JP2005329149A - Method and instrument for respiratory information measurement - Google Patents

Method and instrument for respiratory information measurement Download PDF

Info

Publication number
JP2005329149A
JP2005329149A JP2004152118A JP2004152118A JP2005329149A JP 2005329149 A JP2005329149 A JP 2005329149A JP 2004152118 A JP2004152118 A JP 2004152118A JP 2004152118 A JP2004152118 A JP 2004152118A JP 2005329149 A JP2005329149 A JP 2005329149A
Authority
JP
Japan
Prior art keywords
pulse wave
respiratory
baseline fluctuation
fluctuation component
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004152118A
Other languages
Japanese (ja)
Other versions
JP4581480B2 (en
Inventor
Susumu Murakami
進 村上
Akira Ogino
晃 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004152118A priority Critical patent/JP4581480B2/en
Publication of JP2005329149A publication Critical patent/JP2005329149A/en
Application granted granted Critical
Publication of JP4581480B2 publication Critical patent/JP4581480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an instrument for respiratory information measurement, which finds respiratory information such as a respiratory rate and a respiratory pattern of a subject by just analyzing measured pulse waves. <P>SOLUTION: This respiratory information measuring method for obtaining the respiratory information, extracts a baseline fluctuation voltage waveform indicating a transition (the baseline fluctuation) of the minimum voltage in a period of a single beat of the pulse wave from the measured pulse waves. The respiratory pattern of the subject is found by using the fact that the fluctuation pattern of the baseline fluctuation voltage waveform synchronizes with the respiratory pattern. The respiratory rate of the subject is found by counting the number of times where the baseline fluctuation voltage waveform exceeds a predetermined threshold. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、測定した脈波を解析することで被験者の呼吸数や呼吸パターンといった呼吸情報を求める呼吸情報測定方法及びその装置に関する。   The present invention relates to a respiratory information measurement method and apparatus for determining respiratory information such as a subject's respiratory rate and respiratory pattern by analyzing a measured pulse wave.

従来、健康管理や診断等の目的で脈拍数、血糖値、血中酸素飽和度、呼吸パターン等の生体情報(バイタルサイン)を測定するためには、それぞれの目的のために専用のセンサと測定装置が必要であった。例えば、血中酸素飽和度を測定するためには指先にセンサを固定する必要があり、呼吸パターンを測定するためには胸部にセンサを内蔵した伸縮ベルトを巻いたり、或いは胸部や鼻の近傍に気流センサや電極等を装着したりする必要があった。このため、測定に際して被験者を一定時間拘束する必要があり快適とは言い難く、健康上に明らかに問題があるなど臨床的見地からバイタルサインを測定する必要性がない限り、これらの測定装置が日常的に使用されることはなかった。   Conventionally, in order to measure biological information (vital sign) such as pulse rate, blood glucose level, blood oxygen saturation, breathing pattern, etc. for health management and diagnostic purposes, a dedicated sensor and measurement for each purpose Equipment was needed. For example, in order to measure blood oxygen saturation, it is necessary to fix a sensor on the fingertip, and in order to measure a breathing pattern, an elastic belt with a built-in sensor is wrapped around the chest, or in the vicinity of the chest or nose. It was necessary to attach an airflow sensor, an electrode, or the like. For this reason, it is difficult to say that it is necessary to restrain the subject for a certain period of time for measurement, and it is difficult to say that these measurement devices are used daily unless there is a need to measure vital signs from a clinical standpoint. Was never used.

しかしながら、近年社会の構成人口が高齢化し、また生活習慣の近代化により生活習慣病の潜在的危険が増大し、その予防の重要性が叫ばれている中で、これらのバイタルサインを通常の生活の中でより高い頻度で快適に測定する手段が求められていた。   However, in recent years, the population of society has been aging, and the modernization of lifestyle habits has increased the potential risk of lifestyle-related diseases. Therefore, there has been a demand for means for measuring comfortably at a higher frequency.

このような背景から、下記特許文献1には、バイタルサインの測定のみを目的とした従来の測定装置に代わり、被検者が通常の生活を営む中で非拘束、無意識のうちに、脈拍数や血糖値等のバイタルサインを測定する生体情報測定装置が提案されている。   From such a background, the following Patent Document 1 discloses that the pulse rate is unconstrained and unconscious while the subject is in a normal life, instead of the conventional measuring device only for the measurement of vital signs. Biological information measuring devices that measure vital signs such as blood glucose levels have been proposed.

この生体情報測定装置に用いられるセンサ素子の正面図を図9に、センサ素子を被験者に装着した状態を示す図を図10にそれぞれ示す。図9に示すように、センサ素子100は、イヤーレシーバ形状とされ、所定波長の光を被験者に投射する発光部101と、発光部101から投射された光のうち被験者を経由した光を検出する受光部102と、音楽等を再生するためのスピーカ103とが配されている。このセンサ素子100は、図10に示すように、一般のイヤーレシーバと同様に、被験者の耳甲介腔に固定して用いられ、これにより発光部101及び受光部102が外耳道の開口部の周縁に当接する。ここで、血流には脈があり、さらに血液の透過率は皮膚等の他の生体部分の透過率と比較して低いため、受光部102で検出される反射光の強度は脈拍に同期して変動する。したがって、この変動を連続して測定することにより、脈拍数を得ることができる。また、測定する血中成分(グルコースやコレステロールなど)に吸収されやすい波長の光を投射することにより、血糖値や血中コレステロール値を測定することができる。   FIG. 9 shows a front view of a sensor element used in this biological information measuring apparatus, and FIG. 10 shows a state in which the sensor element is attached to a subject. As shown in FIG. 9, the sensor element 100 has an ear receiver shape, and detects a light that passes through the subject out of the light emitted from the light emitting unit 101 and the light emitted from the light emitting unit 101. A light receiving unit 102 and a speaker 103 for reproducing music and the like are arranged. As shown in FIG. 10, the sensor element 100 is used by being fixed to the concha cavity of the subject as in the case of a general ear receiver, whereby the light emitting unit 101 and the light receiving unit 102 are peripheral to the opening of the ear canal. Abut. Here, since the blood flow has a pulse, and the permeability of blood is lower than that of other biological parts such as skin, the intensity of the reflected light detected by the light receiving unit 102 is synchronized with the pulse. Fluctuate. Therefore, the pulse rate can be obtained by continuously measuring this variation. Moreover, a blood glucose level and a blood cholesterol level are measurable by projecting the light of the wavelength which is easy to be absorbed by the blood components (glucose, cholesterol, etc.) to measure.

