆動部119は、心拍波形測定部112によって計測されたマイクロ波の受信波形において、図2Aに示すように、呼吸の情報を含む呼吸成分波形と、心拍動の情報を含む無呼吸成分波形の双方が明確に観測できる場所にアンテナを設置する。設置方法の典型手順としては、心拍出量算出部116が算出した、図2Cに示すような心拍出量を求める波形の振幅が最大となるように位置決め装置200を駆動して、送信アンテナ124と受信アンテナ126の相対位置を変化させる。そして、その位置で呼吸成分波形がより明確に観測されるように、送信アンテナ124と受信アンテナ126の相対位置を微調整する。なお、駆動部119は、図2Cに示すような心拍出量を求める波形の振幅の代わりに、図2Aに示すような無呼吸成分波形の振幅が最大となるように位置決め装置200を駆動しても良い。 As shown in FIG. 2A, the drive unit 119 has both a respiration component waveform including respiration information and an apnea component waveform including respiration information in the microwave reception waveform measured by the heart rate waveform measurement unit 112. Install the antenna in a place where you can clearly observe. As a typical procedure of the installation method, the positioning device 200 is driven so that the amplitude of the waveform for obtaining the cardiac output as shown in FIG. 2C calculated by the cardiac output calculation unit 116 is maximized, and the transmitting antenna is transmitted. The relative positions of 124 and the receiving antenna 126 are changed. Then, the relative positions of the transmitting antenna 124 and the receiving antenna 126 are finely adjusted so that the respiratory component waveform can be observed more clearly at that position. The drive unit 119 drives the positioning device 200 so that the amplitude of the apnea component waveform as shown in FIG. 2A is maximized instead of the amplitude of the waveform for obtaining the cardiac output as shown in FIG. 2C. You may.
 以上が、心拍出量測定装置100の構成である。次に、心拍出量測定装置100の動作を説明する前に、位置決め装置200の構成および動作について説明する。 The above is the configuration of the cardiac output measuring device 100. Next, before explaining the operation of the cardiac output measuring device 100, the configuration and operation of the positioning device 200 will be described.
 (位置決め装置の構成および動作)
 図3は、本実施形態の位置決め装置の斜視図である。図4は、図3の位置決め装置の側面図である。図5は、図3の位置決め装置の正面図である。
(Configuration and operation of positioning device)
FIG. 3 is a perspective view of the positioning device of the present embodiment. FIG. 4 is a side view of the positioning device of FIG. FIG. 5 is a front view of the positioning device of FIG.
 位置決め装置200は、被検者Pの頭部と腹部との間で被検者Pの体に沿って図示Y方向に移動可能な移動部121と、被検者Pの体を移動部121の移動方向と直交するX方向およびZ方向に移動可能な寝台127とを有する。移動部121は、被検者Pの体の一部を囲むようにC字形状を有する筐体123と、筐体123を移動させるための駆動機構125とを有する。筐体123の上部側には、マイクロ波を受信する受信アンテナ126が取り付けられ、その下部側にはマイクロ波を照射する送信アンテナ124が取り付けられている。筐体123は、送信アンテナ124と受信アンテナ126が被検者Pの胸部を挟むように位置決めされる。 The positioning device 200 has a moving portion 121 that can move between the head and abdomen of the subject P along the body of the subject P in the Y direction shown in the drawing, and a moving portion 121 that moves the body of the subject P to the moving portion 121. It has a sleeper 127 that can move in the X and Z directions that are orthogonal to the moving direction. The moving portion 121 includes a housing 123 having a C-shape so as to surround a part of the body of the subject P, and a driving mechanism 125 for moving the housing 123. A receiving antenna 126 for receiving microwaves is attached to the upper side of the housing 123, and a transmitting antenna 124 for irradiating microwaves is attached to the lower side thereof. The housing 123 is positioned so that the transmitting antenna 124 and the receiving antenna 126 sandwich the chest of the subject P.
 寝台127は、床面に設置された台座129の上に移動可能に設置される。寝台127は、送信アンテナ124と受信アンテナ126が被検者Pの胸部を挟むように被検者Pを位置決めする。寝台127は筐体123と同様に駆動機構125によって移動される。駆動機構125の内部には、筐体123と寝台127のそれぞれを移動させるためのモータやラック機構などが設けられている。駆動機構125のモータは、心拍出量測定装置100の制御部110の駆動部119からの指令によって動作する。 The sleeper 127 is movably installed on the pedestal 129 installed on the floor. The sleeper 127 positions the subject P so that the transmitting antenna 124 and the receiving antenna 126 sandwich the chest of the subject P. The sleeper 127 is moved by the drive mechanism 125 in the same manner as the housing 123. Inside the drive mechanism 125, a motor, a rack mechanism, and the like for moving each of the housing 123 and the sleeper 127 are provided. The motor of the drive mechanism 125 operates according to a command from the drive unit 119 of the control unit 110 of the cardiac output measuring device 100.
 なお、本実施形態では、筐体123と寝台127とをそれぞれ移動させる態様を示したが、これ以外にも、たとえば筐体123を固定させ、寝台127のみをX、Y、Z方向に移動させるように構成しても良いし、逆に寝台127を固定させ、筐体123のみをX、Y、Z方向に移動させるように構成しても良い
 また、寝台127は、地面に対して並行ではなく、角度を有した状態で固定できるような、角度調整機構を搭載してもよい。この場合、寝台127と送信アンテナ124とが並行となるように、筐体123の角度を調整する機構を駆動部119に搭載してもよい。このような構成とすることで、寝台127が地面に対して並行な状態では、計測中に被検者Pに症状や不快感が発生する場合においても、問題なく心拍出量等の心臓に関連する指標を測定可能となる。例えば心不全の急性増悪時では、被検者Pに呼吸苦を生じることなく測定可能となる。また、手術部位や身体の拘縮や痙縮のために体位が制限される被検者Pにおいても、正確な測定が可能となる。
In the present embodiment, the housing 123 and the sleeper 127 are moved respectively, but in addition to this, for example, the housing 123 is fixed and only the sleeper 127 is moved in the X, Y, and Z directions. The sleeper 127 may be fixed and only the housing 123 may be moved in the X, Y, and Z directions. Further, the sleeper 127 may be configured not to be parallel to the ground. Instead, it may be equipped with an angle adjusting mechanism that can be fixed in a state of having an angle. In this case, the drive unit 119 may be equipped with a mechanism for adjusting the angle of the housing 123 so that the sleeper 127 and the transmitting antenna 124 are parallel to each other. With such a configuration, when the sleeper 127 is parallel to the ground, even if the subject P experiences symptoms or discomfort during the measurement, there is no problem in the heart such as cardiac output. The relevant index can be measured. For example, in the case of acute exacerbation of heart failure, it becomes possible to measure the subject P without causing respiratory distress. In addition, accurate measurement is possible even for the subject P whose position is restricted due to contracture or spasticity of the surgical site or body.