特開平11−178803号公報Japanese Patent Laid-Open No. 11-178803

ところで、上述した特許文献1記載の生体情報測定装置では、脈波を解析することにより脈拍数、血糖値、血中コレステロール値等のバイタルサインを測定することができるものの、呼吸数や呼吸パターンといった呼吸情報を測定することはできないため、呼吸情報を測定する場合には、上述のように胸部にセンサを内蔵した伸縮ベルトを巻いたり、或いは胸部や鼻の近傍に気流センサや電極等を装着したりする必要があった。その一方で、脈波を解析することにより呼吸情報を得ることができれば、被験者の負担を最小限に抑えた上で、さらに多くのバイタルサインを並行して測定することができ、被験者の健康管理上、非常に有益であると考えられる。   By the way, in the biological information measuring device described in Patent Document 1 described above, vital signs such as a pulse rate, a blood glucose level, and a blood cholesterol level can be measured by analyzing a pulse wave, but the respiratory rate and the breathing pattern, etc. Since breathing information cannot be measured, when measuring breathing information, wrap an elastic belt with a built-in sensor around the chest as described above, or attach an airflow sensor or electrode near the chest or nose. It was necessary to do. On the other hand, if respiratory information can be obtained by analyzing the pulse wave, more vital signs can be measured in parallel while minimizing the burden on the subject. Above, it is considered very useful.

本発明は、このような従来の実情に鑑みて提案されたものであり、測定した脈波を解析するのみで被験者の呼吸数や呼吸パターンといった呼吸情報を求める呼吸情報測定方法及びその装置を提供することを目的とする。   The present invention has been proposed in view of such a conventional situation, and provides a respiratory information measurement method and apparatus for obtaining respiratory information such as a subject's respiratory rate and respiratory pattern only by analyzing a measured pulse wave. The purpose is to do.

本件発明者らは、上述した目的を達成するために、様々な観点から鋭意研究を重ねてきた。その結果、脈波一拍の期間における最低電圧の推移である基線変動電圧の波形パターンが呼吸パターンと有意な相関を示すことを見出した。本発明は、このような知見に基づいて完成されたものである。   In order to achieve the above-described object, the present inventors have conducted intensive research from various viewpoints. As a result, it was found that the waveform pattern of the baseline fluctuation voltage, which is the transition of the lowest voltage during the period of one pulse wave, shows a significant correlation with the respiratory pattern. The present invention has been completed based on such findings.

すなわち、本発明に係る呼吸情報測定方法は、血液循環によって生じる脈波を検出する脈波検出工程と、上記脈波検出工程にて検出された脈波の基線変動成分を抽出する基線変動成分抽出工程と、上記基線変動成分抽出工程にて抽出された基線変動成分の時間変動パターンに基づいて呼吸情報を演算する呼吸情報演算工程とを有する。   That is, the respiratory information measurement method according to the present invention includes a pulse wave detection step for detecting a pulse wave generated by blood circulation and a baseline fluctuation component extraction for extracting a baseline fluctuation component of the pulse wave detected in the pulse wave detection step. And a respiration information calculation step of calculating respiration information based on the time variation pattern of the baseline variation component extracted in the baseline variation component extraction step.

また、本発明に係る呼吸情報測定装置は、血液循環によって生じる脈波を検出する脈波検出手段と、上記脈波検出手段によって検出された脈波の基線変動成分を抽出する基線変動成分抽出手段と、上記基線変動成分抽出手段によって抽出された基線変動成分の時間変動パターンに基づいて呼吸情報を演算する呼吸情報演算手段とを備える。   The respiratory information measuring apparatus according to the present invention includes a pulse wave detection unit that detects a pulse wave generated by blood circulation, and a baseline fluctuation component extraction unit that extracts a baseline fluctuation component of the pulse wave detected by the pulse wave detection unit. And respiration information calculating means for calculating respiration information based on the time fluctuation pattern of the baseline fluctuation component extracted by the baseline fluctuation component extraction means.

ここで、脈波を検出する際には、脈波を検出する部位に対して発光部から光を投射し、この部位から得られる透過光又は反射光を受光部により検出する。   Here, when detecting a pulse wave, light is projected from the light emitting unit to a part for detecting the pulse wave, and transmitted light or reflected light obtained from this part is detected by the light receiving unit.

本発明に係る呼吸情報測定方法及びその装置では、血液循環によって生じる脈波の一拍の期間における最低電圧の推移である基線変動電圧波形の変動パターンに基づいて被験者の呼吸情報を求めるため、脈波を測定するのみで簡便に呼吸情報を得ることができる。   In the respiratory information measuring method and apparatus therefor according to the present invention, since the subject's respiratory information is obtained based on the fluctuation pattern of the baseline fluctuation voltage waveform, which is the transition of the lowest voltage in the period of one pulse of the pulse wave generated by blood circulation, Respiratory information can be obtained simply by measuring waves.

以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。この実施の形態は、本発明を、脈波を解析することで被験者の呼吸数や呼吸パターンといった呼吸情報を求める呼吸情報測定方法及びその装置に適用したものである。以下では、先ず脈波から呼吸情報を求める方法について説明し、次いで、脈波を測定し、これを解析して呼吸情報を求める処理を行う呼吸情報測定装置の一例について説明する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. In this embodiment, the present invention is applied to a respiratory information measuring method and apparatus for obtaining respiratory information such as a subject's respiratory rate and respiratory pattern by analyzing a pulse wave. In the following, a method for obtaining respiratory information from a pulse wave will be described first, and then an example of a respiratory information measuring device that performs processing for measuring a pulse wave and analyzing it to obtain respiratory information will be described.

皮膚血管(末梢血管)の膨張・収縮を皮膚表面から電気的・機械的にとらえたものを容積脈波という。検出された容積脈波のうち概ね20Hzより高周波の成分をローパスフィルタにより除去し、増幅した後の波形を図1(A)に示す。この図1(A)に示すグラフの全幅は概ね2秒程度である。また、図中tは、脈波一拍に相当する時間間隔を示したものである。また、脈波一拍の期間における最低電圧の推移(基線変動)を表す基線変動電圧波形を図1(B)に太線で示す。この図1に示すグラフの全幅は概ね30秒程度である。また、図中Tは、この基線変動電圧波形の一周期に相当する時間間隔を示したものである。図1(A)、(B)のtとTとを比較して分かるように、基線変動電圧波形は、脈波よりも長い周期の時間変動を伴っている。   A volume pulse wave is obtained by electrically and mechanically capturing the expansion / contraction of skin blood vessels (peripheral blood vessels) from the skin surface. FIG. 1 (A) shows a waveform after a component having a frequency higher than about 20 Hz is removed by a low-pass filter from the detected volume pulse wave and amplified. The full width of the graph shown in FIG. 1A is about 2 seconds. In the figure, t represents a time interval corresponding to one pulse wave. In addition, a baseline fluctuation voltage waveform representing the transition of the minimum voltage (baseline fluctuation) in the period of one pulse wave is shown by a thick line in FIG. The full width of the graph shown in FIG. 1 is approximately 30 seconds. In the figure, T indicates a time interval corresponding to one cycle of the baseline fluctuation voltage waveform. As can be seen by comparing t and T in FIGS. 1A and 1B, the baseline fluctuation voltage waveform is accompanied by time fluctuation having a longer period than the pulse wave.

図2は、この基線変動電圧波形(図中実線)を、別の方法で確認した呼吸パターン(図中破線)と重畳させて示したものである。図2において、呼吸パターンのグラフの上部は吸気した状態を示し、グラフの下部は排気した状態を示す。この図2から、基線変動電圧波形の変動パターンが呼吸パターンと同期していることが確認できる。そして、被験者自身の体の動き等の外乱がない限り、この基線変動電圧波形の変動パターンは、呼吸により誘起されたものと推定される。なお、この現象は、胸腔内にある心臓及び大動脈が呼吸による胸腔内の圧力変化の影響を受け、心臓の血液駆出圧力にそれらの要素が加味されたものが末梢で検出されているためと説明できる。   FIG. 2 shows the baseline fluctuation voltage waveform (solid line in the figure) superimposed on a respiration pattern (broken line in the figure) confirmed by another method. In FIG. 2, the upper part of the breath pattern graph shows an inhaled state, and the lower part of the graph shows an exhausted state. From FIG. 2, it can be confirmed that the fluctuation pattern of the baseline fluctuation voltage waveform is synchronized with the breathing pattern. As long as there is no disturbance such as the body movement of the subject himself, it is estimated that the fluctuation pattern of the baseline fluctuation voltage waveform is induced by respiration. This phenomenon is due to the fact that the heart and aorta in the thoracic cavity are affected by changes in pressure in the thoracic cavity due to respiration, and those factors that are added to the blood ejection pressure of the heart are detected at the periphery. I can explain.

本実施の形態における呼吸情報測定方法は、このような基線変動電圧波形の変動パターンに基づいて呼吸情報を求めるものである。すなわち、基線変動電圧波形の変動パターンを測定することで被験者の呼吸パターンを得ることができ、また、基線変動電圧波形が所定の閾値を超える回数を計数することで、被験者の呼吸数を得ることができる。さらに、呼吸数の時間変動を観察することにより、呼吸を支配している運動量やストレスの推定、或いは睡眠時無呼吸症候群などのスクリーニングにも応用できる。特に、この呼吸情報測定方法では、基線変動電圧波形の変動パターンのみから呼吸情報を求めることができるため、被験者の何れかの生体部分で一系統の脈波データを測定するのみでよく、非常に簡便である。   The respiration information measurement method in the present embodiment obtains respiration information based on such a fluctuation pattern of the baseline fluctuation voltage waveform. In other words, the breathing pattern of the subject can be obtained by measuring the fluctuation pattern of the baseline fluctuation voltage waveform, and the breathing rate of the subject can be obtained by counting the number of times the baseline fluctuation voltage waveform exceeds a predetermined threshold. Can do. Furthermore, by observing the temporal fluctuation of the respiratory rate, it can be applied to the estimation of the momentum and stress governing the respiration or the sleep apnea syndrome. In particular, in this respiration information measurement method, since respiration information can be obtained only from the fluctuation pattern of the baseline fluctuation voltage waveform, it is only necessary to measure one system of pulse wave data in any part of the living body of the subject. Convenient.