 次に、位置決め装置200の動作について簡単に説明する。図6は、図3の位置決め装置の動作フローチャートである。この動作フローチャートの説明に当たっては、図7を参照しながら説明する。なお、図7は、図3の位置決め装置の動作説明に供する図である。 Next, the operation of the positioning device 200 will be briefly described. FIG. 6 is an operation flowchart of the positioning device of FIG. The description of this operation flowchart will be described with reference to FIG. 7. Note that FIG. 7 is a diagram provided for explaining the operation of the positioning device of FIG.
 まず、寝台127に被検者Pを寝かせ、被検者Pが動かないようにして、駆動機構125により寝台127をX、Z方向に移動させて被検者Pの大まかな位置を調整する。次に、駆動機構125により筐体123をY方向に移動させて、送信アンテナ124と受信アンテナ126とを移動させ、送信アンテナ124と受信アンテナ126の位置が被検者Pの心臓を挟むようにする(S10)。 First, the subject P is laid down on the sleeper 127, the subject P is prevented from moving, and the sleeper 127 is moved in the X and Z directions by the drive mechanism 125 to adjust the rough position of the subject P. Next, the housing 123 is moved in the Y direction by the drive mechanism 125 to move the transmitting antenna 124 and the receiving antenna 126 so that the positions of the transmitting antenna 124 and the receiving antenna 126 sandwich the heart of the subject P. (S10).
 この状態で送信アンテナ124から被検者Pに向けてマイクロ波を照射する(S11)。受信アンテナ126は被検者Pを透過したマイクロ波を受信する(S12)。図1に示す心拍波形測定部112は、受信部128を介して受信アンテナ126が受信した図2Aに示すようなマイクロ波の受信波形を測定する。心拍波形には、被検者Pが呼吸している時の呼吸成分波形と呼吸していない時の無呼吸成分波形を含んでいるので、心拍波形測定部112は、無呼吸成分波形の振幅を測定する(S13)。 In this state, the transmitting antenna 124 irradiates the subject P with microwaves (S11). The receiving antenna 126 receives the microwave transmitted through the subject P (S12). The heartbeat waveform measuring unit 112 shown in FIG. 1 measures the received waveform of the microwave as shown in FIG. 2A received by the receiving antenna 126 via the receiving unit 128. Since the heartbeat waveform includes a respiratory component waveform when the subject P is breathing and an aspirating component waveform when the subject P is not breathing, the heartbeat waveform measuring unit 112 determines the amplitude of the aspirating component waveform. Measure (S13).
 心拍波形測定部112は、無呼吸成分波形の振幅が最大であるか否かを判断する(S14)。無呼吸成分波形の振幅が最大であるか否かは、振幅があらかじめ設定した閾値を超えているか否かによって判断したり、筐体123を動かしながら無呼吸成分波形の振幅が最大である位置を探したりすることによって行なう。 The heart rate waveform measuring unit 112 determines whether or not the amplitude of the apnea component waveform is the maximum (S14). Whether or not the amplitude of the apnea component waveform is maximum is determined by whether or not the amplitude exceeds a preset threshold value, or the position where the amplitude of the apnea component waveform is maximum is determined while moving the housing 123. Do it by looking for it.
 振幅が最大であれば(S14:YES)、そのアンテナ設置位置において呼吸成分の周波数計測(すなわち呼吸数の計測)が可能であるかの確認作業に移行する(S15)。振幅が最大でなければ(S14:NO)、送信アンテナ124と受信アンテナ126が被検者Pの心臓(特に左心室)を挟むように位置されていないと判断されるので、S10~S13の処理を繰り返して、図7に示すように、送信アンテナ124と受信アンテナ126の位置を、たとえば、点線の位置から実線の位置に変更し、送信アンテナ124と受信アンテナ126が被検者Pの心臓h(特に左心室)を挟むようにする。 If the amplitude is the maximum (S14: YES), the work shifts to the confirmation work of whether the frequency measurement of the respiratory component (that is, the measurement of the respiratory rate) is possible at the antenna installation position (S15). If the amplitude is not the maximum (S14: NO), it is determined that the transmitting antenna 124 and the receiving antenna 126 are not positioned so as to sandwich the heart (particularly the left ventricle) of the subject P. As shown in FIG. 7, the positions of the transmitting antenna 124 and the receiving antenna 126 are changed from, for example, the position of the dotted line to the position of the solid line, and the transmitting antenna 124 and the receiving antenna 126 are the hearts of the subject P. (Especially the left ventricle) should be sandwiched.
 呼吸成分の周波数計測(すなわち呼吸数の計測)が可能であるかの確認作業においては、呼吸数算出部114および加速度センサ130により、呼吸数を算出可能かを判断する(S15)。判定基準の例としては、呼吸数値に対して、ある一定期間内での繰り返し再現性について閾値を設定することが考えられる。呼吸数が計測可能であれば(S15:YES)、筐体123の位置決めの処理を終了し、振幅が最大でなければ(S15:NO)、カウントNの値を1だけインクリメントし(S16)、S15でNOとなった回数(カウントNの値)があらかじめ決められた回数未満であれば(S17:YES)、送信アンテナ124と受信アンテナ126の位置を動かし(S18)、再びS15の処理を行う。この際、S18の処理で行われる送信アンテナ124と受信アンテナ126の移動距離は、S10での移動距離よりも小さい。 In the work of confirming whether the frequency measurement of the respiratory component (that is, the measurement of the respiratory rate) is possible, the respiratory rate calculation unit 114 and the acceleration sensor 130 determine whether the respiratory rate can be calculated (S15). As an example of the criterion, it is conceivable to set a threshold value for the reproducibility of the respiratory rate within a certain period of time. If the respiratory rate is measurable (S15: YES), the processing of positioning the housing 123 is completed, and if the amplitude is not the maximum (S15: NO), the value of the count N is incremented by 1 (S16). If the number of times NO is obtained in S15 (value of count N) is less than the predetermined number of times (S17: YES), the positions of the transmitting antenna 124 and the receiving antenna 126 are moved (S18), and the processing of S15 is performed again. .. At this time, the moving distance between the transmitting antenna 124 and the receiving antenna 126 performed in the process of S18 is smaller than the moving distance in S10.
 S15でNOとなった回数があらかじめ決められた回数以上である場合(S17:NO)、S15とS18の処理を繰り返しても呼吸数が得られない場合であると判断し、最も呼吸数の計測精度が高かった位置で筐体123の位置決めの処理を終了すると共に、算出結果を表示する際(図8のS110)に、その呼吸数が参考値であることを併せて表示した状態で、加速度センサ130による呼吸数計測結果を表示部154に表示する。 When the number of times NO is obtained in S15 is equal to or greater than the predetermined number of times (S17: NO), it is determined that the respiratory rate cannot be obtained even if the processes of S15 and S18 are repeated, and the respiratory rate is most measured. Acceleration is performed while the processing of positioning the housing 123 is completed at the position where the accuracy is high, and when the calculation result is displayed (S110 in FIG. 8), the respiratory rate is also displayed as a reference value. The respiratory rate measurement result by the sensor 130 is displayed on the display unit 154.
 また、S15~S18の処理を行った結果、無呼吸成分波形の振幅があらかじめ設定した閾値未満となってしまった場合は、送信アンテナ124と受信アンテナ126の位置を、S14で得られた設置位置に戻して筐体123の位置決めの処理を終了すると共に、算出結果を表示する際(図8のS110)に、その呼吸数が参考値であることを併せて表示した状態で、加速度センサ130による呼吸数計測結果を表示部154に表示する。 Further, when the amplitude of the apnea component waveform becomes less than the preset threshold as a result of the processing of S15 to S18, the positions of the transmitting antenna 124 and the receiving antenna 126 are set to the installation positions obtained in S14. When the calculation result is displayed (S110 in FIG. 8), the accelerometer 130 indicates that the respiratory rate is a reference value. The respiratory rate measurement result is displayed on the display unit 154.
 以上のようにして、筐体123、換言すれば、送信アンテナ124と受信アンテナ126を位置決めする。 As described above, the housing 123, in other words, the transmitting antenna 124 and the receiving antenna 126 are positioned.
 以上が、位置決め装置200の構成および動作である。次に、心拍出量測定装置100の動作について説明する。 The above is the configuration and operation of the positioning device 200. Next, the operation of the cardiac output measuring device 100 will be described.
 (心拍出量測定装置の動作)
 図9は、本実施形態の心拍出量測定装置100が心拍出量と呼吸数を算出するための動作フローチャートである。この動作フローチャートの説明に当たっては、図9Aから図9Dを参照して説明する。なお、図9Aは、心拍波形測定部により測定されたマイクロ波波形(呼吸成分波形+無呼吸成分波形)を示す図である。図9Bは、周波数算出部が呼吸成分波形の周波数を算出する手法の説明に供する図である。図9Cは、周波数算出部が無呼吸成分波形の周波数を算出する手法の説明に供する図である。図9Dは、心拍出量算出部が心拍出量を算出するために用いる成形後の心拍波形(心拍出量を求める波形)の一例を示す図である。
(Operation of cardiac output measuring device)
FIG. 9 is an operation flowchart for the cardiac output measuring device 100 of the present embodiment to calculate the cardiac output and the respiratory rate. The operation flowchart will be described with reference to FIGS. 9A to 9D. Note that FIG. 9A is a diagram showing a microwave waveform (respiratory component waveform + apnea component waveform) measured by the heart rate waveform measuring unit. FIG. 9B is a diagram provided by the frequency calculation unit for explaining a method of calculating the frequency of the respiratory component waveform. FIG. 9C is a diagram provided by the frequency calculation unit for explaining a method of calculating the frequency of the apnea component waveform. FIG. 9D is a diagram showing an example of a cardiac output waveform after molding (a waveform for obtaining a cardiac output) used by the cardiac output calculation unit to calculate the cardiac output.
 制御部110は、測定開始スイッチ140が押されると、送信部122にマイクロ波を出力させる指示をし、送信部122は送信アンテナ124からマイクロ波を出力させ、そのマイクロ波を被検者の胸部に照射する(S100)。被検者の胸部を透過したマイクロ波は受信アンテナ126によって受信され(S101)、受信されたマイクロ波は受信部128によって増幅され心拍波形測定部112に入力される。 When the measurement start switch 140 is pressed, the control unit 110 instructs the transmission unit 122 to output microwaves, the transmission unit 122 outputs microwaves from the transmission antenna 124, and the microwaves are output to the chest of the subject. (S100). The microwave transmitted through the chest of the subject is received by the receiving antenna 126 (S101), and the received microwave is amplified by the receiving unit 128 and input to the heart rate waveform measuring unit 112.
 心拍波形測定部112は、入力されたマイクロ波から図9Aに示すような、呼吸成分波形と無呼吸成分波形とが混在したマイクロ波波形を測定する(S102)。被検者は呼吸をしながら心拍波形の測定をしているからである。 The heart rate waveform measuring unit 112 measures the microwave waveform in which the respiratory component waveform and the apnea component waveform are mixed as shown in FIG. 9A from the input microwave (S102). This is because the subject measures the heartbeat waveform while breathing.
 周波数算出部115は、心拍波形測定部112によって測定された、図9Aに示すようなマイクロ波の波形の内、呼吸成分波形の周波数を算出する(S103)。この呼吸成分波形の周波数は、呼吸数の計測結果として用いられる。呼吸成分波形の周波数は、単位時間内に現れる呼吸成分波形の変曲点の数により算出するが、具体的には、次のようにして行う。 The frequency calculation unit 115 calculates the frequency of the respiratory component waveform among the microwave waveforms as shown in FIG. 9A measured by the heart rate waveform measurement unit 112 (S103). The frequency of this respiratory component waveform is used as the measurement result of the respiratory rate. The frequency of the respiratory component waveform is calculated from the number of inflection points of the respiratory component waveform that appear within a unit time. Specifically, the frequency is calculated as follows.