次に、脈波を測定し、これを上述したように解析して呼吸情報を求める処理を行う呼吸情報測定装置の一例について説明する。   Next, an example of a respiratory information measuring device that measures a pulse wave and analyzes it to obtain respiratory information as described above will be described.

本実施の形態における呼吸情報測定装置の概略を図3に示す。図3に示すように、本実施の形態における呼吸情報測定装置1は、脈波を測定するためのインナーイヤー型イヤーレシーバ形状のセンサ素子10と、音楽等を再生すると共にセンサ素子10で測定された脈波を解析して呼吸情報を得るための信号解析部30とが、配線50を介して接続されてなる。信号解析部30には表示部31が設けられており、信号解析部30で解析された呼吸情報はこの表示部31を介して被験者に提供される。   FIG. 3 shows an outline of the respiratory information measuring device in the present embodiment. As shown in FIG. 3, the respiratory information measuring apparatus 1 according to the present embodiment reproduces music and the like while measuring the sensor element 10 in the form of an inner ear type ear receiver for measuring a pulse wave, and is measured by the sensor element 10. A signal analyzing unit 30 for analyzing the pulse wave and obtaining respiratory information is connected via the wiring 50. The signal analysis unit 30 is provided with a display unit 31, and the respiration information analyzed by the signal analysis unit 30 is provided to the subject through the display unit 31.

この呼吸情報測定装置1のうちセンサ素子10を拡大して図4に示す。図4に示すように、センサ素子10は、信号解析部30で再生された音楽等を出力するためのスピーカ21を有する本体部20と、シリコンゴムや低反発ウレタン等の柔軟な緩衝材からなるイヤーピース22とからなり、血圧を測定する際には、図5に示すように、一般のインナーイヤー型イヤーレシーバと同様に、イヤーピース22が外耳道の内部に挿入され、本体部20が被験者の耳甲介腔に固定されるように用いられる。   FIG. 4 shows an enlarged view of the sensor element 10 in the respiratory information measuring apparatus 1. As shown in FIG. 4, the sensor element 10 includes a main body 20 having a speaker 21 for outputting music and the like reproduced by the signal analysis unit 30, and a flexible cushioning material such as silicon rubber and low-rebound urethane. As shown in FIG. 5, when measuring blood pressure, the earpiece 22 is inserted into the ear canal and the main body 20 is placed in the concha of the subject as shown in FIG. Used to be fixed to the cavity.

イヤーピース22の側断面図の一例を図6(A)、(B)に示す。イヤーピース22の中央には貫通孔が設けられており、スピーカ21から出力された音波は、この貫通孔を通して外耳道に送り込まれ、鼓膜に到達する。また、イヤーピース22には、脈波を測定するための発光部23及び受光部24が埋め込まれており、この発光部23及び受光部24は、図7に示すように、センサ素子10を被験者に装着した際に外耳道内部の皮膚に当接し、且つ発光部23から投射した投射光及びその反射光の光軸が外耳道と直角又は直角に近い角度になるように配置されている。なお、図6では受光部24を1つしか設けていないが、複数設けることで異なる経路を経由した反射光を受光することができ、より高精度に脈波を測定することが可能となる。   An example of a side sectional view of the earpiece 22 is shown in FIGS. A through hole is provided in the center of the earpiece 22, and sound waves output from the speaker 21 are sent to the ear canal through the through hole and reach the eardrum. Further, the earpiece 22 is embedded with a light emitting unit 23 and a light receiving unit 24 for measuring a pulse wave, and the light emitting unit 23 and the light receiving unit 24 are provided with the sensor element 10 as a subject as shown in FIG. It is disposed so that the optical axis of the projection light projected from the light emitting unit 23 and the reflected light thereof is at right angles or close to right angles with the ear canal when it is worn and in contact with the skin inside the ear canal. In FIG. 6, only one light receiving unit 24 is provided. However, by providing a plurality of light receiving units 24, reflected light passing through different paths can be received, and the pulse wave can be measured with higher accuracy.

イヤーピース22において、発光部23には小型のLED(Light Emission Diode)素子等の発光素子を用いることができる。また、受光部24には例えばSi、InGaAs、Ge等を用いたフォトダイオードや焦電型のマイクロセンサからなる光検出器を用いることができる。発光部23は、イヤーピース22の外側、すなわち外耳道の皮膚に接している面に向けて赤色光及び近赤外光を投射する。投射された光は被験者を経由し、一部分が反射、拡散されて戻ってくる。受光部24は、この反射光を受光して電気信号に変換し、信号解析部30に配線50を介して伝送する。ここで、血流には脈があり、さらに血液の透過率は皮膚等の他の生体部分の透過率と比較して低いため、受光部24で検出される反射光の強度は脈拍に同期して変動する。したがって、この変動を連続して測定することにより、脈波を得ることができる。   In the earpiece 22, a light emitting element such as a small LED (Light Emission Diode) element can be used for the light emitting unit 23. For the light receiving unit 24, for example, a photodetector using a photodiode or pyroelectric microsensor using Si, InGaAs, Ge or the like can be used. The light emitting unit 23 projects red light and near infrared light toward the outside of the earpiece 22, that is, the surface in contact with the skin of the ear canal. The projected light passes through the subject and partly reflects and diffuses back. The light receiving unit 24 receives the reflected light, converts it into an electrical signal, and transmits it to the signal analyzing unit 30 via the wiring 50. Here, the blood flow has a pulse, and the blood permeability is lower than that of other biological parts such as the skin. Therefore, the intensity of the reflected light detected by the light receiving unit 24 is synchronized with the pulse. Fluctuate. Therefore, a pulse wave can be obtained by continuously measuring this variation.