 周波数算出部115は、一定の時間間隔で、図9Aに示したマイクロ波の波形の振幅強度を測定する。たとえば、図9Bに示すように、時間taごとに心拍波形の振幅x1、x2、x3、x4、x5、x6、x7、x8…、を測定する。この測定において、x1=Xnとなるときまでに要した経過時間の総和、すなわちx1=Xnとなるnを求め、単位時間あたりの値に換算することで周波数fを算出する。たとえば、図9Bの場合、呼吸波形成分の振幅強度がx1とx8とで同一となっており、計測開始時点(x1)から再び同じ振幅強度が得られるまで(x8)に要した計測時間は、ta8-ta1=7×taである。したがって、7×taを単位時間あたりに換算した値が周波数となる。 The frequency calculation unit 115 measures the amplitude intensity of the microwave waveform shown in FIG. 9A at regular time intervals. For example, as shown in FIG. 9B, the amplitudes x1, x2, x3, x4, x5, x6, x7, x8 ... Of the heartbeat waveform are measured for each time ta. In this measurement, the total elapsed time required until x1 = Xn, that is, n such that x1 = Xn is obtained, and the frequency f is calculated by converting it into a value per unit time. For example, in the case of FIG. 9B, the amplitude intensity of the respiratory waveform component is the same for x1 and x8, and the measurement time required from the start of measurement (x1) to the acquisition of the same amplitude intensity again (x8) is ta8-ta1 = 7 × ta. Therefore, the value obtained by converting 7 × ta per unit time is the frequency.
 呼吸波形成分の周波数を算出するための計測時間間隔taは、呼吸波形成分の周波数に対して小さすぎても大きすぎても測定精度に悪影響を与えるので、呼吸波形成分の1サイクルの10倍程度のサイクルとなるような時間に設定することが好ましい。また、x1=Xnとする判定基準、すなわち、どの程度振幅強度が近い場合に、同一の振幅強度とみなすかの判定基準については自由に設定することができる。 The measurement time interval ta for calculating the frequency of the respiratory waveform component is about 10 times one cycle of the respiratory waveform component because it adversely affects the measurement accuracy if it is too small or too large with respect to the frequency of the respiratory waveform component. It is preferable to set the time so that the cycle becomes. Further, the criterion for setting x1 = Xn, that is, the criterion for determining how close the amplitude intensities are to be regarded as the same amplitude intensity can be freely set.
 呼吸成分波形の周波数の求め方としては、グラフの凹凸と変曲点を求める一般的な方法を用いてもよい。例えば、ある一定時間taごとに心拍波形の振幅強度x1、x2、x3、x4、x5、x6、x7、x8…、を計測し、これら計測点を通る曲線を描き、その接線の傾きの変化や、曲線の近似式の二回微分の正、ゼロ、負の変化等から、変曲点となる時点(図4Bではx8が計測されるta8時点)を求めてもよい。この変曲点が観測されるまでに要した時間を、単位時間あたりの値に換算することで、周波数を求めることができる。 As a method of obtaining the frequency of the respiratory component waveform, a general method of finding the unevenness and the inflection point of the graph may be used. For example, the amplitude intensity x1, x2, x3, x4, x5, x6, x7, x8 ... Of the heartbeat waveform is measured at every ta for a certain period of time, a curve passing through these measurement points is drawn, and the slope of the tangent line changes. , The time point at which the inflection point is reached (the time point at ta8 where x8 is measured in FIG. 4B) may be obtained from the positive, zero, and negative changes of the double differentiation of the approximate expression of the curve. The frequency can be obtained by converting the time required for observing this inflection point into a value per unit time.
 周波数算出部115は、以上のようにして算出された呼吸成分波形の周波数を記憶部117に記憶させる(S104)。 The frequency calculation unit 115 stores the frequency of the respiratory component waveform calculated as described above in the storage unit 117 (S104).
 次に、周波数算出部115は、心拍波形測定部112によって測定された、図9Aに示すようなマイクロ波の波形の内、無呼吸成分波形の周波数を算出する(S105)。無呼吸成分波形の周波数は、呼吸波形成分の周波数を算出する際と同様の手法により、単位時間内に現れる無呼吸成分波形の変曲点の数から求める。具体的には、次のようにして行う。 Next, the frequency calculation unit 115 calculates the frequency of the apnea component waveform among the microwave waveforms as shown in FIG. 9A measured by the heart rate waveform measurement unit 112 (S105). The frequency of the apnea component waveform is obtained from the number of bending points of the apnea component waveform that appear within a unit time by the same method as when calculating the frequency of the respiratory waveform component. Specifically, it is performed as follows.
 周波数算出部115は、一定の時間間隔で、図9Aに示したマイクロ波の波形の振幅を測定する。たとえば、図9Cに示すように、時間tbごとに心拍波形の振幅強度y1、y2、y3、…ym、…、ynを測定する。この測定において、ym=ynとなるときまでに要した経過時間の総和を求め、単位時間あたりの値に換算することで周波数fを算出する。図9Cの場合は、呼吸波形成分の振幅強度がy2とy10で同一となっているので、tb10-tb2=8×tbを、単位時間あたりに換算した値が周波数となる。なお、呼吸波形成分の周波数を算出する際の説明と同様に、グラフの凹凸と変曲点を求める一般的な方法を用いて算出してもよい。 The frequency calculation unit 115 measures the amplitude of the microwave waveform shown in FIG. 9A at regular time intervals. For example, as shown in FIG. 9C, the amplitude intensities y1, y2, y3, ... ym, ..., Yn of the heartbeat waveform are measured every time tb. In this measurement, the sum of the elapsed times required until ym = yn is obtained, and the frequency f is calculated by converting it into a value per unit time. In the case of FIG. 9C, since the amplitude intensity of the respiratory waveform component is the same for y2 and y10, the value obtained by converting tb10-tb2 = 8 × tb per unit time is the frequency. It should be noted that the calculation may be performed by using a general method for obtaining the unevenness and the inflection point of the graph, as in the explanation when calculating the frequency of the respiratory waveform component.
 周波数算出部115は、以上のようにして算出された無呼吸成分波形の周波数を記憶部117に記憶させる(S106)。 The frequency calculation unit 115 stores the frequency of the apnea component waveform calculated as described above in the storage unit 117 (S106).
 心拍出量算出部116は、S104のステップで記憶させた呼吸成分波形の周波数を用いて、呼吸成分波形の周波数に適合するフィルタを生成し、その生成したフィルタをかけて呼吸成分を除いた波形を成形する(S107)。次に、心拍出量算出部116は、S106のステップで記憶させた無呼吸成分波形の周波数を用いて、無呼吸成分波形(心拍動)の周波数に適合するフィルタを生成し、その生成したフィルタをかけて心拍動をより抽出した波形を成形する(S108)。 The cardiac output calculation unit 116 generated a filter matching the frequency of the respiratory component waveform using the frequency of the respiratory component waveform stored in the step of S104, and applied the generated filter to remove the respiratory component. Shape the waveform (S107). Next, the cardiac output calculation unit 116 generated a filter matching the frequency of the apnea component waveform (heartbeat) using the frequency of the apnea component waveform stored in the step of S106, and generated the filter. A waveform is formed by applying a filter to extract the heartbeat more (S108).
 S102のステップの処理からS108のステップの処理までで、図9Aのマイクロ波の波形が図9Dに示すような心拍波形に成形される。心拍出量算出部116は、図9Dに示した成形後の心拍波形(心拍出量を求める波形)から被検者の心臓の心拍出量を算出する(S109)。制御部110は、表示部154に、算出された心拍出量と呼吸数を表示させる(S110)。 From the process of the step S102 to the process of the step S108, the microwave waveform of FIG. 9A is formed into a heartbeat waveform as shown in FIG. 9D. The cardiac output calculation unit 116 calculates the cardiac output of the subject's heart from the molded cardiac output (waveform for obtaining the cardiac output) shown in FIG. 9D (S109). The control unit 110 causes the display unit 154 to display the calculated cardiac output and respiratory rate (S110).
 また、図9Aに示すようなマイクロ波の波形から、呼吸成分波形の周波数を算出し(S103)、無呼吸成分波形の周波数を算出し(S105)、心拍出量を求める波形を成形する(S108)までの一連のステップ(S103~S108)は、以下のように行うこともできる。 Further, the frequency of the respiratory component waveform is calculated from the microwave waveform as shown in FIG. 9A (S103), the frequency of the apnea component waveform is calculated (S105), and the waveform for obtaining the heart rate output is formed (S105). The series of steps (S103 to S108) up to S108) can also be performed as follows.
 まず、図9Aに示すようなマイクロ波の波形に対し、広いバンドパスフィルタやローパスフィルタをかける。そうすることで、図9Aに示すようなマイクロ波の波形から無呼吸成分波形由来の細かい凹凸が除去され、呼吸成分波形のみで構成されたような波形が得られる。この波形に対し、電圧が単位時間当たりに一定の閾値を横切る回数によって波形の周波数を算出する手法などを用い、呼吸成分波形の周波数を算出する(S103)。 First, a wide bandpass filter or lowpass filter is applied to the microwave waveform as shown in FIG. 9A. By doing so, fine irregularities derived from the apnea component waveform are removed from the microwave waveform as shown in FIG. 9A, and a waveform as if it is composed of only the respiratory component waveform can be obtained. With respect to this waveform, the frequency of the respiratory component waveform is calculated by using a method of calculating the frequency of the waveform based on the number of times the voltage crosses a certain threshold value per unit time (S103).
 周波数算出部115は、以上のようにして算出された呼吸成分波形の周波数を記憶部117に記憶させる(S104)。心拍出量算出部116は、S104のステップで記憶させた呼吸成分波形の周波数を用いて、呼吸成分波形の周波数に適合するフィルタを生成し、その生成したフィルタをかけて呼吸成分を除いた波形を成形する(S107)。 The frequency calculation unit 115 stores the frequency of the respiratory component waveform calculated as described above in the storage unit 117 (S104). The cardiac output calculation unit 116 generated a filter matching the frequency of the respiratory component waveform using the frequency of the respiratory component waveform stored in the step of S104, and applied the generated filter to remove the respiratory component. Shape the waveform (S107).
 次いで、このステップS107で得られた呼吸成分を除いた波形を用い、電圧が単位時間当たりに一定の閾値を横切る回数によって波形の周波数を算出する手法などを用い、無呼吸成分波形の周波数を算出する(S105)。そして、周波数算出部115は、このようにして算出された無呼吸成分波形の周波数を記憶部117に記憶させる(S106)。心拍出量算出部116は、S106のステップで記憶させた無呼吸成分波形の周波数を用いて、無呼吸成分波形の周波数に適合するフィルタを生成し、その生成したフィルタを、S107で得られた呼吸成分を除いた波形にかけることで、心拍動をより抽出した、心拍出量を求める波形を成形する(S108)。 Next, the frequency of the apnea component waveform is calculated by using the waveform obtained in step S107 excluding the respiratory component and using a method of calculating the frequency of the waveform by the number of times the voltage crosses a certain threshold per unit time. (S105). Then, the frequency calculation unit 115 stores the frequency of the apnea component waveform calculated in this way in the storage unit 117 (S106). The cardiac output calculation unit 116 uses the frequency of the apnea component waveform stored in the step of S106 to generate a filter that matches the frequency of the apnea component waveform, and the generated filter is obtained in S107. By applying to the waveform excluding the respiratory component, a waveform for obtaining the cardiac output, which is a more extracted heartbeat, is formed (S108).
 以上のようにして、心拍出量測定装置100は心拍出量と呼吸数を測定する。なお、上記の例では、心拍出量と呼吸数を表示部154に表示させたが、心拍出量と呼吸数を記憶部117に記憶させたり、通信部118を介して外部端末170に送信させたりしても良い。 As described above, the cardiac output measuring device 100 measures the cardiac output and the respiratory rate. In the above example, the cardiac output and the respiratory rate are displayed on the display unit 154, but the cardiac output and the respiratory rate are stored in the storage unit 117 or on the external terminal 170 via the communication unit 118. You may send it.