本実施の形態における呼吸情報測定装置1では、このような発光部23及び受光部24が柔軟な緩衝材からなるイヤーピース22に埋め込まれているため、発光部23及び受光部24は、緩衝材の反発力によって適度な圧力で外耳道内面の皮膚に当接されることになる。これにより、被験者自身の動きや重力の影響によって発光部23及び受光部24から皮膚までの距離が変動することを有効に抑制することができ、安定した測定が可能となる。また、イヤーピース22は、外耳道内に挿入されており体外に露出していないため、測定に際して外来光の影響を受けにくいという利点がある。また、外耳道内部は腕や指などの随意的に動かせる筋肉から遠いため、被験者自身の動きによる影響が少なく、測定の際に被検者を拘束する必要がないという利点がある。   In the respiratory information measuring apparatus 1 according to the present embodiment, since the light emitting unit 23 and the light receiving unit 24 are embedded in the earpiece 22 made of a flexible cushioning material, the light emitting unit 23 and the light receiving unit 24 are made of cushioning material. The repulsive force makes contact with the inner surface of the ear canal with an appropriate pressure. Thereby, it can suppress effectively that the distance from the light emission part 23 and the light-receiving part 24 to skin by the influence of test subject's own movement and gravity can be suppressed, and the stable measurement is attained. Further, since the earpiece 22 is inserted into the ear canal and is not exposed outside the body, there is an advantage that the earpiece 22 is not easily affected by external light during measurement. In addition, since the inside of the external auditory canal is far from muscles that can be moved arbitrarily such as arms and fingers, there is an advantage that there is little influence of the subject's own movement and there is no need to restrain the subject during measurement.

さらに、本実施の形態における呼吸情報測定装置1では、センサ素子10がインナーイヤー型イヤーレシーバ形状とされており、本体部20のスピーカ21を介して音楽等を出力することができるため、被験者は、音楽等を鑑賞しながら非拘束、無意識のうちにリラックスした状態で呼吸情報を測定することが可能となる。このため、長時間の装着が可能であり、呼吸情報の推移、変動等の傾向を観察することも可能である。特に、イヤーピース22に埋め込まれる発光部23及び受光部24は小型であるため、音響性能の低下を最小限に抑えることができ、また、イヤーレシーバとしてのデザイン性を損ねることもない。また、本実施の形態における呼吸情報測定装置1では、スピーカ21を有する本体部20と発光部23及び受光部24を有するイヤーピース22とが分離されているため、音楽等を鑑賞しながら呼吸情報を測定した場合であっても、音響振動の影響を受けることは殆どない。   Furthermore, in the respiratory information measuring apparatus 1 according to the present embodiment, the sensor element 10 has an inner-ear type ear receiver shape, and music and the like can be output via the speaker 21 of the main body unit 20. Respiratory information can be measured in a relaxed state unconsciously and unconsciously while listening to music or the like. For this reason, it can be worn for a long time, and it is also possible to observe trends in respiratory information such as transition and fluctuation. In particular, since the light emitting unit 23 and the light receiving unit 24 embedded in the earpiece 22 are small in size, a decrease in acoustic performance can be minimized, and the design as an ear receiver is not impaired. Further, in the respiratory information measuring apparatus 1 according to the present embodiment, the main body unit 20 having the speaker 21 and the earpiece 22 having the light emitting unit 23 and the light receiving unit 24 are separated. Even when measured, it is hardly affected by acoustic vibration.

上述した呼吸情報測定装置1のうち、呼吸情報の測定に関連する部分の概略構成を図8に示す。イヤーピース22の受光部24から伝送された電気信号は、先ず信号解析部30のプリアンプ部40に入力される。プリアンプ部40は、ローパスフィルタにより、入力された電気信号のうち概ね20Hzより高周波の成分を除去することにより、電源周波数から電気磁気的に誘導されるノイズや、照明器具からの光により誘起されるノイズを取り除く。さらに、プリアンプ部40は、このノイズを除去した電気信号を増幅する。信号処理回路41は、その電気信号から基線変動成分を分離する。   FIG. 8 shows a schematic configuration of a part related to measurement of respiratory information in the respiratory information measuring apparatus 1 described above. The electrical signal transmitted from the light receiving unit 24 of the earpiece 22 is first input to the preamplifier unit 40 of the signal analysis unit 30. The preamplifier unit 40 is induced by noise that is electromagnetically induced from a power supply frequency or light from a lighting fixture by removing a component having a frequency higher than about 20 Hz from the input electric signal by a low-pass filter. Remove noise. Further, the preamplifier unit 40 amplifies the electric signal from which this noise has been removed. The signal processing circuit 41 separates the baseline fluctuation component from the electrical signal.

分離された基線変動成分は、フィードバック回路42において5乃至10秒程度の長い時定数で積分され、発光部駆動回路43に供給される。発光部駆動回路43は、受光部24で検出される脈波の電圧が小さいときには発光部23の発光量を多くしてより大きい変化を得るように、逆に受光部24で検出される脈波の電圧が大きいときには発光部23の発光量を減少させて受光部24及びその後の信号処理の回路が飽和するのを抑制するように制御する。   The separated baseline fluctuation component is integrated with a long time constant of about 5 to 10 seconds in the feedback circuit 42 and supplied to the light emitting unit driving circuit 43. The light emitting unit drive circuit 43 conversely detects the pulse wave detected by the light receiving unit 24 so as to increase the light emission amount of the light emitting unit 23 to obtain a larger change when the pulse wave voltage detected by the light receiving unit 24 is small. When the voltage is large, the light emission amount of the light emitting unit 23 is decreased to control the light receiving unit 24 and the subsequent signal processing circuit from being saturated.