 なお、心拍出量に加えて、1つの波形振幅強度から算出される1回拍出量を表示させてもよい。さらには、心拍動の周波数を、心拍数として表示しても良い。さらには、入力された被験者の身長や体重等の情報から体表面積を算出し、心拍出量を体表面積で割ることで、心係数として表示しても良い。 In addition to the cardiac output, the stroke amount calculated from one waveform amplitude intensity may be displayed. Furthermore, the frequency of the heartbeat may be displayed as the heart rate. Further, the body surface area may be calculated from the input information such as the height and weight of the subject, and the cardiac output may be divided by the body surface area to be displayed as a cardiac index.
 なお、1回拍出量の算出においては、1つの波形振幅強度から算出してもよいが、複数の振幅を有する心拍波形から心拍出量を算出し、その値を心拍数で割ることで算出してもよい。 In the calculation of the stroke volume, it may be calculated from one waveform amplitude intensity, but by calculating the cardiac output from the heart rate waveform having a plurality of amplitudes and dividing the value by the heart rate. It may be calculated.
 なお、明細書中では心拍出量を計測する装置として本発明を説明しているが、心臓から送り出される血液量に関しては、心拍出量だけでなく、1回拍出量や、心係数等の指標があり、これらの指標は互いに換算可能であることから、本発明では特にこれらを限定しない。 Although the present invention is described as a device for measuring cardiac output in the specification, regarding the amount of blood pumped from the heart, not only the cardiac output but also the stroke amount once and the cardiac index are used. Etc., and since these indexes can be converted to each other, these are not particularly limited in the present invention.
 以上のように、本実施形態の心拍出量測定装置によれば、被検者の心拍出量と、呼吸状態との双方を正確に測定できる。 As described above, according to the cardiac output measuring device of the present embodiment, both the cardiac output of the subject and the respiratory state can be accurately measured.
 以上、本発明の心拍出量測定装置の実施形態について説明した。しかし、本発明の心拍出量測定装置の技術的思想は、以上に例示した実施形態によって限定されるものではない。本発明の技術的思想は、以上で例示した実施形態以外の態様で具現化される場合もある
 また、本実施形態では、0.4GHz~1.00GHzの周波数の電磁波を用いることとし、これをマイクロ波を用いていると説明しているが、マイクロ波の定義として、周波数300MHz~300GHzの電磁波とする定義や、周波数3GHz~30GHzの電磁波とする定義といった、定義の違いによるものではない。また、心拍出量を求める波形が最も鮮明に得られる周波数を設定することが好ましく、短波、超短波、極超短波といった電磁波を用いてもよい。
The embodiment of the cardiac output measuring device of the present invention has been described above. However, the technical idea of the cardiac output measuring device of the present invention is not limited to the embodiments exemplified above. The technical idea of the present invention may be embodied in an embodiment other than the embodiments illustrated above. Further, in the present embodiment, an electromagnetic wave having a frequency of 0.4 GHz to 1.00 GHz is used. Although it is explained that microwaves are used, the definition of microwaves is not due to the difference in definitions such as the definition of an electromagnetic wave having a frequency of 300 MHz to 300 GHz and the definition of an electromagnetic wave having a frequency of 3 GHz to 30 GHz. Further, it is preferable to set the frequency at which the waveform for which the cardiac output is obtained is obtained most clearly, and electromagnetic waves such as short wave, ultra high frequency wave, and ultra high frequency wave may be used.
 本出願は、2019年9月30日に出願された日本特許出願(特願2019-179129号)に基づいており、その開示内容は、参照され、全体として組み入れられている。 This application is based on a Japanese patent application filed on September 30, 2019 (Japanese Patent Application No. 2019-179129), the disclosure of which is referenced and incorporated as a whole.
 100 心拍出量測定装置、
 110 制御部、
 111 プロセッサ、
 112 心拍波形測定部、
 114 呼吸数算出部、
 115 周波数算出部、
 116 心拍出量算出部、
 117 記憶部、
 118 通信部、
 119 駆動部、
 121 移動部、
 122 送信部、
 123 筐体、
 124 送信アンテナ、
 125 駆動機構、
 126 受信アンテナ、
 127 寝台、
 128 受信部、
 129 台座、
 130 加速度センサ、
 140 測定開始スイッチ、
 152 報知部、
 154 表示部、
 160 入力部、
 170 外部端末、
 200 位置決め装置、
 h 心臓、
 P 被検者。
100 cardiac output measuring device,
110 control unit,
111 processor,
112 Heart rate waveform measuring unit,
114 Respiratory rate calculation unit,
115 Frequency calculation unit,
116 Cardiac output calculation unit,
117 Memory,
118 Communication Department,
119 drive unit,
121 Moving part,
122 transmitter,
123 housing,
124 transmitting antenna,
125 drive mechanism,
126 receiving antenna,
127 sleeper,
128 receiver,
129 pedestal,
130 accelerometer,
140 Measurement start switch,
152 Notification unit,
154 display section,
160 input section,
170 external terminal,
200 positioning device,
h heart,
P subject.

Claims (13)

  1.  生体を透過したマイクロ波の波形を測定する心拍波形測定部を有し、
     前記心拍波形測定部は、前記生体を透過した前記マイクロ波の波形に、呼吸成分波形と無呼吸成分波形とを含み、
     前記無呼吸時の波形を用いて前記マイクロ波の波形から前記生体の心拍出量を求める波形を算出する第1算出手段と、
     前記呼吸時の波形を用いて前記マイクロ波の波形から前記生体の呼吸数を求める波形を算出する第2算出手段と、
     を有する、心拍出量測定装置。
    It has a heartbeat waveform measuring unit that measures the waveform of microwaves that have passed through the living body.
    The heartbeat waveform measuring unit includes a respiratory component waveform and an apnea component waveform in the microwave waveform that has passed through the living body.
    A first calculation means for calculating a waveform for obtaining the cardiac output of the living body from the waveform of the microwave using the waveform at the time of apnea.
    A second calculation means for calculating a waveform for obtaining the respiratory rate of the living body from the waveform of the microwave using the waveform at the time of respiration, and
    A cardiac output measuring device.
  2.  前記第1算出手段は、
     前記呼吸時の波形および前記無呼吸時の波形を用いて前記マイクロ波の波形から前記生体の心拍出量を求める波形を算出する、請求項1に記載の心拍出量測定装置。
    The first calculation means is
    The cardiac output measuring device according to claim 1, wherein a waveform for obtaining the cardiac output of the living body is calculated from the waveform of the microwave using the waveform during respiration and the waveform during apnea.
  3.  前記第2算出手段は、
     前記呼吸時の波形および前記無呼吸時の波形を用いて前記マイクロ波の波形から前記生体の呼吸数を求める波形を算出する、請求項1または2に記載の心拍出量測定装置。
    The second calculation means is
    The heart rate output measuring device according to claim 1 or 2, wherein a waveform for obtaining the respiratory rate of the living body is calculated from the waveform of the microwave using the waveform at the time of breathing and the waveform at the time of apnea.
  4.  前記算出手段は、
     前記心拍波形測定部で測定した前記マイクロ波の波形に含まれる前記呼吸成分波形および前記無呼吸成分波形の周波数を算出する周波数算出部と、
     前記呼吸成分波形の周波数を用いて呼吸数を算出する呼吸数算出部と、
     前記呼吸成分波形および前記無呼吸成分波形の周波数を用いて前記心拍出量を求める波形を算出する心拍出量算出部と、
     を有する請求項1~3のいずれか1項に記載の心拍出量測定装置。
    The calculation means is
    A frequency calculation unit that calculates the frequencies of the respiratory component waveform and the apnea component waveform included in the microwave waveform measured by the heart rate waveform measuring unit, and
    A respiratory rate calculation unit that calculates the respiratory rate using the frequency of the respiratory component waveform, and
    A cardiac output calculation unit that calculates a waveform for obtaining the cardiac output using the frequencies of the respiratory component waveform and the apnea component waveform, and
    The cardiac output measuring device according to any one of claims 1 to 3.
  5.  前記周波数算出部は、
     単位時間内に現れる前記呼吸成分波形の変曲点の数により前記呼吸成分波形の周波数を算出し、前記単位時間内に現れる前記無呼吸成分波形の変曲点の数により前記無呼吸成分波形の周波数を算出する、請求項4に記載の心拍出量測定装置。
    The frequency calculation unit
    The frequency of the respiratory component waveform is calculated from the number of inflection points of the respiratory component waveform appearing within a unit time, and the apnea component waveform is calculated from the number of inflection points of the apnea component waveform appearing within the unit time. The heart rate measuring device according to claim 4, which calculates a frequency.
  6.  前記周波数算出部は、
     前記マイクロ波の波形の電圧値が単位時間当たりに一定の閾値を横切る回数によって前記呼吸成分波形の周波数を算出し、前記マイクロ波の波形の電圧値が単位時間当たりに一定の閾値を横切る回数によって前記無呼吸成分波形の周波数を算出する、請求項4に記載の心拍出量測定装置。
    The frequency calculation unit
    The frequency of the respiratory component waveform is calculated by the number of times the voltage value of the microwave waveform crosses a certain threshold per unit time, and the frequency of the microwave waveform crosses a certain threshold per unit time. The heart rate output measuring device according to claim 4, which calculates the frequency of the aspirating component waveform.
  7.  前記心拍出量算出部は、
     前記呼吸成分波形の周波数に適合するフィルタおよび前記無呼吸成分波形の周波数に適合するフィルタを生成し、生成したフィルタを用いて前記心拍出量を求める波形を算出する、請求項4に記載の心拍出量測定装置。
    The cardiac output calculation unit
    The fourth aspect of claim 4, wherein a filter matching the frequency of the respiratory component waveform and a filter matching the frequency of the apnea component waveform are generated, and the waveform for obtaining the cardiac output is calculated using the generated filter. Cardiac output measuring device.
  8.  前記周波数算出部は、
     前記マイクロ波の波形に対し、あらかじめ定められたローパスフィルタまたはバンドパスフィルタをかけた波形を用いて前記呼吸成分波形の周波数を算出し、前記心拍出量算出部により前記呼吸成分波形に適合するフィルタを生成し、前記マイクロ波の波形に前記呼吸成分波形に適合するフィルタをかけた波形を用いて、前記無呼吸成分波形の周波数を算出する、請求項4から6のいずれか1項に記載の心拍出量測定装置。
    The frequency calculation unit
    The frequency of the respiratory component waveform is calculated using a waveform obtained by applying a predetermined low-pass filter or band-pass filter to the microwave waveform, and the heart rate output calculation unit matches the respiratory component waveform. The present invention according to any one of claims 4 to 6, wherein a filter is generated, and the frequency of the aspiratory component waveform is calculated using a waveform obtained by applying a filter that matches the respiratory component waveform to the microwave waveform. Heart rate measuring device.
  9.  さらに、
     フィルタを生成するためのフィルタ係数算出式およびフィルタを記憶する記憶部を有し、
     前記心拍出量算出部は、
     前記呼吸成分波形の周波数に適合するフィルタおよび前記無呼吸成分波形の周波数に適合するフィルタを前記記憶部に記憶されているそれぞれのフィルタ係数算出式およびフィルタから生成し、
     前記フィルタデータは、ローパスフィルタまたはバンドパスフィルタなどのデジタルフィルタである、請求項7または8に記載の心拍出量測定装置。
    further,
    It has a filter coefficient calculation formula for generating a filter and a storage unit for storing the filter.
    The cardiac output calculation unit
    A filter matching the frequency of the respiratory component waveform and a filter matching the frequency of the apnea component waveform are generated from the respective filter coefficient calculation formulas and filters stored in the storage unit.
    The cardiac output measuring device according to claim 7 or 8, wherein the filter data is a digital filter such as a low-pass filter or a band-pass filter.
  10.  さらに、呼吸数を計測する手段として、前記生体の体表面に取り付けた加速度センサが接続される、請求項1~9のいずれか1項に記載の心拍出量測定装置。 The cardiac output measuring device according to any one of claims 1 to 9, further, as a means for measuring the respiratory rate, an acceleration sensor attached to the body surface of the living body is connected.