また、分離された基線変動成分は、A/D(Analogue/Digital)コンバータ44により量子化され、数値データとしてプロセッサ45に送られる。プロセッサ45は、このデータを上述のように解析して被験者の呼吸情報を求め、その結果を記憶媒体46に記録すると共に、表示部31において文字その他の方法により表示する。   The separated baseline fluctuation component is quantized by an analog / digital (A / D) converter 44 and sent to the processor 45 as numerical data. The processor 45 analyzes the data as described above to obtain the breathing information of the subject, records the result in the storage medium 46, and displays the result on the display unit 31 by characters or other methods.

なお、上述した発光部23及び受光部24では、測定する血中成分(グルコースやコレステロールなど)に吸収されやすい波長の光を投射することにより、血糖値や血中コレステロール値を測定することもできる。また、酸素を結合したヘモグロビンと酸素を結合していないヘモグロビンとの光吸収率の違いを利用することで、血中酸素飽和度を測定することもできる。このように、本実施の形態における呼吸情報測定装置1によれば、血圧以外にも、脈拍数、血糖値、血中コレステロール値、血中酸素飽和度等の複数の生態情報を並行して測定することができるため、被験者の健康管理上、有益である。また、それぞれの生体情報の相関関係を解析するなど、より高次の解析も可能である。   In addition, in the light emission part 23 and the light-receiving part 24 mentioned above, a blood glucose level and a blood cholesterol level can also be measured by projecting the light of the wavelength which is easy to be absorbed by the blood component (glucose, cholesterol, etc.) to measure. . Further, the oxygen saturation level in blood can be measured by utilizing the difference in light absorption rate between hemoglobin to which oxygen is bound and hemoglobin to which oxygen is not bound. Thus, according to the respiratory information measuring apparatus 1 in the present embodiment, in addition to blood pressure, a plurality of biological information such as pulse rate, blood sugar level, blood cholesterol value, blood oxygen saturation, etc. are measured in parallel. This is beneficial for the health management of the subject. Further, higher-order analysis such as analysis of the correlation between the respective pieces of biological information is possible.

以上、本発明を適用した具体的な実施の形態について説明したが、本発明は上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。   Although specific embodiments to which the present invention is applied have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. Of course there is.

例えば、上述した実施の形態では、図3に示すようなインナーイヤー型イヤーレシーバ形状のセンサ素子を血圧測定装置に用いるものとして説明したが、この形状に限定されるものではなく、指先や耳朶、手首などの人体の末梢組織を挟むような形状であっても構わない。この場合においても、その末梢組織に対して発光部から光を投射し、その透過光又は反射光を受光部で検出することにより脈波を測定することができ、その脈波を解析することで呼吸情報を求めることができる。   For example, in the above-described embodiment, the sensor element having the inner ear type ear receiver shape as shown in FIG. 3 is used in the blood pressure measuring device. However, the present invention is not limited to this shape, and is not limited to this shape. The shape may be such that the peripheral tissue of the human body is sandwiched between them. Even in this case, it is possible to measure the pulse wave by projecting light from the light emitting unit to the peripheral tissue and detecting the transmitted light or reflected light by the light receiving unit, and analyzing the pulse wave Respiratory information can be obtained.

容積脈波とその基線変動を説明する図であり、同図(A)は、ノイズ除去及び増幅を行った後の容積脈波の波形を示し、同図(B)は、この容積脈波の基線変動電圧波形を示す。It is a figure explaining a volume pulse wave and its base line fluctuation | variation, The figure (A) shows the waveform of the volume pulse wave after performing noise removal and amplification, The figure (B) is the figure of this volume pulse wave. The baseline fluctuation voltage waveform is shown. 基線変動電圧波形と呼吸パターンとを重畳させて示す図である。It is a figure which superimposes a baseline fluctuation voltage waveform and a respiration pattern. 本実施の形態における呼吸情報測定装置の一例を示す概略図である。It is the schematic which shows an example of the respiration information measuring device in this Embodiment. 同呼吸情報測定装置に用いられるセンサ素子を拡大して示す斜視図である。It is a perspective view which expands and shows the sensor element used for the respiration information measuring device. 同センサ素子を被験者に装着した状態を示す図である。It is a figure which shows the state which mounted | wore the test subject with the sensor element. 同センサ素子のイヤーピースを示す側断面図である。It is a sectional side view which shows the earpiece of the sensor element. センサ素子の発光部及び受光部が被験者の外耳道内面の皮膚に当接されている状態を示す図である。It is a figure which shows the state in which the light emission part and light-receiving part of a sensor element are contact | abutted to the skin of a test subject's inner ear canal. 同呼吸情報測定装置のうち、呼吸情報の測定に関連する部分の概略構成を示す図である。It is a figure which shows schematic structure of the part relevant to the measurement of respiration information among the respiration information measuring devices. 従来の生体情報測定装置に用いられるセンサ素子を拡大して示す斜視図である。It is a perspective view which expands and shows the sensor element used for the conventional biological information measuring device. 同センサ素子を被験者に装着した状態を示す図である。It is a figure which shows the state which mounted | wore the test subject with the sensor element.