  11.  さらに、前記生体に前記マイクロ波を照射する送信アンテナと、
     前記生体を透過した前記マイクロ波を受信する受信アンテナと、
     前記送信アンテナと前記受信アンテナの相対位置を変化させるために、前記送信アンテナと前記受信アンテナの少なくともいずれか一方の位置を移動させる位置決め装置と、
     を有する、請求項1~10のいずれか1項に記載の心拍出量測定装置。
    Further, a transmitting antenna that irradiates the living body with the microwave and
    A receiving antenna that receives the microwave that has passed through the living body, and
    A positioning device that moves at least one of the transmitting antenna and the receiving antenna in order to change the relative positions of the transmitting antenna and the receiving antenna.
    The cardiac output measuring device according to any one of claims 1 to 10.
  12.  前記位置決め装置は、
     前記心拍出量を求める波形の振幅が最大となるように前記位置決め装置を駆動して、前記送信アンテナと前記受信アンテナの相対位置を変化させる駆動部を有する、請求項11に記載の心拍出量測定装置。
    The positioning device is
    The cardiac output according to claim 11, further comprising a driving unit that drives the positioning device so that the amplitude of the waveform for which the cardiac output is obtained is maximized to change the relative positions of the transmitting antenna and the receiving antenna. Output measuring device.
  13.  前記位置決め装置は、
     前記呼吸数算出部による呼吸数の算出結果と、前記心拍出量算出部による前記心拍出量の算出結果の、双方の結果が最適となるように、前記送信アンテナと前記受信アンテナの相対位置を変化させる駆動部を有する、請求項11に記載の心拍出量測定装置。
    The positioning device is
    Relative between the transmitting antenna and the receiving antenna so that both the results of the respiratory rate calculation by the respiratory rate calculation unit and the calculation result of the cardiac output by the cardiac output calculation unit are optimal. The cardiac output measuring device according to claim 11, further comprising a driving unit that changes the position.
PCT/JP2020/037133 2019-09-30 2020-09-30 Cardiac output measurement device WO2021066004A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021551371A JPWO2021066004A1 (en) 2019-09-30 2020-09-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019179129 2019-09-30
JP2019-179129 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021066004A1 true WO2021066004A1 (en) 2021-04-08

Family

ID=75337011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037133 WO2021066004A1 (en) 2019-09-30 2020-09-30 Cardiac output measurement device

Country Status (2)

Country Link
JP (1) JPWO2021066004A1 (en)
WO (1) WO2021066004A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329149A (en) * 2004-05-21 2005-12-02 Sony Corp Method and instrument for respiratory information measurement
JP2014061223A (en) * 2012-09-24 2014-04-10 Terumo Corp Vital measuring instrument
WO2016013684A1 (en) * 2014-07-22 2016-01-28 帝人ファーマ株式会社 Heart failure evaluation method and diagnosis device
US20160235331A1 (en) * 2015-02-12 2016-08-18 University Of Hawaii Lung water content measurement system and calibration method
JP2016168177A (en) * 2015-03-12 2016-09-23 国立大学法人 筑波大学 Biological information detector and seat with backrest
JP2016202516A (en) * 2015-04-21 2016-12-08 学校法人 関西大学 Device for estimating cardiac volume and cardiac output
JP2017513635A (en) * 2013-04-26 2017-06-01 ユニバーシティ オブ ハワイ Microwave stethoscope for measuring cardiopulmonary vital signs and lung water content

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329149A (en) * 2004-05-21 2005-12-02 Sony Corp Method and instrument for respiratory information measurement
JP2014061223A (en) * 2012-09-24 2014-04-10 Terumo Corp Vital measuring instrument
JP2017513635A (en) * 2013-04-26 2017-06-01 ユニバーシティ オブ ハワイ Microwave stethoscope for measuring cardiopulmonary vital signs and lung water content
WO2016013684A1 (en) * 2014-07-22 2016-01-28 帝人ファーマ株式会社 Heart failure evaluation method and diagnosis device
US20160235331A1 (en) * 2015-02-12 2016-08-18 University Of Hawaii Lung water content measurement system and calibration method
JP2016168177A (en) * 2015-03-12 2016-09-23 国立大学法人 筑波大学 Biological information detector and seat with backrest
JP2016202516A (en) * 2015-04-21 2016-12-08 学校法人 関西大学 Device for estimating cardiac volume and cardiac output

Also Published As

Publication number Publication date
JPWO2021066004A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
EP3740269B1 (en) System to assist a rescuer with an intubation procedure for a patient
JP7209538B2 (en) Devices and methods for monitoring physiological parameters
KR102091974B1 (en) Method for tracking target and detecting respiration and heartbeat pattern using FMCW radar
AU754605B2 (en) Device for the synchronization with physiological cycles
CA2326740C (en) Method and apparatus for determining cardiac output or total peripheral resistance
US20120132211A1 (en) Monitoring endotracheal intubation
US20220313934A1 (en) Esophageal pressure clincical decision support system
KR20190071808A (en) System and method for calculating respiration early warning score
EP3261526B1 (en) Apparatus and method for providing a control signal for a blood pressure measurement device
JP2021180909A (en) System for obtaining physiological parameters
JP2010213773A (en) Breathing instruction device
CN102961140A (en) Method and apparatus for detecting and treating heart failure
KR20190057340A (en) Systems and methods for monitoring airflow in airways with ultrasound
WO2019152699A1 (en) Devices and methods for monitoring physiologic parameters
JP2023518805A (en) Devices for predicting, identifying and/or managing pneumonia or other medical conditions
CN114587347A (en) Lung function detection method, system, device, computer equipment and storage medium
JP2000102515A (en) Physical condition detector
WO2021066004A1 (en) Cardiac output measurement device
WO2021066002A1 (en) Cardiac output measurement device and cardiac output measurement method
WO2021066003A1 (en) Cardiac output measurement device
WO2014204721A1 (en) Remote monitoring system for physiological events
JP6005869B2 (en) System and method for measuring respiration rate
US20190192015A1 (en) Apparatus And Method For Auscultation
KR20220106243A (en) Apparatus for monitoring AI respiration patient
JP2012161539A (en) Device and method for breath control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551371

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872943

Country of ref document: EP

Kind code of ref document: A1