符号の説明Explanation of symbols

1 呼吸情報測定装置、10 センサ素子、20 本体部、21 スピーカ、22 イヤーピース、23 発光部、24 受光部、30 信号解析部、31 表示部、40 プリアンプ部、41 信号処理回路、42 フィードバック回路、43 発光部駆動回路、44 A/Dコンバータ、45 プロセッサ、46 記憶媒体
DESCRIPTION OF SYMBOLS 1 Respiration information measuring device, 10 Sensor element, 20 Main body part, 21 Speaker, 22 Earpiece, 23 Light emission part, 24 Light reception part, 30 Signal analysis part, 31 Display part, 40 Preamplifier part, 41 Signal processing circuit, 42 Feedback circuit, 43 Light Emitting Unit Drive Circuit, 44 A / D Converter, 45 Processor, 46 Storage Medium

Claims (9)

血液循環によって生じる脈波を検出する脈波検出工程と、
上記脈波検出工程にて検出された脈波の基線変動成分を抽出する基線変動成分抽出工程と、
上記基線変動成分抽出工程にて抽出された基線変動成分の時間変動パターンに基づいて呼吸情報を演算する呼吸情報演算工程と
を有することを特徴とする呼吸情報測定方法。
A pulse wave detection step for detecting a pulse wave generated by blood circulation;
A baseline fluctuation component extraction step for extracting a baseline fluctuation component of the pulse wave detected in the pulse wave detection step;
A respiration information calculating step of calculating respiration information based on the time variation pattern of the baseline variation component extracted in the baseline variation component extraction step.
上記呼吸情報演算工程では、所定期間中に基線変動成分が所定の閾値を超えた回数に基づいて呼吸数を演算することを特徴とする請求項1記載の呼吸情報測定方法。   2. The respiratory information measuring method according to claim 1, wherein in the respiratory information calculation step, the respiratory rate is calculated based on the number of times that the baseline fluctuation component exceeds a predetermined threshold during a predetermined period. 上記脈波検出工程にて検出された脈波の高周波ノイズを除去するノイズ除去工程をさらに有し、
上記基線変動成分抽出工程では、該ノイズ除去工程でノイズが除去された波形から基線変動成分を抽出する
ことを特徴とする請求項1記載の呼吸情報測定方法。
A noise removal step of removing high-frequency noise of the pulse wave detected in the pulse wave detection step;
The respiratory information measurement method according to claim 1, wherein, in the baseline fluctuation component extraction step, a baseline fluctuation component is extracted from the waveform from which noise has been removed in the noise removal step.
上記脈波検出工程では、脈波を検出する部位に対して発光部から光を投射し、上記部位から得られる透過光又は反射光を受光部により検出することで脈波を検出することを特徴とする請求項1記載の呼吸情報測定方法。   In the pulse wave detection step, the pulse wave is detected by projecting light from the light emitting unit to a part for detecting the pulse wave, and detecting transmitted light or reflected light obtained from the part by the light receiving unit. The respiratory information measuring method according to claim 1. 血液循環によって生じる脈波を検出する脈波検出手段と、
上記脈波検出手段によって検出された脈波の基線変動成分を抽出する基線変動成分抽出手段と、
上記基線変動成分抽出手段によって抽出された基線変動成分の時間変動パターンに基づいて呼吸情報を演算する呼吸情報演算手段と
を備えることを特徴とする呼吸情報測定装置。
Pulse wave detection means for detecting a pulse wave generated by blood circulation;
Baseline fluctuation component extraction means for extracting the baseline fluctuation component of the pulse wave detected by the pulse wave detection means;
A respiration information measuring device comprising: respiration information calculating means for calculating respiration information based on the time fluctuation pattern of the baseline fluctuation component extracted by the baseline fluctuation component extraction means.
上記呼吸情報演算手段は、所定期間中に基線変動成分が所定の閾値を超えた回数に基づいて呼吸数を演算することを特徴とする請求項5記載の呼吸情報測定装置。   6. The respiratory information measuring apparatus according to claim 5, wherein the respiratory information calculating means calculates a respiratory rate based on the number of times that the baseline fluctuation component exceeds a predetermined threshold during a predetermined period. 上記脈波検出手段によって検出された脈波の高周波ノイズを除去するノイズ除去手段をさらに備え、
上記基線変動成分抽出手段は、該ノイズ除去手段によってノイズが除去された波形から基線変動成分を抽出する
ことを特徴とする請求項5記載の呼吸情報測定装置。
Noise removing means for removing high-frequency noise of the pulse wave detected by the pulse wave detecting means,
The respiratory information measuring apparatus according to claim 5, wherein the baseline fluctuation component extraction unit extracts a baseline fluctuation component from the waveform from which noise has been removed by the noise removal unit.
上記脈波検出手段は、脈波を検出する部位に対して光を照射する発光部と、上記部位から得られる透過光又は反射光を検出する受光部とを有することを特徴とする請求項5記載の呼吸情報測定装置。   6. The pulse wave detecting means includes: a light emitting unit that irradiates light to a part that detects a pulse wave; and a light receiving part that detects transmitted light or reflected light obtained from the part. The respiratory information measuring device described. 上記脈波検出手段は、上記発光部及び上記受光部が被験者の外耳道の内面に当接して固定される形状を有することを特徴とする請求項8記載の呼吸情報測定装置。   9. The respiratory information measuring apparatus according to claim 8, wherein the pulse wave detecting means has a shape in which the light emitting part and the light receiving part are fixed in contact with the inner surface of the ear canal of the subject.
JP2004152118A 2004-05-21 2004-05-21 Respiratory information measuring method and apparatus Expired - Fee Related JP4581480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004152118A JP4581480B2 (en) 2004-05-21 2004-05-21 Respiratory information measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004152118A JP4581480B2 (en) 2004-05-21 2004-05-21 Respiratory information measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2005329149A true JP2005329149A (en) 2005-12-02
JP4581480B2 JP4581480B2 (en) 2010-11-17

Family

ID=35484169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004152118A Expired - Fee Related JP4581480B2 (en) 2004-05-21 2004-05-21 Respiratory information measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4581480B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528140A (en) * 2006-02-28 2009-08-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ External device that continuously monitors for OSDB and provides voice stimulation treatment
CN1977767B (en) * 2005-12-08 2010-10-06 深圳迈瑞生物医疗电子股份有限公司 Method for improving respiratory wave identification rate
JP2016010616A (en) * 2014-06-30 2016-01-21 株式会社東芝 Respiration state estimation apparatus, respiration state estimation method, and program
JP2016036617A (en) * 2014-08-08 2016-03-22 ホシデン株式会社 Ear wearing tool with pulse sensor
CN107773244A (en) * 2016-08-25 2018-03-09 宏达国际电子股份有限公司 Assess the method and its electronic installation of respiratory rate
WO2021066003A1 (en) * 2019-09-30 2021-04-08 テルモ株式会社 Cardiac output measurement device
WO2021066004A1 (en) * 2019-09-30 2021-04-08 テルモ株式会社 Cardiac output measurement device
JP2021102067A (en) * 2017-09-29 2021-07-15 京セラ株式会社 Sleep determination system, massage system, control method, and electronic apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015005804T5 (en) 2014-12-24 2017-10-19 Asahi Kasei Kabushiki Kaisha Breath condition estimator, portable device, body wearable device, program, medium, breath state estimation method, and breath condition estimator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1156827A (en) * 1997-08-26 1999-03-02 Seiko Epson Corp Motion intensity detector
JPH11178803A (en) * 1997-12-17 1999-07-06 Matsushita Electric Ind Co Ltd Biological information measuring device
JP2002078690A (en) * 2000-09-07 2002-03-19 Denso Corp Sleeping state judging method
JP2003339651A (en) * 2002-05-22 2003-12-02 Denso Corp Pulse wave analyzer and biological state monitoring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1156827A (en) * 1997-08-26 1999-03-02 Seiko Epson Corp Motion intensity detector
JPH11178803A (en) * 1997-12-17 1999-07-06 Matsushita Electric Ind Co Ltd Biological information measuring device
JP2002078690A (en) * 2000-09-07 2002-03-19 Denso Corp Sleeping state judging method
JP2003339651A (en) * 2002-05-22 2003-12-02 Denso Corp Pulse wave analyzer and biological state monitoring apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1977767B (en) * 2005-12-08 2010-10-06 深圳迈瑞生物医疗电子股份有限公司 Method for improving respiratory wave identification rate
JP2009528140A (en) * 2006-02-28 2009-08-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ External device that continuously monitors for OSDB and provides voice stimulation treatment
JP2016010616A (en) * 2014-06-30 2016-01-21 株式会社東芝 Respiration state estimation apparatus, respiration state estimation method, and program
JP2016036617A (en) * 2014-08-08 2016-03-22 ホシデン株式会社 Ear wearing tool with pulse sensor
CN107773244A (en) * 2016-08-25 2018-03-09 宏达国际电子股份有限公司 Assess the method and its electronic installation of respiratory rate
JP2021102067A (en) * 2017-09-29 2021-07-15 京セラ株式会社 Sleep determination system, massage system, control method, and electronic apparatus
WO2021066003A1 (en) * 2019-09-30 2021-04-08 テルモ株式会社 Cardiac output measurement device
WO2021066004A1 (en) * 2019-09-30 2021-04-08 テルモ株式会社 Cardiac output measurement device

Also Published As

Publication number Publication date
JP4581480B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
US10856812B2 (en) Methods and apparatus for detecting motion via optomechanics
US9801554B2 (en) Sensor for determining body parameters during exercise
EP2116183B1 (en) Robust opto-electrical ear located cardiovascular monitoring device
EP3127478B1 (en) Devices and methods for non-invasive optical physiological measurements
US7107088B2 (en) Pulse oximetry methods and apparatus for use within an auditory canal
EP2229880A1 (en) Headband integrated monitoring unit using an accelerometer
US20140288447A1 (en) Ear-related devices implementing sensors to acquire physiological characteristics
US20150141774A1 (en) Subject information detection unit, subject information processing device, electric toothbrush device, electric shaver device, subject information detection device, aging degree evaluation method, and aging degree evaluation device
EP2835100B1 (en) System for measuring and recording a user&#39;s vital signs
EP3678551B1 (en) Electronic stethoscope with enhanced features
JP2004329928A (en) Inserting into ear type biomedical signal measuring device and biomedical signal measuring method using this
CN111464901A (en) Light guide and monitoring device comprising a light guide
JP2015503933A (en) Pulse meter / oximeter that can be worn on the body
CN104414627A (en) Continuous cuffless blood pressure measurement using a mobile device
US12029606B2 (en) Electronic stethoscope with enhanced features
JP2007021106A (en) Biological information-measuring device
KR20130010207A (en) System for analyze the user&#39;s health and stress
JP4581480B2 (en) Respiratory information measuring method and apparatus
US20200054267A1 (en) Method, system and apparatus for detection of neuro attacks
JP2006006897A (en) Method and apparatus for measurement of blood pressure
JP2005329148A (en) Instrument and method for bioinformation measurement
JPH06105828A (en) Inspecting and training apparatus for hearing and headphone used therefor
JP2007307152A (en) Portable biological information monitor
JP2018050667A (en) Measurement device and measurement method
JP2005329147A (en) Bioinformation measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R151 Written notification of patent or utility model registration

Ref document number: 4581480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees